

February 1, 2011

Paresh C. Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 321 Court Street Woodland California 95695 Tel (530) 406-1760 Fax (530) 406-1071 A, Haz 909563

9:30 am, Feb 25, 2011 Alameda County Environmental Health

RECEIVED

 SUBJECT:
 Fuel Leak Case No. RO0000022

 1310 Central Avenue
 Alameda, CA

 Report Submittal – Semi-Annual Groundwater Monitoring Report, First Quarter 2011

Dear Mr. Khatri:

Please find enclosed the *Semi-Annual Groundwater Monitoring Report, First Quarter 2011* prepared by Matriks for Nissan Saidian, Joe Zadik, and Leon Zektser

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Please call me at 530-406-1760 or email <u>thenderson@matrikscorp.com</u> if you have any questions.

Sincerely,

Tom Henderson President

SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2011

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

PREPARED FOR: Nissan Saidian 5733 Medallion Court Castro Valley, California 94552

SUBMITTED TO: Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

February 1, 2011

Project No. 6022

PREPARED BY: Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIONAL CERTIFICATIONi	i
ACRONYMS AND ABBREVIATIONSii	i
INTRODUCTION 1	L
Site Description and Physical Setting1	
Site History	L
SCOPE OF WORK	1
METHODS AND PROCEDURES	5
Groundwater Level Measurements	5
Monitoring Well Purging and Sampling	5
RESULTS	5
Groundwater Levels and Gradient	5
Groundwater Analytical Results6	5
Geotracker Requirements	ō
DISCUSSION	5
RECOMMENDATIONS	7

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Groundwater Elevation Contours
Figure 4	Monitoring Well Hydrograph
Figure 5	MW-1 TPH and Benzene Concentration Trends
Figure 6	MW-3 TPH and Benzene Concentration Trends
Figure 6	MW-3 TPH and Benzene Concentration Trence

TABLES

- Table 1Well Construction Details
- Table 2Groundwater Levels and Elevations
- Table 3
 First Quarter 2011 Groundwater Analytical Results
- Table 4Historical Groundwater Analytical Results

APPENDICES

- Appendix A Monitoring Well Purge Logs
- Appendix B Laboratory Analytical Report

PROFESSIONAL CERTIFICATION

SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2011

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

Project No. 6022

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tom Henderson President

ACRONYMS AND ABBREVIATIONS

Alameda County Environmental Health Services
All Environmental, Inc.
above mean sea level
Aqua Science Engineers, Inc.
benzene, toluene, ethyl-benzene, xylenes
chain-of-custody
1,2-dichloroethane
di-isopropyl ether
ethylene di-bromide
electronic data file
Environmental Screening Level
ethyl tert-butyl ether
Feasibility Study/Corrective Action Plan
Geographical Information Management System
Matriks Corporation
methyl tert-butyl ether
oil and grease
micrograms per liter
milligrams per kilogram
milliliter
monitoring well
portable document format
Regional Water Quality Control Board
specific conductance
tert-amyl methyl ether
tert butyl alcohol
underground storage tank

INTRODUCTION

This report presents the results of the first semi-annual groundwater monitoring event for 2011 conducted by Matriks at Alaska Gas (the "Site"), located at 1310 Central Avenue in Alameda, California. The semi-annual groundwater monitoring event (monitoring event) described in this report was conducted on January 20, 2011 and is part of an ongoing subsurface investigation of petroleum hydrocarbons in soil or groundwater that was caused by an unauthorized release of petroleum fuels from the UST system (tanks, associated piping and dispensers) formerly located at the Site. Matriks is conducting this investigation on behalf of the responsible parties, Mr. Leon Zektser, Mr. Nissan Saidian, and Mr. Joe Zadik. The Alameda County Environmental Health Services (ACEHS) is the lead regulatory agency overseeing Site investigation and remediation and the ACEHS case number is RO0000022. The semi-annual groundwater monitoring program consists of the collection and laboratory analysis of groundwater samples from five groundwater monitoring wells in order to assess concentrations of petroleum hydrocarbon compounds in shallow groundwater.

Site Description and Physical Setting

The Site is currently a retail gasoline fueling station located in an area of mixed commercial and residential properties in the south-central part of the island of Alameda. The Site is located at the intersection of Encinal Avenue, Sherman Street, and Central Avenue. A Site location map is shown on **Figure 1** and a Site plan showing physical features and groundwater monitoring well locations is shown on **Figure 2**.

The Site is relatively flat and the investigation area has a surface elevation of approximately 25 feet amsl. San Francisco Bay and the Alameda Estuary are located approximately one-half mile to the south.

Site History

In May 1996, Petrotek removed three gasoline USTs including one 10,000-gallon, one 7,500-gallon and one 5,000-gallon UST from the western corner of the Site. A 500-gallon waste oil UST adjacent to the building, was also removed from the southern portion of the Site. Fuel dispensers and associated product piping were also removed.

Free-phase petroleum hydrocarbons were observed floating on the groundwater surface in the gasoline UST excavation following removal of the USTs. According to the laboratory analysis, a groundwater sample collected from the gasoline UST excavation contained 2,800 micrograms per liter (μ g/L) of total petroleum hydrocarbons as gasoline (TPH-g) and 100 μ g/L benzene. Soil samples collected from the same excavation contained up to 5,000 milligrams per kilogram (mg/Kg) of THP-g and 31mg/Kg benzene. Soil samples collected beneath the former dispenser

island contained up to 6,800 mg/Kg TPH-g and 63 mg/Kg benzene. A ground water sample collected in the waste oil UST excavation contained 35,000 μ g/L of total petroleum hydrocarbons as diesel (TPH-d) and motor oil range hydrocarbons, and 1,300 μ g/L of TPH-g. These results are documented in a *UST Closure Report* submitted by Petrotek in May 1996.

Petrotek reportedly excavated and disposed of approximately 600 cubic yards of petroleum hydrocarbon-impacted soil from the UST excavations. It does not appear that confirmation soil samples were collected following removal of the petroleum hydrocarbon-impacted soil. Approximately 15,000 gallons of ground water were also removed from the excavations, treated and discharged to the sanitary sewer. Two new gasoline USTs, dispensers and product piping were installed in the same UST excavation after the petroleum hydrocarbon-impacted soil and ground water were removed.

In November 1998, All Environmental Inc. (AEI) advanced 14 soil borings on the Site and collected soil and groundwater samples for analysis. Up to 5,900 mg/Kg of TPH-g was detected in soil samples collected from the borings. Up to 120,000 μ g/L TPH-g and 7,200 μ g/L benzene were detected in groundwater samples from the borings.

In October 1999, HerSchy Environmental installed three monitoring wells at the Site. The initial sampling yielded up to 43,000 μ g/L TPH-g, 8,700 μ g/L total petroleum hydrocarbons as diesel (TPH-d), 480 μ g/L benzene, and 1,600 μ g/L methyl tert-butyl ether (MtBE) were detected in groundwater samples from the wells. The groundwater flow direction was southwesterly under a gradient of 0.0085. Well construction details are presented in **Table 1**.

On May 16, 2000, Aqua Science Engineers (ASE) began quarterly monitoring at the Site. Groundwater samples collected from MW-1 contained 20,000 μ g/L TPH-g, 38 μ g/L benzene, 6.3 μ g/L toluene, 740 μ g/L ethyl benzene, and 1,600 μ g/L total xylenes. No MtBE or other oxygenates were detected in the sample from MW-1. No hydrocarbons were detected in the groundwater sample taken from MW-2. The groundwater sample from MW-3 contained 17,000 μ g/L TPH-g, 2,800 μ g/L benzene, 60 μ g/L toluene, 380 μ g/L ethyl benzene, 190 μ g/L total xylenes, 990 μ g/L MtBE, 9.1 μ g/L tert-amyl methyl ether (TAME), and 350 μ g/L tert butyl alcohol (tBA).

On July 28, 2000, ASE advanced 12 Geoprobe borings (borings BH-A through BH-L) to further delineate the lateral and vertical extent of petroleum hydrocarbons and collected soil and grab groundwater samples from each borings. Laboratory analysis detected 0.00061 mg/Kg of MtBE in a soil samples collected from 3.0 feet (ft) below ground surface in boring BH-J. There were no petroleum hydrocarbons or oxygenates detected in soil samples from the other 11 borings, however, petroleum hydrocarbons and oxygenates were detected in grab groundwater samples collected from SH-A, B, C, D, I, J, K, and L.

In December 2002, ASE conducted an investigation to assess whether subsurface utility line trenches may provide a groundwater movement pathway. ASE concluded that it did not appear that the utility line trenches act as groundwater movement pathways. This conclusion

was based on ASE's assumption that the utility line trench backfill material is native sandy soil and that the highest concentrations of petroleum hydrocarbons in the 12 Geoprobe borings soil samples were located beyond the utility line trenches. Although ASE concluded that the utility line trenches did not provide a groundwater movement pathway, the ACEHS requested that water samples be collected from the sewer in one of the trenches to assess whether petroleum hydrocarbon-impacted groundwater may have entered the sewer line through seams or cracks.

In January 2004, ASE drilled four additional soil borings, BH-M through BH-P and the soil samples collected from each boring contained concentrations of TPH-d, with the highest concentration of 68 mg/Kg detected in BH-M. No TPH-d, BTEX or oxygenates were detected in any of the other soil samples. The groundwater samples collected from the borings contained TPH-d concentrations as high as 170 μ g/L and the groundwater sample collected from boring BH-O also contained 19 μ g/L MtBE. None of the other groundwater samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Groundwater samples were also collected from the sewer line beneath Central Avenue, both up gradient and down gradient of the Site. Low concentrations of TPH-g were detected in both samples. No BTEX or oxygenates were detected in either of these samples. The source of the TPH-g was not conclusively identified.

