05/10/2012 22:22 FAX 5102680245 05/10/2012 22;10 RAY 5102080245 Nissan Saidian Nissan Saidian

Nieman adidian

Ø 001

W 001

@007/00 I

RECEIVED

5:22 pm, May 16, 2012

Alameda County

Environmental Health

May 14, 2012

Parosh C. Kharri Hazardous Materials Specialist Alameda County Environmental Health 1131Herpox Bay Parkway, Suite 250 Alameda, CA 94502-6577

Alameda Gus

1310 Central Avenue, Alismeda Ruel Leak Case No. ROM/00022

Dog Mr Khari:

Subjects

Enclosed is the Quarterly Groundwater Monitoring Report - Fourth Quarter 2011 for the subject LUFT site. In compliance with state and local regulations, electronic submittale of this report have been uplossled to the Geottscker database and the Alamada County fip website.

I declare junder penalty of perjury that the information and/or recommendations contained in the artached report are true and correct to the bast of my knowledge.

Please call Tim Cook at Cook Environmental Services at (925) 478-8390 if you have questions or comments in regards to the technical content of this report.

Very truly yours,

Alameda Gas

Nissan Saidian

Joseph Zudik

Leon Zekst

on: Tim Cook, Cook Environmental Services, Inc.

PAGE 81

05/11/12 10:18 AM

EL9E699BIS

82:50 2102/11/90

SEMI-ANNUAL GROUNDWATER MONITORING REPORT Fourth Quarter 2011

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

PREPARED FOR:
Nissan Saidian
5733 Medallion Court
Castro Valley, California 94552

Alameda County Environmental Health Services
Local Oversight Program
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

PREPARED BY:
Cook Environmental Services, Inc.
1485 Treat Boulevard, Suite 203A
Walnut Creek, California 94597

May 11, 2012

Project No. 1035

TABLE OF CONTENTS

PROFESSIO	ONAL CERTIFICATIONi
ACRONYM	IS AND ABBREVIATIONSii
INTRODUC	
	on and Physical Setting
-	and Thy seed Setting
•	WORK
	AND PROCEDURES
Groundwater I	Level Measurements
	ell Purging and Sampling
RESULTS	
Groundwater I	Levels and Gradient
	Analytical Results
Geotracker Re	quirements
CONCLUSI	ONS
RECOMME	ENDATIONS
FIGURES	
Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Groundwater Elevation Contours
Figure 4	Monitoring Well Hydrograph
Figure 5	MW-1 TPH and Benzene Concentration Trends
Figure 6	MW-3 TPH and Benzene Concentration Trends
TABLES	
Table 1	Well Construction Details
Table 2	Groundwater Levels and Elevations
Table 3	First Quarter 2011 Groundwater Analytical Results
Table 4	Historical Groundwater Analytical Results
APPENDIC	FS
Appendix A	Monitoring Well Purge Logs
Appendix A Appendix B	Laboratory Analytical Report
Appendix C	Second 5-Year Review Summary Report
11ppolidia C	become a rour review building report

PROFESSIONAL CERTIFICATION

SEMI-ANNUAL GROUNDWATER MONITORING REPORT Fourth Quarter 2011

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

Cook Environmental Services, Inc. 1485 Treat Boulevard, Suite 203A Walnut Creek, CA 94597

Project No. 1035

Cook Environmental Services, Inc. prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tim Cook, P.E.

President

ACRONYMS AND ABBREVIATIONS

ACEHS Alameda County Environmental Health Services

AEI All Environmental, Inc. amsl above mean sea level

ASE Aqua Science Engineers, Inc.

BTEX benzene, toluene, ethylbenzene, xylenes

CES Cook Environmental Services, Inc.

COC chain-of-custody
DCA 1,2-dichloroethane
DIPE di-isopropyl ether

EDB ethylene di-bromide

EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

FS/CAP Feasibility Study/Corrective Action Plan

Matriks Matriks Corporation

MtBE methyl tert-butyl ether

O&G oil and grease

 μ g/L micrograms per liter

mg/Kg milligrams per kilogram

ml milliliter

MW monitoring well

PDF portable document format

RWQCB California Regional Water Quality Control Board

SC specific conductance

SWRCB California State Water Resources Control Board

tAME tert-amyl methyl ether

tBA tert butyl alcohol

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report presents the results of the fourth quarter semi-annual groundwater monitoring event for 2011 conducted by Cook Environmental Services, Inc. (CES) at Alaska Gas (the "Site"), located at 1310 Central Avenue in Alameda, California. The semi-annual groundwater monitoring event (monitoring event) described in this report was conducted on December 15, 2011 and is part of an ongoing subsurface investigation of petroleum hydrocarbons in soil or groundwater that was caused by an unauthorized release of petroleum fuels from the UST system (tanks, associated piping and dispensers) formerly located at the Site. CES is conducting this investigation on behalf of the responsible parties, Mr. Leon Zektser, Mr. Nissan Saidian and Mr. Joe Zadik. The Alameda County Environmental Health Services (ACEHS) is the lead regulatory agency overseeing Site investigation and remediation and the ACEHS case number is RO0000022. The semi-annual groundwater monitoring program consists of the collection and laboratory analysis of groundwater samples from five groundwater monitoring wells in order to assess concentrations of petroleum hydrocarbon compounds in shallow groundwater.

Site Description and Physical Setting

The Site is currently a retail gasoline fueling station located in an area of mixed commercial and residential properties in the south-central part of the island of Alameda. The Site is located at the intersection of Encinal Avenue, Sherman Street, and Central Avenue. A Site location map is shown on **Figure 1** and a Site plan showing physical features and groundwater monitoring well locations is shown on **Figure 2**.

The Site is relatively flat and the investigation area has a surface elevation of approximately 25 feet amsl. San Francisco Bay and the Alameda Estuary are located approximately one-half mile to the south.

Site History

In May 1996, Petrotek removed three gasoline USTs including one 10,000-gallon, one 7,500-gallon and one 5,000-gallon UST from the western corner of the Site. A 500-gallon waste oil UST adjacent to the building, was also removed from the southern portion of the Site. Fuel dispensers and associated product piping were also removed.

Free-phase petroleum hydrocarbons were observed floating on the groundwater surface in the gasoline UST excavation following removal of the USTs. According to the laboratory analysis, a groundwater sample collected from the gasoline UST excavation contained 2,800 micrograms per liter (µg/L) of total petroleum hydrocarbons as gasoline (TPH-g) and 100 µg/L benzene. Soil samples collected from the same excavation contained up to 5,000 milligrams per kilogram (mg/Kg) of THP-g and 31mg/Kg benzene. Soil samples collected beneath the former dispenser island contained up to 6,800 mg/Kg TPH-g and 63 mg/Kg benzene. A ground water sample collected in the waste oil UST excavation contained 35,000 µg/L of total petroleum hydrocarbons as diesel (TPH-d) and motor oil range hydrocarbons, and 1,300 µg/L of TPH-g. These results are documented in a *UST Closure Report* submitted by Petrotek in May 1996.

Petrotek reportedly excavated and disposed of approximately 600 cubic yards of petroleum hydrocarbon-impacted soil from the UST excavations. It does not appear that confirmation soil samples were collected following removal of the petroleum hydrocarbon-impacted soil. Approximately 15,000 gallons of ground water were also removed from the excavations, treated and discharged to the sanitary sewer. Two new gasoline USTs, dispensers and product piping were installed in the same UST excavation after the petroleum hydrocarbon-impacted soil and ground water were removed.

In November 1998, All Environmental Inc. (AEI) advanced 14 soil borings on the Site and collected soil and groundwater samples for analysis. Up to 5,900 mg/Kg of TPH-g was detected in soil samples collected from the borings. Up to 120,000 μ g/L TPH-g and 7,200 μ g/L benzene were detected in groundwater samples from the borings.

In October 1999, HerSchy Environmental installed three monitoring wells at the Site. The initial sampling yielded up to 43,000 μ g/L TPH-g, 8,700 μ g/L total petroleum hydrocarbons as diesel (TPH-d), 480 μ g/L benzene, and 1,600 μ g/L methyl tert-butyl ether (MtBE) were detected in groundwater samples from the wells. The groundwater flow direction was southwesterly under a gradient of 0.0085. Well construction details are presented in **Table 1**.

On May 16, 2000, Aqua Science Engineers (ASE) began quarterly monitoring at the Site. Groundwater samples collected from MW-1 contained 20,000 μ g/L TPH-g, 38 μ g/L benzene, 6.3 μ g/L toluene, 740 μ g/L ethyl benzene, and 1,600 μ g/L total xylenes. No MtBE or other oxygenates were detected in the sample from MW-1. No hydrocarbons were detected in the groundwater sample taken from MW-2. The groundwater sample from MW-3 contained 17,000 μ g/L TPH-g, 2,800 μ g/L benzene, 60 μ g/L toluene, 380 μ g/L ethyl benzene, 190 μ g/L total xylenes, 990 μ g/L MtBE, 9.1 μ g/L tert-amyl methyl ether (TAME), and 350 μ g/L tert butyl alcohol (tBA).

On July 28, 2000, ASE advanced 12 Geoprobe borings (borings BH-A through BH-L) to further delineate the lateral and vertical extent of petroleum hydrocarbons and collected soil and grab groundwater samples from each borings. Laboratory analysis detected 0.00061 mg/Kg of MtBE in a soil samples collected from 3.0 feet (ft) below ground surface in boring BH-J. There were no petroleum hydrocarbons or oxygenates detected in soil samples from the other 11 borings, however, petroleum hydrocarbons and oxygenates were detected in grab groundwater samples collected from borings BH-A, B, C, D, I, J, K, and L.

In December 2002, ASE conducted an investigation to assess whether subsurface utility line trenches may provide a groundwater movement pathway. ASE concluded that it did not appear that the utility line trenches act as groundwater movement pathways. This conclusion was based on ASE's assumption that the utility line trench backfill material is native sandy soil and that the highest concentrations of petroleum hydrocarbons in the 12 Geoprobe borings soil samples were located beyond the utility line trenches. Although ASE concluded that the utility line trenches did not provide a groundwater movement pathway, the ACEHS requested that water samples be collected from the sewer in one of the trenches to assess whether petroleum hydrocarbonimpacted groundwater may have entered the sewer line through seams or cracks.

In January 2004, ASE drilled four additional soil borings, BH-M through BH-P and the soil samples collected from each boring contained concentrations of TPH-d, with the highest concentration of 68 mg/Kg detected in BH-M. No TPH-d, BTEX or oxygenates were detected in any of the other soil samples. The groundwater samples collected from the borings contained TPH-d concentrations as high as 170 µg/L and the groundwater sample collected from boring BH-O also contained 19 µg/L MtBE. None of the other groundwater samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Groundwater samples were also collected from the sewer line beneath Central Avenue, both up gradient and down gradient of the Site. Low concentrations of TPH-g were detected in both samples. No BTEX or oxygenates were detected in either of these samples. The source of the TPH-g was not conclusively identified.

In December 2005, ASE conducted a records search at the Alameda City Public Works Agency and the California Department of Water Resources to identify water wells with ½ mile radius of the Site. A total of 25 wells were located within the search radius. The results included three domestic wells, 10 irrigation wells, one industrial well, two cathodic protection wells, four groundwater monitoring wells, and five vapor extraction wells. The nearest well is located more than 1,000 feet east of the Site. The nearest, potentially down gradient, well is located approximately 1,260 feet northwest of the Site. Based on the records search, ASE proposed additional soil and groundwater assessment for the Site.

In April 2006, ASE advanced two additional borings and installed two groundwater monitoring wells. Borings BH-Q, BH-R and monitoring wells MW-4 and MW-5 were installed using a drill rig equipped with an 8-inch hollow-stem auger. Petroleum hydrocarbons were detected by laboratory analysis at a concentration of 11 mg/Kg TPH-d in a soil sample from BH-Q and 1.7 mg/Kg TPH-d in a soil sample from the boring MW-5. The laboratory noted that the hydrocarbons reported as TPH-D in each sample did not exhibit a typical diesel chromatogram pattern. None of the soil samples contained detectable concentrations of TPH-g, BTEX or oxygenates.

Groundwater samples collected from BH-Q and BH-R contained detectable concentrations of petroleum hydrocarbon of 220 μ g/L TPH-d and 770 μ g/L TPH-d, respectively. Similar to the soil samples, the laboratory noted the hydrocarbons reported as TPH-d did not exhibit a typical diesel chromatogram pattern. Based on the results of this investigation, ASE recommended no further delineation of the extent of petroleum hydrocarbons in soil or groundwater.

