RECEIVED

3:08 pm, Oct 26, 2007

Alameda County Environmental Health

Declaration from the Responsible Party

Letter Report Groundwater Monitoring Conducted 10 September 2007 2440 East Eleventh Street Oakland CA RO No. 29

Dated 12 October 2007 Prepared by Streamborn, Berkeley CA

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Jeffrey Eandi Vice President Eandi Metal Works 976 Twenty-Third Avenue Oakland CA 94606

Signed $\frac{10/22/07}{}$

Dated

12 October 2007

Project No. P279

<u>Letter Report</u> <u>Groundwater Monitoring Conducted 10 September 2007</u> <u>2440 East Eleventh Street</u> <u>Oakland CA</u> <u>RO No. 29</u>

Dear Mr. Eandi:

Jeffrey M. Eandi

Eandi Metal Works

976 Twenty-Third Avenue Oakland CA 94606

This letter report documents the results of groundwater monitoring conducted 10 September 2007 for five monitoring wells (MW1, MW2, MW3, MW4, MW5) at the subject property. The results of our work are summarized in the following:

- Table 1 provides a chronology of environmental activities.
- Table 2 provides a bibliography.
- Table 3 summarizes groundwater level and gradient data.
- Table 4 summarizes groundwater purging and sampling information. Purge water generated during sampling was containerized onsite in labeled drums.
- Table 5 summarizes the groundwater analytical data.
- Figure 1 provides a location map (USGS).
- Figure 2 shows a vicinity map.
- Figure 3 provides a site plan.
- Figure 4 shows the groundwater levels and gradient (10 September 2007).
- Attachment 1 contains the groundwater sampling forms
- Attachment 2 contains the laboratory report and chain-of-custody form.

The groundwater monitoring results for 10 September 2007 are consistent with historic results. The next groundwater-monitoring event is scheduled circa March-April 2008.

Please contact us with any questions or comments.

Sincerely,

STREAMBORN

ough to Cover

Douglas W. Lovell, PE Geoenvironmental Engineer

Attachments

Electronic Submission: This report was uploaded to Geotracker and the Alameda County server.

Table 1 (Page 1 of 2)Environmental Chronology2440 East Eleventh Street
Oakland CA

Date	Performed By	Event
Unknown	Unknown	• 1,000-gallon underground leaded gasoline tank was installed.
15 August 1991	Eandi Metal Works	• The 1,000-gallon tank was emptied of product. Use of the tank was discontinued.
11 May 1992	Unknown	• The 1,000-gallon tank was removed and soil and groundwater contamination was discovered.
10 July 1995	AGI Technologies	• Five soil borings were drilled. Soil samples were collected and analyzed for TPH-gasoline, BTEX, MtBE, and total metals.
		• Three of the borings were completed as monitoring wells (MW1, MW2, and MW3). The other two borings (E1 and E2) were grouted.
		• Water levels were measured in monitoring wells MW1, MW2, and MW3.
		• Monitoring wells MW1, MW2, and MW3 were developed and groundwater samples were collected. Samples were analyzed for TPH-gasoline, BTEX, MtBE, and total lead.
		• An elevation survey was conducted for monitoring wells MW1, MW2, and MW3.
17 July 1995	AGI Technologies	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		• Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, MtBE, and total lead.
20 October 1995	AGI Technologies	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		• Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, and total lead.
25 January 1996	AGI Technologies	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		• Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, MtBE, and total lead.
25 April 1996	AGI Technologies	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		• Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, MtBE, and total lead.
11 - 12 June 2001	Kleinfelder	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		 Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, and total lead.
5 February 2002	Kleinfelder	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		 Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, MtBE, and total lead.
9 June 2004	Streamborn	• Using a backhoe, the excavation for the former tank was partially re-excavated.
		• Soil samples were collected from the base (7.5-8 feet below ground surface) and each of the four sidewalls (5-5.5 feet below ground surface) by exposing native soil and driving a brass liner into the exposed soil.
		• Soil samples were analyzed for TPH-diesel/kerosene/stoddard solvent, TPH-gasoline, BTEX, fuel oxygenates, and total lead.
12 August 2004	Streamborn	• Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		• Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, fuel oxygenates, and total lead.
		• Seven geoprobe borings (B1-B7) were drilled to depths between 20 and 32 feet. Soil samples were collected continuously in the borings.
		• Two soil samples were retained from each of the borings for chemical analysis. One soil sample approximately coincided with the depth of groundwater observed during drilling and the other soil sample coincided with the bottom of the boring. Soil samples were analyzed for TPH-gasoline, BTEX, fuel oxygenates, and total lead.
		• Temporary casings were installed in the borings and water levels allowed to stabilize for at least one hour. Water levels were measured.
		• Purged groundwater samples were collected from the temporary casings. Samples were analyzed for TPH-gasoline, BTEX, fuel oxygenates, and total lead.
		• The temporary casings were removed from the borings and the borings were grouted.
17-23 September 2004	Streamborn	• Using a backhoe, the excavation for the former tank was completely re-excavated. The excavated soil was air-dried and replaced in the excavation using ±2-foot lifts. Each lift was compacted using a whacker. 6 inches of imported Class II aggregate base was placed as the final lift of soil.
		 The pavement and sidewalk were repayed with reinforced concrete. The concrete thickness was 8 inches. The reinforcement was #5 rebar on 12-inch centers.
2 March 2005	Streamborn	 Groundwater levels were measured in monitoring wells MW1, MW2, and MW3.
		 Groundwater samples were collected from monitoring wells MW1, MW2, and MW3. Samples were analyzed for TPH-gasoline, BTEX, and fuel oxygenates.

Table 1 (Page 2 of 2)

Environmental Chronology

2440 East Eleventh Street Oakland CA

Date	Performed By	Event
28 September 2006	Streamborn	• Two direct push borings were drilled to 17 feet. Soil samples were collected continuously during drilling and selected samples were analyzed for TPH-gasoline, BTEX, fuel oxygenates, total lead, and lead scavengers (1,2-dichloroethane and ethylene dibromide).
		• Each boring was subsequently overdrilled using a hollow-stem auger and completed as a two-inch diameter, 17-foot deep monitoring well (MW4 and MW5).
		 Monitoring wells MW4 and MW5 were elevation surveyed.
2 October 2006	Streamborn	Monitoring wells MW4 and MW5 were developed.
		• Groundwater levels were measured in monitoring wells MW1, MW2, MW3, MW4, and MW5.
		• Groundwater samples were collected from monitoring wells MW1, MW2, MW3, MW4, and MW5. Samples were analyzed for TPH-gasoline/BTEX/fuel oxygenates (EPA Method 8260), total lead, and lead scavengers (1,2-dichloroethane and ethylene dibromide).
20 March 2007	Streamborn	• Groundwater levels were measured in monitoring wells MW1, MW2, MW3, MW4, and MW5.
		• Groundwater samples were collected from monitoring wells MW1, MW2, MW3, MW4, and MW5. Samples were analyzed for TPH-gasoline/BTEX/fuel oxygenates (EPA Method 8260).
10 September 2007	Streamborn	• Groundwater levels were measured in monitoring wells MW1, MW2, MW3, MW4, and MW5.
		• Groundwater samples were collected from monitoring wells MW1, MW2, MW3, MW4, and MW5. Samples were analyzed for TPH-gasoline/BTEX/fuel oxygenates (EPA Method 8260).

General Notes

(a) TPH = total petroleum hydrocarbons.

(b) BTEX = benzene, toluene, xylenes, and total xylenes.

(c) MtBE = methyl tert-butyl ether.

Bibliography 2440 East Eleventh Street Oakland CA

ACHCSA (2002). *Notice of Violation, Property at 976 23rd Avenue, Oakland CA*. Correspondence to Jeffrey M. Eandi, Eandi Metal Works, Oakland CA. Correspondence from Amir K. Gholami, Alameda County Health Care Services Agency, Alameda CA. 30 May 2002.

ACHCSA (2003). *Fuel Leak Case # RO0000029 – 976 23rd Avenue, Oakland, CA 94606.* Correspondence from Amir K. Gholami, Alameda County Health Care Services Agency, Alameda CA. Correspondence to Eandi Metal Works, Oakland CA. 11 December 2003.