In December 2005, ASE conducted a records search at the Alameda City Public Works Agency and the California Department of Water Resources to identify water wells with ½ mile radius of the Site. A total of 25 wells were located within the search radius. The results included three domestic wells, 10 irrigation wells, one industrial well, two cathodic protection wells, four groundwater monitoring wells, and five vapor extraction wells. The nearest well is located more than 1,000 feet east of the Site. The nearest, potentially down gradient, well is located approximately 1,260 feet northwest of the Site. Based on the records search, ASE proposed additional soil and groundwater assessment for the Site.

In April 2006, ASE advanced two additional borings and installed two groundwater monitoring wells. Borings BH-Q, BH-R and monitoring wells MW-4 and MW-5 were installed using a drill rig equipped with an 8-inch hollow-stem auger. Petroleum hydrocarbons were detected by laboratory analysis at a concentration of 11 mg/Kg TPH-d in a soil sample from BH-Q and 1.7 mg/Kg TPH-d in a soil sample from the boring MW-5. The laboratory noted that the hydrocarbons reported as TPH-D in each sample did not exhibit a typical diesel chromatogram pattern. None of the soil samples contained detectable concentrations of TPH-g, BTEX or oxygenates.

Groundwater samples collected from BH-Q and BH-R contained detectable concentrations of petroleum hydrocarbon of 220 μ g/L TPH-d and 770 μ g/L TPH-d, respectively. Similar to the soil samples, the laboratory noted the hydrocarbons reported as TPH-d did not exhibit a typical diesel chromatogram pattern. Based on the results of this investigation, ASE recommended no further delineation of the extent of petroleum hydrocarbons in soil or groundwater.

From April 2006 to March 2009, groundwater monitoring well samples have been collected and analyzed on a quarterly basis. The monitoring schedule for the Site has been reduced to a semi-annual basis as directed in a letter from the ACEHS dated, July 24, 2009. Groundwater monitoring takes place during the first and third quarters.

In June 2008, the Site owners contracted with Matriks to conduct groundwater monitoring and prepare for further Site remediation.

Matriks submitted the *Site Investigation Workplan*, dated September 16, 2009, to the ACEHS. The workplan was prepared in accordance with an ACEHS directive issued in a letter dated August 13, 2009. The proposed scope of work included the installation of four soil borings to further investigate the vertical extent of the release, define the contaminate plume, and evaluate on and off-site risks.

The ACEHS approved the *Site Investigation Workplan* (Workplan), with modifications to the proposed scope of work, in a letter date October 22, 2009. Four borings were pushed in the vicinity of the existing tanks to a maximum depth of 20 fbg. Free product was observed in several of the borings with TPH-d in groundwater at concentrations up to 1,100,000 μ g/L. Matriks prepared a *Site Investigation Report*, dated December 15, 2010, documenting the findings. A final Corrective Action Plan and Feasibility Study is being prepared for ACEHS.

SCOPE OF WORK

The scope of work conducted for this semi-annual groundwater monitoring event included the following tasks:

- Measurement of static water levels in five groundwater monitoring wells;
- Collection of field water quality parameters including pH, temperature, and specific conductance (SC) from groundwater in each well;
- Purging at least three casing volumes from each well;
- Collection and analysis of groundwater water samples from each well for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Update of the Geotracker database; and
- Preparation of this Semi-Annual Monitoring Report.

METHODS AND PROCEDURES

Groundwater Level Measurements

Prior to measuring the depth to groundwater, the cap of each well was removed and the water level was given an opportunity to equilibrate with atmospheric pressure for approximately 30 minutes before recording measurements using an electronic water depth indicator. The static water levels were referenced to the surveyed marks notched into the top of each well casing and the depth-to-water measurements were used to calculate the purge volume of for each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a new disposable bailer. Groundwater temperature, pH, and SC were measured intermittently during purging. Measurements were obtained with a Hanna multi-meter, which was calibrated by the equipment rental service prior to on-site use. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled and sealed 55-gallon, DOT-approved steel drums and temporarily stored on-site.

A new disposable bailer dedicated to each well, was used to remove the groundwater samples and transfer them to the appropriate laboratory prepared containers. Care was taken to remove the headspace in each container. Each sample container was labeled with the project number, sample ID, and collection date. The same information was recorded on the laboratory chain-of-custody form. Samples were stored in a cooler filled with ice for transport to the laboratory.

Samples were transported and submitted to McCampbell Analytical, Inc. of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

Depth to water was measured in each monitoring well. The groundwater flow direction for this monitoring event was calculated to be northwest with a gradient of 0.02. Well construction details are presented in **Table 1**. Groundwater levels and elevations are summarized in **Table 2**. Groundwater elevation contours are depicted on **Figure 3**. Graphs of groundwater elevation versus time for all monitoring wells are presented on **Figure 4**.

Groundwater Analytical Results

TPH-g was detected by laboratory analysis in the highest concentrations in onsite groundwater monitoring wells MW-1, MW-3, and MW-5. TPH-g was detected in MW-1, MW-3, and MW-5 at concentrations of 1,100 μ g/L, 7,700 μ g/L, and 340 μ g/L, respectively. TPH-g was not detected in groundwater samples collected from the other monitoring wells.

Benzene was also detected in MW-1, 3, and 5 at concentrations of 0.85 μ g/L, 100 μ g/L, and 3 μ g/L, respectively. Benzene was not detected in samples collected from the other two groundwater monitoring wells. MtBE was detected above the MCLs in MW-1, MW-3, and MW-5 at concentrations of 7.7 μ g/L, 85 μ g/L, and 450 μ g/L, respectively.

TPH-d was detected above the MCLs in monitoring wells MW-1, MW-3, MW-4, and MW-5 at concentrations of 590 μ g/L, 3,500 μ g/L, 210 μ g/L, and 280 μ g/L, respectively. TPH-d was detected in groundwater samples collected from MW-2 at 90 μ g/L.

Groundwater analytical results for the first quarter are summarized in **Table 3** and previous groundwater monitoring events are summarized in **Table 4**. A copy of the laboratory analytical report is included in **Appendix B**. **Figure 5** shows TPH-g and benzene concentration trends in well MW-1 and Figure 6 shows these same concentration trends in MW-3.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by AB2886 (Water Code Section 13195-13198). EDFs are prepared and formatted by the laboratory and submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. A well status and usage report (GEO_WELL file) is submitted for each monitoring event. A complete electronic copy of this report (GEO_REPORT file) in PDF format was also submitted. Updated maps (GEO_MAP files) are submitted when site features such as monitoring wells or soil borings are added.

DISCUSSION

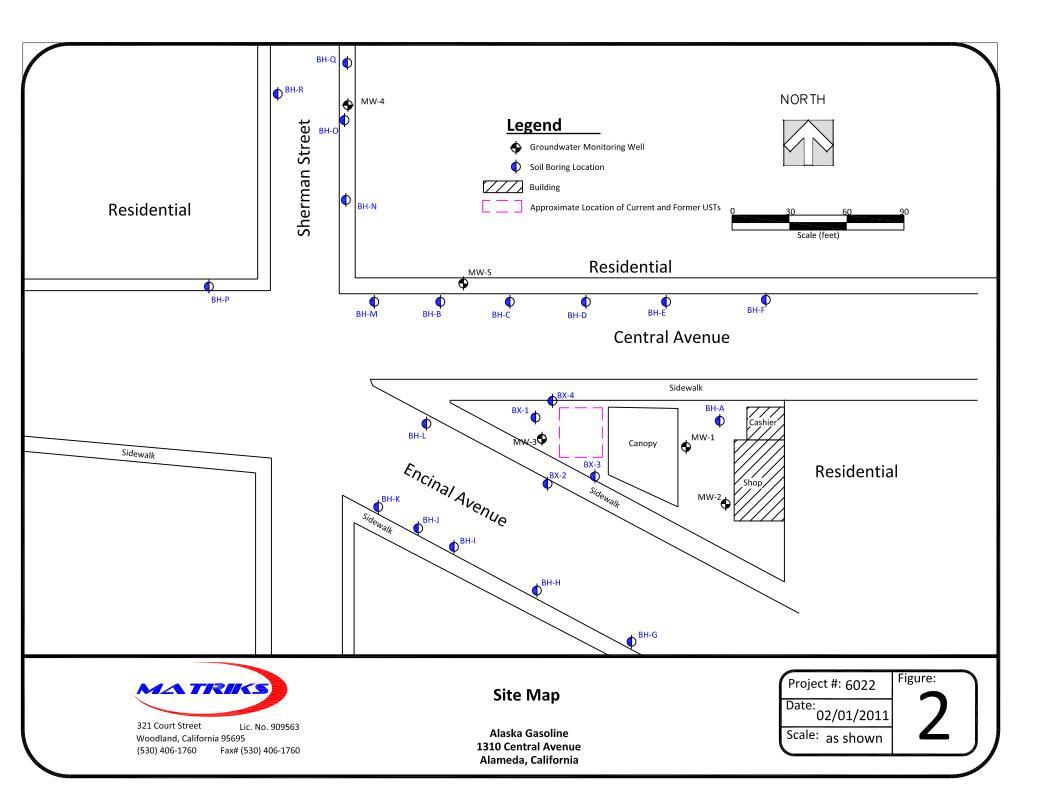
The site investigation performed in November 2010 indicated free product remains in areas beyond the extent of the existing monitoring wells. Free product was observed in several boring locations. Elevated concentrations of diesel and gas were observed in both soil and groundwater samples. Diesel product has only been dispensed from the site since the new tanks were installed in 1996. Although the diesel tank is still at the location, diesel has not been dispensed since 2006. Existing diesel lines have been drained back to the tank, all diesel nozzles have been removed from the dispensers and the diesel turbine has been locked out at the electrical box.