From April 2006 to March 2009, groundwater monitoring well samples have been collected and analyzed on a quarterly basis. The monitoring schedule for the Site has been reduced to a semi-annual basis as directed in a letter from the ACEHS dated, July 24, 2009. Groundwater monitoring takes place during the first and third quarters.

In June 2008, the Site owners contracted with Matriks to conduct groundwater monitoring and prepare for further Site remediation.

Matriks submitted the *Site Investigation Workplan*, dated September 16, 2009, to the ACEHS. The workplan was prepared in accordance with an ACEHS directive issued in a letter dated

August 13, 2009. The proposed scope of work included the installation of four soil borings to further investigate the vertical extent of the release, define the contaminate plume, and evaluate on and off-site risks.

The ACEHS approved the *Site Investigation Workplan* (Workplan), with modifications to the proposed scope of work, in a letter date October 22, 2009. Four borings were pushed in the vicinity of the existing tanks to a maximum depth of 20 fbg. Free product was observed in several of the borings with TPH-d in groundwater at concentrations up to 1,100,000 µg/L. Matriks prepared a *Site Investigation Report*, dated December 15, 2010, documenting the findings. At present, the California UST Cleanup Fund recommends site closure. This report is submitted to justify site closure.

SCOPE OF WORK

The scope of work conducted for this semi-annual groundwater monitoring event included the following tasks:

- Measurement of static water levels in five groundwater monitoring wells;
- Collection of field water quality parameters including pH, temperature, and specific conductance (SC) from groundwater in each well;
- Purging at least three casing volumes from each well;
- Collection and analysis of groundwater water samples from each well for THP-d, TPH-g, BTEX and MtBE (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Update of the Geotracker database; and
- Preparation of this Semi-Annual Monitoring Report.

METHODS AND PROCEDURES

Groundwater Level Measurements

Prior to measuring the depth to groundwater, the cap of each well was removed and the water level was given an opportunity to equilibrate with atmospheric pressure for approximately 30 minutes before recording measurements using an electronic water depth indicator. The static water levels were referenced to the surveyed marks notched into the top of each well casing and the depth-to-water measurements were used to calculate the purge volume of for each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a new disposable bailer. Groundwater temperature, pH, and SC were measured intermittently during purging. Measurements were obtained with a Hanna multi-meter, which was calibrated by the equipment rental service prior to on-site use. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled and sealed 55-gallon, DOT-approved steel drums and temporarily stored on-site.

A new disposable bailer dedicated to each well, was used to remove the groundwater samples and transfer them to the appropriate laboratory prepared containers. Care was taken to remove the headspace in each container. Each sample container was labeled with the project number, sample ID, and collection date. The same information was recorded on the laboratory chain-of-custody form. Samples were stored in a cooler filled with ice for transport to the laboratory.

Samples were transported and submitted to McCampbell Analytical, Inc. of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

Depth to water was measured in each monitoring well. The groundwater flow direction, as determined from wells MW-2, MW-3 and MW-5, for this monitoring event was calculated to be northwest with a gradient of 0.008. Well construction details are summarized in **Table 1**. The depth to groundwater and the corresponding water table elevations are summarized in **Table 2**. Groundwater elevation contours are depicted on **Figure 3**. Hydrographs for all monitoring wells are presented on **Figure 4**.

Groundwater Analytical Results

TPH-g was detected in wells MW-1, MW-3, and MW-5 at concentrations of 3,000, 6,800 and 180 μg/L, respectively. TPH-g was not detected in the remaining monitoring wells.

Benzene was detected in MW-1, MW-, and MW-5 at 12, 58 and 0.93 $\mu g/L$, respectively. Benzene was not the remaining monitoring wells.

MtBE was detected in MW-5 at 220 $\mu g/L$. MtBE was not detected in the remaining monitoring wells.

TPH-d was detected in MW-1, MW-3 and MW-5 at 1,700, 2,500 and 87 μ g/L, respectively. TPH-d was not detected in the remaining monitoring wells.

In general, hydrocarbon concentrations increased in MW-1 and decreased in MW-3 and MW-5, when compared to the last time these wells were sampled on January 20, 2011.

Groundwater analytical results for the fourth quarter 2011 are summarized in **Table 3** and all of the historical groundwater monitoring results are summarized in **Table 4**. A copy of the laboratory analytical report is included in **Appendix B**.

Figure 5 shows TPH-g and benzene concentration trends in well MW-1 and **Figure 6** shows these same concentration trends in MW-3.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by AB2886 (Water Code Section 13195-13198). EDFs are prepared and formatted by the laboratory and submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. A well status and usage report (GEO_WELL file) is submitted for each monitoring event. A complete electronic copy of this report (GEO_REPORT file) in PDF format was also submitted. Updated maps (GEO_MAP files) are submitted when site features such as monitoring wells or soil borings are added.

CONCLUSIONS

The site investigation performed in November 2010 indicated free product was present and elevated concentrations of diesel and gas were observed in soil and groundwater samples from several borings. Diesel product has only been dispensed since the new USTs were installed in 1996. The diesel UST was emptied and has not held fuel since 2006. Existing diesel lines were drained back to the tank, all diesel nozzles have been removed from the dispensers and the diesel turbine has been locked out at the electrical box.

As shown on **Figures 5 and 6**, the overall trend of TPH-d concentrations is downward in MW-1 and MW-3. **Table 4** indicates that the TPH-d concentration trend is downward in MW-2, MW-4 and MW-5. TPH-g shows a decreasing trend in all monitoring wells except MW-1 which increased from 1,100 to 3,000 μ g/L when compare to the last sampling event. Likewise, benzene either was not detected or decreased in concentration in all wells except MW-1 where it increased from 0.85 to 12 μ g/L when compare to the last sampling event. Toluene, ethylbenzene and xylenes also increased in MW-1.

MtBE and tBA concentrations are decreasing with time in all wells. MW-1 is above the ESLs for TPH-g, TPH-d, benzene, ethylbenzene and xylenes. MW-3 is above the ESLs for TPH-g, TPH-d and benzene. MW-5 is above the ESLs for TPH-g and MtBE.

The detection of TPH-g and MtBE above the ESLs in well MW-5 indicates that petroleum hydrocarbons are migrating down gradient from the Site.

RECOMMENDATIONS

The Site meets all of the requirements for low risk closure as follows:

- 1. The unauthorized release is located within the service area of a public water system;
- 2. The unauthorized release consists only of petroleum;
- 3. The unauthorized release has been stopped;
- 4. Free product has been removed to the maximum extent practicable;
- 5. A conceptual site model has been developed;
- 6. Secondary source removal has been addressed;
- 7. Soil and groundwater has been tested for MtBE and results reported in accordance with H&S Code Section 25296.15; and
- 8. Nuisance as defined by Water Code Section 13050 does not exist at the Site.

Based on these criteria, we recommend this site for low risk case closure. The SWRCB concurred with this recommendation in their *Second 5-Year Review Summary Report* dated July 5, 2011. This report is provided in **Appendix C**. With the concurrence of ACEH, CES will prepare a formal Request for No Further Action pursuant to Appendix A of the *Tri-Regional Recommendations for Preliminary Investigation and Evaluation of Underground Storage Tank Sites*.

Table 1 Well Construction Details Alaska Gas

Alameda, California

Well ID	Date Installed	Total Depth (feet bg)	Screened Interval (feet bg)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet bg)	Bentonite Interval (feet bg)	Grout Interval (feet bg)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Westing Coordinates (feet)
MW-1	10/11/99	18	17.35-2.5	Silty Sand	0.02	18-1.5	1.5-0.5	0.5-0	29.18	15.20394	46.13606
MW-2	10/11/99	18	18-4	Silty Sand	0.02	18-3	3-1.5	1.5-0	29.55	14.93558	45.97882
MW-3	10/11/99	20	19-4	Silty Sand	0.02	20-3	3-1.5	1.5-0	27.74	15.28672	47.24157
MW-4	04/03/06	16	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.23	17.12115	48.05243
MW-5	04/04/06	17	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.78	16.21022	47.48996

Table 2. Groundwater Elevation Data Alaska Gas, Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
	11/06/99	26.85	5.16	21.69
	05/16/00		3.24	23.61
	08/03/00		4.15	22.70
	12/05/00		4.90	21.95
	03/05/01		3.04	23.81
	06/04/01		4.01	22.84
	06/05/02		3.73	23.12
	09/09/02		5.06	21.79
	12/19/02		4.09	22.76
	03/10/03		3.50	23.35
	06/03/03		3.66	23.19
	09/19/03		4.91	21.94
	12/22/03		4.30	22.55
	03/12/04		2.93	23.92
	06/11/04		4.23	22.62
	09/13/04		5.02	21.83
	12/16/04		3.76	23.09
	03/21/05		2.81	24.04
MW-1	06/23/05		3.66	23.19
'*''	09/30/05		4.55	22.30
	12/08/05		4.21	22.64
	03/01/06		2.90	23.95
	05/25/06	29.18	2.84	26.34
	08/10/06		4.35	24.83
	11/21/06		4.22	24.96
	02/06/07		4.39	24.79
	05/08/07		3.88	25.30
	08/06/07		5.02	24.16
	12/26/07		4.87	24.31
	06/28/08		4.77	24.41
	09/27/08		6.29	22.89
	12/30/08		6.04	23.14
	03/28/09		3.78	25.40
	09/12/09		6.59	22.59
	03/30/10		3.52	25.66
	09/30/10		5.61	23.57
	01/20/11		3.61	25.57
	12/15/11		5.12	24.06

Table 2. Groundwater Elevation Data Alaska Gas, Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
	11/06/99	27.18	5.56	21.62
	05/16/00		3.54	23.64
	08/03/00		4.44	22.74
	12/05/00		5.24	21.94
	03/05/01		3.28	23.90
	06/04/01		4.33	22.85
	06/05/02		3.98	23.20
	09/09/02		5.34	21.84
	12/19/02		4.33	22.85
	03/10/03		3.58	23.60
	06/03/03		3.87	23.31
	09/19/03		5.24	21.94
	12/22/03		4.47	22.71
	03/12/04		3.40	23.78
	06/11/04		4.51	22.67
	09/13/04		5.35	21.83
	12/16/04		4.09	23.09
	03/21/05		3.01	24.17
MW-2	06/23/05		3.91	23.27
10100-2	09/30/05		4.86	22.32
	12/08/05		4.49	22.69
	03/01/06		3.09	24.09
	05/25/06	29.55	3.16	26.39
	08/10/06		4.98	24.57
	11/21/06		4.81	24.74
	02/06/07		4.37	25.18
	05/08/07		4.12	25.43
	08/06/07		5.36	24.19
	12/26/07		5.03	24.52
	06/28/08		5.06	24.49
	09/27/08		6.64	22.91
	12/30/08		6.28	23.27
	03/28/09		4.03	25.52
	09/12/09		6.24	23.31
	03/30/10		3.80	25.75
	09/30/10		6.00	23.55
	01/20/11		4.17	25.38
	12/15/11		5.46	24.09

Table 2. Groundwater Elevation Data Alaska Gas, Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
	11/06/99	25.3	4.02	21.28
	05/16/00		2.06	23.24
	08/03/00		3.20	22.10
	12/05/00		3.71	21.59
	03/05/01		1.90	23.40
	06/04/01		2.72	22.58
	06/05/02		2.75	22.55
	09/09/02		3.88	21.42
	12/19/02		2.79	22.51
	03/10/03		2.36	22.94
	06/03/03		2.65	22.65
	09/19/03		3.15	22.15
	12/22/03		2.83	22.47
	03/12/04		2.00	23.30
	06/11/04		3.11	22.19
	09/13/04		3.90	21.40
	12/16/04		2.89	22.41
	03/21/05		1.93	23.37
MW-3	06/23/05		2.69	22.61
10100-3	09/30/05		4.54	20.76
	12/08/05		3.05	22.25
	03/01/06		1.95	23.35
	05/25/06	27.74	2.11	25.63
	08/10/06		3.25	24.49
	11/21/06		3.35	24.39
	02/06/07		3.34	24.40
	05/08/07		3.53	24.21
	08/06/07		3.91	23.83
	12/26/07		3.57	24.17
	06/28/08		3.66	24.08
	09/27/08		4.98	22.76
	12/30/08		4.63	23.11
	03/28/09		2.73	25.01
	09/12/09		4.80	22.94
	03/30/10		2.62	25.12
	09/30/10		4.38	23.36
	01/20/11		2.58	25.16
	12/15/11		3.93	23.81

Table 2. Groundwater Elevation Data Alaska Gas, Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
	05/25/06	26.23	2.54	23.69
	08/10/06		4.65	21.58
	11/21/06		4.63	21.60
	02/06/07		3.87	22.36
	05/08/07		4.21	22.02
	08/06/07		4.54	21.69
	12/26/07		2.90	23.33
MW-4	06/28/08		3.02	23.21
10100-4	09/27/08		4.78	21.45
	12/30/08		3.91	22.32
	03/28/09		2.50	23.73
	09/12/09		4.93	21.30
	03/30/10		3.43	22.80
	09/30/10		3.79	22.44
	01/20/11		2.19	24.04
	12/15/11		3.64	22.59
	05/25/06	26.78	2.60	24.18
	08/10/06		3.40	23.38
	11/21/06		3.27	23.51
	02/06/07		3.10	23.68
	05/08/07		3.00	23.78
	08/06/07		3.79	22.99
	12/26/07		3.38	23.40
MW-5	06/28/08		3.70	23.08
10100-5	09/27/08		4.65	22.13
	12/30/08		4.04	22.74
	03/28/09		2.85	23.93
	09/12/09		4.48	22.30
	03/30/10		2.80	23.98
	09/30/10		4.11	22.67
	01/20/11		2.69	24.09
	12/15/11		3.67	23.11

All measurements are in feet. DTW = Depth to water below top of PVC casing.

