

8729

JUN 1 4 2002

12 June 2002

Amir K. Gholami Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda CA 94502-6577

Paris 6/26/02

Project No. P279

Submittal of Technical Information
Eandi Metal Works Facility
976 Twenty Third Avenue
Oakland CA

Dear Mr. Gholami:

This letter is in response to our recent telephone conversation regarding the subject underground tank release site.

You indicated that you had previously requested MtBE analyses for the monitoring wells. We have enclosed the most recent monitoring report, dated 15 March 2002, that summarizes the MtBE analyses. You will note that the three wells have been analyzed for MtBE on four occasions (each). All results have been nondetect except for the measurement of 670 μ g/L in MW-2 on 25 January 1996.

You indicated that you had previously requested information regarding two other underground tanks that were removed by Eandi Metal Works. We have enclosed correspondence from Barney M. Chan of your office, dated 14 October 1992, that indicates clean closures were performed for the two other tanks. Please let us know if you require further information.

As conveyed to you on the telephone, Eandi Metal Works intends to make application with the USTCF for investigation and remediation of releases from the former 1,000-gallon underground tank at 976 Twenty Third Avenue. Certain paperwork needs to be filed before a cost preapproval can be secured from the USTCF. Upon securing a cost pre-approval, we will prepare an investigation workplan for your review.

Also as conveyed to you on the telephone, the excavation for removal of the former 1,000-gallon underground tank has not been backfilled. A separate cost pre-approval request will be filed with the USTCF for backfilling the excavation. Upon securing the cost pre-approval, we will prepare a letter that describes the proposed soil sampling and backfilling operations for your review.

If you have any questions or comments, please call.

Sincerely,

STREAMBORN

Douglas W. Lovell, PE Geoenvironmental Engineer

Attachments

cc Jeffrey Eandi/Eandi Metal Works, Oakland CA (no attachments)
Donna Drogos/Alameda County Environmental Health, Alameda CA (no attachments)

r Waf

March 15, 2002 File: 44-000534/001

JUN 1 4 2002

Mr. Jeff Eandi Vice President Eandi Metal Works 976 23rd Avenue Oakland, CA 94606

Subject: Monitoring Well Sampling Results for MW-1, MW-2, and MW-3 at the

Eandi Metal Works Facility, Oakland, California

Dear Mr. Eandi:

This letter presents the analytical results for ground water samples collected from monitoring wells MW-1, MW-2, and MW-3 at the Eandi Facility located at 1023 and 976 23rd Avenue and 2440 East 11th Street in Oakland, California.

BACKGROUND

Three underground storage tanks were removed in the early 1990's from the Eandi facility. Two of the three underground tanks did not require additional investigation or ground water monitoring as no evidence of a release was indicated during removal. Contamination was detected in the soil and ground water near the location of the third tank, a 1,000 gallon gasoline UST located adjacent to the building at 2440 East 11th Street. Three monitoring wells were installed near the location where a 1,000 gallon UST was removed. The location of the three monitoring wells is presented on Plate 1.

CHEMICAL MONITORING

Monitoring Well Sampling

MW-1, MW-2 and MW-3 were sampled on February 5, 2002. Prior to sampling, the wells were purged of approximately three well volumes of ground water using a new disposable bailer. As the wells were purged, pH, electrical conductivity and temperature were monitored to observe the stabilization of these parameters prior to sampling. Table 1 includes the final purge water characteristic data and water level data.

Ground water samples were collected from the wells with disposable bailers following well purging. The samples were collected in VOA vials containing HCl (for preservation purposes) and plastic bottles containing HNO₃ (for preservation purposes). Following sample collection, the samples were immediately labeled and placed in an ice chest for preservation and transported to the Curtis & Tompkins analytical laboratory in Berkeley, California. The samples were delivered to the analytical laboratory on February 5, 2002 using chain-of-custody protocols.

Purge water was placed in DOT approved 55-gallon drums that were provided by Eandi. Eandi will properly dispose of purge water at an approved facility.

Chemical Analyses and Analytical Results

Curtis & Tompkins, Ltd. analyzed the ground water samples. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethylbenzene, xylenes, and total lead. Curtis & Tompkins has been certified by the State of California to perform the requested analyses.