ACHCSA (2005). *Fuel Leak Case # RO0000029 – 976 23rd Avenue, Oakland, CA 94606.* Email from Amir K. Gholami, Alameda County Health Care Services Agency, Alameda CA. Email to Streamborn, Berkeley CA. 9 May 2005.

ACHCSA (2006a). *Fuel Leak Case No. RO0000029, Eandi Metal Works, 2440 East Eleventh Street, Oakland, CA.* Correspondence from Jerry Wickham, Alameda County Health Care Services Agency, Alameda CA. Correspondence to Jeffrey Eandi, Eandi Metal Works, Oakland CA. 23 May 2006.

ACHCSA (2006b). *Fuel Leak Case No. RO0000029, Eandi Metal Works, 2440 East Eleventh Street, Oakland, CA.* Correspondence from Jerry Wickham, Alameda County Health Care Services Agency, Alameda CA. Correspondence to Jeffrey Eandi, Eandi Metal Works, Oakland CA. 25 July 2006.

AGI Technologies (1995). *Monitoring Well Installations and Quarterly Groundwater Monitoring, Eandi Metal Works, Oakland, California.* Prepared for Eandi Metal Works, Oakland CA. Prepared by AGI Technologies, Bellevue WA. 25 September 1995.

AGI Technologies (1996). *Quarterly Groundwater Monitoring, Third Event January 1996, Eandi Metal Works, Oakland California.* Prepared for Eandi Metal Works, Oakland CA. Prepared by AGI Technologies, Bellevue WA. 22 May 1996.

Kleinfelder (2001). *Monitoring Well Sampling Results for MW-1, MW-2, and MW-3 at the Eandi Facility, Oakland, California.* Prepared for Jeff Eandi, Oakland CA. Prepared by Kleinfelder, Oakland CA. 14 June 2001.

Kleinfelder (2002). *Monitoring Well Sampling Results for MW-1, MW-2, and MW-3 at the Eandi Metal Works Facility, Oakland, California.* Prepared for Jeff Eandi, Oakland CA. Prepared by Kleinfelder, Oakland CA. 15 March 2002.

RWQCB (1996). *Memorandum, To: San Francisco Bay Area Agencies Overseeing UST cleanup, Supplemental Instruction to State Water Board, December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites.* Prepared by San Francisco Bay Regional Water Quality Control Board, Oakland CA. 5 January 1996.

RWQCB (2005). Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final - February 2005). Prepared by San Francisco Bay Regional Water Quality Control Board, Oakland CA. February 2005. www.waterboards.ca.gov/sanfranciscobay/esl.htm

Streamborn (2002). *Workplan, Soil and Groundwater Sampling, 2440 East Eleventh Street, Oakland CA*. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P279. 28 June 2002.

Streamborn (2003). *Revised Workplan, Soil and Groundwater Sampling, 2440 East Eleventh Street, Oakland CA*. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P279. 12 February 2003.

Streamborn (2004). *Letter Report, Sample and Backfill Former Tank Excavation, 2440 East Eleventh Street, Oakland CA*. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P279. 15 December 2004.

Streamborn (2005a). Letter Report (Revised 25 March 2005), Groundwater Investigation Conducted 12 August 2004, 2440 East Eleventh Street, Oakland CA, RO No. 29. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. 11 February 2005 (Revised 25 March 2005).

Streamborn (2005b). Letter Report, Groundwater Monitoring Conducted 2 March 2005, 2440 East Eleventh Street, Oakland CA, RO No. 29. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. 25 March 2005.

Streamborn (2006a). *Letter Report, Site Conceptual Model, 2440 East Eleventh Street, Oakland CA, Alameda County RO No. 29.* Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P279. 26 April 2006.

Streamborn (2006b). *Workplan, Installation and Sampling of Groundwater Monitoring Wells, 2440 East Eleventh Street, Oakland CA, RO No. 29.* Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P279. 20 June 2006.

Streamborn (2006c). Letter Report, Installation of Additional Groundwater Monitoring Wells Conducted 28 September 2006 and Groundwater Monitoring Conducted 2 October 2006, 2440 East Eleventh Street, Oakland CA. RO No. 29. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P279. 1 December 2006.

Streamborn (2007a). Letter Report, Groundwater Monitoring Conducted 20 March 2007, 2440 East Eleventh Street, Oakland CA, RO No. 29. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA, Project No. P279. 10 April 2007.

Streamborn (2007b). Letter Report, Groundwater Monitoring Conducted 10 September 2007, 2440 East Eleventh Street, Oakland CA, RO No. 29. Prepared for Eandi Metal Works, Oakland CA. Prepared by Streamborn, Berkeley CA, Project No. P279. 12 October 2007.

Groundwater Level and Gradient Data 2440 East Eleventh Street Oakland CA

Location	M١	W1	MV	W2	MV	W3	M	W4	MV	W5																				
Ground Surface Elevation	21.	.68	21.	.36	20	.21	20	.27	19.	.71																				
Casing Diameter (inches)	2	2	2		2		2		2																					
Measuring Point GPS Coordinates	N 37° 46.808' W 122° 14.135'		N 37° 46.804' W 122° 14.152'		N 37° 4 W 122°		N 37° 4 W 122°				Groundwater Gradient																			
Measuring Point Elevation	TOC N 21.		TOC N 21.		TOC N 19.	Side = .82	TOC N Side = 19.58																				TOC N 19.			
	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev	+																			
Intercepted Interval	9 to 20	1.7 to 12.7	9 to 20	1.4 to 12.4	9 to 20	0.2 to 11.2	6 to 17	3.3 to 14.3	6 to 17	2.7 to 13.7	Direction	Magnitude																		
14 July 1995	9.72	11.56	10.74	10.32	10.95	8.87																								
17 July 1995	11.11	10.17	10.93	10.13	11.04	8.78																								
20 October 1995	11.96	9.32	11.92	9.14	12.11	7.71																								
25 January 1996	8.14	13.14	8.23	12.83	8.83	10.99																								
11-12 June 2001	10.35	10.93	11.50	9.56	11.08	8.74																								
5 February 2002	11.00	10.28	11.10	9.96	11.30	8.52																								
12 August 2004	10.95	10.33	11.17	9.89	11.77	8.05					N 115° W	0.02																		
2 March 2005	8.25	13.03	8.44	12.62	9.36	10.46					N 120° W	0.03																		
2 October 2006	11.08	10.20	11.15	9.91	11.79	8.03	11.48	8.10	11.28	7.78	N 126° W	0.02																		
20 March 2007	10.96	10.32	10.78	10.28	10.91	8.91	10.57	9.01	10.41	8.65	N 127° W	0.01																		
10 September 2007	11.24	10.04	11.54	9.52	12.20	7.62	11.91	7.67	11.68	7.38	N 128° W	0.02																		
Total Depth (Last Measurement)	19.8		19.8		19.6		17.3		17.2																					

General Notes

(a) Measurements are cited in units of feet. Elevations are referenced to the NGVD29 - Mean Sea Level (MSL) datum.

- (b) NM = not measured.
- (c) TOC = top of PVC casing. N = north. Measuring points were the top of the PVC casing, north side.
- (d) Streamborn (Berkeley CA) measured GPS coordinates using a Garmin GPS II meter.
- (e) HTT Engineering (Oakland CA) surveyed the elevation of MW1 to the NGVD29 Mean Sea Level (MSL) datum on 6 September 2006.
- (f) Streamborn (Berkeley CA) surveyed the elevations of the remaining wells on 28 September 2006.
- (g) The intercepted intervals correspond to the sand pack interval. The depths of the intercepted intervals were measured relative to the adjacent pavement or ground surface.