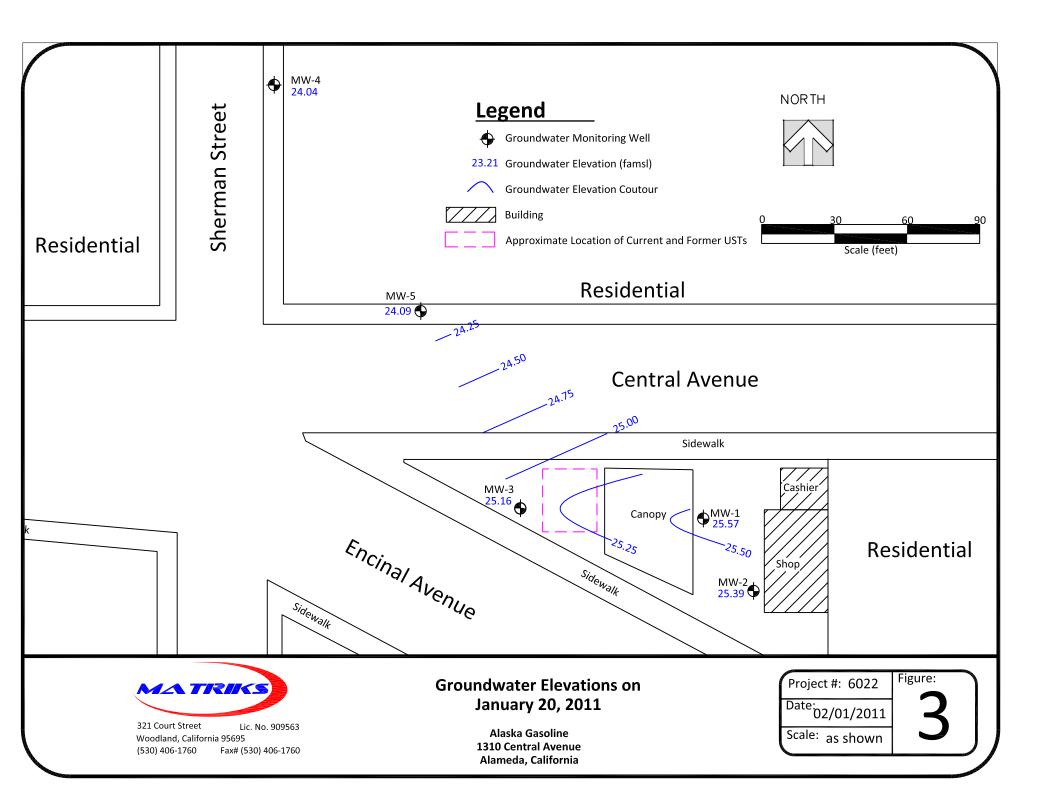
TPH-d concentrations appear to be decreasing in upgradient monitoring well MW-2 but increasing in all other wells since the second monitoring event of 2006. Overall, TPH-g has shown a decreasing trend in all monitoring wells except MW-3 which has had a slight increasing trend since 2008. MtBE, tBA, and BTEX all appear to be decreasing with time in all wells. Wells MW-3 and MW-5 remain above the ESLs for TPH-g, TPH-d, benzene, MtBE, and tBA.

The detection of TPH-g, benzene, and MtBE above the ESLs in well MW-5 appears to indicate that petroleum hydrocarbons are migrating down gradient from the Site. MtBE was detected in down gradient well MW-4 at a concentration of 0.70 μ g/L. This concentration is less than the ESL for MTBE of 5 μ g/L but this also appears to indicate that petroleum hydrocarbons are migrating down gradient within groundwater.

RECOMMENDATIONS

Site analytical indicates elevated hydrocarbon concentrations remain in both soil and groundwater. Matriks is preparing a final Corrective Action Plan and Feasibility Study for the site. The report is expected to be submitted on March 15, 2011.


FIGURES



Site Location Map Alaska Gas 1310 Central Avenue, Alameda, CA

FIGURE 1

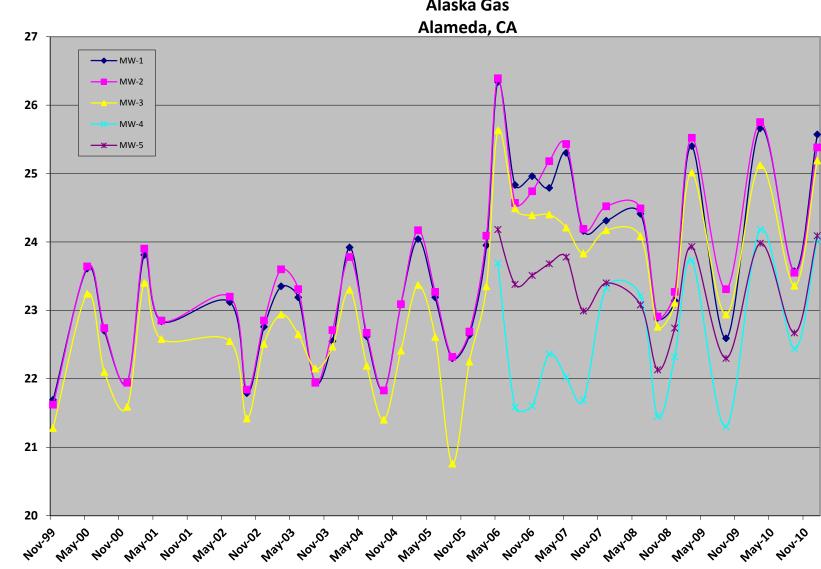
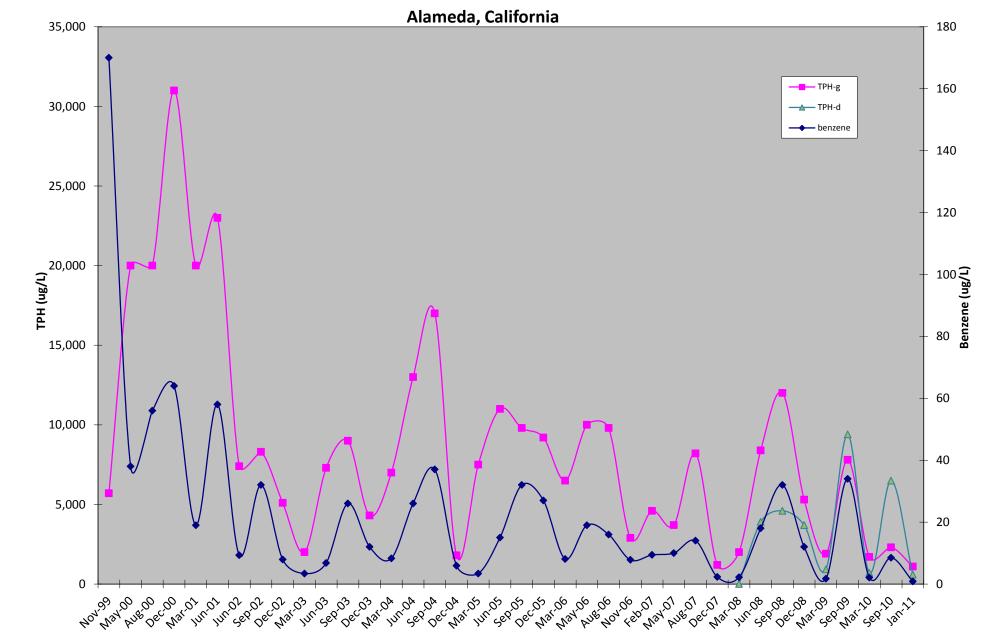



Figure 4 Monitoring Well Hydrograph Alaska Gas

Figure 5. TPH and Benzene vs. Time in Well MW-1 Alaska Gas

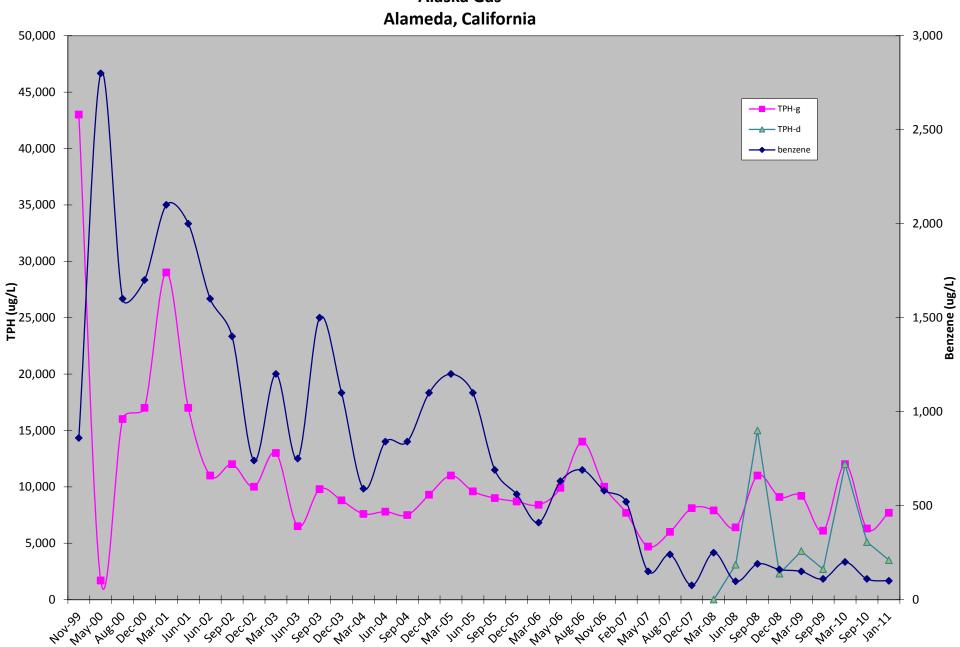


Figure 6. TPH and Benzene vs Time in Well MW-3 Alaska Gas Alameda, California

TABLES

Table 1 Well Construction Details Alaska Gas Alameda, California

Well ID	Date Installed	Total Depth (feet bg)	Screened Interval (feet bg)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet bg)	Bentonite Interval (feet bg)	Grout Interval (feet bg)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Westing Coordinates (feet)
MW-1	10/11/99	18	17.35-2.5	Silty Sand	0.02	18-1.5	1.5-0.5	0.5-0	29.18	15.20394	46.13606
MW-2	10/11/99	18	18-4	Silty Sand	0.02	18-3	3-1.5	1.5-0	29.55	14.93558	45.97882
MW-3	10/11/99	20	19-4	Silty Sand	0.02	20-3	3-1.5	1.5-0	27.74	15.28672	47.24157
MW-4	04/03/06	16	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.23	17.12115	48.05243
MW-5	04/04/06	17	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.78	16.21022	47.48996