TOC = Top of casing. ELEV = Elevation above mean sea level.

Wells resurveyed on April 27, 2006

Table 3. Groundwater Analytical Results December 15, 2011 Alaska Gas, Alameda, California

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE
MW-1	12/15/11	3000 [*]	1700 ^{+^}	12	16	230	120	<50
MW-2	12/15/11	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
MW-3	12/15/11	6800 [*]	2500^	58	16	18	12	10
MW-4	12/15/11	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
MW-5	12/15/11	180 [*]	87^	0.93	0.72	<0.5	<0.5	220
	ESL	100	100	1.0	40	30	20	5
WQO				1.0	150	700	1750	5

Notes:

Units are micrograms per liter (ug/L).

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

- * Laboratory noted that weakly modified or unmodified gasoline is significant
- + Laboratory noted that diesel range compounds are significant; no recognizable pattern
- ^ Laboratory noted that gasoline range compounds are significant
- † Laboratory noted that oil range compounds are significant
- ESL Environmental Screening Limits

WQO Water Quality Objectives for Site: Per the Region 2, Water Quality Control Plan

Table 4. Historical Groundwater Analytical Results Alaska Gas, Alameda, California

W-11 15	D-4-	TOU -	TOU -			ethyl-		8.44.D.E	+ 4 5 4 5	404	Other
Well ID	Date	TPH-g	TPH-d			benzene	xylenes	MtBE	tAME	tBA	Oxygenates
	11/06/99	5,700	8,700	170	59	22	85	20,000	NA	NA	NA 5.0
	05/16/00	20,000	<7,500	38	6.3	740	1,600	<5.0	<5.0	<50	<5.0
	08/03/00	20,000	<6,000	56	9.7	920	1,600	<0.5	<0.5	<50	<0.5
	12/05/00	31,000	<4,000	64	27	820	2,200	<10	<5.0	<50	<5.0
	03/05/01	20,000	<4,000	19	<5.0	480	870	<5	<5.0	<50	<5.0
	06/04/01	23,000	<7,000	58	50	710	2,100	5.1	<5.0	<50	<5.0
	06/05/02	7,400	<1,500	9.3	6.7	180	230	<1.0	<1.0	<10	<1.0
	09/09/02	8,300	<3500	32	20	390	670	<2.0	<2.0	<20	<2.0
	12/19/02	5,100	NS	7.9	2.5	56	93	<1.0	<1.0	<10	<1.0
	03/10/03	2,000	<2,000	3.4	2.9	80	98	<0.5	<0.5	<5.0	<0.5
	06/03/03	7,300	<4,000	6.8	9.9	300	1,000	2.3	<0.5	<5.0	<0.5
	09/19/03	9,000	<3,000	26	22	420	1,200	4.5	<1.5	<20	<1.5
	12/22/03	4,300	<2,000	12	6.7	200	290	9.1	<1.0	<10	<1.0
	03/12/04	7,000	<3,000	8.3	8.2	250	760	3.9	<2.0	<20	<2.0
	06/11/04	13,000	<4,000	26	27	530	1,700	<2.5	<2.5	<15	<2.5
	09/13/04	17,000	<4,000	37	42	840	2,000	<5.0	<5.0	<50	<5.0
	12/16/04	1,800	<1,000	5.9	1.9	100	35	16	<0.5	<5.0	<0.5
	03/21/05	7,500	<3,000	3.4	4.2	290	760	<1.5	<1.5	<20	<1.5
	06/23/05	11,000	<8,000	15	11	370	910	2.4	<1.5	<7.0	<1.5
MW-1	09/30/05	9,800	<4,000	32	25	540	680	1.6	<1.5	<7.0	<1.5
	12/08/05	9,200	<4,000	27	21	500	490	2.2	<1.5	<7.0	<1.5
	03/01/06	6,500	<4,000	8.1	9.4	370	660	18	<1.5	<6.0	<1.5
	05/25/06	10,000	<3,000	19	14	900	620	<1.5	<1.5	<7.0	<1.5
	08/10/06	9,800	<1,500	16	8.1	640	180	<1.5	<1.5	<7.0	<1.5
	11/21/06	2,900	<1,000	7.8	2.5	160	12	2.5	2.5	<5.0	<0.5
	02/06/07	4,600	<1,500	9.4	6	380	220	1	<0.50	<5.0	<0.50
	05/08/07	3,700	<800	10	4.6	320	86	1.5	<0.50	<5.0	<0.50
	08/06/07	8,200	<2,000	14	8.8	730	180	<0.50	<0.50	<5.0	<0.50
	12/26/07	1,200	<300	2.3	1.1	89	21	4.8	<0.50	<5.0	<0.50
	03/31/08	2,000	<800 3900 *	2.2	1.6	99	75	1.8	<0.50	<5.0	<0.50
	06/28/08	8,400	4600*	18	26	670	1,100	<2.5	<2.5	<10	<2.5
	09/27/08	12,000		32	49	1,200	680	<25	<25	<100	<25
	12/30/08	5,300	3,700	12	31	300	27	7.1	<5.0	<20	<5.0
	03/28/09	1,900	920*	<1.7	<1.7	77	58	22 3.0	<1.7	<6.7	<1.7
	09/12/09	7,800	9,400	34	110	690	200		<0.5	140	<0.5
	03/30/10	1,700	700 [*]	2.1	14	40	9.5	14	<0.5	7.8	<0.5
	09/30/10	2,300	6,500*	8.5	23	150	29	4	<0.5	2.2	<0.5
	01/20/11	1,100	590	0.85	6.6	34	42	7.7	<0.5	<2.0	<0.5
	12/15/11	3,000	1,700	12	16	230	120	<50	NA	NA	NA

Table 4. Historical Groundwater Analytical Results Alaska Gas, Alameda, California

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	henzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
Well ib	11/06/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
	05/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/03/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/05/00	<50	1,400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	03/05/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
•	06/04/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/05/02	<50	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
•	09/09/02	<50	1,300	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	12/19/02	<50		<0.5	<0.5	<0.5	<0.5	16	<0.5	<5.0	<0.5
	03/10/03	<50	3,000	<0.5	<0.5	<0.5	<0.5	1	<0.5	<5.0	<0.5
	06/03/03	<50	700	<0.5	<0.5	<0.5	<0.5	2	<0.5	<5.0	<0.5
	09/19/03	<50	1,400	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<5.0	<0.5
	12/22/03	<50	1,000	<0.5	<0.5	<0.5	<0.5	39	<0.5	<5.0	<0.5
	03/12/04	<50	250	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<5.0	<0.5
	06/11/04	<50	920	<0.5	<0.5	<0.5	<0.5	0.75	<0.5	<5.0	<0.5
	09/13/04	<50	140	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<5.0	<0.5
	12/16/04	<50	150	<0.5	<0.5	<0.5	<0.5	12	<0.5	<5.0	<0.5
	03/21/05	<50	130	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/23/05	<50	1,100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
MW-2	09/30/05	<50	300	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<5.0	<0.5
	12/08/05	<50	600	<0.5	<0.5	<0.5	<0.5	1.9	<0.5	<5.0	<0.5
	03/01/06	<50	920	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/25/06	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/10/06	<50	870	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	11/21/06	<50	130	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<5.0	<0.5
	02/06/07	<50	450	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/26/07	<50	190	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<5.0	<0.5
	03/31/08	Inaccessa	ble Not S	ampled							
	06/28/08	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<2.0
	09/27/08	<50	78	<0.5	<0.5	<0.5	<0.5	7	<0.5	<2.0	<0.5
	12/30/08	<50	100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5
	03/28/09	<50	60	<0.5	<0.5	<0.5	<0.5	5.4	<0.5	<0.5	<0.5
	09/12/09	<50	91	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<2.0	<0.5
	03/30/10	<50	150	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<2.0	<0.5
	09/30/10	<50	310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5
	01/20/11	<50	90	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<2.0	<0.5
	12/15/11	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA

Table 4. Historical Groundwater Analytical Results Alaska Gas, Alameda, California

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
	11/06/99	43,000	870	860	70	<0.5	65	120,000	NA	NA	NA
	05/16/00	17,000	<5,000	2,800	60	380	190	990	9.1	350	<5.0
	08/03/00	16,000	<2,000	1,600	29	210	53	1,200	21	260	<2.0
	12/05/00	17,000	5800	1,700	45	460	240	1,100	21	230	<5.0
	03/05/01	29,000	<1,300	2,100	68	280	100	180	<8.0	<80	<8.0
	06/04/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
	06/05/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
	09/09/02	12,000	<800	1,400	44	130	27	760	<10	160	<5.0
	12/19/02	10,000	NS	740	32	180	38	86	<5.0	<50	<5.0
	03/10/03	13,000	<6,000	1,200	42	240	35	470	5.3	140	<2.5
	06/03/03	6,500	<3,000	750	21	46	15	1,300	<50	280	<10
	09/19/03	9,800	<3,000	1,500	38	170	32	420	<10	150	<5.0
	12/22/03	8,800	<2,000	1,100	32	82	20	330	5.8	52	<2.5
	03/12/04	7,600	<3,000	590	23	69	17	470	9.2	63	<1.5
	06/11/04	7,800	<2,000	840	19	58	15	710	12	140	<2.5
	09/13/04	7,500	<1,500	840	17	23	7.8	730	15	93	<2.5
	12/16/04	9,300	<2,000	1,100	26	76	13	600	12	130	<2.5
	03/21/05	11,000	<3,000	1,200	37	190	24	460	9.3	100	<2.5
	06/23/05	9,600	<4,000	1,100	28	93	23	370	8.2	67	<1.5
MW-3	09/30/05	9,000	<3,000	690	18	32	14	380	8.4	72	<1.5
	12/08/05	8,700	<3,000	560	23	38	12	350	6.9	82	<1.5
	03/01/06	8,400	<2,000	410	24	42	13	360	8	58	<1.5
	05/25/06	9,900	<2,000	630	25	13	13	190	5.3	59	<1.5
	08/10/06	14,000	<3,000	690	43	130	26	200	5.4	70	<1.5
	11/21/06	10,000	<3,000	580	37	96	25	240	6.3	72	<1.5
	02/06/07	7,700	<1,000	520	36	90	23	260	7.4	54	<1.5
	05/08/07	4,700	<800	150	0.86	<0.5	<0.5	170	5	52	<0.5
	08/06/07	6,000	<1,000	240	26	34	17	180	5	55	<0.5
	12/26/07	8,100	<1,500	76	14	17	12	150	4.3	37	<0.9
	03/31/08	7,900	<1,500	250	30	62	20	140	4.5	47	<0.90
	06/28/08	6,400	3,100*	97	17	19	13	200	5.6	38	<5.0
	09/27/08	11,000	15,000*	190	24	29	16	160	<5.0	40	<5.0
	12/30/08	9,100	2,300*	160	24	31	18	150	5	100	<5.0
[03/28/09	9,200	4,300*	150	25	34	22	120	<5.0	38	<5.0
	09/12/09	6,100	2,700*	110	21	14	18	170	<5.0	38	<0.5
	03/30/10	12,000	12,000*	200	25	35	23	96	<5.0	58	<5.0
	09/30/10	6,300	5,100	110	14	6.2	16	110	3.8	16	<2.5
	01/20/11	7,700	3,500	100	20	20	16	85	3.4	41	<1.7
	12/15/11	6,800	2,500	58	16	18	12	<150	NA	NA	NA