The analytical results are summarized on Table 2. Each of the samples analyzed by the laboratory contained analytes in concentrations greater than the laboratory reporting limit, with the exception of MTBE. MTBE was not detected in any of the wells at concentrations above the reporting limit of 0.0007 mg/L. Benzene was detected in each of the samples ranging in concentrations from 0.0063 to 0.032 mg/L. Toluene was detected in each of the samples ranging in concentrations from 0.0021 to 0.011 mg/L. Ethlylbenzene was detected in each of the samples ranging in concentrations from 0.076 to 0.23 mg/L. Total xylenes were detected in each of the samples ranging in concentrations from 0.0095 to 0.56 mg/L. TPH-g was detected in each of the samples ranging in concentrations from 1.1 to 9.3 mg/L. Total lead was detected in each of the samples ranging in concentrations from 0.0044 mg/L.

SUMMARY AND FINDINGS

Ground water monitoring activities were performed at the Eandi facility on February 5, 2002. Monitoring activities included water level measurements and sampling and analyses of samples from MW-1, MW-2, and MW-3. The samples analyzed by the laboratory contained analytes in concentrations greater than the laboratory reporting limit with the exception of MTBE, which was not detected in any of the wells in concentrations above the laboratory reporting limit (0.0007 mg/L). Current ground water sampling data indicates that the concentrations of each of the analytes, with the exception one sample of ethylbenzene (MW-2) and one sample of TPHg (MW-1), have decreased from the previous sampling event in 2001. The total lead concentrations are slightly above the laboratory reporting limit and should be considered at or near background. TPH-g concentrations in samples from MW-1 have shown increases from the April 1996 measurement, however, these values are still reductions from quantities of TPH-g reported in 1995 and January 1996.

We appreciate the opportunity to work with you on this project. If you have any questions, please do not hesitate to call.

Sincerely,

KLEINFELDER, INC.

Charles Almestad R.G., C.HG.

hallalle

Senior Client Manager

Graham Knopp Ph.D. / Environmental Scientist

attachments

PROJECT NO. 44-000534

U:\ceantos\projects\44000494\piate1.dwg

CHECKED BY: C. Almestad

DATE:

2/14/2002

Table 1 Summary of Final Purge Charateristic Data Eandi Metal Works Oakland, California February 5, 2002

Well Number	MW-1	MW-2	MW-3
Date Sampled	2/5/2002	2/5/2002	2/5/2002
Volume Purged (gallons)	4.50	4.41	4.29
pH	6.66	6.61	6.62
Temperature (⁰ F)	65.9	62.1	64
Specific Conductance (umhos/cm)	294	398	414
Dewatered During Sampling?	No	No	No
Sample Number	MW-1	MW-2	MW-3
Water Level (feet below top of casing)	11.00	11.10	11.30

Notes:

pH = Hydrogen Ion index

⁰F= degrees Fahrenheit

umhos/cm = micro mhos per centimeter

Table 2
Summary of Analytical Results for Ground Water Samples from Eandi Metal Works
Oakland, California
February 5, 2002

Sample ID	Date Sampled	Benzene ¹	Toluene ¹	Ethylbenzene ¹	Total Xylenes ¹	MTBE ¹	TPH-g²	Total Lead ³
MW-1	7/17/1995	0.39	2	0.8	5.3	<0.125	22	<0.04
	10/20/1995	0.27	0.54	0.36	1.8	NA	14	<0.04
	1/25/1996	0.74	1.3	0.49	2.7	<0.5	16	<0.04
	4/25/1996	0.18	0.45	0.19	1	<0.25		<0.04
	6/11/2001	0.014	0.035	0.24	0.72	NA	7.1	0.014
	2/5/2002	0.0063	0.011	0.23	0.56	ND.	9.3	0.0037
MW-2	7/17/1995		1.7	0.93	5.1	<0.125	21	0.0564
	10/20/1995	0.018	0.027	0.026	0.0079	NA	0.73	<0.04
	1/25/1996	0.074	0.66	1	2.6	0.67	14	<0.04
	4/25/1996	0.37	0.44	1	2.9	<0.5	13	<0.04
	6/12/2001	0.011	0.0062	0.17	0.27	NA	3.2	0.0077
	2/5/2002	0.0076	0.0038	0.22	0.16	ND	2.9	0.0035
MW-3	7/17/1995	1.2	0.15	1	1.7	<0.125	8.4	0.153
	10/20/1995	0.6	0.59	0.043	0.34	NA	5.8	<0.04
	1/25/1996	1.2	0.29	0.87	1.3	<0.25	10	<0.04
	4/25/1996	0.83	0.14	1	1	0.4	8.9	<0.04
	6/12/2001	0.037	0.0045	0.098	0.019	NA	1.8	0.0074
	2/5/2002	0.032	0.0021	0.076	0.0095			0.0044
Laboratory Repor	ting Limit	0.0005	0.0005	0.0005	0.0005	0.0007	0.05	(0.003)

Notes:

1995 and 1996 samples were collected by AGI, Technologies

2001and 2002 samples were collected by Kleinfelder, Inc.