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-1	11/06/99	26.85	5.16	21.69
	05/16/00		3.24	23.61
	08/03/00		4.15	22.70
	12/05/00		4.90	21.95
	03/05/01		3.04	23.81
	06/04/01		4.01	22.84
	06/05/02		3.73	23.12
	09/09/02		5.06	21.79
	12/19/02		4.09	22.76
	03/10/03		3.50	23.35
	06/03/03		3.66	23.19
	09/19/03		4.91	21.94
	12/22/03		4.30	22.55
	03/12/04		2.93	23.92
	06/11/04		4.23	22.62
	09/13/04		5.02	21.83
	12/16/04		3.76	23.09
	03/21/05		2.81	24.04
	06/23/05		3.66	23.19
	09/30/05		4.55	22.30
	12/08/05		4.21	22.64
	03/01/06		2.90	23.95
	05/25/06	29.18	2.84	26.34
	08/10/06		4.35	24.83
	11/21/06		4.22	24.96
	02/06/07		4.39	24.79
	05/08/07		3.88	25.30
	08/06/07		5.02	24.16
	12/26/07		4.87	24.31
	06/28/08		4.77	24.41
	09/27/08		6.29	22.89
	12/30/08		6.04	23.14
	03/28/09		3.78	25.40
	09/12/09		6.59	22.59
	03/30/10		3.52	25.66
	09/30/10		5.61	23.57
	01/20/11		3.61	25.57

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-2	11/06/99	27.18	5.56	21.62
	05/16/00		3.54	23.64
	08/03/00		4.44	22.74
	12/05/00		5.24	21.94
	03/05/01		3.28	23.90
	06/04/01		4.33	22.85
	06/05/02		3.98	23.20
	09/09/02		5.34	21.84
	12/19/02		4.33	22.85
	03/10/03		3.58	23.60
	06/03/03		3.87	23.31
	09/19/03		5.24	21.94
	12/22/03		4.47	22.71
	03/12/04		3.40	23.78
	06/11/04		4.51	22.67
	09/13/04		5.35	21.83
	12/16/04		4.09	23.09
	03/21/05		3.01	24.17
	06/23/05		3.91	23.27
	09/30/05		4.86	22.32
	12/08/05		4.49	22.69
	03/01/06		3.09	24.09
	05/25/06	29.55	3.16	26.39
	08/10/06		4.98	24.57
	11/21/06		4.81	24.74
	02/06/07		4.37	25.18
	05/08/07		4.12	25.43
	08/06/07		5.36	24.19
	12/26/07		5.03	24.52
	06/28/08		5.06	24.49
	09/27/08		6.64	22.91
	12/30/08		6.28	23.27
	03/28/09		4.03	25.52
	09/12/09		6.24	23.31
	03/30/10		3.80	25.75
	09/30/10		6.00	23.55
	01/20/11		4.17	25.38

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-3	11/06/99	25.3	4.02	21.28
	05/16/00		2.06	23.24
	08/03/00		3.20	22.10
	12/05/00		3.71	21.59
	03/05/01		1.90	23.40
	06/04/01		2.72	22.58
	06/05/02		2.75	22.55
	09/09/02		3.88	21.42
	12/19/02		2.79	22.51
	03/10/03		2.36	22.94
	06/03/03		2.65	22.65
	09/19/03		3.15	22.15
	12/22/03		2.83	22.47
	03/12/04		2.00	23.30
	06/11/04		3.11	22.19
	09/13/04		3.90	21.40
	12/16/04		2.89	22.41
	03/21/05		1.93	23.37
	06/23/05		2.69	22.61
	09/30/05		4.54	20.76
	12/08/05		3.05	22.25
	03/01/06		1.95	23.35
	05/25/06	27.74	2.11	25.63
	08/10/06		3.25	24.49
	11/21/06		3.35	24.39
	02/06/07		3.34	24.40
	05/08/07		3.53	24.21
	08/06/07		3.91	23.83
	12/26/07		3.57	24.17
	06/28/08		3.66	24.08
	09/27/08		4.98	22.76
	12/30/08		4.63	23.11
	03/28/09		2.73	25.01
	09/12/09		4.80	22.94
	03/30/10		2.62	25.12
	09/30/10		4.38	23.36
	01/20/11		2.58	25.16

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-4	05/25/06	26.23	2.54	23.69
	08/10/06		4.65	21.58
	11/21/06		4.63	21.60
	02/06/07		3.87	22.36
	05/08/07		4.21	22.02
	08/06/07		4.54	21.69
	12/26/07		2.90	23.33
	06/28/08		3.02	23.21
	09/27/08		4.78	21.45
	12/30/08		3.91	22.32
	03/28/09		2.50	23.73
	09/12/09		4.93	21.30
	03/30/10		3.43	22.80
	09/30/10		3.79	22.44
	01/20/11		2.19	24.04
MW-5	05/25/06	26.78	2.60	24.18
	08/10/06		3.40	23.38
	11/21/06		3.27	23.51
	02/06/07		3.10	23.68
	05/08/07		3.00	23.78
	08/06/07		3.79	22.99
	12/26/07		3.38	23.40
	06/28/08		3.70	23.08
	09/27/08		4.65	22.13
	12/30/08		4.04	22.74
	03/28/09		2.85	23.93
	09/12/09		4.48	22.30
	03/30/10		2.80	23.98
	09/30/10		4.11	22.67
	01/20/11		2.69	24.09

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level. Wells resurveyed on April 27, 2006

Table 3 Groundwater Analytical Results First Quarter 2011 January 20, 2011 Alaska Gas

Alameda, California

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-1	01/20/11	1,100 ^{1,2}	590^{+^†}	0.85	6.6	34	42	7.7	<0.5	<2.0	<0.5
MW-2	01/20/11	<50	90 ^{+†}	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<2.0	<0.5
MW-3	01/20/11	7,700*	3,500+^	100	20	20	16	85	3.4	41	<1.7
MW-4	01/20/11	<50	210^{+†}	<0.5	<0.5	<0.5	<0.5	0.70	<0.5	<2.0	<0.5
MW-5	01/20/11	340*	280^{+^†}	3.0	2.0	<0.5	1.2	450	<10	100	<10
	ESL	100	100	1.0	40	30	20	5	NE	12	NA
	WQO			1.0	150	700	1750	5		12	

Notes:

Units are micrograms per liter (ug/L).

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

* Laboratory noted that weakly modified or unmodified gasoline is significant

- + Laboratory noted that diesel range compounds are significant; no recognizable pattern
- ^ Laboratory noted that gasoline range compounds are significant
- ⁺ Laboratory noted that oil range compounds are significant
- ¹ Laboratory noted that heavier gasoline range compounds are significant
- ² Laboratory noted no recognizable pattern
- ESL Environmental Screening Limits

WQO Water Quality Objectives for Site: Per the Region 2, Water Quality Control Plan