Well Purging and Sampling Information Since 2001

2440 East Eleventh Street Oakland CA

Well No.	Sample Date	Sample Type	Purge Method	Purge Duration (minutes)	Approximate Volume Purged (gallons)	Volume Purged (static water casing volumes)	Purged Dry?	Dissolved Oxygen (mg/L)	рН	Specific Conductance (µS/cm)	Temp (°C)	ORP (mV)	Turbidity/ Color
MW1	11 Jun 01	Grab	SPP	NM	20	NC	no	NM	6.8	310	21.4	NM	NM
	5 Feb 02	Grab	SPP	NM	4	NC	no	NM	6.6	290	18.8	NM	NM
	12 Aug 04	Grab	SPP	4	5	±3	no	1.1	7.0	230	18.8	-130	Clear/none
	2 Mar 05	Grab	SPP	7	6	±3	no	2.2	6.9	230	17.1	-160	Clear/none
	2 Oct 06	Grab	SPP	7	5	±3	no	1.0	6.6	380	17.7	-130	Translucent/gray
	20 Mar 07	Grab	SPP	25	5	±3	no	0.8	6.8	410	16.1	-130	Clear/none
	10 Sep 07	Grab	SPP	8	5	±3	no	0.9	6.7	480	18.0	-100	Clear/none
MW2	12 Jun 01	Grab	SPP	NM	15	NC	no	NM	7.1	430	17.2	NM	NM
	5 Feb 02	Grab	SPP	NM	4	NC	no	NM	6.6	400	16.8	NM	NM
	12 Aug 04	Grab	SPP	4	5	±3	no	2.0	6.8	510	18.9	-170	Turbid/gray
I	2 Mar 05	Grab	SPP	7	6	±3	no	2.2	6.7	490	17.7	-220	Clear/none
	2 Oct 06	Grab	SPP	7	5	±3	no	1.0	6.7	490	18.0	-110	Clear/none
I	20 Mar 07	Grab	SPP	20	5	±3	no	1.0	6.9	490	16.7	-170	Clear/none
	10 Sep 07	Grab	SPP	7	4	±3	no	0.7	6.8	560	19.6	-110	Clear/none
MW3	12 Jun 01	Grab	SPP	NM	12	NC	no	NM	7.4	440	17.2	NM	NM
	5 Feb 02	Grab	SPP	NM	4	NC	no	NM	6.6	410	17.8	NM	NM
I	12 Aug 04	Grab	SPP	8	4	±3	no	1.7	6.6	440	19.0	-150	Clear/none
	2 Mar 05	Grab	SPP	6	5	±3	no	2.3	6.8	500	18.1	-200	Clear/none
I	2 Oct 06	Grab	SPP	6	4	±3	no	1.0	6.8	490	18.8	-60	Clear/none
	20 Mar 07	Grab	SPP	25	4	±3	no	1.6	6.7	540	16.8	-60	Clear/none
I	10 Sep 07	Grab	SPP	7	4	±3	no	0.9	6.7	530	18.8	-120	Clear/none
MW4	2 Oct 06	Grab	SPP	24	14	±16	no	4.6	7.1	630	18.5	180	Translucent/brown
	20 Mar 07	Grab	SPP	15	3	±3	no	1.2	6.5	470	15.7	170	Clear/none
I	10 Sep 07	Grab	SPP	7	3	±3	no	1.4	6.4	490	18.1	120	Translucent/gray
MW5	2 Oct 06	Grab	SPP	35	22	±24	no	3.4	7.0	600	19.1	30	Translucent/brown
ł	20 Mar 07	Grab	SPP	23	3	±3	no	0.9	6.9	580	16.6	-70	Clear/none
	10 Sep 07	Grab	SPP	7	3	±3	no	0.8	6.8	630	19.5	-90	Clear/none

General Notes

(a) NM = not measured.

(b) NC = not calculated.

(c) ORP = oxidation-reduction potential.

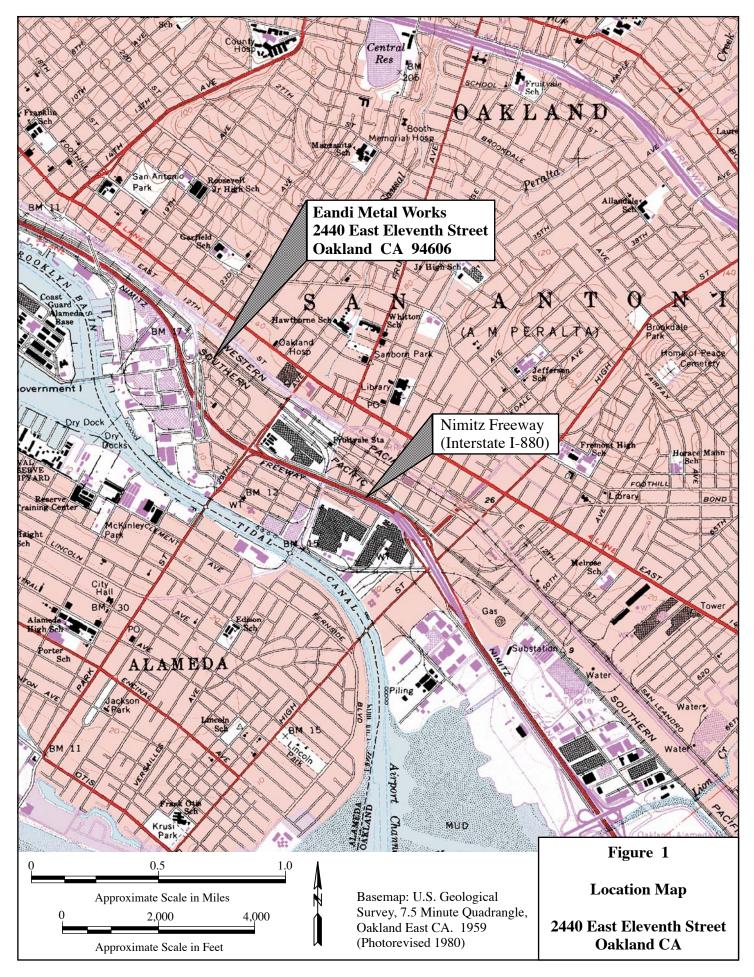
(d) SPP = submersible purge pump.

(d) Measurements cited in this table correspond to the end of purging (time of sampling).

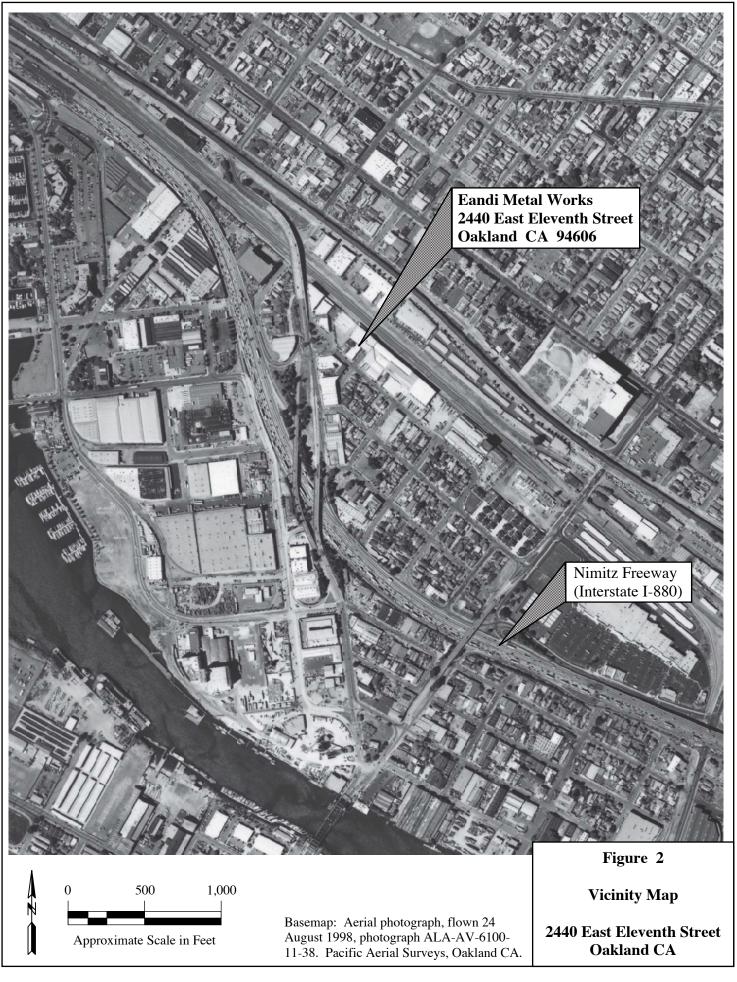
Groundwater Analytical Data from Monitoring Wells