Table 4. Historical Groundwater Analytical Results Alaska Gas, Alameda, California

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
	05/25/06	410	<80	<2.5	<2.5	<2.5	<2.5	1800	28	44	<2.5
	08/10/06	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	11/21/06	<50	<50	<0.5	<0.5	<0.5	<0.5	0.59	<0.5	<5.0	<0.5
	02/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<5.0	<0.5
	12/26/07	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	03/31/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
MW-4	06/28/08	<50	88	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5
	09/27/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	12/30/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5
	03/28/09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5
	09/12/09	<50	240	<0.5	<0.5	<0.5	<0.5	1.0	<0.5	<2.0	<0.5
	03/30/10	<50	<50	<0.5	<0.5	<0.5	<0.5	0.58	<0.5	<2.0	<0.5
	09/30/10	<50	<50	<0.5	<0.5	<0.5	<0.5	0.76	<0.5	<2.0	<0.5
	01/20/11	<50	210	<0.5	<0.5	<0.5	<0.5	0.70	<0.5	<2.0	<0.5
-	12/15/11	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA
	05/25/06	<50	86	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	08/10/06	55	<50	<0.5	<0.5	<0.5	<0.5	1,100	19	9.1	<0.5
	11/21/06	<250	<50	<2.5	<2.5	<2.5	<2.5	1,500	25	28	<2.5
	02/06/07	430	<50	6.9	<2.5	<2.5	<2.5	1,600	26	34	<2.5
	05/08/07	<250	<50	<2.5	<2.5	<2.5	<2.5	1,200	20	38	<2.5
	08/06/07	330	<80	<2.5	<2.5	<2.5	<2.5	1,000	20	39	<2.5
	12/26/07	490	<50	<2.5	<2.5	<2.5	<2.5	1,000	18	28	<2.5
	03/31/08	520	<100	6.0	1.9	<1.5	2.5	520	16	33	<1.5
MW-5	06/28/08	510	290*	6.2	1.0	<0.5	2.3	550	11	<40	<10
	09/27/08	670	320*	<17	<17	<17	<17	650	<17	95	<17
	12/30/08	210	130*	<0.5	0.8	0.99	<0.5	610	12	<40	<10
	03/28/09	200	100*	<17	<17	<17	<17	610	<17	<67	<17
	09/12/09	230	130*	1.6	1.3	<0.5	1.4	540	11	<40	<10
	03/30/10	360	170*	2.0	1.7	<0.5	1.3	490	13	<40	<10
	09/30/10	710	310	10	2.6	<1.0	3.1	400	<10	<40	<10
	01/19/11	340	280	3.0	2.0	<0.5	1.2	450	<10	100	<10
	12/15/11	180	87	0.93	0.72	<0.5	0.54	220	NA	NA	NA
	ESL	100	100	1.0	40	30	20	5	NE	12	NA
١	WQO Notos:			1.0	150	700	1750	5		12	

Notes:

Units are micrograms per liter (ug/L).

NT analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

* Laboratory noted that TPH-g range is significant

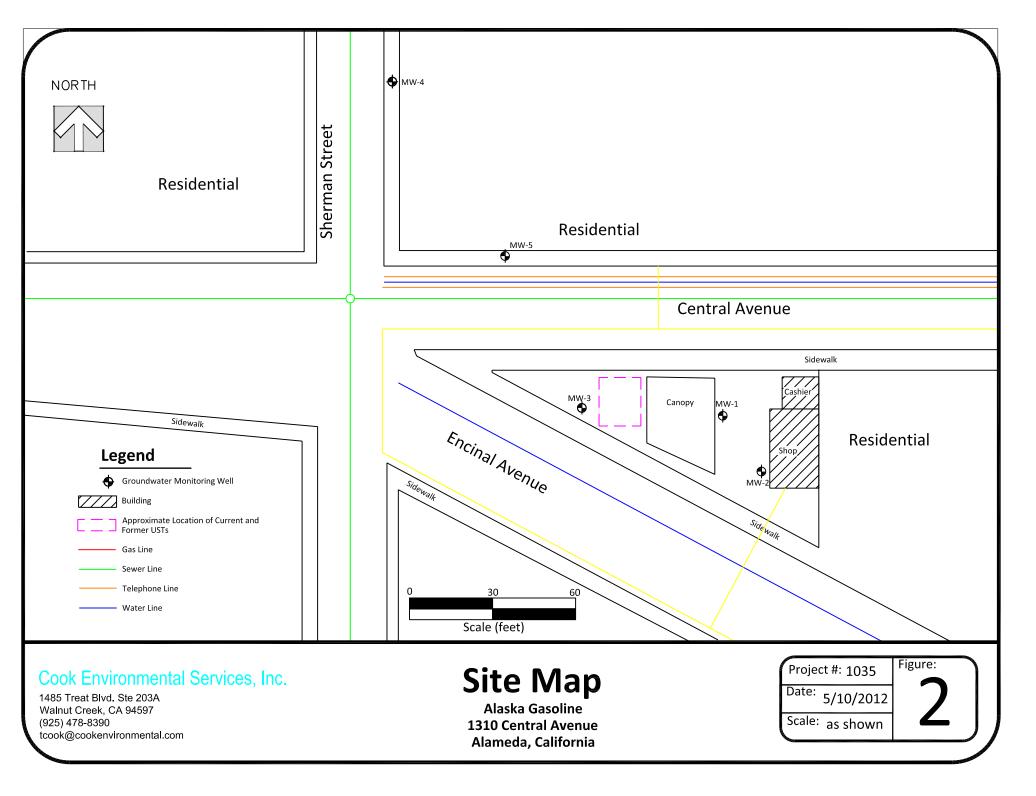
ESL Environmental Screening Limits

WQO Water Quality Objectives for Site: Per the Region 2, Water Quality Control Plan

MtBE methyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol



Cook Environmental Services, Inc.

1485 Treat Blvd. Ste. 203A Walnut Creek, CA 94597 (925) 478-8390 work (925) 787-6869 cell tcook@cookenvironmental.com Site Location Map 1031 Central Avenue Alameda, CA 94501 Project: 1035 Figure:

Date: 5/11/12

Scale: 1"=1500'

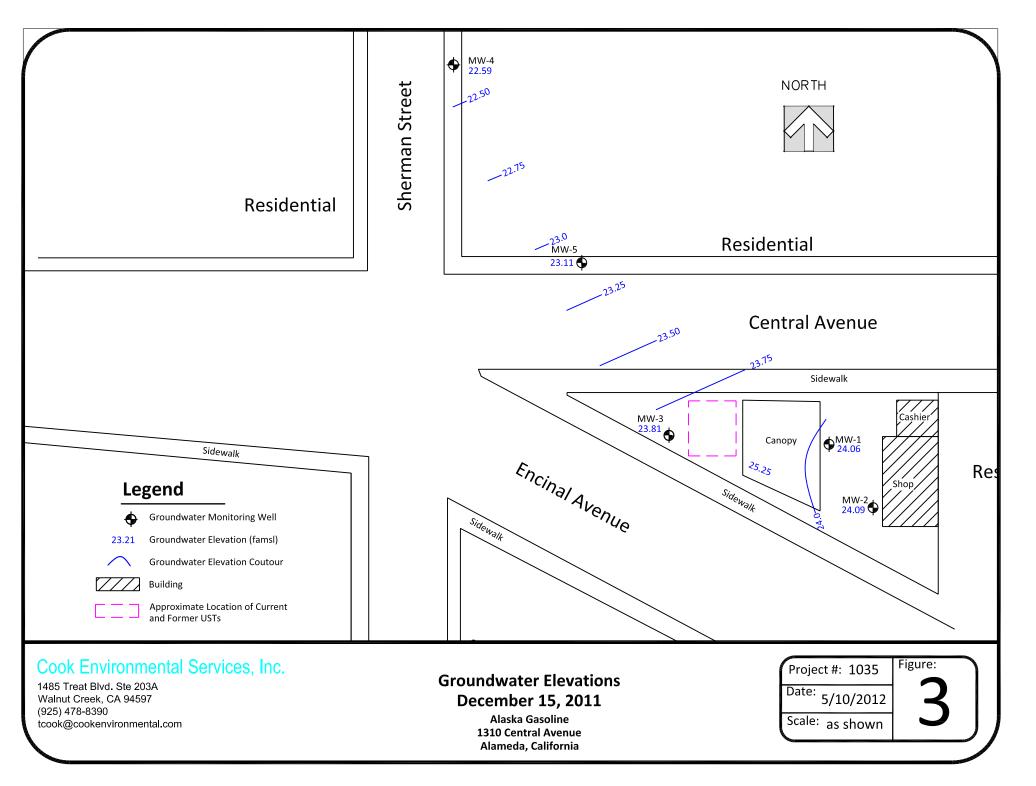


Figure 4. Monitoring Well Hydrographs
Alaska Gas, Alameda, CA

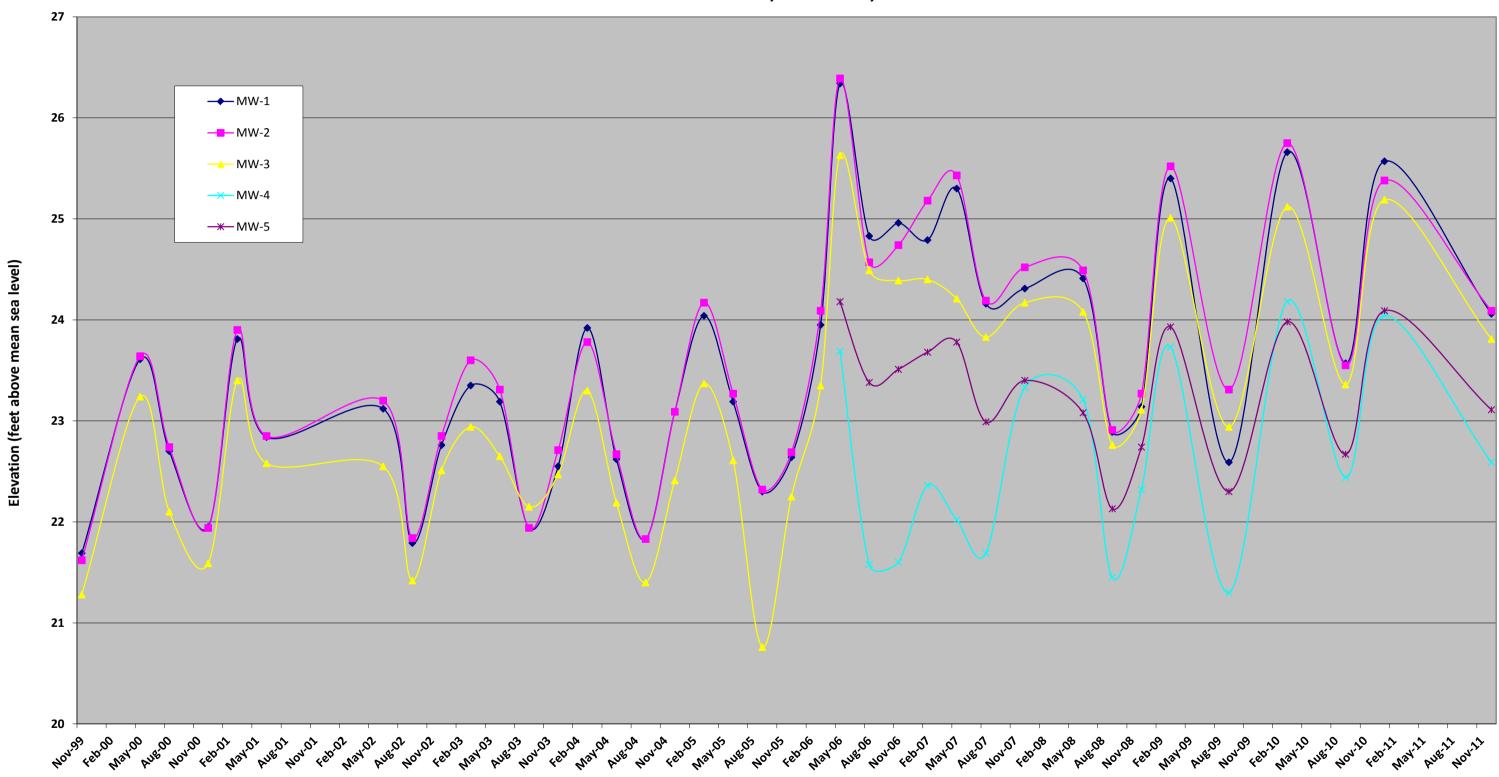


Figure 5. TPH and Benzene Concentration Trends in Well MW-1
Alaska Gas , Alameda, California