MtBE methyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-1	11/06/99	5,700	8,700	170	59	22	85	20,000	NA	NA	NA
	05/16/00	20,000	<7,500	38	6.3	740	1,600	<5.0	<5.0	<50	<5.0
	08/03/00	20,000	<6,000	56	9.7	920	1,600	< 0.5	< 0.5	<50	< 0.5
	12/05/00	31,000	<4,000	64	27	820	2,200	<10	<5.0	<50	<5.0
	03/05/01	20,000	<4,000	19	<5.0	480	870	<5	<5.0	<50	<5.0
	06/04/01	23,000	<7,000	58	50	710	2,100	5.1	<5.0	<50	<5.0
	06/05/02	7,400	<1,500	9.3	6.7	180	230	<1.0	<1.0	<10	<1.0
	09/09/02	8,300	<3500	32	20	390	670	<2.0	<2.0	<20	<2.0
	12/19/02	5,100	NS	7.9	2.5	56	93	<1.0	<1.0	<10	<1.0
	03/10/03	2,000	<2,000	3.4	2.9	80	98	<0.5	<0.5	<5.0	<0.5
	06/03/03	7,300	<4,000	6.8	9.9	300	1,000	2.3	<0.5	<5.0	<0.5
	09/19/03	9,000	<3,000	26	22	420	1,200	4.5	<1.5	<20	<1.5
	12/22/03	4,300	<2,000	12	6.7	200	290	9.1	<1.0	<10	<1.0
	03/12/04	7,000	<3,000	8.3	8.2	250	760	3.9	<2.0	<20	<2.0
	06/11/04	13,000	<4,000	26	27	530	1,700	<2.5	<2.5	<15	<2.5
	09/13/04	17,000	<4,000	37	42	840	2,000	<5.0	<5.0	<50	<5.0
	12/16/04	1,800	<1,000	5.9	1.9	100	35	16	<0.5	<5.0	<0.5
	03/21/05	7,500	<3,000	3.4	4.2	290	760	<1.5	<1.5	<20	<1.5
	06/23/05	11,000	<8,000	15	11	370	910	2.4	<1.5	<7.0	<1.5
	09/30/05	9,800	<4,000	32	25	540	680	1.6	<1.5	<7.0	<1.5
	12/08/05	9,200	<4,000	27	21	500	490	2.2	<1.5	<7.0	<1.5
	03/01/06	6,500	<4,000	8.1	9.4	370	660	18	<1.5	<6.0	<1.5
	05/25/06	10,000	<3,000	19	14	900	620	<1.5	<1.5	<7.0	<1.5
	08/10/06	9,800	<1,500	16	8.1	640	180	<1.5	<1.5	<7.0	<1.5
	11/21/06	2,900	<1,000	7.8	2.5	160	12	2.5	2.5	<5.0	<0.5
	02/06/07	4,600	<1,500	9.4	6	380	220	1	<0.50	<5.0	<0.50
	05/08/07	3,700	<800	10	4.6	320	86	1.5	<0.50	<5.0	<0.50
	08/06/07	8,200	<2,000	14	8.8	730	180	<0.50	<0.50	<5.0	<0.50
	12/26/07	1,200	<300	2.3	1.1	89	21	4.8	<0.50	<5.0	<0.50
	03/31/08	2,000	<800	2.2	1.6	99	75	1.8	<0.50	<5.0	<0.50
	06/28/08	8,400	3900*	18	26	670	1,100	<2.5	<2.5	<10	<2.5
	09/27/08	12,000	4600*	32	49	1,200	680	<25	<25	<100	<25
	12/30/08	5,300	3,700	12	31	300	27	7.1	<5.0	<20	<5.0
	03/28/09	1,900	920*	<1.7	<1.7	77	58	22	<1.7	<6.7	<1.7
	09/12/09	7,800	9,400	34	110	690	200	3.0	<0.5	140	<0.5
	03/30/10	1,700	700 [*]	2.1	14	40	9.5	14	<0.5	7.8	<0.5
	09/30/10	2,300	6,500 [*]	8.5	23	150	29	4	<0.5	2.2	<0.5
	01/20/11	1,100	590	0.85	6.6	34	42	7.7	<0.5	<2.0	<0.5

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-2	11/06/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
	05/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/03/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/05/00	<50	1,400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	03/05/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/04/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/05/02	<50	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/09/02	<50	1,300	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	12/19/02	<50		<0.5	<0.5	<0.5	<0.5	16	<0.5	<5.0	<0.5
	03/10/03	<50	3,000	<0.5	<0.5	<0.5	<0.5	1	<0.5	<5.0	<0.5
	06/03/03	<50	700	<0.5	<0.5	<0.5	<0.5	2	<0.5	<5.0	<0.5
	09/19/03	<50	1,400	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<5.0	<0.5
	12/22/03	<50	1,000	<0.5	<0.5	<0.5	<0.5	39	<0.5	<5.0	<0.5
	03/12/04	<50	250	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<5.0	<0.5
	06/11/04	<50	920	<0.5	<0.5	<0.5	<0.5	0.75	<0.5	<5.0	<0.5
	09/13/04	<50	140	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<5.0	<0.5
	12/16/04	<50	150	<0.5	<0.5	<0.5	<0.5	12	<0.5	<5.0	<0.5
	03/21/05	<50	130	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/23/05	<50	1,100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/30/05	<50	300	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<5.0	<0.5
	12/08/05	<50	600	<0.5	<0.5	<0.5	<0.5	1.9	<0.5	<5.0	<0.5
	03/01/06	<50	920	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/25/06	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/10/06	<50	870	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	11/21/06	<50	130	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<5.0	<0.5
	02/06/07	<50	450	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/26/07	<50	190	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<5.0	<0.5
	03/31/08		ble Not S	ampled			-				
	06/28/08	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<2.0
	09/27/08	<50	78	<0.5	<0.5	<0.5	<0.5	7	<0.5	<2.0	<0.5
	12/30/08	<50	100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5
	03/28/09	<50	60	<0.5	<0.5	<0.5	<0.5	5.4	<0.5	<0.5	<0.5
	09/12/09	<50	91	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<2.0	<0.5
	03/30/10	<50	150	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<2.0	<0.5
	09/30/10	<50	310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5
	01/20/11	<50	90	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<2.0	<0.5

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-3	11/06/99	43,000	870	860	70	<0.5	65	120,000	NA	NA	NA
	05/16/00	17,000	<5,000	2,800	60	380	190	990	9.1	350	<5.0
	08/03/00	16,000	<2,000	1,600	29	210	53	1,200	21	260	<2.0
	12/05/00	17,000	5800	1,700	45	460	240	1,100	21	230	<5.0
	03/05/01	29,000	<1,300	2,100	68	280	100	180	<8.0	<80	<8.0
	06/04/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
	06/05/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
	09/09/02	12,000	<800	1,400	44	130	27	760	<10	160	<5.0
	12/19/02	10,000	NS	740	32	180	38	86	<5.0	<50	<5.0
	03/10/03	13,000	<6,000	1,200	42	240	35	470	5.3	140	<2.5
	06/03/03	6,500	<3,000	750	21	46	15	1,300	<50	280	<10
	09/19/03	9,800	<3,000	1,500	38	170	32	420	<10	150	<5.0
	12/22/03	8,800	<2,000	1,100	32	82	20	330	5.8	52	<2.5
	03/12/04	7,600	<3,000	590	23	69	17	470	9.2	63	<1.5
	06/11/04	7,800	<2,000	840	19	58	15	710	12	140	<2.5
	09/13/04	7,500	<1,500	840	17	23	7.8	730	15	93	<2.5
	12/16/04	9,300	<2,000	1,100	26	76	13	600	12	130	<2.5
	03/21/05	11,000	<3,000	1,200	37	190	24	460	9.3	100	<2.5
	06/23/05	9,600	<4,000	1,100	28	93	23	370	8.2	67	<1.5
	09/30/05	9,000	<3,000	690	18	32	14	380	8.4	72	<1.5
	12/08/05	8,700	<3,000	560	23	38	12	350	6.9	82	<1.5
	03/01/06	8,400	<2,000	410	24	42	13	360	8	58	<1.5
	05/25/06	9,900	<2,000	630	25	13	13	190	5.3	59	<1.5
	08/10/06	14,000	<3,000	690	43	130	26	200	5.4	70	<1.5
	11/21/06	10,000	<3,000	580	37	96	25	240	6.3	72	<1.5
	02/06/07	7,700	<1,000	520	36	90	23	260	7.4	54	<1.5
	05/08/07	4,700	<800	150	0.86	<0.5	<0.5	170	5	52	<0.5
	08/06/07	6,000	<1,000	240	26	34	17	180	5	55	<0.5
	12/26/07	8,100	<1,500	76	14	17	12	150	4.3	37	<0.9
	03/31/08	7,900	<1,500	250	30	62	20	140	4.5	47	<0.90
	06/28/08	6,400	3,100*	97	17	19	13	200	5.6	38	<5.0
	09/27/08	11,000	15,000*	190	24	29	16	160	<5.0	40	<5.0
	12/30/08	9,100	2,300*	160	24	31	18	150	5	100	<5.0
	03/28/09	9,200	4,300*	150	25	34	22	120	<5.0	38	<5.0
	09/12/09	6,100	2,700*	110	21	14	18	170	<5.0	38	<0.5
	03/30/10	12,000	12,000*	200	25	35	23	96	<5.0	58	<5.0
	09/30/10	6,300	5,100	110	14	6.2	16	110	3.8	16	<2.5
	01/20/11	7,700	3,500	100	20	20	16	85	3.4	41	<1.7

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygenates
MW-4	05/25/06	410	<80	<2.5	<2.5	<2.5	<2.5	1800	28	44	<2.5
	08/10/06	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	11/21/06	<50	<50	<0.5	<0.5	<0.5	<0.5	0.59	<0.5	<5.0	<0.5
	02/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<5.0	<0.5
	12/26/07	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	03/31/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	06/28/08	<50	88	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5
	09/27/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	12/30/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5
	03/28/09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5
	09/12/09	<50	240	<0.5	<0.5	<0.5	<0.5	1.0	<0.5	<2.0	<0.5
	03/30/10	<50	<50	<0.5	<0.5	<0.5	<0.5	0.58	<0.5	<2.0	<0.5
	09/30/10	<50	<50	<0.5	<0.5	<0.5	<0.5	0.76	<0.5	<2.0	<0.5
	01/20/11	<50	210	<0.5	<0.5	<0.5	<0.5	0.70	<0.5	<2.0	<0.5
MW-5	05/25/06	<50	86	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	08/10/06	55	<50	<0.5	<0.5	<0.5	<0.5	1,100	19	9.1	<0.5
	11/21/06	<250	<50	<2.5	<2.5	<2.5	<2.5	1,500	25	28	<2.5
	02/06/07	430	<50	6.9	<2.5	<2.5	<2.5	1,600	26	34	<2.5
	05/08/07	<250	<50	<2.5	<2.5	<2.5	<2.5	1,200	20	38	<2.5
	08/06/07	330	<80	<2.5	<2.5	<2.5	<2.5	1,000	20	39	<2.5
	12/26/07	490	<50	<2.5	<2.5	<2.5	<2.5	1,000	18	28	<2.5
	03/31/08	520	<100	6.0	1.9	<1.5	2.5	520	16	33	<1.5
	06/28/08	510	290*	6.2	1.0	<0.5	2.3	550	11	<40	<10
	09/27/08	670	320*	<17	<17	<17	<17	650	<17	95	<17
	12/30/08	210	130*	<0.5	0.8	0.99	<0.5	610	12	<40	<10
	03/28/09	200	100*	<17	<17	<17	<17	610	<17	<67	<17
	09/12/09	230	130*	1.6	1.3	<0.5	1.4	540	11	<40	<10
	03/30/10	360	170*	2.0	1.7	<0.5	1.3	490	13	<40	<10
	09/30/10	710	310	10	2.6	<1.0	3.1	400	<10	<40	<10
	01/19/11	340	280	3.0	2.0	<0.5	1.2	450	<10	100	<10
	ESL	100	100	1.0	40	30	20	5	NE	12	NA
١	NQO			1.0	150	700	1750	5		12	

Notes:

Units are micrograms per liter (ug/L).