2440 East Eleventh Street Oakland CA

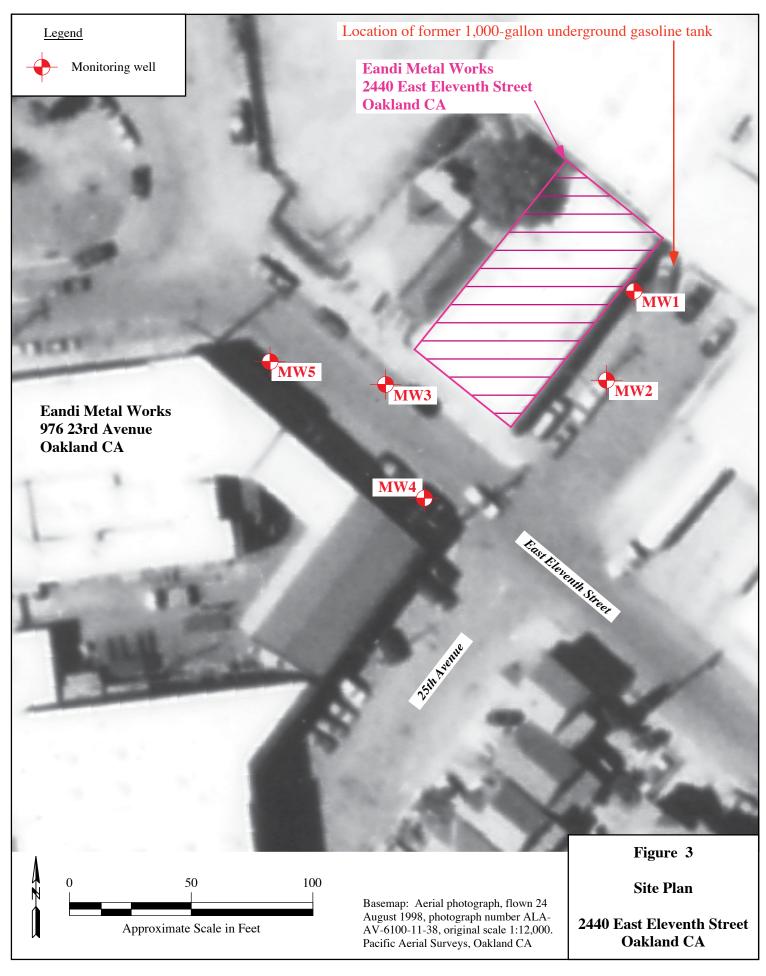
Location	Sample Date	Sample Type	Total Lead (µg/L)	TPH- Gasoline (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	1,2- Dichloro- ethane (µg/L)	Ethylene Dibromide (µg/L)	MtBE (µg/L)	Other Fuel Oxygenates (EPA Method 8260) (µg/L)
MW1	17 Jul 1995	Grab	<40	22,000	390	2,000	800	5,300	NM	NM	<125	NM
	20 Oct 1995	Grab	<40	14,000	270	540	360	1,800	NM	NM	NM	NM
	25 Jan 1996	Grab	<40	16,000	740	1,300	490	2,700	NM	NM	<500	NM
	25 Apr 1996	Grab	<40	4,600	180	450	190	1,000	NM	NM	<250	NM
	11 Jun 2001	Grab	14	7,100	14	35	240	720	NM	NM	NM	NM
	5 Feb 2002	Grab	3.7	9,300	6.3	11	230	560	NM	NM	< 0.7	NM
	12 Aug 2004	Grab	<5	2,900	9.1	6.0	130	160	NM	NM	0.72	<0.5 to <5
	2 Mar 2005	Grab	NM	950	1.9	0.60	19	4.0	NM	NM	0.80	<0.5 to <5
	2 Oct 2006	Grab	<100	830	4.1	0.80	44	7.8	< 0.5	< 0.5	< 0.5	<0.5 to <100
	20 Mar 2007	Grab	NM	470	2.1	< 0.5	8.5	1.8	< 0.5	NM	0.63	<0.5 to <100
	10 Sept 2007	Grab	NM	3,400	18	6.4	170	43	< 0.5	NM	1.1	<0.5 to <100
MW2	17 Jul 1995	Grab	56.4	21,000	370	1,700	930	5,100	NM	NM	<125	NM
	20 Oct 1995	Grab	<40	730	18	27	26	7.9	NM	NM	NM	NM
	25 Jan 1996	Grab	<40	14,000	74	660	1,000	2,600	NM	NM	670	NM
	25 Apr 1996	Grab	<40	13,000	370	440	1,000	2,900	NM	NM	<500	NM
	12 Jun 2001	Grab	7.7	3,200	11	6.2	170	270	NM	NM	NM	NM
	5 Feb 2002	Grab	3.5	2,900	7.6	3.8	220	160	NM	NM	< 0.7	NM
	12 Aug 2004	Grab	<5	3,100	2.6	1.8	< 0.5	13	NM	NM	< 0.5	<0.5 to <5
	2 Mar 2005	Grab	NM	3,700	<5	<2.5	340	22	NM	NM	<2.5	<2.5 to <25
	2 Oct 2006	Grab	<100	7,200	<2.5	3.0	380	30	<2.5	<2.5	<2.5	<2.5 to <500
	20 Mar 2007	Grab	NM	7,000	<5.0	<5.0	370	34	<5.0	NM	<5.0	<5.0 to <1,000
	10 Sep 2007	Grab	NM	9,300	<2.5	3.8	530	38	<2.5	NM	<2.5	<2.5 to <500
MW3	17 Jul 1995	Grab	153	8,400	1,200	150	1,000	1,700	NM	NM	<125	NM
	20 Oct 1995	Grab	<40	5,800	600	590	43	340	NM	NM	NM	NM
	25 Jan 1996	Grab	<40	10,000	1,200	290	870	1,300	NM	NM	<250	NM
	25 Apr 1996	Grab	<40	8,900	830	140	1,000	1,000	NM	NM	400	NM
	12 Jun 2001	Grab	7.4	1,800	37	4.5	98	19	NM	NM	NM	NM
	5 Feb 2002	Grab	4.4	1,100	32	2.1	76	9.5	NM	NM	< 0.5	NM
	12 Aug 2004	Grab	<5	1,100	4.5	< 0.5	6.0	1.8	NM	NM	1.4	<0.5 to <5
	2 Mar 2005	Grab	NM	3,000	27	3.0	76	22	NM	NM	<2.5	<2.5 to <25
	2 Oct 2006	Grab	<100	1,500	6.6	< 0.5	5.0	2.5	< 0.5	< 0.5	< 0.5	<0.5 to <100
	20 Mar 2007	Grab	NM	2,200	15	1.6	14	12	< 0.5	NM	0.52	<0.5 to <100
	10 Sep 2007	Grab	NM	1,000	4.2	< 0.5	< 0.5	0.82	< 0.5	NM	0.53	<0.5 to <100
MW4	2 Oct 2006	Grab	<100	<50	< 0.5	< 0.5	0.96	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 to <100
	20 Mar 07	Grab	NM	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NM	< 0.5	<0.5 to <100
	10 Sep 07	Grab	NM	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NM	< 0.5	<0.5 to <100
MW5	2 Oct 2006	Grab	<100	3,000	20	0.97	69	130	< 0.5	< 0.5	2.6	<0.5 to <100
	20 Mar 07	Grab	NM	2,800	13	1.5	27	35	< 0.5	NM	1.6	<0.5 to <100
	10 Sep 07	Grab	NM	1,900	11	0.78	10	9.2	< 0.5	NM	2.5	<0.5 to <100