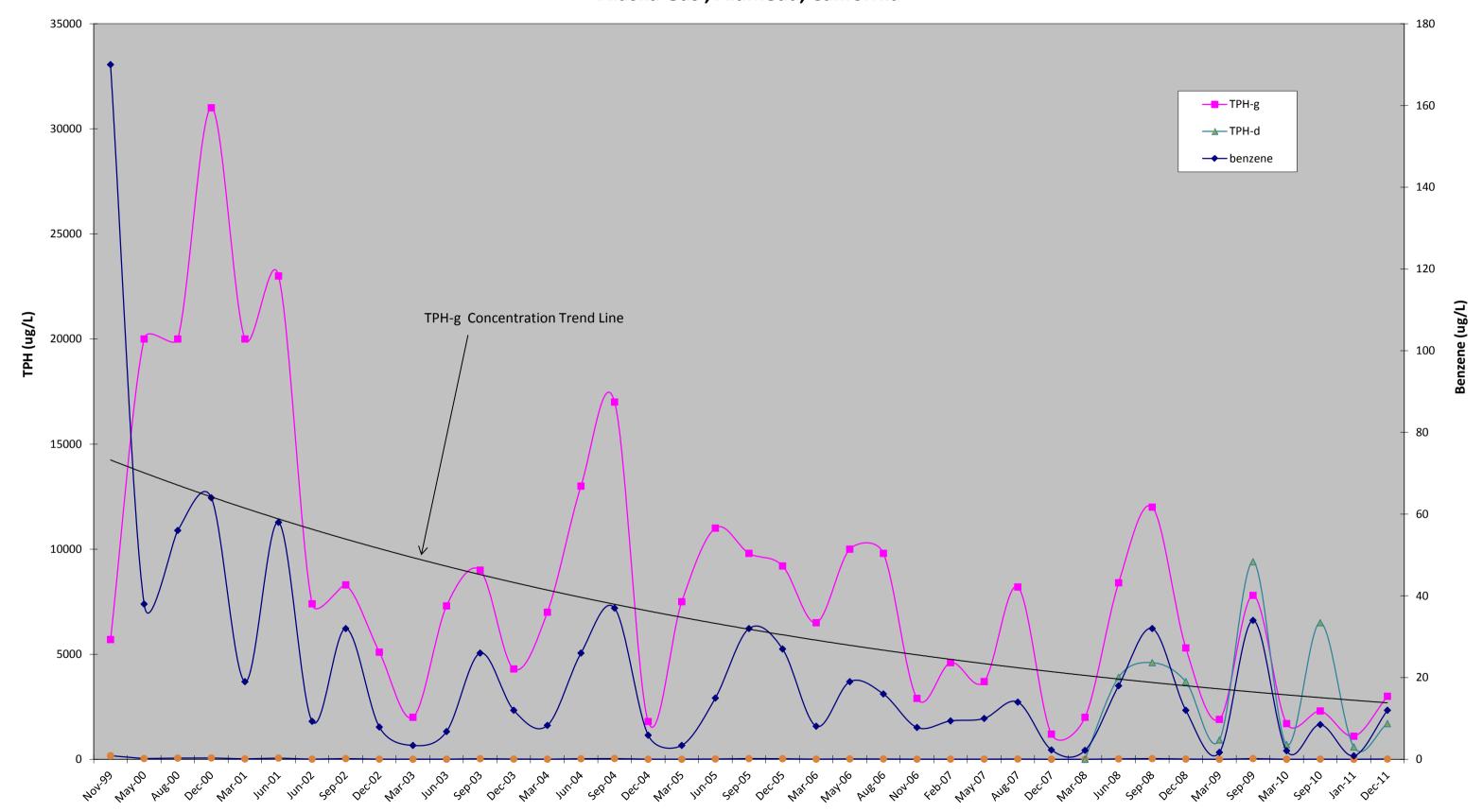
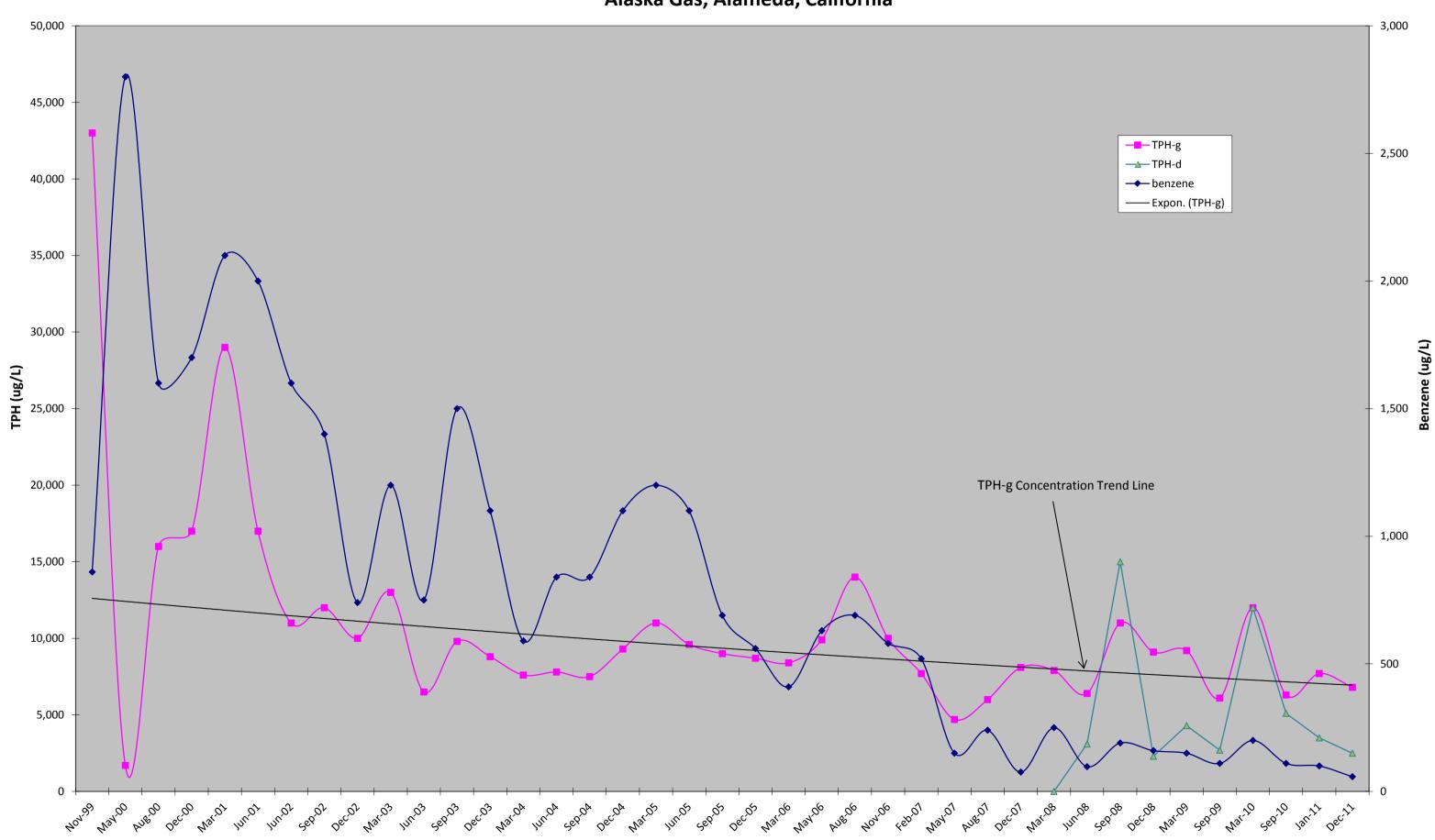



Figure 6. TPH and Benzene Concentration Trends in Well MW-3 Alaska Gas, Alameda, California

APPENDIX A Well Sampling Logs

Project Name: Alameda Gas

Project Address: 1310 Central Avenue, Alameda, California

Task: December 2011 Groundwater Monitoring Event

DAILY EQUIPMENT CALIBRATION SHEET

	Instrument	Droho	Dissolved		pH		Specific Conductivity	OPP	Turbidity
Time	Serial Number	Serial Number	Oxygen (%)	4	7	10	(1,000 µs/cm ^c)	(231 mV)	(0.02 NTU)
1445	256 MPS	090100611	/00.1	3.99	7.00	10.01	1,000	NA	NA
								1	
	Time I#45	Serial Number	Serial Number Serial Number	Time Serial Number Serial Number Oxygen (%) Oxygen (%) 4 7 10	Time Serial Number Serial Number Oxygen (%) Oxygen (%) Oxygen (%) 4 7 10 (1,000 µs/cm ^c)	Time Serial Number Serial Number Oxygen (%) Oxygen (%) Oxygen (1,000 µs/cm ^c) (231 mV)			

WATER QUALITY SAMPLE LOG SHEET					WELL IDENTIFICATION: MW-1 DATE: 12/15/2011							
Project Name: Alameda Gas Job #: 1035					Client: Cook Environmental Services, Inc.							
Laboratory: McCampbell Analytical, Inc.						Conditions	overco	est & c	lool			
Well Diameter: 1" 2" 4" 6" Other:						Weather Conditions: Overcost & cool Well Type: (PVC) Stainless Steel / Other:						
Is Well S	ecured?	Yes No E	Bolt Size:	9/16"	Type of lock / Lock number: No lock							
Screen Ir	nterval (Ft	., BGS): NA	Ā		Set pump	intake @	- (Ft., BTOC	1			
Purge Me	ethod: NA	Disp. PE	Bailer C	entrifugal Pump	Peristaltic	Pump Bl	adder Pur	mp SSS	ubmersible Pump			
Pump Lir	nes: (A)	PE / Teflon	LOther -	New / Cleaned / D	edicated	Bailer Lin	e: WANNe	Clean	ed / Dedicated			
Method o	of Cleaning	Pump: N	Liqui-n	ox / Tap Water / D	I Rinse / (Other:	JP.					
Sampling	Method:	Disp. PE B	ailer) Per	ristaltic Pump Bl	adder Pun	np SS Sub	omersible	Pump P	DBs			
Multi-Par	ameter M	eter / Probe	Serial No	656 MPS - 090	100611	556 MPS	- 09C100	612				
Equipme	nt Calibra	tion: See D	aily Equip	ment Calibration	Sheet	OVM 580E	P.I.D. Re	eading: N	A ppm			
Water Le	vel Meter	Serial No.	OW 937	1-1/1 25083 / 2574	2/49914	/ 56500 / O	ther:					
Beginnin	g Water L	evel (DTW)	5,120	11:41	Ending W	later Level:		8.34				
TD = 18	.00 - 5	.12 (DTV	V) = 12.6	(Ft. of water):	x "K" = 2	.(Gals	/CV) x 3	No. of C	/) = <u>6.3</u> (Gals.)			
		"K" = 0.04	(1" well)	"K" = .163 (2" well) "K" = 0.	653 (4" well)	"K" = 1.	46 (6" well)			
				FIELD WATER	QUALITY	PARAME	TERS					
Date	Time	Discharge	Temp	Specific	pН	DO	Water	Color	Comments			
		(Gallons)	(°C)	Conductivity	(SU)	(mg/L)	Level		1			
				(μS/cm ^c) ± 10%	± 0.1 SU	± 10%	(BTOC)		/			
12/15/11	13:26	2	18.88	605	6.49	2.17	V = 0	gray	Strong Petroleveroler Fine sound, Very light			
	13:31	4	19.41	583	6.47	2.92	-	Brown				
	13:37	5.5	19.44	576	6.48	88.6	_	-(1				
1	13:40	6.5	19.66	574	6.47	2.72	_	"	1			
						11111						
	1											
						200						
Total Dis	charge: _	6.5 Ga	llons _	CV Remov					55 Gallon Drum(s)			
Date / Til	ne Sampi	eu. 12/13/	<u> </u>	13.7 Analysis	IPH-G &	MRIEY (90	15/8020],	PH-D (80	15)			
Notes:												
Notes:												
04/00		0		- D. Herry -	a de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición dela composición de la composición dela c	Newl Fire	Die	10/1100				
QA/QC:		@		as a Duplicate Education E		1	Blank N	/IS/MSD				