NT analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

- MtBE methyl tert-butyl ether tAME tert-amyl methyl ether
- diesel tAME tert-amyl me

TPH-d total petroleum hydrocarbons as diesel * Laboratory noted that TPH-g range is significant

- ESL Environmental Screening Limits
- WQO Water Quality Objectives for Site: Per the Region 2, Water Quality Control Plan

APPENDIX A

MONITORING WELL PURGE LOGS

	1	MATRIKS	ORPORAT	ION MON	TORING D	ATA SHEET				
Project #:	602	.2		Station #: Alamoda						
Sampler:	Thes	Lel. IN	eely	Date: 120/11 Ambient Air Temperature: Well Diameter: 2" 3" 4" 6" 8" Depth to Water: 3' 7 3' Thickness of Free Product (feet):						
Weather:	Pana		1							
Well ID:	MALL).	-1 -1								
Total Well	Depth:									
	ree Product	<u>.</u>								
Reference		•								
		rae ((Heiah	t of Water C		and the second s	YSI HACH				
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersil	cement	Waterra Peristaltic Extraction Pump Other		Sampling Method	Bailer Disposable Extraction Dedicated Other	Port			
					Well Diameter	Multiplier Well Diameter	Multiplier 0.65			
2.3	(Gals.) X	3	= 6.9	Gallons	2"	0.16 6"	1.47			
Case Volume		Specified Volumes	Calculated Vol	ume	3"	0.37 Other	radius ² * 0.163			
	1									
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations				
9:59	61.2	6.25	559.5		Z	slight sheen	ladar / clout			
10:03	62,4	6.52	522,6		4	Cloudy pre	M/sheen a			
10:04	63.5	6,09	508.0		6	cloury/60	ay			
						01				
				Callana						
Did well de	ewater? Y	es No		Gallons ac	tually evacu					
Sampling I	Date:	Sampl	ing Time:		Depth to V	Vater:				
Sample ID	:	Labora	atory:							
Analyzed f	or: TPH-g	BTEX MtE	BE Oxys C	Other:						
Duplicate I	ID:	Analyzed for	or: TPH-g E	BTEX MtB	E Oxys C	Other:				
			1	mg/L		Post-purge:	mg/L			
D.O. (if red ORP (if red		Pre-purge:		mV		Post-purge: Post-purge:	mV			
	q u).	Pre-purge:	L	IIIV		ost-puige.	IIIV			

321 Court Street, Woodland, CA 95695 (530) 406-1760

MATRIKS CORPORAT	TION MONITORING DATA SHEET						
Project #: 6022	Station #: Alameda Gas						
Sampler: Truesdale Weely	Date: 120/11 Ambient Air Temperature: Well Diameter: 2" 3" 4" 6" 8" Depth to Water: 2" .2" Thickness of Free Product (feet):						
Weather: Alexa Warm							
Well ID: WALK - 7							
Total Well Depth: (\hat{X})							
Depth to Free Product:							
Referenced To:	D.O. Meter (if req'd): YSI HACH						
DTW with 80% Recharge [(Height of Water C	Column x 0.20) + DTW]:						
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other						
$\frac{2.24}{1 \text{ Case Volume}} (\text{Gals.}) \text{ X} \underbrace{\textbf{G3}}_{\text{Specified Volumes}} = \underbrace{\textbf{b} \cdot \textbf{F}}_{\text{Calculated Volumes}}$	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 olume 3" 0.37 Other radius ² * 0.163						
Time Temp (°F) pH or μS)	Turbidity Gallons (NTUs) Removed Observations						
10:20 62.4 5.82 535.0	3/2 Realy Cloudy No SMell						
10:24 .63.5: 5.61 536.4	5 Really Cloud +						
10128 163,3 5.51 531.2	6.7 Still cloudy						
Did well dewater? Yes No	Gallons actually evacuated:						
Sampling Date: Sampling Time:	Depth to Water:						
Sample ID: Laboratory:							
Analyzed for: TPH-g BTEX MtBE Oxys	Other:						
Duplicate ID: Analyzed for: TPH-g	BTEX MtBE Oxys Other:						
D.O. (if req'd): Pre-purge:	mg/L Post-purge: mg/L						

321 Court Street, Woodland, CA 95695 (530) 406-1760

		MATRIKS	JORPORA	TION MON	IT ORING L	DATA SHEET				
Project #:	60.	25		Station #:						
Sampler:	Trues	dalell	poly	Date:						
Weather:	Clark	- Cont	Warm	Ambient A	ir Tempera	ture:		-		
Well ID:	UNIN).	-3	VVVIII	Well Diam	Well Diameter: 2" 3" 4" 6" 8" Depth to Water: 2" 7" 7"					
Total Well	Depth:	201		Depth to V						
Depth to F	ree Product			Thickness	of Free Pro	oduct (feet):	1			
Reference	ed To:			D.O. Mete	r (if req'd):	YSI	НАСН			
DTW with	80% Recha	rge [(Heigh	t of Water C	Column x 0.	20) + DTW	:	- and			
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersi	acement	Waterra Peristaltic Extraction Pump Other		Sampling Methoo	(Bailer Disposable Bailer Extraction Port Dedicated Tubing			
					Well Diameter	Multiplier Well D	iameter Multiplier			
2,78 1 Case Volume	(Gals.) X	Specified Volumes	= <u>& .</u> Calculated Vo	Gallons	1" 2" 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 ner radius ² * 0.16	13		
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations	s ()_			
9:39	62.1	5.70	8696		2.5	Clean P	och / Slic	ht Sheer		
9:44	63.1	5.54	7671	- MARINE	5	Clarks	adar Slight	Shean		
9:48	63.5	6.82	746.9	h	7.5	ndi	11 04			
				-						
				No.						
				1						
Did well de	ewater? Y	'es No		Gallons ad	ctually evacu	uated:				
Sampling	Date:	Sampli	ing Time:		Depth to V	Vater:				
Sample ID):	Labora	atory:		~					
Analyzed	for: TPH-g	BTEX MtE	BE Oxys (Other:						
Duplicate	ID:	Analyzed fo	or: TPH-g E	BTEX MtB	E Oxys C	Other:				
				mg/l		Post purse		mg/L		
D.O. (if re ORP (if re	100 A 100 A	Pre-purge: Pre-purge:		Post-purge.				mV		
	۹ ۵/۰	o pargo.		IIIV		. oot puigo.				

321 Court Street, Woodland, CA 95695 (530) 406-1760

		MATRIKS (CORPORAT	ION MON	ITORING D	ATA SHEET			
Project #:	6022	_	•	Station #: Humoda Car					
Sampler:	Truesd	erbe ()	eelu	Date: 1/20/11					
Weather:	Clear	Warm		Ambient Air Temperature: Well Diameter: 2" 3" 4" 6" 8" Depth to Water: 2" 2" 3"					
Well ID:	M(1)-	. 4							
Total Well	Depth:	161							
Depth to Fr	ree Product	:		Thickness of Free Product (feet):					
Referenced	d To:			D.O. Mete	r (if req'd):	YSI HACH			
DTW with 8	80% Recha	rge [(Heigh	t of Water C	olumn x 0.	20) + DTW]				
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersit	cement	Waterra Peristaltic Extraction Pump Other		Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Other			
Z.2 Case Volume	(Gals.) X	3 Specified Volumes	$= \frac{(\varphi_{1}, (\varphi_{2}))}{Calculated Vol}$	Gallons	Well Diameter 1" 2" 3"	Multiplier Well Diameter Multiplier 0.04 4" 0.65 0.16 6" 1.47 0.37 Other radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations			
10:59	60,6	5.43	413		2	Cloud SS SO			
11:03	61.7	5.45	453		3	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
						0 1			
					-	Recharge was very stord			
Did well de	water? Y	es No		Gallons ac	tually evacu	lated:			
Sampling D	Date:	Sampli	ng Time:		Depth to V	Vater:			
Sample ID:		Labora	atory:						
)thor:					
Analyzed fo	or: TPH-g	BTEX MtE	BE Oxys C						
		,	BE Oxys C		E Oxys C	Other:			
Analyzed fo Duplicate II D.O. (if req	D: .	,				Dther: Post-purge: ^{mg/L}			