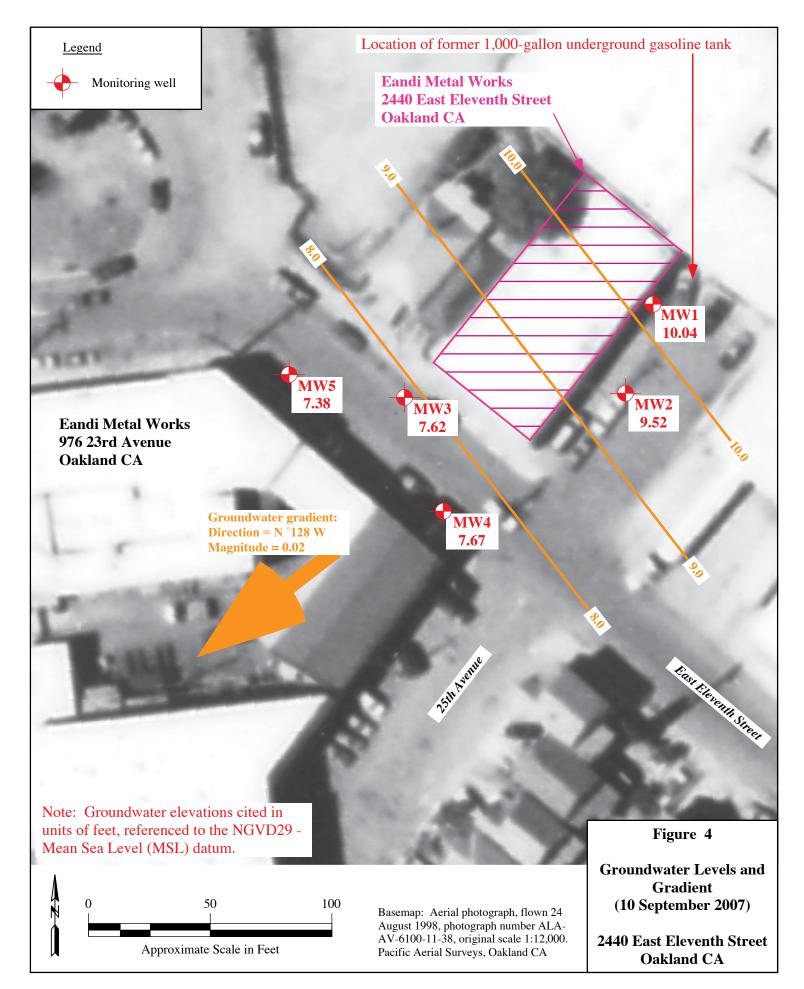

General Notes

(a) TPH = total petroleum hydrocarbons. MtBE = methyl tert-butyl ether.


(b) NM = not measured.

(c) Samples were collected using a Teflon bailer fitted with a bottom-emptying device.





ATTACHMENT 1

Groundwater Sampling Forms

Project Name/Number:	Eandi Metal Works / P279	Logged By:	Darcy Hinkley
Property Location:	2440 East Eleventh Street, Oakland CA	Date:	10 September 2007
Well Number:	MW1	Casing Diameter (in):	2
Purging Equipment:	Submersible purge pump	Sample Type:	Grab
Sampling Equipment:	Bailer with bottom-emptying device	Depth to Water:	11.24
Measuring Point:	Top of casing, north side	Total Depth:	19-8
Free Product:	None	Odor:	None
Comments:		Sample Number:	MW1

Note obstructions, well damage, or other compromising features under comments. Record depth in feet.

Total Depth (feet)	-	Depth to Water (feet)	x	0.04 gallons/foot for 1-inch well 0.16 gallons/foot for 2-inch well 0.65 gallons/foot for 4-inch well 1.47 gallons/foot for 6-inch well	=	Single Casing Volume (gallons)		Three Casing Volumes (gallons)
19.8	-	11-24	x	0.16	=	1.4	x 3	4.2

Purge Volume (gallons)	Time	Dissolved Oxygen (mg/L)	pН	Specific Conductivity (µS/cm)	Temp (°C)	ORP (mV)	Turbidity	Color	Purged Dry?	Comments
0	1022	1.00	6.84	525	18.3	-80.4	trans	GJay	NO	Start purge
1.5	1024	0.98	6.75	509	183	-86.4	trans	arm	SO	
3	1027	0.90	6.76	501	18.5	-912	trans	aread	04	
4.5	1030	0.88	6.74	482	18.0	-99.1	Clear	None	NO	
									 	Collect sample

Project Name/Number:	Eandi Metal Works / P279	Logged By:	Darcy Hinkley
Property Location:	2440 East Eleventh Street, Oakland CA	Date:	10 September 2007
Well Number:	MW2	Casing Diameter (in):	2
Purging Equipment:	Submersible purge pump	Sample Type:	Grab
Sampling Equipment:	Bailer with bottom-emptying device	Depth to Water:	11.54
Measuring Point:	Top of casing, north side	Total Depth:	19.8
Free Product:	None	Odor:	Yes
Comments:		Sample Number:	MW2

Note obstructions, well damage, or other compromising features under comments. Record depth in feet.

Total Depth (feet)	-	Depth to Water (feet)	x	0.04 gallons/foot for 1-inch well 0.16 gallons/foot for 2-inch well 0.65 gallons/foot for 4-inch well 1.47 gallons/foot for 6-inch well		Single Casing Volume (gallons)		Three Casing Volumes (gallons)
19.8	-	11.54	x	0.16	=	1,3	x 3	3.4

Purge Volume (gallons)	Time	Dissolved Oxygen (mg/L)	pН	Specific Conductivity (µS/cm)	Temp (°C)	ORP (mV)	Turbidity	Color	Purged Dry?	Comments
0	1146	1.69	7,00	587	21.3	-98.1	trans	Gran	סטק	Start purge
1.5	1148		6.91	581	20.7	-116	trang	Gray	60	
3	1151		6.85	556	20.0	-113.8	Clear	wore	ତର	
4	1153	0.71	6-84	559	19.6	-109.6	clear	None	100	
										Collect sample

Project Name/Number:	Eandi Metal Works / P279	Logged By:	Darcy Hinkley
Property Location:	2440 East Eleventh Street, Oakland CA	Date:	10 September 2007
Well Number:	MW3	Casing Diameter (in):	2
Purging Equipment:	Submersible purge pump	Sample Type:	Grab
Sampling Equipment:	Bailer with bottom-emptying device	Depth to Water:	12.20
Measuring Point:	Top of casing, north side	Total Depth:	19-6
Free Product:	None	Odor:	Yes
Comments:		Sample Number:	MW3

Note obstructions, well damage, or other compromising features under comments. Record depth in feet.

Total Depth (feet)	-	Depth to Water (feet)		0.04 gallons/foot for 1-inch well 0.16 gallons/foot for 2-inch well 0.65 gallons/foot for 4-inch well 1.47 gallons/foot for 6-inch well		Single Casing Volume (gallons)		Three Casing Volumes (gallons)
19-6	-	12.2	x	0.16	=	1.2	x 3	3.6

Purge Volume (gallons)	Time	Dissolved Oxygen (mg/L)	pН	Specific Conductivity (µS/cm)	Temp (°C)	ORP (mV)	Turbidity	Color	Purged Dry?	Comments
0	951	1.69	6.68	530	19.0	-81.7	traslucent	Gray	20	Start purge
1.5	953	07.0	6.67	523	18.9	-110.9	transferent	Gray	دى	
3	956	0.82	6.73	527	18. 7	-115.4	clear	None	NO	
4	958	0.94	6.71	529	18.8	-116.1	Clear	None	No	
			-							
				-						
					-					Collect sample

Project Name/Number: Eandi Metal Works / P279	Logged By: Darcy Hinkley
Property Location: 2440 East Eleventh Street, Oakland CA	Date: 10 September 2007
Well Number: MW4	Casing Diameter (in): 2
Purging Equipment: Submersible purge pump	Sample Type: Grab
Sampling Equipment: Bailer with bottom-emptying device	Depth to Water: 11.91
Measuring Point: Top of casing, north side	Total Depth: 17.3
Free Product: None	Odor: Done
Comments:	Sample Number: MW4

Note obstructions, well damage, or other compromising features under comments. Record depth in feet.

Total Depth (feet)	-	Depth to Water (feet)	x	0.04 gallons/foot for 1-inch well 0.16 gallons/foot for 2-inch well 0.65 gallons/foot for 4-inch well 1.47 gallons/foot for 6-inch well	=	Single Casing Volume (gallons)		Three Casing Volumes (gallons)
17.3	-	11.91	x	0.16	=	0.9 .	x 3	2.7

•

Purge Volume (gallons)	Time	Dissolved Oxygen (mg/L)	pH	Specific Conductivity (µS/cm)	Temp (°C)	ORP (mV)	Turbidity	Color	Purged Dry?	Comments
0	9:17	1.85	6.29	510	18.6	162	transfucet	brown	No	Start purge
	9:20	1.19	6.35	497	18.4	132.2	transfuced		oci	
2	9:22	0-85	6.43	481	18.0	123.9	tranduert	- A - I	NO	
3	9:24	1.37	6.38	489	18.1	121.7	transfercent	gray	NO	
								J /		
	. <u> </u>									
				<u>. </u>						Collect sample

Note observations of odor, sheen, and other signs of contamination under comments. Record turbidity as clear, translucent, opaque, cloudy, or turbid.