All results reported as milligrams per liter

1= Analyzed by EPA Method 8020

2= Analyzed by EPA Method 8015

3= Analyzed by EPA Method 6010

TPH-g = Total Petroleum Hydrocarbons Quantified as Gasoline

NA = Not Analyzed

^{* =} reporting limit stated for 2002 analysis only. Pb lab reporting limits for 2001 sampling are 0.005, for the remainder sampling events 0.04.

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878; FEB 2.6.

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Kleinfelder 1970 Broadway Suite 710 Oakland, CA 94612

Date: 22-FEB-02

Lab Job Number: 156841

Project ID: 44-000543-001

Location: E and I Metalworks

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of <u>27</u>

CHAIN OF CUSTODY FORM

Page _ of

Analyses

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax

Project No: 44-10513 -001

Turnaround Time: Steadard

Project Name: Fredigite tolung ks

Project P.O.:

	LOGIN #	
_		

C&T

Sampler: Con how Lucio Report To:

Company: Telephone: 5,10 - 628 - 9000

Fax:

			П	Matr	ix	1	F	res	serv	ati	ve			7	>				. 1			
Laboratory Number	Sample ID.	Sampling Date Time	Soil	Water	VV वंशित	# of Containers	HCL	H ₂ SO	HNO3	ECE		Field Notes	2	エグー	した。							
	MW-I	1045	Γ	X		1			X	V			1/	L_,	L.				$\vdash \dashv$		_	
	MW-I	1045		X	\top	3	X			1					/	<u> </u>			$\vdash \vdash$		\dashv	-
>	MN-1	1170	Г	X		1			X	1			1/	<u> </u>	ļ.,		 		 			
L	MW-2	1120	Ī	X	Т	3	X			V			<u> </u>		/		<u> </u>					
0	MV- ?	1215	Γ	X	Т				\times	1			1/	ļ.,	.	<u> </u>	—	\square		<u></u>	_	
- + a	MVJ-2	1215		X		3	\times			V	1		_	\angle	/	-	<u> </u>					-
OBO			Γ						L				_	ļ	ļ	<u> </u>	ļ	\sqcup			\dashv	-
エァコ					T		<u> </u>			$oldsymbol{\perp}$	\perp			<u> </u>	<u> </u>	ļ			\vdash	<u>.</u>		
0					Ţ			<u> </u>					_	<u> </u>	ļ	 	 —		-	┈┤		\dashv
Q								<u> </u>					_	<u> </u>	ļ	<u> </u>	┼	\sqcup	\vdash	 	\dashv	_
Ø										_			4-	╄	ļ			\sqcup	$\vdash \mid$			_
								L		_			\bot	 	-	\vdash	 	 			-	-
								$oldsymbol{ol}}}}}}}}}}}}}}}}}$		L				<u> </u>		L	<u></u>		Ш			
Notes:		·									B	ELINQUISHED BY:	1			RI	ECE	IVE	ED E	3Y:		

RELIN	QUISHE	BY:	

2/5/01 DATE/TIME

DATE/TIME

DATE/TIME

2-5-62 DATE/TIME

DATE/TIME

DÁTE/TIME

Laboratory Number:

156841

Client:

Kleinfelder

Project Name:

E and I Metalworks

Project #:

44-000543-001

Receipt Date:

02/05/02

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for three water samples received from the above referenced project on February 5th, 2002. The samples were received cold and intact.

Gasoline by GC/FID CA LUFT (EPA 8015M):

The recoveries for the trifluorotoluene surrogates for all three samples were over the acceptable QC limits due to coelution of this surrogate with sample hydrocarbons. No analytical problems were encountered.

Purgeable Aromatics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B):

No analytical problems were encountered.