WATER	QUALIT	Y SAMPLI	E LOG S	HEET	WELL ID	ENTIFICA	TION: N	1W-2 D	DATE: 12/15/2011	
Project Name: Alameda Gas Job #: 1035					Client: Co	ok Environ	mental Se	ervices, Inc		
Laboratory: McCampbell Analytical, Inc.					Weather Conditions: Overcast & cool					
Well Diameter: 1" 2" 4" 6" Other:						e: PVC / S	Stainless	Steel / Oth	ner:	
Is Well Secured? (Yes / No Bolt Size: 9/16"						ck / Lock n	umber:	No lock		
Screen Ir	nterval (Ft	, BGS): NA	<u>V</u>		Set pump	intake @	— (F	t., BTOC)		
Purge Me	ethod: NA	Disp. PE	Bailer C	entrifugal Pump	Peristaltic	Pump Bla	adder Pur	np SS Su	bmersible Pump	
Pump Lir	nes: (NA)	PE / Teflon	/ Other -	New / Cleaned / D	edicated	Bailer Line	E NA NE	W/ Cleane	ed / Dedicated	
Method o	of Cleaning	g Pump: NA	D Liqui-n	ox / Tap Water / D	I Rinse / C	Other:				
Sampling	Method:	Disp. PE B	ailer Per	ristaltic Pump Bl	adder Pun	np SS Sub	mersible	Pump PD	Bs	
				556 MPS - 090						
Equipme	nt Calibra	tion: See D	aily Equip	ment Calibration	Sheet	OVM 580B	P.I.D. Re	eading: NA	ppm	
				1-1) 25083 / 2574						
				0 11:46						
TD = 18	00 - 5.								= <u>6.12</u> (Gals.)	
		"K" = 0.04	(1" well) ("K" = .163 (2" well) "K" = 0.	653 (4" well)	"K" = 1.	46 (6" well)		
				FIELD WATER	QUALITY	PARAMET	TERS			
Date	Time	Discharge	Temp	Specific	pН	DO	Water	Color	Comments	
		(Gallons)	(°C)	Conductivity	(SU)	(mg/L)	Level			
				(μS/cm ^c) ± 10%	± 0.1 SU	± 10%	(BTOC)			
12/15/11	13:57	2	18.64	301	6.24	1.66	_	Brown		
	14:00	4	19.61	302	6.23	1.72	_	rt		
	14:03	6	19.54	308	6-19	1.69	_	+1		
7	14:05	7	19.84	309	6.18	1.45	-	11		
		1						7		
Total Dis	charge:	7 Ga	llons	3.43 CV Remov	red	Storage of	discharge	ed water: 5	55 Gallon Drum(s)	
				14:07 Analysis						
		The services								
Notes:										
	-									
QA/QC:		@-		as a Duplicate Ed	quipment E	Blank Field	Blank N	/IS/MSD		
	_			ueline Lee Signa				_		

WATER	QUALIT	YSAMPL	E LOG S	HEET	WELL ID	ENTIFICA	N:NOITA	/IW-3	DATE: 12(15/2011		
Project Name: Alameda Gas Job #: 1035						Client: Cook Environmental Services, Inc.					
Laboratory: McCampbell Analytical, Inc.					Weather Conditions: Mostly Sunny & cool						
Well Diameter: 1" 2" 4" 6" Other:					Well Type: CVC Stainless Steel / Other:						
Is Well Secured? (Yes) No Bolt Size: 9/16"						Type of lock / Lock number: No lock					
Screen Interval (Ft., BGS): NA						intake @					
									ubmersible Pump		
Pump Lir	nes: (NA)/	PE / Teflon	/ Other -	New / Cleaned / D	edicated	Bailer Line	e: NA Ne	ew) Clear	ned / Dedicated		
Method o	of Cleaning	g Pump: (N/)/ Liqui-n	ox / Tap Water / D	I Rinse / C	Other:					
				istaltic Pump Bl					DBs		
Multi-Par	rameter M	eter / Probe	Serial No	556 MPS - 090	100611	556 MPS	-09C100	612			
Equipme	nt Calibra	tion: See D	aily Equip	ment Calibration	Sheet	OVM 580E	P.I.D. Re	eading: N	A ppm		
Water Le	evel Meter	Serial No.:	OW 937	1-1) 25083 / 2574	2 / 49914	56500 / O	ther:				
Beginnin	g Water L	evel (DTW)	3.930	11:37	Ending W	later Level:	Ч	.98			
TD = 20	.00 - 3	93 (DTV	V) = 16.0	7 (Ft. of water)	x "K" = 2.	62 (Gals.	/CV) x 3	No. of CV	(1) = 7.9 (Gals.)		
				("K" = .163 (2" well)							
				FIELD WATER							
Date	Time	Discharge	Temp	Specific	рН	DO	Water	Color	Comments		
		(Gallons)	(°C)	Conductivity	(SU)	(mg/L)	Level				
				$(\mu S/cm^{c}) \pm 10\%$	± 0.1 SU	± 10%	(BTOC)				
13/15/11	12:56	2	19.34	756	6.39	1.84	-	grayich Cloudy	Strong Petroleum whom		
	13:00	4	20.31	764	6.41	1.89	1	11	(
	13:03	6	20.13	758	6.41	1.92	_	ч			
1	13:06	8	20.20	739	6.39	1.72	_	п			
	1505				7						
			1				7				
						-	7 = 31		-		
Total Di-	oborce	8 Ga	llone 7	OV D		Ctaract	Grant Control	od cost of	55.0-115		
Total Dis	_	ed: 12/15/1		CV Remov					55 Gallon Drum(s)		
Date / Til	me Sampi	ed. 12/15/1		Analysis Analysis	IPH-G &	MB1EX (801	5/8020);	PH-D (801	15)		
Materi											
Notes:	-										
04/00:	-	@		a a Duntierta E	udamt o	Haule (State)	I Dianete I	10/1400			
QA/QC:	d but 61	@		is a Duplicate Ed			Blank N	15/MSD			
Recorde	u by. Sie	men Penma	Jacqu	eline Lee Signa	rule. Anh	~ 4-	~~				

WATER QUALITY SAMPLE LOG SHEET					WELL IDENTIFICATION: MW-4 DATE: 12 15/2011						
Project Name: Alameda Gas Job #: 1035					Client: Cook Environmental Services, Inc.						
Laboratory: McCampbell Analytical, Inc.					Weather Conditions: Mostly Cloudy & cool						
Well Diameter: 1" (2") 4" 6" Other:					Well Type: (PVC) Stainless Steel / Other:						
Is Well Secured? (Fes No Bolt Size: 9/16"						Type of lock / Lock number: No lock					
Screen Interval (Ft., BGS): NA						intake @	(F	t., BTOC)			
Purge M	ethod: NA	A Disp. PE	Bailer C	entrifugal Pump	Peristaltic	Pump Bla	dder Pun	np SS Su	bmersible Pump		
Pump Lir	nes: (NA)	PE / Teflon	Other -	New / Cleaned / D	edicated	Bailer Line	: NA Ne	W Cleane	ed / Dedicated		
Method o	of Cleanin	g Pump: (NA) Liqui-n	ox / Tap Water / D	I Rinse / C	Other:					
Sampling	Method(Disp! PE B	ailer) Per	ristaltic Pump Bla	adder Pun	p SS Sub	mersible	Pump PD	Bs		
Multi-Par	ameter M	eter / Probe	Serial No	556 MPS - 09C	100611)/	556 MPS	-09C100	312			
Equipme	nt Calibra	tion: See Da	aily Equip	ment Calibration S	Sheet	OVM 580B	P.I.D. Re	ading: NA	<u>∖</u> ppm		
Water Le	evel Meter	Serial No.:	OW 937	1-1) 25083 / 2574	2 / 49914 /	56500 / Of	ther:				
Beginnin	g Water L	evel (DTW):	3.6	4011:56	Ending W	ater Level:	3.20	014:19			
									= 4.02 (Gals.)		
7				("K" = .163 (2" well)							
				FIELD WATER	QUALITY	PARAMET	ERS				
Date	Time	Discharge	Temp	Specific	pН	DO	Water	Color	Comments		
	1	(Gallons)	(°C)	Conductivity	(SU)	(mg/L)	Level	7.75	20,000		
		100		(µS/cm°) ± 10%	± 0.1 SU	± 10%	(BTOC)	12. 11.			
12/15/11	12:00	2	17.76	443	6.56	4.39	_	LL Drown			
1	12:07	3	18.15	468	6.61	2.64		डांबिकार	0010 2 11 -		
	14.07	2	10.13	940	φ.61	2.0.		Clory	Dry @ 3 gallors		
	1										
								-			
		-									
Total Dis	charge:	3 Gal	lons _	.5 CV Remov	ed	Storage of	discharge	d water: 5	55 Gallon Drum(s)		
Date / Ti	me Sampl	ed: 12/15/1		14:21 Analysis	TPH-G &	MBTEX (801	5/8020); T	PH-D (8015	5)		
		11-11-11									
Notes: Measured TD = 15.46											
	wellk										
QA/QC:	_	@	8	as a Duplicate Eq	uipment B	llank Field	Blank M	1S/MSD			
Recorde	d by: Ste	phen Penma		eline Lee Signal		42		-			

WATER	QUALIT	Y SAMPL	E LOG S	HEET	WELL ID	DENTIFICA	ATION: N	/IW-5	DATE 12/15/2011
Project N	Name: Ala	meda Gas	Job #:	1035		ook Environ			
Laborato	ory: McCa	mpbell Anal	ytical, Inc		Weather	Conditions:	Port	y Sum	y & 000
		2" 4" 6"				PVC) / S			
Is Well S	Secured?	Yes No E	Bolt Size:	9/16"	Type of lo	ock / Lock n	umber: _	No loc	<u>k</u>
Screen I	nterval (Ft	., BGS): NA	4		Set pump	intake @	(1	Ft., BTOC)
Purge M	ethod: NA	Disp. PE	Bailer C	entrifugal Pump	Peristaltic	Pump Bla	adder Pur	mp SS S	ubmersible Pump
Pump Li	nes:(NA	PE / Teflon.	(Other - I	New / Cleaned / D	edicated	Bailer Line	E NA Ne	Clean	ed / Dedicated
Method	of Cleaning	g Pump: (NA	Liqui-n	ox / Tap Water / D	I Rinse / 0	Other:			
Sampling	g Method (Disp. PE B	ailer Per	istaltic Pump Bl	adder Pun	np SS Sub	mersible	Pump Pi	DBs
Multi-Pa	rameter M	eter / Probe	Serial No	.: 556 MPS - 090	100611	556 MPS	- 09C100	612	
Equipme	ent Calibra	tion: See D	aily Equip	ment Calibration	Sheet	OVM 580B	P.I.D. Re	eading: N	A ppm
Water Le	evel Meter	Serial No.	OW 937	-1 25083 / 2574	2 / 49914	/ 56500 / O	ther:		
Beginnin	g Water L	evel (DTW):	3.6	7011:44	Ending W	Vater Level:	3.9	0	
TD = 17	.00 - 3	67 (DTV	V) = 13.3	3 (Ft. of water)	x "K" = 2	. 2 (Gals.	/CV) x 3	(No. of CV	/) = _6.6 (Gals.)
				FIELD WATER	QUALITY	PARAMET	TERS		
Date	Time	Discharge	Temp	Specific	pН	DO	Water	Color	Comments
		(Gallons)	(°C)	Conductivity	(SU)	(mg/L)	Level	10000	
	(Gallons) (°C) Conductivity (SU) (mg/L) Level (BTOC) (BTOC								
12/15/11	(2:23	2	18.04	831	6.28	1.68	_	Ut, Bron	Moderate Retroloum octor
	(2:26	4	19.26	720	6.23	2.20	_		
	12:29	6	18.77	768	1.00		-	Brown	
1	12:32	7	19.10	714	6.30	2.74	-		1
	+		-						
(1									
Total Dis	scharge:	7- Ga	llons	3.2 CV Remov	ed	Storage of	discharge	ed water:	55 Gallon Drum(s)
		1							7
Notes:									
12.1									
QA/QC:		@ -	a	s a Duplicate Ed	uipment E	Blank Feld	Blank N	/IS/MSD	
Recorde	d by: Ster	hen Penma					2		

APPENDIX B Laboratory Analytical Report

Analytical Report

Cook Environmental Services, Inc.	Client Project ID: #1035; Alameda Gas	Date Sampled: 12/15/11
1485 Treat Blvd, Ste. 203A		Date Received: 12/15/11
1100 11000 21100, 510. 20011	Client Contact: Tim Cook	Date Reported: 12/21/11
Walnut Creek, CA 94597	Client P.O.:	Date Completed: 12/21/11