•.,

Project Name/Number: Eandi Metal Works / P279	Logged By: Darcy Hinkley
Property Location: 2440 East Eleventh Street, Oakland CA	Date: 10 September 2007
Well Number: MW5	Casing Diameter (in): 2
Purging Equipment: Submersible purge pump	Sample Type: Grab
Sampling Equipment: Bailer with bottom-emptying device	Depth to Water: 11. 68
Measuring Point: Top of casing, north side	Total Depth: 17.2
Free Product: None	Odor: Yes
Comments:	Sample Number: MW5

Note obstructions, well damage, or other compromising features under comments. Record depth in feet.

Total Depth (feet)	-	Depth to Water (feet)		0.04 gallons/foot for 1-inch well 0.16 gallons/foot for 2-inch well 0.65 gallons/foot for 4-inch well 1.47 gallons/foot for 6-inch well	=	Single Casing Volume (gallons)		Three Casing Volumes (gallons)
17.2	-	11.68	x	0.16	=	0.9	x 3	2.7

Purge Volume (gallons)	Time	Dissolved Oxygen (mg/L)	pН	Specific Conductivity (µS/cm)	Temp (°C)	ORP (mV)	Turbidity	Color	Purged Dry?	Comments
0	1103	1.14	6.83	632	19.0	-53.7	transfuccit	0.00	NO	Start purge
	1105	1.03	6.79	636	19.2	-79.6	Clears_	Jone	مد	
2	1108	0.94	6.83	625	19.4	-86.1	clear	vone	NO	
3	1110	0.83	6.81	628	19.5	-91.7	Cleas	None	NO	
				· · · · · · · · · · · · · · · · · · ·						
										Collect sample

ATTACHMENT 2

Laboratory Report and Chain-of-Custody Form

26 September, 2007

Information at Streamborn Streamborn PO Box 8330 Berkeley, CA 94707-8330

RE: 2440 East Eleven Street Work Order: MQI0265

Enclosed are the results of analyses for samples received by the laboratory on 09/11/07 18:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tim Rhiney For Tim Costello Client Services Manager

CA ELAP Certificate # 1210

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Page 1 of 11

Streamborn	Project: 2440 East Eleven Street	MQI0265
PO Box 8330	Project Number: P279	Reported:
Berkeley CA, 94707-8330	Project Manager: Information at Streamborn	09/26/07 14:11

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW4	MQI0265-01	Water	09/10/07 09:24	09/11/07 18:10
MW3	MQI0265-02	Water	09/10/07 09:58	09/11/07 18:10
MW1	MQI0265-03	Water	09/10/07 10:30	09/11/07 18:10
MW5	MQI0265-04	Water	09/10/07 11:10	09/11/07 18:10
MW2	MQI0265-05	Water	09/10/07 11:53	09/11/07 18:10

Streamborn PO Box 8330 Berkeley CA, 94707-8330		Project Nur	oject: 2440 nber: P279 ager: Inforr		MQI0265 Reported: 09/26/07 14:11				
То	tal Purgeab	le Hydroo	carbons	by GC	C/MS (C	CA LUF	T)		
	Te	stAmeric	a - Morg	an Hi	ll, CA				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW4 (MQI0265-01) Water Sampled:	09/10/07 09:24	Received: 0	9/11/07 18:	10					
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	7I18012	09/18/07	09/19/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		103 %	60-12	5	"	"	"	"	
Surrogate: Dibromofluoromethane		<i>97 %</i>	75-12	0	"	"	"	"	
Surrogate: Toluene-d8		95 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90 %	60-13	5	"	"	"	"	
MW3 (MQI0265-02) Water Sampled:	09/10/07 09:58	Received: 0	9/11/07 18:	10					
Gasoline Range Organics (C4-C12)	1000	50	ug/l	1	7I18012	09/18/07	09/19/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		100 %	60-12	5	"	"	"	"	
Surrogate: Dibromofluoromethane		98 %	75-12	0	"	"	"	"	
Surrogate: Toluene-d8		101 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		119 %	60-13	5	"	"	"	"	
MW1 (MQI0265-03) Water Sampled:	09/10/07 10:30	Received: 0	9/11/07 18:	10					
Gasoline Range Organics (C4-C12)	3400	50	ug/l	1	7I18012	09/18/07	09/19/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		<i>97 %</i>	60-12	5	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	75-12	0	"	"	"	"	
Surrogate: Toluene-d8		103 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97 %	60-13	5	"	"	"	"	
MW5 (MQ10265-04) Water Sampled:	09/10/07 11:10	Received: 0	9/11/07 18:	10					
Gasoline Range Organics (C4-C12)	1900	50	ug/l	1	7I18012	09/18/07	09/19/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		98 %	60-12	5	"	"	"	"	
Surrogate: Dibromofluoromethane		99 %	75-12	0	"	"	"	"	
Surrogate: Toluene-d8		103 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95 %	60-13	5	"	"	"	"	

Total Purgoable Hydrogerbans by CC/MS (CA LUET)								
В	erkeley CA, 94707-8330	Project Manager:	Information at Streamborn	09/26/07 14:11				
PO	O Box 8330	Project Number:	P279	Reported:				
St	treamborn	Project:	2440 East Eleven Street	MQI0265				

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW2 (MQI0265-05) Water Sampled: 0	9/10/07 11:53	Received: (9/11/07 1	8:10					
Gasoline Range Organics (C4-C12)	9300	250	ug/l	5	7I18012	09/18/07	09/19/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		98 %	60	125	"	"	"	"	
Surrogate: Dibromofluoromethane		99 %	75-	120	"	"	"	"	
Surrogate: Toluene-d8		102 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	60	135	"	"	"	"	

Streamborn	Project: 2440 East Eleven Street	MQI0265
PO Box 8330	Project Number: P279	Reported:
Berkeley CA, 94707-8330	Project Manager: Information at Streamborn	09/26/07 14:11

Volatile Organic Compounds by EPA Method 8260B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW4 (MQI0265-01) Water	Sampled: 09/10/07 09:24	Received:	09/11/07 18	8:10					
Benzene	ND	0.50	ug/l	1	7I18012	09/18/07	09/19/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND	0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	0.50	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	0.50	"	"	"	"	"	"	
tert-Butyl alcohol	ND	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.50	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethe	ane	97 %	75-1	20	"	"	"	"	
Surrogate: 1,2-Dichloroethane-	<i>d4</i>	103 %	60-1	25	"	"	"	"	
Surrogate: Toluene-d8		95 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene	90 %	60-1	35	"	"	"	"	
MW3 (MQI0265-02) Water	Sampled: 09/10/07 09:58	Received:	09/11/07 18	8:10					
Benzene	4.2	0.50	ug/l	1	7I18012	09/18/07	09/19/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	0.82	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	0.53	0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND	0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	0.50	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	0.50	"	"	"	"	"	"	
tert-Butyl alcohol	ND	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.50	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethe	ane	98 %	75-1	20	"	"	"	"	
Surrogate: 1,2-Dichloroethane-	<i>d4</i>	100 %	60-1	25	"	"	"	"	
Surrogate: Toluene-d8		101 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene	119 %	60-1	35	"	"	"	"	

Streamborn PO Box 8330 Berkeley CA, 94707-8330		Pr Project Nur Project Mar	mber: P27			orn		MQI Repo 09/26/0	rted:
	Volatile Orga	nic Com	pounds	by EPA	A Meth	od 8260	В		
	Te	stAmeric	a - Moi	rgan Hi	ll, CA				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW1 (MQI0265-03) Water Sam	npled: 09/10/07 10:30	Received: ()9/11/07 1	8:10					
Benzene	18	0.50	ug/l	1	7I18012	09/18/07	09/19/07	EPA 8260B	
Toluene	6.4	0.50	"	"	"	"	"	"	
Ethylbenzene	170	0.50	"	"	"	"	"	"	
Xylenes (total)	43	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	1.1	0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND	0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	0.50	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	0.50	"	"	"	"	"	"	
tert-Butyl alcohol	ND	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.50	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	75-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97 %	60	125	"	"	"	"	
Surrogate: Toluene-d8		103 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97 %	60	135	"	"	"	"	
MW5 (MQI0265-04) Water Sam	npled: 09/10/07 11:10	Received: (
Benzene	- 11	0.50	ug/l	1	7I18012	09/18/07	09/19/07	EPA 8260B	
Toluene	0.78	0.50	"	"	"	"	"	"	
Ethylbenzene	10	0.50	"	"	"	"	"	"	
Xylenes (total)	9.2	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	2.5	0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND	0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	0.50	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	0.50	"	"	"	"	"	"	
tert-Butyl alcohol	ND	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.50	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		99 %	75	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98 %	60		"	"	"	"	
Surrogate: Toluene-d8		103 %	80		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95 %	60-1		"	"	"	"	
surroguie. 4-promojiuorovenzene		95 70	00-	133					