GC07 TVH 'A' Data File RTX 502

GC07 TVH 'A' Data File RTX 502

	Gasoli	ne by GC/FID CA L	JPT
Lab #: Client:	156841 Kleinfelder 44-000543-001	Location: Prep: Analysis:	E and I Metalworks EPA 5030B 8015B(M)
Project#: Type: Lab ID: Matrix: Units:	LCS QC169648 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 69938 02/06/02

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,920	96	73-121
Gasoline C7-C12				

Surrogate	%REC	Limite
Trifluorotoluene (FID)	121	59-135
Bromofluorobenzene (FID)	98	60-140

02/08/02

		Gasoline by G	SC/FID CA LUFT	
	Lab #:	156841	Location:	E and I Metalworks
		Kleinfelder	Prep:	EPA 5030B
	Project#:	44-000543-001	Analysis:	8015B(M)
ŀ	Type:	LCS	Diln Fac:	1.000
ı	Lab ID:	OC169894	Batch#:	70010
	nan in.	X0#01	a 1	A2/A0/A2

Analyzed:

_						
			Agree to the contract of the property of the p	77.77.77	The state of the s	5.33.63
-		The Control of the Co		· 《家寮期	C Limits	2,000
	Analyte	Spiked	Street or the Control of the Control	AND THE PERSON NAMED IN	2007 T.	
	analyte	William Contraction and the second	<u>``</u>		50 101	
•	A CONTRACTOR OF THE PROPERTY O	0 000	1 75Ω	88	73-121	I
	Cacoline C7-C12	2,000	1,100		73 322	

Water

ug/L

Matrix:

Units:

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	120	59-135	
Bromofluorobenzene (FID)	95	60-140	

	Gasoli	ne by GC/FID CA LU) P.T.
Lab #: Client:	156841 Kleinfelder 44-000543-001	Location: Prep: Analysis:	E and I Metalworks EPA 5030B 8015B(M)
Project#: Field ID: MSS Lab ID: Matrix:	ZZZZZZZZZZZ 156770-006 Water	Batch#: Sampled: Received:	69938 01/30/02 01/31/02
Units:	ug/L 1.000	Analyzed:	02/07/02

Туре:

MS

Lab ID:

QC169649

Analyte	MSS Result	Spiked	Result	%REC	1 Limits
	22 71	2,000	1,978	98	65-131
Gasoline C7-C12	22172				
Surragata					

Surrogate Surrogate	%REC	Limits
Trifluorotoluene (FID)	126	59-135
Bromofluorobenzene (FID)	108	60-140

Type:

MSD

Lab ID:

QC169650

Analyte	Spiked	Result	%REC	. Limits	RPD I	im.
Gasoline C7-C12	2,000	1,953	96	65-131	1 2	20
					. 25.9	
	REC Limits	THE REPORT OF THE PARTY OF THE	ann i la partinger	200 120 120 120 120 120 120 120 120 120		

Surrogate REC Limits

Trifluorotoluene (FID) 126 59-135

Bromofluorobenzene (FID) 107 60-140

RPD= Relative Percent Difference Page 1 of 1

	Gasoli	ne by GC/FID CA LU	JPT.
.ab #:	156841	Location:	E and I Metalworks
lient:	Kleinfelder	Prep:	EPA 5030B
roject#:	44-000543-001	Analysis:	8015B(M)
ield ID:	7.7.7.2.2.2.2.2.2	Diln Fac:	1.000
SS Lab ID:	156872-001	Batch#:	70010
atrix:	Water	Sampled:	02/06/02
nits:	ug/L	Received:	02/06/02

MS

Analyzed:

02/08/02

Lab ID:

QC169895

Analyte	MSS Result	Spiked	Result	%RE(C Limits
Tagang C. San Managaran Vision II.	251.9	2,000	2,096	92	65-131
Gasoline C7-C12					

Surrogate	%REC	Limits
Trifluorotoluene (FID)	134	59-135
Bromofluorobenzene (FID)	111	60-140

Type:

MSD

Analyzed:

02/09/02

Lab ID:

QC169896

	Spiked	Result	%REC	Limits	RPD	Lin
Gasoline C7-C12	2,000	2,106	93	65-131	1	20

Surrogate	& RRC	1 Timits	
Trifluorotoluene (FID)	134	59-135	
Bromofluorobenzene (FID)	112	60-140	

	Purgeal	ole Aromatics by G	:/MS E and I Metalworks
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC169761	Batch#:	69972
Matrix:	Water	Analyzed:	02/07/02
Units:	ug/L		