WorkOrder: 1112493

December 21, 2011

Dear Tim:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: #1035; Alameda Gas,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	MeCA	MPBELI	LANAL	YTIC	AL.	INC	-	_	_	_		_					_	-	н	AT	N (OF	0	115	т	OI	w	D	E	n	RD	_	
		1534 V	Villow Pass	Road	1		24	10	13					т	THE	N	A D		ND				-		1		1	11		1	KD		-
Web	site: www.mc	campbell.	g. CA 945 com Ema	il: m	ain@										Ur	114	AIN	VL	TAD		LIVE			RUS	н	24	HR		48 I	IR	72	HR	5 DAY
	phone: (877)				Fax:	(925	5) 25	2-92	269					E	DFI	Regi	aire	d? (Coel	LIN	Vorn	nal)		No			Or			N			
Report To: Tim C	ook		В	ill To	o: Sa	me													A	nal	ysis	Rec	ques	st						()ther		Comment
Company: Cook	Environmen	ital Servi	ices																														Filter
	Treat Blvd,													88		143										0							Samples
	ut Creek, C.	A 94597			tcool		_		roni	nen	ıtal.	.con	11	MT		F/B4	8.1)									8310						-	for Metal
Tele: (925) 478-8	390				(925)									8015)/MTBE		E&	=									70							analysis:
Project #:1035			P	rojec	t Na	me:	Alan	ned	a G	as			-			\$821	yous		120)		>			0.80		82	6	_				- 1	Yes / No
Project Location:	Alameda, C	A	- 7			-	11		9	\rightarrow				/8020		356	carl		18		Z			9 03		625	602	5020	(0)				
Sampler Name &	Signature:	steph	HAN PO	- ANA	low	×)tte		-	-		тно		/209	0	Gre	dro	=	602		3,8			090		PA	10	0	109			- 1	
		SAMI	PLING		ers		MA	FRI	X			ERV		Gas	8018	Dit &	II II	/ 80	EP.A		PC	_	_	1/87	827	D.	09) s	(09)	6.00			- 1	
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	ICE	HCL	HNO3	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Fotal Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260 (9 oxys)	EPA 525 / 625 / 8270	PAH'S / PNA'S by EPA 625 / 8270 /	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)				
MW-I	MW-I	12/5/1	13:42		VO			-	7	-	(X	-			X	_		_	_	_		_		_	_	-		-	_			+	
MW-2	AAMI-2	12)	13.74	5	VO/			+			X		Н	Х	X			Н														+	
MW-3	MM-9	Tiolin	14.01	10	VO	_		+	+		(X			X	X													-		-		+	
MW-4	MW-2 MW-3 MW-4	Led tall	1300	5	VO			+	+		X				X		Н			-								_		-		-	
	MM-4	14/15/11	14:21	3				+	4				ш												1							4	
MW-5	MW-5	1415/11	12:34	3	VO	X		4	4	12	X			A	X		ш															4	
						-		4		1	L	L	Ш																			-	
			-			H		+	+	╀	H	H	H				Н													-	Н	+	
							H	+	t	t	t	H	Н																			1	
								T		T	T	Т																					
								T		T	Г	Г																					
								T		T	Т																						
							П	T	т	1	т		П																				
					\vdash	+	Н	+	+	+	+		Н																			+	
Relinquished By		Date:	Time:	Rec	cived I	Res		. /	-	1	-			10	F/th	0.	2	_										CON	IME	NTS		-	
TIME		12/15/11	16:53	I HELL	eived	1.0	0	1/	00	()				GC	OOD	COV	VDIT											- trie					
Relinquished By:		Date:	Time:		cived	BV:		P	T	V	1					SPA			NI_ IN L	AB	_												
The state of the s		Ditte	1	1		V								AP	PRO	PRI	ATE	CO	NTA		RS												
Relinquished By:		Date:	Time:	Rec	eived 1	By:								PR	ESE	RVE	DIN	LA	В	_													
			1			+													DAS	08	&G	ME	TAI	S	оті	IER							
														PR	RESE	RVA	110	N		1		pH<	2_										

McCampbell Analytical, Inc.

FAX: 925-937-1759

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

925-937-1759

CHAIN-OF-CUSTODY RECORD

ClientCode: CESW

Requested TAT:

Page 1 of 1

5 days

WaterTrax	WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag

WorkOrder: 1112493

Bill to:

Report to: Tim Cook Email: tcook@cookenvironmental.com Tim Cook

Cook Environmental Services, Inc. Cook Environmental Services, Inc. cc:

Date Received: 12/15/2011 PO: 1485 Treat Blvd, Ste. 203A 1485 Treat Blvd, Ste. 203A ProjectNo: #1035; Alameda Gas Walnut Creek, CA 94597 Walnut Creek, CA 94597 Date Printed: 12/15/2011

								Re	quested	Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1112493-001	MW-1	Water	12/15/2011 13:42		В	Α	Α									
1112493-002	MW-2	Water	12/15/2011 14:07		В		Α									
1112493-003	MW-3	Water	12/15/2011 13:08		В		Α									
1112493-004	MW-4	Water	12/15/2011 14:21		В		Α									
1112493-005	MW-5	Water	12/15/2011 12:34		В		Α									

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(D)_W	4	5
6	7	8	9	10
11	12			

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Cook Environmental	Services, Inc.			Date a	and Ti	me Received:	12/15/2011	3:43:41 PM
Project Name:	#1035; Alameda Ga	s			Check	klist co	ompleted and re	viewed by:	Zoraida Cortez
WorkOrder N°:	1112493	Matrix: Water			Carrie	er:	Client Drop-In		
		<u>Cha</u>	in of Cu	ustody (COC) Informa	<u>ıtion</u>			
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌				
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌				
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No 🗌				
			<u>Sample</u>	Receipt Info	ormation				
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌			NA 🗸	
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No \square				
Sample contained	rs intact?		Yes	✓	No 🗌				
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌				
		Sample Pres	ervatio	n and Hold 1	<u>Γime (HT)</u>	Infor	mation		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌				
Container/Temp l	Blank temperature		Coole	er Temp: 6.2	2°C			NA 🗌	
Water - VOA vials	s have zero headspac	e / no bubbles?	Yes	✓	No \square	No V	OA vials submit	tted	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌				
Metal - pH accep	table upon receipt (pH	l<2)?	Yes		No 🗌			NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌				
		(Ice Typ	e: WE	TICE)					
* NOTE: If the "N	lo" box is checked, se	e comments below.							
							=====		

Cook Environmental Services, Inc.	Client Project ID: #1035; Alameda Gas	Date Sampled:	12/15/11
1485 Treat Blvd, Ste. 203A		Date Received:	12/15/11
	Client Contact: Tim Cook	Date Extracted:	12/17/11-12/20/11
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed:	12/17/11-12/20/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extractio	n method: SW5030B			Analyti	ical methods:	SW8021B/8015I	3m		Wor	k Order:	1112493
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001B	MW-1	W	3000	ND<50	12	16	230	120	10	113	d1
002B	MW-2	W	ND	ND	ND	ND	ND	ND	1	103	
003B	MW-3	W	6800	ND<150	58	16	18	12	10	113	d1
004B	MW-4	W	ND	ND	ND	ND	ND	ND	1	101	
005B	MW-5	W	180	220	0.93	0.72	ND	0.54	1	111	d1
				1					1	•	•
	rting Limit for DF =1; neans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5		μg/I	_
	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	Ţg.

above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
* water and vapor samples are repo	orted in u	g/L, soil/sludge/solid	d samples in m	g/kg. wipe sai	mples in ug/wi	pe, product/oil/i	non-aqueous li	quid samples and all TCLP &

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

SPLP extracts in mg/L.

When Quality Col	itts				
Cook Environmental Services, Inc.	Client Project ID: #10	035; Alameda Gas	Date Sampled:	12/15/11	
1485 Treat Blvd, Ste. 203A			Date Received:	12/15/11	
,	Client Contact: Tim C	Cook	Date Extracted	12/15/11	
Walnut Creek, CA 94597	Client P.O.:		Date Analyzed	12/19/11	-12/20/11
Tot	al Extractable Petroleu	um Hydrocarbons*			
Extraction method: SW3510C	Analytical methods	s: SW8015B		Work Order:	1112493
		<u> </u>			

Extraction method: SW3:	510C	Analytical	methods: SW8015B		Work Ord	er: 1112493
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments
1112493-001A	MW-1	W	1700	1	95	e4,e2
1112493-002A	MW-2	W	ND	1	88	
1112493-003A	MW-3	W	2500	1	98	e4
1112493-004A	MW-4	W	ND	1	108	
1112493-005A	MW-5	W	87	1	107	e4

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in ug/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63498 WorkOrder: 1112493

EPA Method: SW8021B/8015Bm Extraction: SW5030B								Spiked Sample ID: 1112493-004B		
Analyte	Sample	Sample Spiked MS MSD				LCS	Acceptance Criteria (%)			
, a.a., c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	60	88.8	95.1	6.75	91.1	70 - 130	20	70 - 130	
MTBE	ND	10	107	105	1.48	107	70 - 130	20	70 - 130	
Benzene	ND	10	99.1	102	3.35	103	70 - 130	20	70 - 130	
Toluene	ND	10	92	93.8	1.93	95.2	70 - 130	20	70 - 130	
Ethylbenzene	ND	10	93.4	95.4	2.17	97.3	70 - 130	20	70 - 130	
Xylenes	ND	30	106	108	2.09	110	70 - 130	20	70 - 130	
%SS:	101	10	103	103	0	104	70 - 130	20	70 - 130	

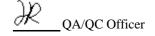
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63498 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1112493-001B	12/15/11 1:42 PM	12/20/11	12/20/11 12:33 AM	1112493-002B	12/15/11 2:07 PM	12/20/11	12/20/11 1:03 AM
1112493-003B	12/15/11 1:08 PM	12/20/11	12/20/11 1:33 AM	1112493-004B	12/15/11 2:21 PM	12/20/11	12/20/11 2:03 AM
1112493-004B	12/15/11 2:21 PM	12/20/11	12/20/11 2:03 AM	1112493-005B	12/15/11 12:34 PM	12/17/11	12/17/11 4:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63383 WorkOrder: 1112493

EPA Method: SW8015B Extraction: SW3510C Spiked Sample ID: N/A							N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		Criteria (%)
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	123	N/A	N/A	70 - 130
%SS:		625	N/A	N/A	N/A	107	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63383 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1112493-001A	12/15/11 1:42 PM	12/15/11	12/19/11 1:57 PM	1112493-002A	12/15/11 2:07 PM	12/15/11	12/20/11 3:24 PM	
1112493-003A	12/15/11 1:08 PM	12/15/11	12/19/11 10:03 PM	1112493-004A	12/15/11 2:21 PM	12/15/11	12/19/11 7:38 PM	
1112493-005A	12/15/11 12:34 PM	12/15/11	12/19/11 8:50 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

APPENDIX C 5-Year Review Summary Report

Linda S. Adams Acting Secretary for Environmental Protection

State Water Resources Control Board

Division of Financial Assistance

1001 l Street • Sacramento, California 95814
P.O. Box 944212 • Sacramento, California • 94244-2120
(916) 341-5684 FAX (916) 341-5806 • www.waterboards.ca.gov/cwphome/ustcf

July 5, 2011

Donna Drogos, Division Chief Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

SECOND 5-YEAR REVIEW SUMMARY REPORT FOR CLAIM NUMBER 12650; ALASKA GASOLINE, LOCATED AT 1310 CENTRAL AVENUE, ALAMEDA, CA

The UST Cleanup Fund (Fund) has completed our review of Alameda County Environmental Health (Alameda County) Case No. RO0000022. The 5-Year Review Summary Report for this case is enclosed for your information and comment. Please note that the Fund's recommendations are based on review of information contained in the Fund's case files, data currently in the GeoTracker database and any other sources of information that were readily available to Fund staff at the time the review was conducted. Consequently, they may not reflect historical information that has not been uploaded to the GeoTracker database or available in the Fund's case files and any data that has been recently submitted to your office.