Streamborn	Project: 2440 East Eleven Street	MQI0265
PO Box 8330	Project Number: P279	Reported:
Berkeley CA, 94707-8330	Project Manager: Information at Streamborn	09/26/07 14:11

Volatile Organic Compounds by EPA Method 8260B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW2 (MQI0265-05) Water	Sampled: 09/10/07 11:53	Received: 0	9/11/07	18:10					
Benzene	ND	2.5	ug/l	5	7I18012	09/18/07	09/19/07	EPA 8260B	
Toluene	3.8	2.5	"	"	"	"	"	"	
Ethylbenzene	530	2.5	"	"	"	"	"	"	
Xylenes (total)	38	2.5	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	2.5	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.5	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.5	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	2.5	"	"	"	"	"	"	
tert-Butyl alcohol	ND	100	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.5	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.5	"	"	"	"	"	"	
Ethanol	ND	500	"	"	"	"	"	"	
Surrogate: Dibromofluorometh	ane	99 %	75-	-120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-	·d4	98 %	60-	-125	"	"	"	"	
Surrogate: Toluene-d8		102 %	80-	-120	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene	116 %	60-	-135	"	"	"	"	

Streamborn	Project: 2440 East Eleven Street	MQI0265
PO Box 8330	Project Number: P279	Reported:
Berkeley CA, 94707-8330	Project Manager: Information at Streamborn	09/26/07 14:11

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit	Linit	Ullits	Level	Kesuit	/0KEC	Linits	ΚΓD	Liiiit	Notes
Batch 7I18012 - EPA 5030B P/T / L	UFT GCMS									
Blank (7118012-BLK1)				Prepared	& Analyz	ed: 09/18/	07			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96	60-125			
Surrogate: Dibromofluoromethane	2.34		"	2.50		94	75-120			
Surrogate: Toluene-d8	2.42		"	2.50		97	80-120			
Surrogate: 4-Bromofluorobenzene	2.16		"	2.50		86	60-135			
Laboratory Control Sample (7I18012-B	S2)			Prepared:	09/18/07	Analyzed	1: 09/19/07			
Gasoline Range Organics (C4-C12)	410	50	ug/l	500		82	65-120			
Surrogate: 1,2-Dichloroethane-d4	2.47		"	2.50		99	60-125			
Surrogate: Dibromofluoromethane	2.38		"	2.50		95	75-120			
Surrogate: Toluene-d8	2.48		"	2.50		99	80-120			
Surrogate: 4-Bromofluorobenzene	2.47		"	2.50		99	60-135			
Laboratory Control Sample Dup (71180	12-BSD2)			Prepared:	09/18/07	Analyzed	1: 09/19/07			
Gasoline Range Organics (C4-C12)	384	50	ug/l	500		77	65-120	7	20	
Surrogate: 1,2-Dichloroethane-d4	2.56		"	2.50		102	60-125			
Surrogate: Dibromofluoromethane	2.36		"	2.50		94	75-120			
Surrogate: Toluene-d8	2.48		"	2.50		99	80-120			
Surrogate: 4-Bromofluorobenzene	2.53		"	2.50		101	60-135			

Streamborn	Project: 2440 East Eleven Street	MQI0265
PO Box 8330	Project Number: P279	Reported:
Berkeley CA, 94707-8330	Project Manager: Information at Streamborn	09/26/07 14:11

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

ReportingSpikeSouAnalyteResultLimitUnitsLevelResBatch 7118012 - EPA 5030B P/T / EPA 8260BBlank (7118012-BLK1)Prepared & AnaBenzeneND0.50ug/lTolueneND0.50"EthylbenzeneND0.50"Xylenes (total)ND0.50"Methyl tert-butyl etherND0.50"Di-isopropyl etherND0.50"Ethyl tert-butyl etherND0.50"tert-Amyl methyl etherND0.50"tert-Butyl alcoholND20"	sult %REC	%REC Limits 07	RPD	RPD Limit	Notes
Blank (7118012-BLK1)Prepared & AnaBenzeneND0.50ug/lTolueneND0.50"EthylbenzeneND0.50"Xylenes (total)ND0.50"Methyl tert-butyl etherND0.50"Di-isopropyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"	alyzed: 09/18/0	07			
BenzeneND0.50ug/lTolueneND0.50"EthylbenzeneND0.50"Xylenes (total)ND0.50"Methyl tert-butyl etherND0.50"Di-isopropyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"tert-Amyl methyl etherND0.50"	alyzed: 09/18/0	07			
BenzeneND0.50ug/lTolueneND0.50"EthylbenzeneND0.50"Xylenes (total)ND0.50"Methyl tert-butyl etherND0.50"Di-isopropyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"Ethyl tert-butyl etherND0.50"tert-Amyl methyl etherND0.50"	5				-
TolueneND0.50"EthylbenzeneND0.50"Xylenes (total)ND0.50"Methyl tert-butyl etherND0.50"Di-isopropyl etherND0.50"Ethyl tert-butyl etherND0.50"tert-Amyl methyl etherND0.50"					
IndividualND0.50Xylenes (total)ND0.50Methyl tert-butyl etherND0.50Di-isopropyl etherND0.50Ethyl tert-butyl etherND0.50tert-Amyl methyl etherND0.50					
Myseles (total)ND0.50Methyl tert-butyl etherND0.50Di-isopropyl etherND0.50Ethyl tert-butyl etherND0.50tert-Amyl methyl etherND0.50					
Di-isopropyl etherND0.50Ethyl tert-butyl etherND0.50tert-Amyl methyl etherND0.50					
Ethyl tert-butyl etherND0.50"tert-Amyl methyl etherND0.50"					
tert-Amyl methyl ether ND 0.50 "					
tert-Butyl alcohol ND 20 "					
J					
1,2-Dichloroethane ND 0.50 "					
1,2-Dibromoethane (EDB) ND 0.50 "					
Ethanol ND 100 "					
Surrogate: Dibromofluoromethane 2.34 " 2.50	94	75-120			
Surrogate: 1,2-Dichloroethane-d4 2.40 " 2.50	96	60-125			
Surrogate: Toluene-d8 2.42 " 2.50	97	80-120			
Surrogate: 4-Bromofluorobenzene 2.16 " 2.50	86	60-135			
Laboratory Control Sample (7118012-BS1) Prepared & Ana	alyzed: 09/18/0	07			
Benzene 8.96 0.50 ug/l 10.0	90	75-120			
Toluene 9.60 0.50 " 10.0	96	75-120			
Ethylbenzene 9.63 0.50 " 10.0	96	75-120			
Xylenes (total) 29.6 0.50 " 30.0	99	75-130			
Methyl tert-butyl ether 9.24 0.50 " 10.0	92	50-140			
Di-isopropyl ether 8.89 0.50 " 10.0	89	70-130			
Ethyl tert-butyl ether 9.35 0.50 " 10.0	94	65-130			
tert-Amyl methyl ether 9.43 0.50 " 10.0	94	65-135			
tert-Butyl alcohol 174 20 " 200	87	60-135			
1,2-Dichloroethane 9.11 0.50 " 10.0	91	70-125			
1,2-Dibromoethane (EDB) 9.64 0.50 " 10.0	96	70-135			
Ethanol 183 100 " 200	92	15-150			
Surrogate: Dibromofluoromethane 2.53 " 2.50	101	75-120			
Surrogate: 1,2-Dichloroethane-d4 2.48 " 2.50	99	60-125			
Surrogate: Toluene-d8 2.46 " 2.50	98	80-120			
Surrogate: 4-Bromofluorobenzene 2.33 " 2.50	93	60-135			