Analyte	Result	${f RL}_{f r}$
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ИD	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	106	78-123	
Toluene-d8	94	80-110	
Bromofluorobenzene	94	80-115	

	1 6 1 6 1 1 1 1 1 1 1 1 1 1 4 4 4 4 6 10 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	le Aromatics by G	?/MB
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC170038	Batch#:	70047
Matrix:	Water	Analyzed:	02/11/02
Units:	ug/L		

Analyte	Result	$\mathbf{R}_{\mathbf{L}}$
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
m,p-Xylenes o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	90	78-123
Toluene-d8	96	80-110
Bromofluorobenzene	93	80-115

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Purgeal	ole Aromatics by G	Z/MS
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC170069	Batch#:	70055
Matrix:	Water	Analyzed:	02/12/02
Units:	ug/L		

MTBE	ND	Ri 0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

1,2-Dichloroethane-d4 99 78-123 Toluene-d8 97 80-110 Brownfluorobenzene 109 80 115			Limits	%REC	Surrogate	
T			78-123	99	ichloroethane-d4	1,2-Dichl
Bromofluorobenzene 109 90-115)		80-110	97	ne-d8	Toluene-d
DIOMOTITATODENZENE 109 80-115			80-115	109	fluorobenzene	Bromofluo

	Purgeal	le Aromatics by G(
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC170070	Batch#:	70055
Matrix:	Water	Analyzed:	02/12/02
Units:	ug/L		

Analyte	Result	
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND_	0.5

Surrogate	*REC	Limits	
1,2-Dichloroethane-d4	97	78-123	
Toluene-d8	102	80-110	
Bromofluorobenzene	102 _	80-115	

	Purgeal	le Aromatics by G	C/MS
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	69972
Units:	ug/L	Analyzed:	02/07/02
Diln Fac:	1.000		

Type:

BS

Lab ID: QC169759

Analyte	Spiked Spiced	Result	%RE(Linits
Benzene	50.00	49.23	98	80-116
Toluene	50.00	46.98	94	80-120
Chlorobenzene	50.00	49.67	99	80-117

Surrogate	*REC	Timits	
1,2-Dichloroethane-d4	105	78-123	
Toluene-d8	94	80-110	
Bromofluorobenzene	90	80-115	

Type:

BSD

Lab ID: QC169760

Analyte	Spiked	Result	ער בייניייי	Limits	RPD	Lim
Benzene	50.00	47.03	94	80-116	5	20
Toluene	50.00	47.73	95	80-120	2	20
Chlorobenzene	50.00	49.30	99	80-117	1	20

SuleSu	rrogate	%REC	Limits	1 . N 1870 18. N 18.		The second secon	1 . 1	Y 250
1,2-Dichloro	ethane-d4	99	78-123					į
Toluene-d8		96	80-110					
Bromofluorob	enzene	90	80-115	 	 J-170-2-120-200-200			

Purgeable Aromatics by GC/MS E and I Metalworks Location: Lab #: 156841 EPA 5030B Client: Kleinfelder Prep: 44-000543-001 Analysis: EPA 8260B Project#: Batch#: 70047 Water Matrix: 02/11/02 Analyzed: Units: ug/L 1.000 Diln Fac:

Type:

BS

Lab ID:

QC170036

TEXA A YEAR Analyte THE TEXA OF THE PARTY	Spiked	Dist Resulting product	*RE	C Limits
Benzene	50.00	50.47	101	80-116
Toluene	50.00	49.37	99	80-120
Chlorobenzene	50.00	51.14	102	80-117

Surrogate	%RBC	::Limits	
1,2-Dichloroethane-d4	89	78-123	
Toluene-d8	97	80-110	
Bromofluorobenzene	90	80-115	

Type:

BSD

Lab ID:

QC170037

Analyte	Spiked.	Result	*RE	C Limits	RPI	Lin
Benzene	50.00	46.94	94	80-116	7	20
Toluene	50.00	48.49	97	80-120	2	20
Chlorobenzene	50.00	50.05	100	80-117	2	20

	Surrogate	%RE(Limits	
1	1,2-Dichloroethane-d4	86	78-123	
Ĺ	Toluene-d8	97	80-110	
	Bromofluorobenzene	95	80-115	