The Fund requests that Alameda County staff notify the Fund within 45 days from the date of this letter as to whether you agree or disagree with our recommendations for this case. If you agree with our recommendation, we request that you provide the Fund with an estimated timeframe to either implement the recommendations for additional corrective action or for closing this case. If you do not agree with our recommendations, we request that you provide the Fund with a summary of the reasons for disagreeing and/or impediments to implementing the recommendations for additional corrective action or closing this case. Responses to the Fund may be provided by e-mail, letter or a copy of correspondence to the RP, if the correspondence addresses all the information requested by the Fund. Please direct your response to:

Pat G. Cullen, P.G.
Underground Storage Tank Cleanup Fund
State Water Resources Control Board
P.O. Box 944212
Sacramento, CA 94244-2120
(PCullen@waterboards.ca.gov)

Fund staff will be sending copies of the completed 5-Year Review Summary Report to applicable claimants 45 days from the date of this letter unless Alameda County notifies the Fund that they wish to discuss this case prior to transmittal to the claimant. If you or your staff has any questions or concerns on specific reports that you would like to discuss with the Fund prior to transmittal of the report to the claimant, please contact Pat G. Cullen at (916) 341-5735 or by email (PCullen@waterboards.ca.gov) within this period.

Sincerely.

Signed by Pat G. Cullen for

Robert Trommer
Senior Engineering Geologist
Chief, Technical Review Unit
Underground Storage Tank Cleanup Fund

CC: Ms. Cherie McCaulou San Francisco RWQCB (Region 2) 1515 Clay Street, Suite 1400 Oakland, CA 94612

State Water Resources Control Board

Division of Financial Assistance

1001 I Street • Sacramento, California 95814
P.O. Box 944212 • Sacramento, California • 94244-2120
(916) 341-5660 FAX (916) 341-5806 • www.waterboards.ca.gov/cwphome/ustcf

SECOND USTCF 5-YEAR REVIEW JULY 2011

USTCF Claim No.: 12650

Claimant Name: Nissan Saidian

Site Name: Alaska Gasoline

Site Address: 1310 Central Avenue,

Alameda, CA

USTCF Expenditures to Date: \$231,388

LOP: Alameda Co.

Caseworker: Paresh Khatri

Lead Agency Case No: RO0000022

Global ID: T0600102128

Priority Class: B

I. CASE INFORMATION

Tank No.	Size in Gallons	Contents	Closed in Place/ Removed/Active?	Date
1	10,000	Gasoline	Removed	May 1996
2	7,500	Gasoline	Removed	May 1996
3	5,000	Gasoline	Removed	May 1996
4	500	Waste Oil	Removed	May 1996
5	Unknown	Gasoline	Active	2009
6	Unknown	Gasoline	Active	2009

II. RELEASE INFORMATION

Source of Release: USTs

Date Release Reported: 1 February 1995

Affected Media: soil and groundwater

III. SITE CHARACTERIZATION INFORMATION

A. Site Information

SITE DESCRIPTION: The Site is currently an active retail gasoline station located in a mixed commercial and residential area in the south-central portion of the island of Alameda.

GW BASIN: East Bay Plain Groundwater Basin

CURRENT LAND USE: Undesignated

BENEFICIAL USES: Municipal and domestic supply, other groundwater (uses

other than drinking water)

DISTANCE TO NEAREST SUPPLY WELL: According to the California

Department of Public Health (DPH) database, no wells identified within ½

mile of the site. According to the Alameda City Public works Agency
records a total of 14 wells were identified within a ½ mile radius of the

California Environmental Protection Agency

Recycled Paper

Site; three domestic wells, 10 irrigation wells and one industrial well. The nearest down gradient well is located 1,260 feet northwest of the Site.

MINIMUM GROUNDWATER DEPTH: 1.93 feet below ground

surface (bgs) in Site well MW-3.

MAXIMUM GROUNDWATER DEPTH: 6.59 feet bgs in Site well MW-1

FLOW DIRECTION: Northwest

SOIL TYPES: Sands and silty sands

MAXIMUM DEPTH SAMPLED: 17.5 feet bgs.

B. Monitoring Well Information

D. Montoning III	on milorination		
Well Designation	Date Installed	Screen Interval (feet bgs)	Depth To Water (January 2011)
MVV-1	October 1999	2.5-17.5	3.61
MW-2	October 1999	4-18	4.17
MW-3	October 1999	4-19	2.58**
MW-4	April 2006	5-15	2.19**
MW-5	April 2006	5-15	2.69**

NM - Not measured

IV. MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS

Contaminant	Soil (m	ng/kg)	Wate	WQOs	
∞	Maximum	Latest (December 2010)	Maximum	Latest (January 2011)	(µg/L)
TPH-g	6,800	26,000	43,000	7,700**	1.71 11 19 19 19 19 19 19 19 19 19 19 19 19
TPH-d	300	4,400	8,700*	3,500**	iofafi#18: u
Benzene	31	54	1,300	100	310 11 B
Toluene	250	630	59	20	150
Ethylbenzene	120	520	740	20	700
Xylenes	680	3,400	1,600	42	1,750
MTBE	<0.02	<2.0	120,000	450	5
TBA	NA	<2.0	100	100	1,200***

NA Not Analyzed, Not Applicable or Data Not Available

^{* -} Numerous occasions when groundwater elevation measured in the well was above the screened interval

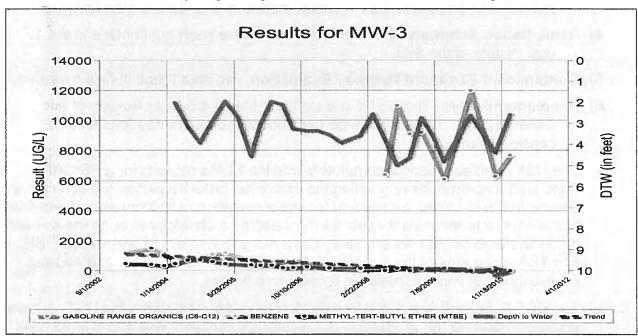
^{** -} Groundwater elevation measured in well higher than the screen this quarter

WQO WATER QUALITY OBJECTIVES: Per the Region 2, Water Quality Control Plan (Basin Plan).

ND - Laboratory results reported below detection limits

^{* -} The laboratory noted the diesel chromatograms were not consistent with typical diesel

^{** -} The Laboratory notes that; weakly modified gasoline is significant; diesel range compounds are significant; no recognizable pattern; heavier range compounds are significant.


- *** California Department of Public Health, Response Level
- V. FREE PRODUCT: Free-product was observed during the UST removal process in 1996.

VI. SOIL AND GROUNDWATER REMEDIATION

- A. Soil Excavation: Approximately 600 cubic yards of impacted soil was removed from the Site during the UST removal activities in 1996
- B. In-Situ Soil: None to date
- C. Groundwater Remediation:

May 1996 – Approximately 15,000 gallon of TPH affected groundwater was removed during the UST removal activities.

D. Groundwater Trends: The graph below presents the historic concentrations of TPHg, benzene and MTBE plotted against groundwater elevations for Site well MW-3. As presented in the graph below the concentrations of benzene and MTBE are naturally degrading and the concentrations of TPHg are stable.

E. SENSITIVE RECEPTOR SURVEY:

Surface water – San Francisco Bay and Alameda Estuary are both located approximately ½ mile south of the Site.

VIII. COMMENTS AND JUSTIFICATION FOR RECOMMENDED ACTION

1) Site Description: The Site is currently an active retail gasoline station located in a mixed commercial and residential area in the south-central portion of the island of Alameda.

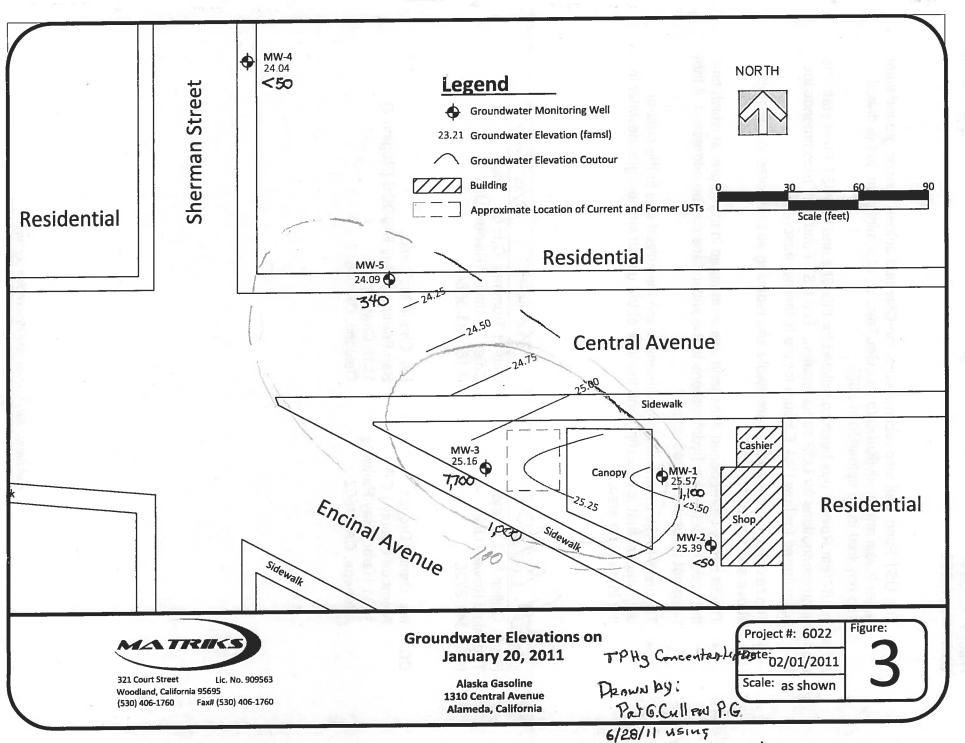
2) Site History:

- May 1996 UST removal activities resulted in the discovery of an unauthorized release.
- November 1998 through Current Site assessment and monitoring activities were conducted.
- 4th Qtr 2009 A work plan was approved to provide further definition. In addition to approving the work plan the LOP requested additional information including: a feasibility study/corrective action plan, provided a schedule of requested reports, and reminded the claimant of the GeoTracker reporting requirements.
- years. The regular groundwater monitoring reports do not present adequate data to define the limits of petroleum hydrocarbon contamination that has migrated northwest, off-Site. In addition, numerous water level measurements and sampling events have been conducted in wells where the well screens are under water, therefore, that data is questionable.
- **4) Remediation Summary**: No remedial efforts have been put in place in the 15 year history of the Site.
- 5) Contaminant Exposure Pathway Evaluation: No data found in files reviewed
- 6) **Recommendation:** The UST Fund staff completed a 5-Year Review of this Claim in 2010. The staff offered the following recommendations for LOP consideration.
- The UST Fund staff concur completely with the LOP's request for a FS/CAP. Fund staff recommends requesting the additional tasks be performed such as; a Conceptual Site Model, a schedule for implementation of recommended remedial technology, a proposed schedule for the selected technology to bring the soil and groundwater to target concentration, basic risk assessment of benzene, MTBE, and TBA in the area of the residential properties north of the Site, and address the likelihood of vapor intrusion in those same homes.
- The UST Fund staff noted that free product was reported during the UST removal activities, however, no discussion of free product recovery was found in the files reviewed.
- The UST Fund staff questions the rational for further vertical definition of the lighter than water contaminates at a site. No mechanism for vertical movement has been identified at the Site to warrant the additional investigation and cost.
- The UST Fund staff noted that four of the five Site groundwater monitoring wells have screened intervals that have historically been submerged when sampled. Those data represent questionable data. Two wells have never had a valid sample collected in the history of the wells (MW-4 and MW-5).

 The UST Fund staff also recommends the Claimant upload historic groundwater water levels and analytical data into GeoTracker, at a minimum, to the date it was required to be uploaded in 2005.

A Second 5-Year Review has been completed for this Site and the UST Fund staff offer these recommendations for LOP consideration. The UST Fund staff recommends the Site be considered for Low Risk Closure for the following reasons:

- The residual concentrations are stable and reducing as presented in the graph above and figure attached;
- The Site may be reopened if the land use is changed in the future, at which time the residual petroleum hydrocarbons in the subsurface can be addressed, if they have not naturally degraded; and
- The risks to the environment and humans are minimized due to the natural degradation that is occurring and the lack of the use of shallow groundwater in the immediate area.


Pat G. Cullen P.G. Date Technical Review Unit

(916) 341-5735

Robert Trommer, C.H.G. Date Chief, Technical Review Unit (916) 341-5684

CC: Ms. Donna Drogos
Alameda County LOP
1131 Harbor Bay Parkway
Alameda, CA 94502

Ms. Cherie McCaulou San Francisco Bay RWQCB (Region 2) 1515 Clay Street Oakland, CA 94612

H. Tanuacy 2011 data