321 Court Street, Woodland, CA 95695 (530) 406-1760 Well box was full of H2O

Truescale weety	Station #: Alamedy Gas Date: 1/20/11							
Sampler: Twesdale Weely	Date: $(/2r)/1($							
J. J. J.								
Weather: (loa. Ablance	Ambient Air Temperature:							
Well ID: $M(\mu) - 5$	Well Diameter 2" 3" 4" 6" 8"							
Total Well Depth:	Depth to Water: 2^{1} $8,3^{1}$							
Depth to Free Product:	Thickness of Free Product (feet):							
Referenced To:	D.O. Meter (if req'd): YSI HACH							
DTW with 80% Recharge [(Height of Water	blumn x 0.20) + DTW]:							
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other							
$\frac{2.2}{1 \text{ Case Volume}} \text{ (Gals.) X } \frac{3}{\text{Specified Volumes}} = \frac{6.8}{\text{Calculated Volumes}}$	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 Volume 3" 0.37 Other radius ² * 0.163							
Time Temp (°F) pH or µS)	nS Turbidity Gallons (NTUs) Removed Observations							
10:39 .62,6 .6,69 877.5	7 2 Nega (Stiple							
10:45 63.1 5.87 839	4 Cloude / Stinhat oder							
10:48 63.5 6.18 829.7	$(a - 1 - b_1, n)$							
Did well dewater? Yes No	Gallons actually evacuated:							
Sampling Date: Sampling Time:	Depth to Water:							
Sample ID: Laboratory:								
Analyzed for: TPH-g BTEX MtBE Oxys	Other:							
Duplicate ID: Analyzed for: TPH-g	BTEX MtBE Oxys Other:							
D.O. (if req'd): Pre-purge:	^{mg/L} Post-purge:							
ORP (if req'd): Pre-purge:	mV Post-purge:							

DATIC

NI MONITODINI

APPENDIX B

LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell An "When Ouality"		Web: www.mccampbe	s Road, Pittsburg, CA 9 ll.com E-mail: main@ 2-252-9262 Fax: 925-2	mccampbell.com
Matriks Corporation	Client Project ID: #6022; Al	laska Gas	Date Sampled:	01/20/11
321 Court Street			Date Received:	01/20/11
	Client Contact: Tom Hend	erson	Date Reported:	01/27/11
Woodland, CA 95695	01/26/11			

WorkOrder: 1101480

January 27, 2011

Dear Tom:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: #6022; Alaska Gas,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

We Tel	ebsite: <u>www.m</u> lephone: (877	1534 WD PTTTSBU ccampbel 7) 252-92	LLOW PA RG, CA 94 Lcom En 62	SS RO. 1565-17 nail: m	AD 701 nain@ Fax	mcc : (92	amp (5) 2	bell.	4 com	30)							OU	ND DF	TI		E PD Che	F	RUS f sa	SH Ex	24 ccel	HR	1		iR ite (id "J	72 On (J" fla	HR (D) ag is	SDAY
	n flend	erson	E	Bill To): <u>/</u>	la	Fil	(S	_		1	_	-	_	_	_	_	_	A	naly	sis	Rec	ues	t		_		_	\neg	0	Other	r	Commen
the second se	triks												4			6					C									5			Filter
	1 Court S						/						-	Ē		B					18 a									Van			Samples
	sodland, C	A 956	95 I	-Mai	1:Th	end	er	som	Din	at	rKsc	est	<u>co</u> 1	8015)7MTBE		20 8					õ						50)	6		7			for Metal
Tele: (530) 46			ŀ	ax: (5 20) '	706	2-1	07	-	-		4	8015		use (1664 / 5520 E/B&F)	3	3	021)		Por		1			9	1 60	1 600		2			analysis:
Project #: 602		~ .	F	rojec				ask	40	177 5	5		-	+		100	ons (418.1)	(HVOCs)	2/8	1	Neg 1		bicid			PNA	6010	5010	-	3			Yes / No
Project Location:	132 1310	Centr	21 Ane	, A	Yai	nee	la						4	8021		ž	Sons	B	8	tici	X	(es)	Her	3	ğ	E I	181	81	6020	~			
Sampler Signatur		nerd	el.			-				_			_	89		B	- ar	1208/	E.	1 Pe	INO	ntici	ū	2	SV.	(PA)	1200	200	10/	P			
		SAM	PLING		2		MA	TRI	X	PB	MET	HOD	D	No.	6	8	m Hydro	010	T	a (c	in in	G P	cidi	0903	1270	310	00.7	00.7	1 60	2			
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE				PH 1	TPH as Diesel (8015)	Total Petroleum O	Total Petroleum H	EPA 502.2 / 601 / 8010	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Arec	EPA S07 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA \$270 SIM / \$310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metads (200.7 / 200.8 / 6010 / 6020)	Lead (260.7 / 200.8 / 6010 / 6020)	7 oxus &			
mw-1		1/20/11		4	30	V				X	X			\times	X															X			
mw-2		1 ara		ù	1	V		+	+	X	X	-	+	1	T	-	-	-				-						-		7			
the second s				4	+	5		+	-		6	-	+	++	++	-	-	-	-							-	-	-		+			
MW-3						R	-	+	-	F,	K	-	+	+	++	-	-	-	-		-		-		-	-	-	-	\square	+	\vdash	-	
MW-4		-		4	H	Y	-	+	+	X	X	-	+	++	H	-	-	-	-	-	-	_		_	-		-	-	\vdash			_	
MW-5	1	V		4	V	Y	_	_		4	¥	_			4	_	_	_	_									_	\square	V		_	
						Ľ					1																						
									T																								
									1																								
					-		+	+	+	\vdash	\square	+	+	+	+	-		-												_			
					-		+	+	+	-		+	+	-	+	-	-	-	-	-	-	-	-	-	-				\square	-		-	
					-		-	-	+	-		-	+		-	-	-			-	-			_		-		_	\square			-	
				-	-	\square		_	-			_	4	-	-	_		_	_	_	_		-	_		_	-	_	\square			_	
															1	Įł	1																
Relinquished By: Relinquished By:	le	Date: V20/II Date:	Time: 7.30 Time:	Rece	ived E	C by:	(vel	P.	ner	nt	el	2	-	HEA DEC APP	DD C D S HLA	CON PAC ORI PRI/	DITI E A NAT	ION BSEI ED I CON	NT N L			7	_					CON	IME	NTS	2		
Relinguished By: Pavid Pi	nentel	Date:	Time: 7:25		ived H	-	N	Ľ	V	-		V		PRE					7	0.8	G	ME pH<		s	OTE	er							S

.

.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	52-9262					Work	Order:	1101	480	ClientC	Code: N	ICW				
		WaterTrax	WriteOn	EDF		Excel	[Fax	∨ E	mail	Hard	Сору	Thire	dParty	☐ J-f	lag
Report to: Tom Hende	erson	Email: t	henderson@	matrikscorp.com			Bill to: Ro	bert Ne	ely			Req	uested	TAT:	5 d	lays
Matriks Cor 321 Court S		cc: PO:							orporation Street			Dat	e Recei	ived:	01/20/2	2011
Woodland, ((530) 406-17		ProjectNo: #	#6022; Alaska	i Gas			Wo	odland	, CA 9569	5		Dat	e Print	ed:	01/20/2	2011
									Reques	ted Tests	(See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	56	7	8	9	10	11	12
1101480-001	6022 MW-1		Water	1/20/2011		С	В	А	А							

1101480-002 С 6022 MW-2 Water 1/20/2011 В А 1101480-003 \square С В А 6022 MW-3 Water 1/20/2011 1101480-004 6022 MW-4 Water 1/20/2011 С В А 1101480-005 С В А 6022 MW-5 Water 1/20/2011

Test Legend:

1	9-OXYS_W	
6		
11		

2	G-MBTEX_W
7	
12	

3	PREDF REPORT	
8		

4	TPH(D)_W
9	

5			
10			

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Matriks Corporat	ion			Date a	nd Time Received:	1/20/2011	7:44:04 PM
Project Name:	#6022; Alaska Ga	is			Check	list completed and r	eviewed by:	Zoraida Cortez
WorkOrder N°:	1101480	Matrix <u>Water</u>			Carrier	: <u>EnviroTech (Ro</u>	<u>C)</u>	
		<u>Chair</u>	of Cu	stody (C	OC) Informa	tion		
Chain of custody	present?		Yes	\checkmark	No 🗆			
Chain of custody	signed when relinquis	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	\checkmark	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>S</u>	ample	Receipt	Information			
Custody seals int	tact on shipping contai	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping containe	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatior	n and Ho	old Time (HT)	Information		
All samples recei	ved within holding time	e?	Yes	\checkmark	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	4.7°C		NA 🗆	
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ісе Тур	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments below.						
				:				