TestAmerica - Morgan Hill, CA

Streamborn	Project: 2440 East Eleven Street	MQI0265
PO Box 8330	Project Number: P279	Reported:
Berkeley CA, 94707-8330	Project Manager: Information at Streamborn	09/26/07 14:11

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7I18012 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (7I18012-MS1)	Source: MO	QI0220-01		Prepared	& Analyze	ed: 09/18/	07			
Benzene	10.1	0.50	ug/l	10.0	ND	101	75-120			
Toluene	10.8	0.50	"	10.0	ND	108	75-120			
Ethylbenzene	10.9	0.50	"	10.0	ND	109	75-120			
Xylenes (total)	32.8	0.50	"	30.0	ND	109	75-130			
Methyl tert-butyl ether	10.7	0.50	"	10.0	ND	107	50-140			
Di-isopropyl ether	8.91	0.50	"	10.0	ND	89	70-130			
Ethyl tert-butyl ether	10.1	0.50	"	10.0	ND	101	65-130			
tert-Amyl methyl ether	11.4	0.50	"	10.0	ND	114	65-135			
tert-Butyl alcohol	185	20	"	200	ND	92	60-135			
1,2-Dichloroethane	9.85	0.50	"	10.0	ND	98	70-125			
1,2-Dibromoethane (EDB)	10.4	0.50	"	10.0	ND	104	70-135			
Ethanol	216	100	"	200	ND	108	15-150			
Surrogate: Dibromofluoromethane	2.59		"	2.50		104	75-120			
Surrogate: 1,2-Dichloroethane-d4	2.38		"	2.50		95	60-125			
Surrogate: Toluene-d8	2.55		"	2.50		102	80-120			
Surrogate: 4-Bromofluorobenzene	2.55		"	2.50		102	60-135			
Matrix Spike Dup (7I18012-MSD1)	Source: MO	QI0220-01		Prepared:	09/18/07	Analyzed	l: 09/19/07			
Benzene	10.2	0.50	ug/l	10.0	ND	102	75-120	0.8	20	
Toluene	10.7	0.50	"	10.0	ND	107	75-120	0.9	25	
Ethylbenzene	11.0	0.50	"	10.0	ND	110	75-120	0.3	20	
Xylenes (total)	33.1	0.50	"	30.0	ND	110	75-130	0.9	20	
Methyl tert-butyl ether	10.9	0.50	"	10.0	ND	109	50-140	3	25	
Di-isopropyl ether	9.16	0.50		10.0	ND	92	70-130	3	25	
Ethyl tert-butyl ether	10.4	0.50	"	10.0	ND	104	65-130	3	25	
tert-Amyl methyl ether	11.8	0.50	"	10.0	ND	118	65-135	4	25	
tert-Butyl alcohol	189	20	"	200	ND	95	60-135	2	25	
1,2-Dichloroethane	10.3	0.50	"	10.0	ND	103	70-125	5	25	
1,2-Dibromoethane (EDB)	10.8	0.50		10.0	ND	108	70-135	3	30	
Ethanol	205	100	"	200	ND	103	15-150	5	25	
Surrogate: Dibromofluoromethane	2.56		"	2.50		102	75-120			
Surrogate: 1,2-Dichloroethane-d4	2.48		"	2.50		99	60-125			
Surrogate: Toluene-d8	2.51		"	2.50		100	80-120			
Surrogate: 4-Bromofluorobenzene	2.55		"	2.50		102	60-135			

TestAmerica - Morgan Hill, CA

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.testamericainc.com

PO Box 8330 Project Num		Project: 2440 East Eleven Street Project Number: P279 Project Manager: Information at Streamborn	MQI0265 Reported: 09/26/07 14:11							
	Notes and Definitions									
DET	Analyte DETECTED									
ND	Analyte NOT DETECTED at or abov	e the reporting limit or MDL, if MDL is specified								

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

STREAMBORN

Chain-of-Custody Form

Project Name: 2440 East Eleventh Street	Project Location: 2440 East Eleventh Street, Oakland CA	Project Number: P279
Sampler: Darcy Hinkley	Laboratory: TestAmerica	Laboratory Number:

				Mat	rix	T	/pe	Containers			Turnaround			Analyse	s				
Sample Designation-	Date	Time	Soil	Water	Vapor	Grab	Composite	Quantity	Type	Preservative (in addition to ice)	Field Filtration	48-Hour	5- Working Days	10-Working Days	TPH- gasoline/BTEX/fuel oxgenates (EPA 8260)			Sampler Comments	Laboratory Comments
MW4	10-Sep-07	9:24		x		x	<u>.</u>	3	40 mĽ VOA	HCI	None			x	x				01
					_														
MW3	10-Sep-07	9:51	<u> </u>	×		x		3	40 mL VOA	HCI	None			x	x				02
MWI	10-Sep-07	1030	>	x		x		3	40 mL VOA	HCI	None			x	 x				03
MW5	10-Sep-07	1110						3	40 1 VOA	1101	27.			[
141 14 2	10-36p-07	MIN		x		×		3	40 mL VOA	HCl	None			X	 x				04
MW2	10-Sep-07	1153	3	x		x		3	40 mL VOA	HCI	None			x	 x				05
				<u> </u>			<u> </u>					·			 <u> </u>				

Note: Sampler and laboratory to observe preservative, condition, integrity, etc. of samples and record (under "Comments") any exceptions from standard protocols.

		· · / /	
Relinquished By:	Leceived By: Anoth (TAMH)	Date: 4/11/07	Time: 1250
Relinquished By:	Leceived By:	Date: 9-11-07	Time: 1810

STREAMBORN Mail: PO Box 8330, Berkeley CA 94707-8330 Office: 900 Santa Fe Ave, Albany CA 94706 510-528-4234 Fax: 528-2613

Report results to information@streamborn.com

à

Prepare EDF for Geotracker Upload? Yes Streamborn Logcode: SBA Global ID: T0600100858

MQI0265

TEST AMERICA SAMPLE RECEIPT LOG

CLIENT NAME:	Stream born	DATE REC'D AT LAB:	9/11/07	For Regulatory Purp	oses?
REC. BY (PRINT)	DU.	TIME REC'D AT LAB:	1810		YES / NO
WORKORDER:	MQI0265	DATE LOGGED IN:	9/12/07		YES / NO

	PRIATE RESPONSE	LAB SAMPLE #	CLIENT ID	CONTAINER DESCRIPTION		pН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
1. Custody Seal(s)	Present / Absent)								
	Intact / Broken*								
2. Chain-of-Custody	Present / Absent*								
3. Traffic Reports or	\sim								
Packing List:	Present / Absen)								
4. Airbill:	Airbill / Sticker							· /	
	Present / Absent)								
5. Airbill #:								/	
6. Sample Labels:	Present / Absent		· · · · · · · · · · · · · · · · · · ·						······································
7. Sample IDs:	(isted) / Not Listed	-			5				
	on Chain-of-Custody			see LOC			,		
8. Sample Condition:	(ntact) / Broken* /			911107					
	Leaking*			DV					
9. Does information on							1		
traffic reports and sa	imple labels	<u> </u>							
agree?	(Yes) / No*				1				
10. Sample received withir	~						1		
hold time?	(es)/No*					1	·····		
11. Adequate sample volur			/						
received?	(es) No*								
12. Proper preservatives u									
13. Trip Blank / Temp Blan		·~3							
(circle which, if yes)	Yes / No*								
14. Read Temp:	<u> </u>								
Corrected Temp:						· ·			
Is corrected temp 4 +/-2°C? Yes / No**									
(Acceptance range for samples requiring thermal pres.)						1			
**Exception (if any): META	ALS / DFF ON ICE								
or Problem COC	<u>l</u>								
	CONTRACTOR AND A STATE OF A DESCRIPTION OF	CONTRACTOR OF THE REAL PROPERTY OF THE REAL PROPERT			States dia and a second	States and a	CONTRACTOR AND		Real Property and the second

SRL Revision 8 Replaces Rev 7 (07/19/05) Effective 09/13/06

Ŵ

1

ALL STREET, ST

*IF CIRCLED, CONTACT PROJECT MANAGER AND ATTACH RECORD OF RESOLUTION.