	Purgeable Aro	AND STATE OF THE SECOND OF THE SECOND SE	3
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B `
Project#:	44-000543-001	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	70055
Units:	ug/L	Analyzed:	02/12/02
Diln Fac:	1.000		

Type:

BS

Lab ID: QC170067

Analyte Analyte	Spiked	Result	%RBC	Limits
Benzene	50.00	53.61	107	80-116
Toluene	50.00	49.03	98	80-120
Chlorobenzene	50.00	51.99	104	80-117

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	96	78-123	
Toluene-d8	101	80-110	
Bromofluorobenzene	91	80-115	

Type:

BSD

Lab ID: QC170068

Analyte	Spiked	Result		Limits	RPL	Lim
Benzene	50.00	49.65	99	80-116	8	20
Toluene	50.00	47.56	95	80-120	3	20
Chlorobenzene	50.00	48.92	98	80-117	6	20

Surrogate	%REC	Limits		रीत प्रस्तिका मृत्युक्त हिंदा महास्थान स्त्री
1,2-Dichloroethane-d4	91	78-123		
Toluene-d8	95	80-110		
Bromofluorobenzene	95	80-115		

		Lead	
ab #: lient: roject#: nalyte: atrix:	156841 Kleinfelder 44-000543-001 Lead Water ug/L 1.000	Location: Prep: Analysis: Batch#: Prepared: Analyzed:	E and I Metalworks EPA 3010 EPA 6010B 69937 02/06/02 02/08/02

	pe Lab ID	Spiked	Result	%RE(: Limits RPI	D Lim	
	<u> </u>	100.0	92.30	92	78-120	_	
BS	QC169643	100.0	94.90	95	78-120 3	20	
BSD	QC169644	100:0					

		Lead	
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 3010
Project#:	44-000543-001	Analysis:	EPA 6010B
Analyte:	Lead	Diln Fac:	1.000
Field ID:	ZZZZZZZZZZ	Batch#:	69937
Type:	SSPIKE	Sampled:	01/22/02
MSS Lab ID:	156609-009	Received:	01/22/02
Lab ID:	QC169645	Prepared:	02/06/02
Matrix:	Water	Analyzed:	02/08/02
Units:	ug/L		

MSS Result	Spiked		%RE(Limits	
1.970	100.0	92.70	91	66-128	

		Lead	
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 3010
Project#:	44-000543-001	Analysis:	EPA 6010B
Analyte:	Lead	Diln Fac:	1.000
Field ID:	ZZZZZZZZZZ	Batch#:	69937
Type:	SDUP	Sampled:	01/22/02
MSS Lab ID:	156609-009	Received:	01/22/02
Lab ID:	OC169646	Prepared:	02/06/02
Matrix:	Water	Analyzed:	02/08/02
Units:	ug/L		

MSS	Result	Resu	, KAL		RPD	Lim	
5	<3.000	ND	3.	0	NC	29	

NC= Not Calculated
ND= Not Detected
RL= Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

Gasoline by GC/FID CA LUFT

E and I Metalworks Location: 156841 Lab #: EPA 5030B Prep: Kleinfelder Client:

8015B(M) Analysis: 44-000543-001 Project#: 02/05/02 Sampled: Matrix: Water 02/05/02 Received: ug/L Units:

Field ID:

MW-1

SAMPLE

Type: Lab ID:

156841-001

Diln Fac:

Analyzed:

2.000

Batch#: 70010

02/09/02

Analyte Result RL 9,300 Gasoline C7-C12

Surrogate & REC Limits 151 * 59-135 Trifluorotoluene (FID) 60-140 103 Bromofluorobenzene (FID)

Field ID:

Type:

Lab ID:

MW-2

SAMPLE 156841-002 Diln Fac:

1.000

Batch#:

69938

02/07/02 Analyzed:

11 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Result	RL	
A September 1 Committee of the Committee		ΕΛ	
Gasoline C7-C12	2,900	50	
Gasorine e, ers			

Surrogate	%REC Limits	-
Trifluorotoluene (FID)	438 * >LR b 59-135	
Bromofluorobenzene (FID)	112 60-140	لـــ

Field ID:

MW-3

Diln Fac:

1.000

Type:

SAMPLE

Batch#:

69938

Lab ID:

156841-003

Analyzed:

02/07/02

		RI RI	The Chambers of the Chambers o
Gasoline C7-C12	1,100	50	h

Surrogate	%REC Limits	4
	247 * >LR b 59-135	
Bromofluorobenzene (FID)	105 60-140	┙

^{*=} Value outside of QC limits; see narrative

b= See narrative

ND= Not Detected

RL= Reporting Limit

>LR= Response exceeds instrument's linear range

Page 1 of 2

Gasoline by GC/FID CA LUFT Location: E and I Metalworks Lab #: 156841 Prep: EPA 5030B Kleinfelder Client: 8015B(M) 44-000543-001 <u> Analysis:</u> Project#: 02/05/02 Sampled: Matrix: Water 02/05/02 ug/L Received: Units:

Туре:

BLANK

Lab ID:

QC169647

Diln Fac:

1.000

Batch#:

69938

Analyzed:

02/06/02

Analyce	Y	50 50 50 50 50 50 50 50 50 50 50 50 50 5	
		Kesutt	
Gasoline C7-C12 ND 50	50		Gasoline C7-C12

Surrogate	&rec	Limits
Trifluorotoluene (FID)	100	59-135
Bromofluorobenzene (FID)	98	60-140

Type:

BLANK

70010

Lab ID:

QC169893

Analyzed:

Batch#:

02/08/02

Diln Fac:

1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	101	59-135
Bromofluorobenzene (FID)	103	60-140

^{*=} Value outside of QC limits; see narrative

b= See narrative

ND= Not Detected

RL= Reporting Limit

>LR= Response exceeds instrument's linear range

Page 2 of 2

		le Aromatics by GO	(MC
	Furgear	Te wollaries by e	/MS
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Field ID:	MW-1	Batch#:	70047
Lab ID:	156841-001	Sampled:	02/05/02
Matrix:	Water	Received:	02/05/02
Units:	ug/L	Analyzed:	02/12/02
Diln Fac:	1.429		

Analyte	Result'	
MTBE	ND	0.7
Benzene	6.3	0.7
Toluene	11	0.7
Chlorobenzene	ND	0.7
Ethylbenzene	230	0.7
m,p-Xylenes	490	0.7
o-Xylene	69	0.7
1,3-Dichlorobenzene	ND	0.7
1,4-Dichlorobenzene	ND	0.7
1,2-Dichlorobenzene	ND	0.7

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	96	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	87	80-115

ND= Not Detected RL= Reporting Limit Page 1 of 1

	*********	V - C A - C - C - C - C - C - C - C - C -			(* 140 + 40 154 SWA SWS)
	o ihinanyyyy	Annual Control of the	and the first section is a second	* Dec 10 10 10 10 10 10 10 10 10 10 10 10 10	. The Array and the Salar arrange
· ·		140 X (400)	7) Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	4 M M	y GC/MS
		11.1:4-2	M. I. LJIII ELL.	Trielian.	The state of the s
2.60					A . W

Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B
Project#:	44-000543-001	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	69972
Lab ID:	156841-002	Sampled:	02/05/02
Matrix:	Water	Received:	02/05/02
Units:	ug/L	Analyzed:	02/07/02
Diln Fac:	1.429		

Analyte	Result	RL
MTBE	ND	0.7
Benzene	7.6	0.7
Toluene	3.8	0.7
Chlorobenzene	ND	0.7
Ethylbenzene	220	0.7
m,p-Xylenes	160	0.7
o-Xylene	1.8	0.7
1,3-Dichlorobenzene	ND	0.7
1,4-Dichlorobenzene	ND	0.7
1,2-Dichlorobenzene	ND	0.7

Surrogate	*REC	C Limits	
1,2-Dichloroethane-d4	92	78-123	
Toluene-d8	97	80-110	
Bromofluorobenzene	90	80-115	

	Purgeable Aron	natics by GC/MS	
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 5030B `
Project#:	44-000543-001	Analysis:	EPA 8260B
Field ID:	MW-3	Batch#:	70055
Lab ID:	156841-003	Sampled:	02/05/02
Matrix:	Water	Received:	02/05/02
Units:	ug/L	Analyzed:	02/13/02
Diln Fac:	1.000		

Analyte Same	Result	ele il ri popule i in i
MTBE	ND	0.5
Benzene	32	0.5
Toluene	2.1	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	76	0.5
m,p-Xylenes	9.5	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

-		
Surrogate	*REC	A LIMITS A PERSONAL TO CONTRACT AND ALICE SEE AND ALICE S
	104	
1,2-Dichloroethane-d4	104	78-123
Toluene-d8	107	80-110
1 TOTACHE GO	_,	00 110
Bromofluorobenzene	101	80-115
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Lead	
Lab #:	156841	Location:	E and I Metalworks
Client:	Kleinfelder	Prep:	EPA 3010
Project#:	44-000543-001	Analysis:	EPA 6010B
Analyte:	Lead	Sampled:	02/05/02
Matrix:	Water	Received:	02/05/02
Units:	ug/L	Prepared:	02/06/02
Diln Fac:	1.000	Analyzed:	02/08/02
Batch#:	69937	-	

Field ID	Type:	Lab ID	Result	in in the second contract of the second	
MW-1	SAMPLE	156841-001	3.7	3.0	
MW - 2	SAMPLE	156841-002	3.5	3.0	
MW-3	SAMPLE	156841-003	4.4	3.0	
	BLANK	QC169642	ND	3.0	

D= Not Detected L= Reporting Limit age 1 of 1

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

EBA

DAVID J. KEARS, Agency Director

RAFAT A. SHAHID, ASST. AGENCY DIRECTOR

October 14, 1992 STID #34

Eandi Metal Works Attn: Mr. Jeffrey Eandi 976 23rd Ave. Oakland CA 94606 DEPARTMENT OF ENVIRONMENTAL HEALTH
State Water Resources Control Board
Division of Clean Water Programs
UST Local Oversight Program
80 Swan Way, Rm 200
Oakland, CA 94621
(510) 271-4530

Re: Request for Subsurface Investigation at 976 23rd Ave., Oakland CA 94606, dba Eandi Metals Work

Dear Mr. Eandi:

Our office has received and reviewed the Report of Findings from the removal of the three underground tanks at the above facility as prepared by Consolidated Technologies (CT). As you may recall, three underground tanks were removed on May 11, 1992 by H&H Toxic Removal. Mr. Dave Hobbs and Mr. Brian Reddig of CT were also present along with myself.

As noted in the field and verified by the analytical results in the above referenced report, gasoline contamination was found in soil samples taken from the tank pit floor of the 1,000 gallon gasoline tank. In fact, 620 and 1100 parts per million (ppm) Total Petroleum Hydrocarbons as gasoline (TPHg) were found in samples A-1 and A-2, the pit floor samples. It is noted that the actual address of this tank is 2440 E. 11th St. Overexcavation at the time of the removal was not successful in removing all the contamination. Because of these results, this site is considered to have experienced an unauthorized release of petroleum hydrocarbon the extent of which must be assessed and remediated. Enclosed please find an "Unauthorized Release Form" to be completed by you or your designee and returned to our office within 45 days. Enclosed you will also find a copy of Appendix A, a document from the Regional Water Quality Control Board (RWQCB) which may be used as a guide for your work plan for the initial subsurface investigation of this site.

No further work will be required for the area of the former 550 gallon gasoline tank (located at 976-23rd Ave.) or that area of the former 1000 gallon diesel tank (located at 123 23rd Ave.). The stockpiled soils from the diesel tank excavation will need to be properly disposed and a copy of the disposal receipt should be sent to our office.

Please submit a workplan and the completed Unauthorized Release form to our office within 45 days of receipt of this letter.

Mr. Jeffrey Eandi STID # 34 October 14, 1992 Page 2.

You should consider this a formal request for technical reports pursuant to the California Water Code Section 13267 (b). All workplans, analytical results or reports should be sent to our office and to that fo the RWQCB to the attention of Mr. Rich Hiett. Their address is 2102 Webster St., Suite 500, Oakland CA 94612. Be aware that failure to submit the requested documents may subect Eandi Metal Works to civil liabilities. Also, because of redistricting within our office, your new contact person is Mr. Thomas Peacock, Supervising Hazardous Materials Specialist. Please send all further correspondence to his attention.

You may contact me at (510) 271-4350 should you have any questions regarding this letter.

Sincerely,

Barney M. Chan

Hazardous Materials Specialist

enclosures- Mr. Eandi only

cc: M. Thomson, Alameda County District Attorney Office

R. Hiett, RWQCB

Barney M Chan

B. Reddig, Consolidated Technologies, 1777 Saratoga Ave., #100 San Jose, CA 95129

T. Peacock, ACHCSA

E. Howell; files

wp-976-23rd