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Ar "When Ouality		<u>c.</u>	Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 925		om				
Matriks Corporation	Client Pr	oject ID: #6022	; Alaska Gas	Date Sampled:	01/20/11					
321 Court Street				Date Received:	01/20/11					
521 Court Succi	Client C	ontact: Tom He	enderson	Date Extracted:	01/21/11-0	01/21/11-01/24/11				
Woodland, CA 95695	Client P.	Client P.O.: Date Analyzed: (
Oxygenat Extraction Method: SW5030B	-	nics + EDB and	1,2-DCA by P&T	and GC/MS*	Work Order:	1101480				
Lab ID	1101480-001C	1101480-002C	1101480-003C	1101480-004C						
Client ID	6022 MW-1	6022 MW-2	6022 MW-3	6022 MW-4	Reporting DF					
Matrix	W	W	W	W]					
DF	1	1	3.3	1	S	W				
Compound		Con	centration		ug/kg	µg/L				
tert-Amyl methyl ether (TAME)	ND	ND	3.4	ND	NA	0.5				
t-Butyl alcohol (TBA)	ND	ND	41	ND	NA	2.0				
1,2-Dibromoethane (EDB)	ND	ND	ND<1.7	ND	NA	0.5				
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND<1.7	ND	NA	0.5				
Diisopropyl ether (DIPE)	ND	ND	ND<1.7	ND	NA	0.5				
Ethanol	ND	ND	ND<170	ND	NA	50				
Ethyl tert-butyl ether (ETBE)	ND	ND	ND<1.7	ND	NA	0.5				
Methanol	ND	ND	ND<1700	ND	NA	500				
Methyl-t-butyl ether (MTBE)	7.7	1.4	85	0.70	NA	0.5				
	Surr	ogate Recoveri	es (%)							
%SS1:	84	84	87	90						
Comments										
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl		blid samples in mg/	kg, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLI				
ND means not detected above the reporti	ng limit/method de	tection limit; N/A	means analyte not ap	pplicable to this anal	ysis.					
# surrogate diluted out of range or coelut	es with another peal	k; &) low surrogat	e due to matrix inter	ference.						
%SS = Percent Recovery of Surrogate Sta DF = Dilution Factor	ndard									

DF = Dilution Factor

McCampbell An		cal, In	<u>c.</u>		Web: www.mccamp		. 94565-1701 @mccampbell.c 5-252-9269	om	
Matriks Corporation		Client Pro	oject ID:	#6022;	Alaska Gas		01/20/11		
321 Court Street						Date Received:	01/20/11		
521 Court Street	-	Client Co	ontact: To	om Hen	derson	Date Extracted:	01/21/11-01/24/11		
Woodland, CA 95695		Client P.C	D.:			Date Analyzed:	01/21/11-0	1/24/11	
Oxygenate	ed Vola	tile Organ	nics + EDF	B and 1,	2-DCA by P&T	and GC/MS*			
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	1101480	
Lab ID	11014	80-005C							
Client ID	6022	MW-5					Reporting DF		
Matrix		W					-		
DF		20					S	W	
Compound				Conce	entration	1	ug/kg	µg/L	
tert-Amyl methyl ether (TAME)	NI	D<10					NA	0.5	
t-Butyl alcohol (TBA)	1	00					NA	2.0	
1,2-Dibromoethane (EDB)	NI	D<10					NA	0.5	
1,2-Dichloroethane (1,2-DCA)	NI	D<10					NA	0.5	
Diisopropyl ether (DIPE)	NI	D<10					NA	0.5	
Ethanol	ND	<1000					NA	50	
Ethyl tert-butyl ether (ETBE)	NI	D<10					NA	0.5	
Methanol	ND<	:10,000					NA	500	
Methyl-t-butyl ether (MTBE)	4	150					NA	0.5	
		Surro	ogate Rec	overies	s (%)				
%SS1:		91							
Comments									
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl			lid samples	in mg/k	g, product/oil/non-a	aqueous liquid sample	es and all TC	LP & SPLP	
ND means not detected above the reporti	ng limit/	method det	ection limit	t; N/A m	eans analyte not a	pplicable to this anal	ysis.		
# surrogate diluted out of range or coelute	es with a	nother peak	s; &) low su	irrogate	due to matrix inter	ference.			
%SS = Percent Recovery of Surrogate Sta DF = Dilution Factor	ndard								

Matriks Co		en o'aanti o	When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
	orportution		Client Project ID: #6022; Alaska Gas Date Sampled: 01/20/11													
321 Court	Street				Date Received: 01/20/11											
521 Court	Succi		Client	Contact: To	m Henderso	n	Date Extracte	ed: 01/21	/11-01/	25/11						
Woodland	, CA 95695		Client I	P.O.:			Date Analyzed: 01/21/11-01/25/11									
		asoline Ra	ange (C6-C12)	-			e with BTEX a	nd MTBE*								
1	Ktraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order						k Order: % SS	1								
	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF		Comment					
001B	6022 MW-1	W	1100	ND<15	0.85	6.6	34 ND	42	1	102	d2,d9					
002B	6022 MW-2	W	ND	ND	ND	ND	ND	ND	1	105	11					
003B	6022 MW-3	W	7700	ND<250	100	20	20	16	5	112	d1					
004B	6022 MW-4	W	ND	ND	ND	ND	ND	ND	1	107						
005B	6022 MW-5	W	340	430	3.0	2.0	ND	1.2	1	111	d1					
ND means	Limit for DF =1; not detected at or	W S	50 1.0	5.0	0.5	0.5 0.005	0.5	0.5 0.005		µg/I mg/ŀ						
* water and TCLP & SP # cluttered c	e reporting limit vapor samples are re LP extracts in mg/L chromatogram; samp ent Recovery of Surr	ported in u	g/L, soil/sludge/ elutes w/surroga	solid samples i nte peak; low st	n mg/kg, wip	e samples in	ug/wipe, product	/oil/non-aque	ous liqu	-	-					

d1) weakly modified or unmodified gasoline is significant

d2) heavier gasoline range compounds are significant (aged gasoline?)

d9) no recognizable pattern

	When Ouality Count		Web: www.mccar	v Pass Road, Pitts npbell.com E-1 :: 877-252-9262	nail: main	@mccampl 5-252-9269	bell.com			
Matriks Corporat			#6022; Alaska Gas		Date Sampled: 01/20/11					
221 Carris Street						Date Received: 01/20/11				
321 Court Street		Client Contact: T	Client Contact: Tom Henderson				1			
Woodland, CA 95	5695	Client P.O.:		atracted: 01/20/11 nalyzed 01/21/11-01/22/11						
			roleum Hydrocarbons	*						
Extraction method SW		Analytical	methods: SW8015B TPH-Diesel	Work Ord	er: 1101480					
Lab ID	Client ID	Matrix	(C10-C23)		DF	% SS	Comments			
1101480-001A	6022 MW-1	w	590		1	97	e4,e7,e2			
1101480-002A	6022 MW-2	w	90		1	97	e7,e2			
1101480-003A	6022 MW-3	W	3500		1	102	e4,e2			
1101480-004A	6022 MW-4	w	210		1	97	e7,e2			
1101480-005A 6022 MW-5		W	280		1	97	e7,e4,e2			
-	g Limit for DF =1;	W	50			με	r/L			
	s not detected at or he reporting limit	S	NA			N				

eported in ug/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L.$

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant.

e7) oil range compounds are significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		QC Matrix: Water					Batch	ID: 55716	WorkOrder 1101480			
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					s	Spiked San	nple ID	ID: 1101472-001A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	96.6	97.8	1.24	96.7	94.6	2.22	70 - 130	20	70 - 130	20
MTBE	ND	10	120	117	2.20	125	112	11.0	70 - 130	20	70 - 130	20
Benzene	ND	10	118	121	2.51	116	116	0	70 - 130	20	70 - 130	20
Toluene	ND	10	107	111	3.28	103	101	1.24	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	105	109	3.13	102	100	1.48	70 - 130	20	70 - 130	20
Xylenes	ND	30	119	117	1.45	116	114	2.28	70 - 130	20	70 - 130	20
%SS:	100	10	104	106	1.50	103	103	0	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:											

BATCH 55716 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1101480-001B	01/20/11	01/21/11	01/21/11 5:40 PM	1101480-002B	01/20/11	01/21/11	01/21/11 6:18 PM
1101480-003B	01/20/11	01/25/11	01/25/11 5:38 PM	1101480-004B	01/20/11	01/22/11	01/22/11 3:16 AM
1101480-005B	01/20/11	01/22/11	01/22/11 3:45 AM	1101480-005B	01/20/11	01/25/11	01/25/11 6:08 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix: Water				BatchID: 55719		WorkOrder 1101480						
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 1101491-001A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, maly to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	99.7	94.6	5.05	98.5	98.9	0.379	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	98	104	5.49	95.4	95.3	0.111	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	111	114	2.33	111	109	1.54	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	1.4	10	111	111	0	114	114	0	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	118	119	0.202	119	119	0	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	115	116	1.21	113	113	0	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	124	124	0	117	117	0	70 - 130	30	70 - 130	30	
%SS1:	85	25	100	101	0.968	82	83	1.54	70 - 130	30	70 - 130	30	

BATCH 55719 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1101480-001C	01/20/11	01/21/11	01/21/11 5:58 PM	1101480-002C	01/20/11	01/21/11	01/21/11 7:54 PM
1101480-003C	01/20/11	01/24/11	01/24/11 10:24 PM	1101480-004C	01/20/11	01/24/11	01/24/11 11:08 PM
1101480-005C	01/20/11	01/24/11	01/24/11 11:48 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water			QC Matrix: Water				Batch	ID: 55730	WorkOrder 1101480				
EPA Method SW8015B	Extra	Extraction SW3510C					Spiked Sample ID: N/A						
Analyte	Sample	Sample Spiked MS MSD MS-MSD				LCS	LCSD LCS-LCSD Acceptance Criteria (%)						
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD RPD LCS/	LCS/LCSD	RPD		
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	89.5	86.9	2.95	N/A	N/A	70 - 130	30	
%SS:	N/A	625	N/A	N/A	N/A	80	81	0.370	N/A	N/A	70 - 130	30	
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 55730 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1101480-001A	01/20/11	01/20/11	01/21/11 5:59 PM	1101480-002A	01/20/11	01/20/11	01/21/11 7:10 PM
1101480-003A	01/20/11	01/20/11	01/22/11 9:09 AM	1101480-004A	01/20/11	01/20/11	01/21/11 8:22 PM
1101480-005A	01/20/11	01/20/11	01/21/11 10:43 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer