

2

RECEIVED

1:09 pm, Sep 29, 2009

Alameda County Environmental Health 321 Court Street Woodland California 95695 Tel (530) 406-1760 Fax (530) 406-1071 A, B Haz 909563

September 28, 2009

Paresh C. Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

 SUBJECT:
 Fuel Leak Case No. RO0000022

 1310 Central Avenue
 Alameda, CA

 Report Submittal – Semi-Annual Groundwater Monitoring Report, Third Quarter 2009

Dear Mr. Khatri:

Please find enclosed the Semi-Annual Groundwater Monitoring Report, Third Quarter 2009 prepared by Matriks for Nissan Saidian, Joe Zadik, and Leon Zektser

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Please call me at 530-406-1760 or email thenderson@matrikscorp.com if you have any questions.

Sincerely,

Tom Henderson President

SEMI-ANNUAL GROUNDWATER MONITORING REPORT Third Quarter 2009

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

PREPARED FOR: Nissan Saidian 5733 Medallion Court Castro Valley, California 94552

SUBMITTED TO: Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

September 22, 2009

Project No. 6022

PREPARED BY: Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIONAL CERTIFICATIONii
ACRONYMS AND ABBREVIATIONS iii
INTRODUCTION1
Site Description and Physical Setting1
Site History1
SCOPE OF WORK
METHODS AND PROCEDURES
Groundwater Level Measurements4
Monitoring Well Purging and Sampling5
Geotracker Requirements6
RESULTS
Groundwater Levels and Gradient5
Groundwater Analytical Results5
DISCUSSION
RECOMMENDATIONS

FIGURES

Site Location Map
Site Map
Groundwater elevation Contours
Elevation versus Time Hydrograph
MW-1 TPH-g and Benzene Concentration Trends
MW-3 TPH-g and Benzene Concentration Trends

TABLES

Table 1	Well Construction Details
Table 2	Groundwater Levels and Elevations
Table 3	Groundwater Analytical Results

APPENDICES

- Appendix A Monitoring Well Purge Logs
- Appendix B Laboratory Analytical Report

PROFESSIONAL CERTIFICATION

\$

SEMI-ANNUAL GROUNDWATER MONITORING REPORT Third Quarter 2009

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

Project No. 6022 September 22, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recompetitive presented herein is at the sole risk of said user.

Tom Henderson President

DAVID W ANNEY David Janney, P Senior Geologist

ACRONYMS AND ABBREVIATIONS

ACEHS	Alameda County Environmental Health Services
AEI	All Environmental, Inc.
amsl	above mean sea level
ASE	Aqua Science Engineers, Inc.
BTEX	benzene, toluene, ethyl-benzene, xylenes
COC	chain-of-custody
DCA	1,2-dichloroethane
DIPE	di-isopropyl ether
EDB	ethylene di-bromide
EDF	electronic data file
ESL	Environmental Screening Level
EtBE	ethyl tert-butyl ether
FS/CAP	Feasibility Study/Corrective Action Plan
Geotracker	Geographical Information Management System
Matriks	Matriks Corporation
MtBE	methyl tert-butyl ether
0&G	oil and grease
μg/L	micrograms per liter
mg/Kg	milligrams per kilogram
ml	milliliter
MW	monitoring well
PDF	portable document format
RWQCB	Regional Water Quality Control Board
SC	specific conductance
tAME	tert-amyl methyl ether
tBA	tert butyl alcohol
UST	underground storage tank

INTRODUCTION

This report presents the results of the third quarter 2009 groundwater monitoring event conducted by Matriks at Alaska Gas (the "Site"), located at 1310 Central Avenue in Alameda, California. The semi-annual groundwater monitoring event described in this report was conducted on September 22, 2009 and is part of an ongoing subsurface investigation of petroleum hydrocarbons in soil or groundwater that was caused by an unauthorized release of petroleum fuels from the underground storage tank (UST) system (tanks, associated piping and dispensers) formerly located at the Site. Matriks is conducting this investigation on behalf of the responsible parties, Mr. Leon Zektser, Mr. Nissan Saidian, and Mr. Joe Zadik. The Alameda County Environmental Health Services (ACEHS) is the lead regulatory agency overseeing Site investigation and remediation and the ACEHS case number is RO0000022. The semi-annual groundwater monitoring program consists of the collection and laboratory analysis of groundwater samples from five groundwater monitoring wells to assess concentrations of petroleum hydrocarbon compounds in shallow groundwater.

Site Description and Physical Setting

The Site is currently a retail gasoline fueling station located in an area of mixed commercial and residential properties in the south-central part of the island of Alameda. The Site is located at the intersection of Encinal Avenue, Sherman Street, and Central Avenue. A Site location map is shown on **Figure 1** and a Site plan showing physical features and groundwater monitoring well locations is shown on **Figure 2**.

The Site is relatively flat and the investigation area has a surface elevation of approximately 25 feet above mean sea level (amsl). San Francisco Bay and the Alameda Estuary are located approximately one-half mile to the south.

Site History

In May 1996, Petrotek removed three gasoline USTs including one 10,000-gallon, one 7,500-gallon and one 5,000-gallon UST from the western corner of the Site. A 500-gallon waste oil UST adjacent to the building, was also removed from the southern portion of the Site. Fuel dispensers and associated product piping were also removed.

Free-phase petroleum hydrocarbons were observed floating on the groundwater surface in the gasoline UST excavation following removal of the USTs. According to the laboratory analysis, a groundwater sample collected from the gasoline UST excavation contained 2,800 micrograms per liter (μ g/L) of total petroleum hydrocarbons as gasoline (TPH-g) and 100 μ g/L benzene. Soil samples collected from the same excavation contained up to 5,000 milligrams per kilogram (mg/Kg) of THP-g and 31mg/Kg benzene. Soil samples collected beneath the former dispenser

island contained up to 6,800 mg/Kg TPH-g and 63 mg/Kg benzene. A ground water sample collected in the waste oil UST excavation contained 35,000 μ g/L of total petroleum hydrocarbons as diesel (TPH-d) and motor oil range hydrocarbons, and 1,300 μ g/L of TPH-g. These results are documented in a *UST Closure Report* submitted by Petrotek in May 1996.

Petrotek reportedly excavated and disposed of approximately 600 cubic yards of petroleum hydrocarbon-impacted soil from the UST excavations. It does not appear that confirmation soil samples were collected following removal of the petroleum hydrocarbon-impacted soil. Approximately 15,000 gallons of ground water were also removed from the excavations, treated and discharged to the sanitary sewer. Two new gasoline USTs, dispensers and product piping were installed in the same UST excavation after the petroleum hydrocarbon-impacted soil and ground water were removed.

In November 1998, All Environmental Inc. (AEI) advanced 14 soil borings on the Site and collected soil and groundwater samples for analysis. Up to 5,900 mg/Kg of TPH-g was detected in soil samples collected from the borings. Up to 120,000 μ g/L TPH-g and 7,200 μ g/L benzene were detected in groundwater samples from the borings.

In October 1999, HerSchy Environmental installed three monitoring wells at the Site. The initial sampling yielded up to 43,000 μ g/L TPH-g, 8,700 μ g/L total petroleum hydrocarbons as diesel (TPH-d), 480 μ g/L benzene, and 1,600 μ g/L methyl tert-butyl ether (MtBE) were detected in groundwater samples from the wells. The groundwater flow direction was southwesterly under a gradient of 0.0085. Well construction details are presented in **Table 1**.

On May 16, 2000, Aqua Science Engineers (ASE) began quarterly monitoring at the Site. Groundwater samples collected from MW-1 contained 20,000 μ g/L TPH-g, 38 μ g/L benzene, 6.3 μ g/L toluene, 740 μ g/L ethyl benzene, and 1,600 μ g/L total xylenes. No MtBE or other oxygenates were detected in the sample from MW-1. No hydrocarbons were detected in the groundwater sample taken from MW-2. The groundwater sample from MW-3 contained 17,000 μ g/L TPH-g, 2,800 μ g/L benzene, 60 μ g/L toluene, 380 μ g/L ethyl benzene, 190 μ g/L total xylenes, 990 μ g/L MtBE, 9.1 μ g/L tert-amyl methyl ether (TAME), and 350 μ g/L tert butyl alcohol (tBA).

On July 28, 2000, ASE advanced 12 Geoprobe borings (borings BH-A through BH-L) to further delineate the lateral and vertical extent of petroleum hydrocarbons and collected soil and grab groundwater samples from each borings. Laboratory analysis detected 0.00061 mg/Kg of MtBE in a soil samples collected from 3.0 feet (ft) below ground surface in boring BH-J. There were no petroleum hydrocarbons or oxygenates detected in soil samples from the other 11 borings, however, petroleum hydrocarbons and oxygenates were detected in grab groundwater samples collected from SH-A, B, C, D, I, J, K, and L.

In December 2002, ASE conducted an investigation to assess whether subsurface utility line trenches may provide a groundwater movement pathway. ASE concluded that it did not appear that the utility line trenches act as groundwater movement pathways. This conclusion

was based on ASE's assumption that the utility line trench backfill material is native sandy soil and that the highest concentrations of petroleum hydrocarbons in the 12 Geoprobe borings soil samples were located beyond the utility line trenches. Although ASE concluded that the utility line trenches did not provide a groundwater movement pathway, the ACEHS requested that water samples be collected from the sewer in one of the trenches to assess whether petroleum hydrocarbon-impacted groundwater may have entered the sewer line through seams or cracks.

In January 2004, ASE drilled four additional soil borings, BH-M through BH-P and the soil samples collected from each boring contained concentrations of TPH-d, with the highest concentration of 68 mg/Kg detected in BH-M. No TPH-d, BTEX or oxygenates were detected in any of the other soil samples. The groundwater samples collected from the borings contained TPH-d concentrations as high as 170 μ g/Land the groundwater sample collected from boring BH-O also contained 19 μ g/L MtBE. None of the other groundwater samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Groundwater samples were also collected from the sewer line beneath Central Avenue, both up gradient and down gradient of the Site. Low concentrations of TPH-g were detected in both samples. No BTEX or oxygenates were detected in either of these samples.

In December 2005, ASE conducted a records search at the Alameda City Public Works Agency and the California Department of Water Resources to identify water wells with ½ mile radius of the Site. A total of 25 wells were located within the search radius. The results included three domestic wells, 10 irrigation wells, one industrial well, two cathodic protection wells, four groundwater monitoring wells, and five vapor extraction wells. The nearest well is located more than 1,000 feet east of the Site. The nearest, potentially down gradient, well is located approximately 1,260 feet northwest of the Site. Based on the records search, ASE proposed additional soil and groundwater assessment for the Site.

In April 2006, ASE advanced two additional borings and installed two groundwater monitoring wells. Borings BH-Q, BH-R and monitoring wells MW-4 and MW-5 were installed using a drill rig equipped with an 8-inch hollow-stem auger. Petroleum hydrocarbons were detected by laboratory analysis at a concentration of 11 mg/Kg TPH-d in a soil sample from BH-Q and 1.7 mg/Kg TPH-d in a soil sample from the boring MW-5. The laboratory noted that the hydrocarbons reported as TPH-D in each sample did not exhibit a typical diesel chromatogram pattern. None of the soil samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Well construction details are presented in **Table 1**.

Groundwater samples collected from BH-Q and BH-R contained detectable concentrations of petroleum hydrocarbon of 220 μ g/L TPH-d and 770 μ g/L TPH-d, respectively. Similar to the soil samples, the laboratory noted the hydrocarbons reported as TPH-d did not exhibit a typical diesel chromatogram pattern. Based on the results of this investigation, ASE recommended no further delineation of the extent of petroleum hydrocarbons in soil or groundwater.

From April 2006 to March 2009, groundwater monitoring well samples have been collected and analyzed on a quarterly basis. The monitoring schedule for the Site has been reduced to a

semi-annual basis as directed in a letter from the ACEHS dated, July 24, 2009. Groundwater monitoring takes place during the first and third quarters.

In June 2008, the Site owners contracted with Matriks to conduct groundwater monitoring and prepare for further Site remediation.

Matriks submitted the *Site Investigation Workplan*, dated September 16, 2009, the ACEHS. The workplan was prepared in accordance with an ACEHS directive issued in a letter dated August 13, 2009. The proposed scope of work included the installation of four soil borings to further investigate the vertical extent of the release, define the contaminate plume, and evaluate on and off-site risks.

SCOPE OF WORK

The scope of work conducted for this semi-annual groundwater monitoring event included the following tasks:

- Measurement of static water levels in five groundwater monitoring wells;
- Collection of field water quality parameters including pH, temperature, dissolved oxygen, and specific conductance from groundwater in each well;
- Purging at least three casing volumes from each well;
- Collection and analysis of groundwater water samples from each well for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Update of the Geotracker database; and
- Preparation of this *Semi-Annual Monitoring Report*.

METHODS AND PROCEDURES

Groundwater Level Measurements

Prior to measuring the depth to groundwater, the cap of each well was removed and the water level was given an opportunity to equilibrate with atmospheric pressure for approximately 30 minutes before recording measurements using an electronic water depth indicator. The static water levels were referenced to the surveyed marks notched into the top of each well casing and the depth-to-water measurements were used to calculate the purge volume of for each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a new disposable bailer. Dissolved oxygen was measured prior to purging, and groundwater temperature, pH, and SC were measured intermittently during purging with a Hanna multimeter water quality instrument which was calibrated by the equipment rental service prior to on-site use. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled and sealed 55-gallon, DOT-approved steel drums and temporarily stored on-site.

A new disposable bailer dedicated to each well, was used to remove the groundwater samples and transfer them to the appropriate laboratory prepared containers. Care was taken to remove the headspace in each container. Each sample container was labeled with the project number, sample ID, and collection date. The same information was recorded on the laboratory chain-of-custody form. Samples were stored in a cooler filled with ice for transport to the laboratory.

Samples were transported and submitted to McCampbell Analytical, Inc. of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

Depth-to-water was measured in each monitoring well. The groundwater flow direction for this monitoring event was calculated to be N15^oE with a gradient of 0.021. Well construction details are presented in **Table 1**. Groundwater levels and elevations are summarized in **Table 2**. Groundwater elevation contours are depicted on **Figure 3**. Graphs of groundwater elevation versus time for all monitoring wells are presented on **Figure 4**.

Groundwater Analytical Results

TPH-g, BTEX, and MtBE were detected by laboratory analysis in the highest concentrations in onsite groundwater monitoring wells MW-1 and MW-3. TPH-g was detected in MW-1 and MW-3 at concentrations of 7,800 μ g/L and 6,100 μ g/L, respectively. TPH-g was also detected in MW-5 at a concentration of 230 μ g/L. TPH-g was not detected in groundwater samples collected from the other monitoring wells.

Benzene was also detected in MW-1, 3, and 5 at concentrations of 34 μ g/L, 110 μ g/L, and 1.6 μ g/L. Benzene was not detected in samples collected from the other two groundwater

monitoring wells. MtBE was detected in MW-1, MW-2, MW-3, MW-4, and MW-5 at concentrations of 3 µg/L, 4.7 µg/L, 170 µg/L, 1.0 µg/L, and 540 µg/L, respectively.

Groundwater analytical results are summarized in **Table 3**. A copy of the laboratory analytical report is included in **Appendix B**. **Figure 5** shows TPH-g and benzene concentration trends in well MW-1 and **Figure 6** shows these same concentration trends in MW-3.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by AB2886 (Water Code Section 13195-13198). EDFs are prepared and formatted by the laboratory and submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. A well status and usage report (GEO_WELL file) is submitted for each monitoring event. A complete electronic copy of this report (GEO_REPORT file) in PDF format was also submitted. Update maps (GEO_MAP files) are submitted when site features such as monitoring wells or soil borings are added.

DISCUSSION

In general, petroleum hydrocarbon concentrations have decreased since groundwater monitoring began in September 1999. This appears to indicate that natural attenuation and degradation are occurring.

The highest concentrations of petroleum hydrocarbons were detected in monitoring wells MW-1 and MW-3. TPH-g, TPH-d, and benzene in these wells were detected above the ESLs of 100 μ g/L, 100 μ g/L, and 1.0 μ g/L, respectively, established by the San Francisco Bay RWQCB. MtBE was also detected above the ESL in MW-3 and MW-5. TPH-d constituents in wells MW-3 and MW-5 appear to be TPH-g. The laboratory notes indicate that gasoline range compounds are significant.

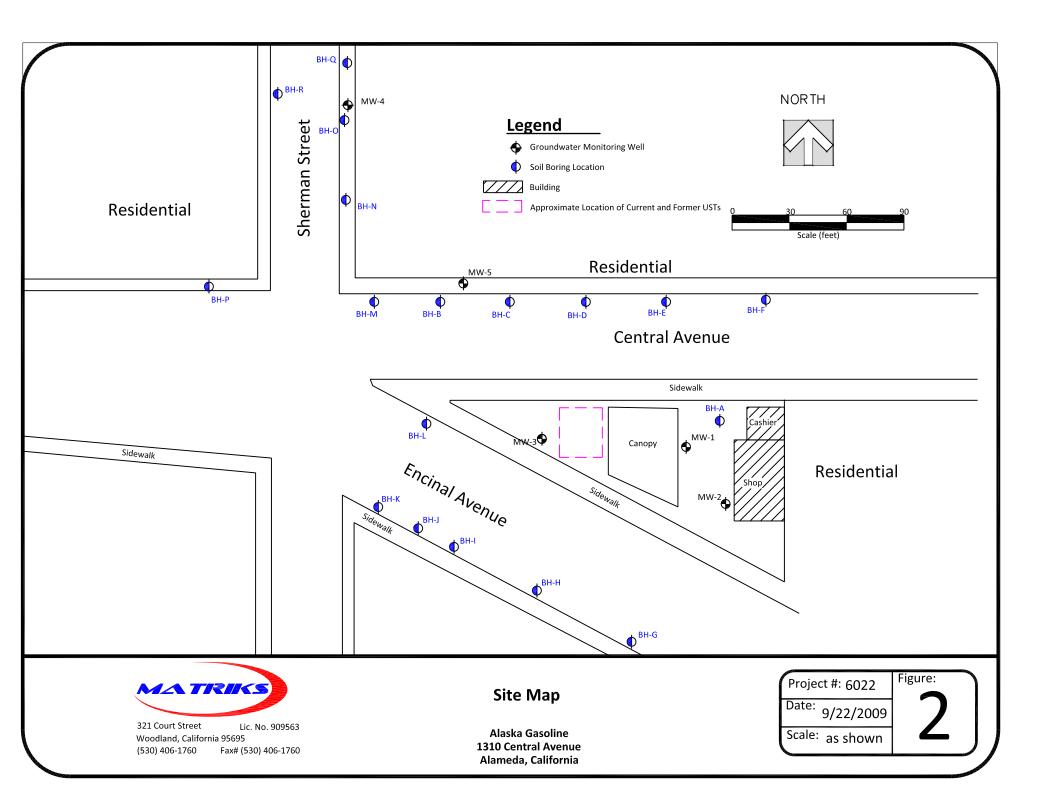
TPH-g, benzene, and MtBE were also detected above the ESLs in well MW-5. This appears to indicate that petroleum hydrocarbons are migrating down gradient from the Site.

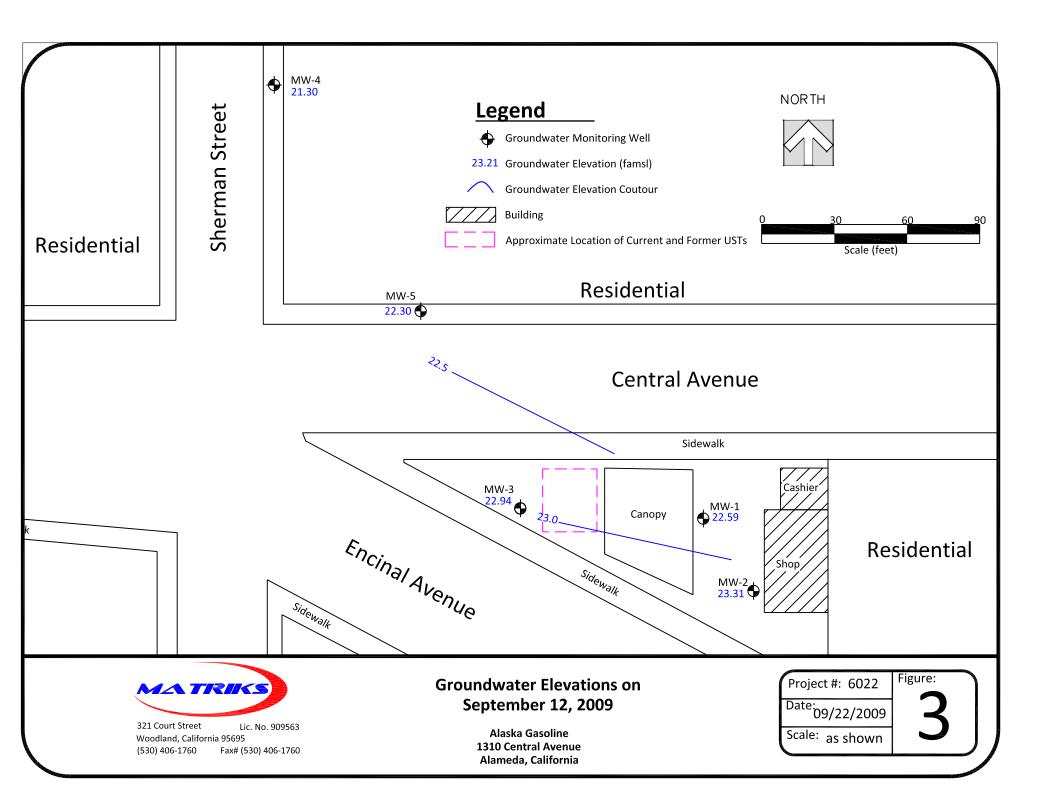
MtBE was detected in down gradient well MW-4 at a concentration of 1.0 μ g/L. This concentration is less than the ESL for MTBE of 5 μ g/L but this also appears to indicate that petroleum hydrocarbons are migrating down gradient within groundwater. Petroleum hydrocarbon concentrations detected in MW-1 and MW-2 appear to be consistent with their spatial relationship to the former USTs.

While benzene and MtBE appear to be migrating in the down gradient direction in low concentrations, the remote possibility of vapor intrusion into down gradient buildings must be considered.

RECOMMENDATIONS

Matriks submitted a Site Investigation Workplan to ACEHS to explore the vertical extent of the constituent plume. The proposed work will be performed upon approval of workplan. A Feasibility Study will be submitted upon defining the vertical and lateral extents of the groundwater constituents.


FIGURES



Site Location Map Alaska Gas 1310 Central Avenue, Alameda, CA

 ${\rm FIGURE}\ 1$

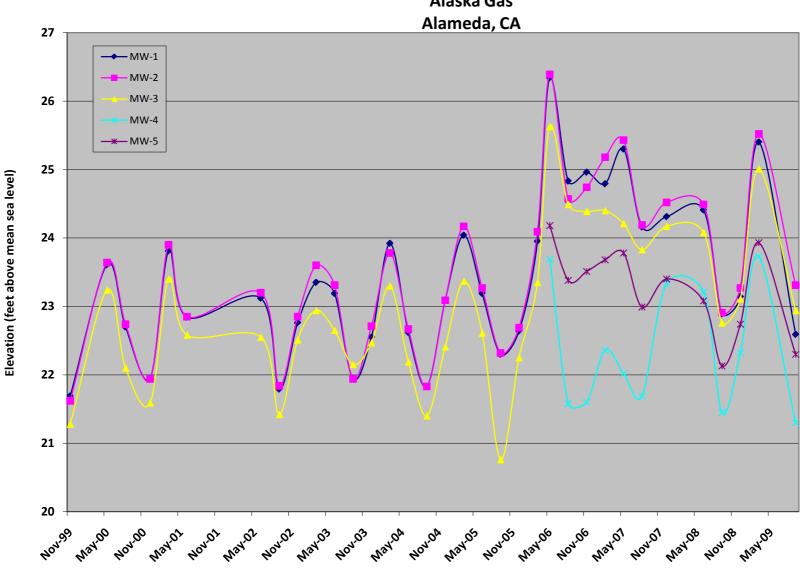


Figure 4 Monitoring Well Hydrograph Alaska Gas

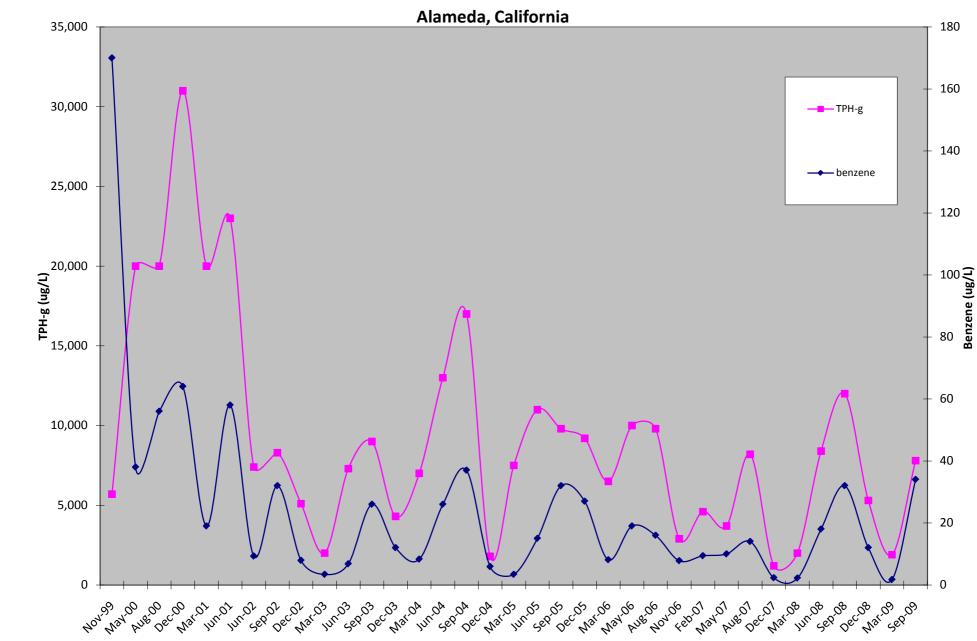


Figure 5. TPH-g and Benzene vs. Time in Well MW-1 Alaska Gas

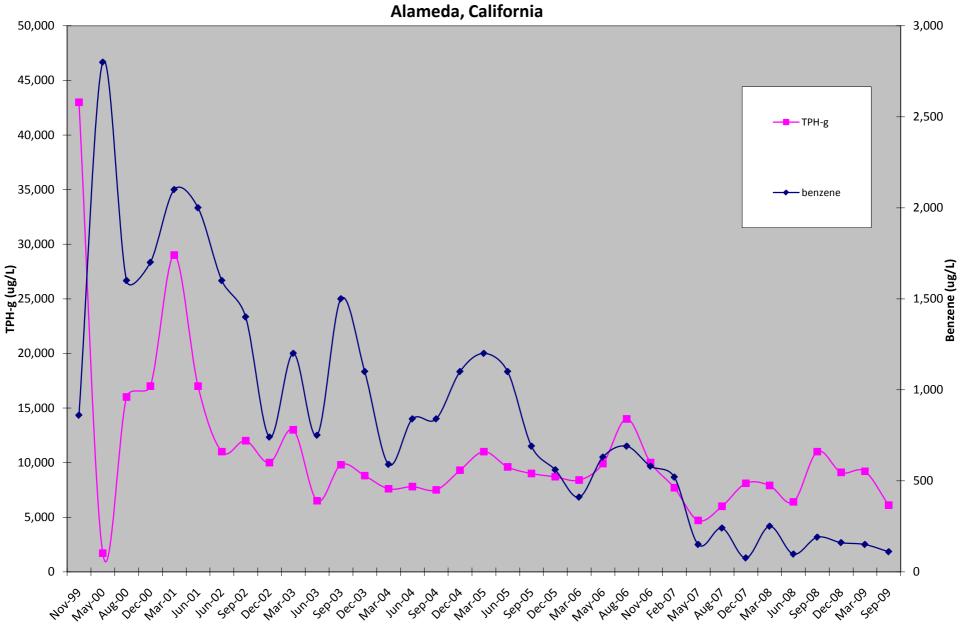


Figure 6. TPH-g and Benzene vs Time in Well MW-3 Alaska Gas

TABLES

Table 1 Well Construction Details Alaska Gas Alameda, California

Well ID	Date Installed	Total Depth (feet bg)	Screened Interval (feet bg)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet bg)	Bentonite Interval (feet bg)	Grout Interval (feet bg)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Westing Coordinates (feet)
MW-1	10/11/99	18	17.35-2.5	Silty Sand	0.02	18-1.5	1.5-0.5	0.5-0	29.18	15.20394	46.13606
MW-2	10/11/99	18	18-4	Silty Sand	0.02	18-3	3-1.5	1.5-0	29.55	14.93558	45.97882
MW-3	10/11/99	20	19-4	Silty Sand	0.02	20-3	3-1.5	1.5-0	27.74	15.28672	47.24157
MW-4	04/03/06	16	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.23	17.12115	48.05243
MW-5	04/04/06	17	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.78	16.21022	47.48996

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-1	11/06/99	26.85	5.16	21.69
	05/16/00		3.24	23.61
	08/03/00		4.15	22.70
	12/05/00		4.90	21.95
	03/05/01		3.04	23.81
	06/04/01		4.01	22.84
	06/05/02		3.73	23.12
	09/09/02		5.06	21.79
	12/19/02		4.09	22.76
	03/10/03		3.50	23.35
	06/03/03		3.66	23.19
	09/19/03		4.91	21.94
	12/22/03		4.30	22.55
	03/12/04		2.93	23.92
	06/11/04		4.23	22.62
	09/13/04		5.02	21.83
	12/16/04		3.76	23.09
	03/21/05		2.81	24.04
	06/23/05		3.66	23.19
	09/30/05		4.55	22.30
	12/08/05		4.21	22.64
	03/01/06		2.90	23.95
	05/25/06	29.18	2.84	26.34
	08/10/06		4.35	24.83
	11/21/06		4.22	24.96
	02/06/07		4.39	24.79
	05/08/07		3.88	25.30
	08/06/07		5.02	24.16
	12/26/07		4.87	24.31
	06/28/08		4.77	24.41
	09/27/08		6.29	22.89
	12/30/08		6.04	23.14
	03/28/09		3.78	25.40
	09/12/09		6.59	22.59

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-2	11/06/99	27.18	5.56	21.62
	05/16/00		3.54	23.64
	08/03/00		4.44	22.74
	12/05/00		5.24	21.94
	03/05/01		3.28	23.90
	06/04/01		4.33	22.85
	06/05/02		3.98	23.20
	09/09/02		5.34	21.84
	12/19/02		4.33	22.85
	03/10/03		3.58	23.60
	06/03/03		3.87	23.31
	09/19/03		5.24	21.94
	12/22/03		4.47	22.71
	03/12/04		3.40	23.78
	06/11/04		4.51	22.67
	09/13/04		5.35	21.83
	12/16/04		4.09	23.09
	03/21/05		3.01	24.17
	06/23/05		3.91	23.27
	09/30/05		4.86	22.32
	12/08/05		4.49	22.69
	03/01/06		3.09	24.09
	05/25/06	29.55	3.16	26.39
	08/10/06		4.98	24.57
	11/21/06		4.81	24.74
	02/06/07		4.37	25.18
	05/08/07		4.12	25.43
	08/06/07		5.36	24.19
	12/26/07		5.03	24.52
	06/28/08		5.06	24.49
	09/27/08		6.64	22.91
	12/30/08		6.28	23.27
	03/28/09		4.03	25.52
	09/12/09		6.24	23.31

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-3	11/06/99	25.3	4.02	21.28
	05/16/00		2.06	23.24
	08/03/00		3.20	22.10
	12/05/00		3.71	21.59
	03/05/01		1.90	23.40
	06/04/01		2.72	22.58
	06/05/02		2.75	22.55
	09/09/02		3.88	21.42
	12/19/02		2.79	22.51
	03/10/03		2.36	22.94
	06/03/03		2.65	22.65
	09/19/03		3.15	22.15
	12/22/03		2.83	22.47
	03/12/04		2.00	23.30
	06/11/04		3.11	22.19
	09/13/04		3.90	21.40
	12/16/04		2.89	22.41
	03/21/05		1.93	23.37
	06/23/05		2.69	22.61
	09/30/05		4.54	20.76
	12/08/05		3.05	22.25
	03/01/06		1.95	23.35
	05/25/06	27.74	2.11	25.63
	08/10/06		3.25	24.49
	11/21/06		3.35	24.39
	02/06/07		3.34	24.40
	05/08/07		3.53	24.21
	08/06/07		3.91	23.83
	12/26/07		3.57	24.17
	06/28/08		3.66	24.08
	09/27/08		4.98	22.76
	12/30/08		4.63	23.11
	03/28/09		2.73	25.01
	09/12/09		4.80	22.94

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-4	05/25/06	26.23	2.54	23.69
	08/10/06		4.65	21.58
	11/21/06		4.63	21.60
	02/06/07		3.87	22.36
	05/08/07		4.21	22.02
	08/06/07		4.54	21.69
	12/26/07		2.90	23.33
	06/28/08		3.02	23.21
	09/27/08		4.78	21.45
	12/30/08		3.91	22.32
	03/28/09		2.50	23.73
	09/12/09		4.93	21.30
MW-5	05/25/06	26.78	2.60	24.18
	08/10/06		3.40	23.38
	11/21/06		3.27	23.51
	02/06/07		3.10	23.68
	05/08/07		3.00	23.78
	08/06/07		3.79	22.99
	12/26/07		3.38	23.40
	06/28/08		3.70	23.08
	09/27/08		4.65	22.13
	12/30/08		4.04	22.74
	03/28/09		2.85	23.93
	09/12/09		4.48	22.30

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level. Wells resurveyed on April 27, 2006

Alameda, California

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygenates
MW-1	11/06/99	5,700	8,700	170	59	22	85	20,000	NA	NA	NA
	05/16/00	20,000	<7,500	38	6.3	740	1,600	<5.0	<5.0	<50	<5.0
	08/03/00	20,000	<6,000	56	9.7	920	1,600	<0.5	<0.5	<50	<0.5
	12/05/00	31,000	<4,000	64	27	820	2,200	<10	<5.0	<50	<5.0
	03/05/01	20,000	<4,000	19	<5.0	480	870	<5	<5.0	<50	<5.0
	06/04/01	23,000	<7,000	58	50	710	2,100	5.1	<5.0	<50	<5.0
	06/05/02	7,400	<1,500	9.3	6.7	180	230	<1.0	<1.0	<10	<1.0
	09/09/02	8,300	<3500	32	20	390	670	<2.0	<2.0	<20	<2.0
	12/19/02	5,100	NS	7.9	2.5	56	93	<1.0	<1.0	<10	<1.0
	03/10/03	2,000	<2,000	3.4	2.9	80	98	<0.5	<0.5	<5.0	<0.5
	06/03/03	7,300	<4,000	6.8	9.9	300	1,000	2.3	<0.5	<5.0	<0.5
	09/19/03	9,000	<3,000	26	22	420	1,200	4.5	<1.5	<20	<1.5
	12/22/03	4,300	<2,000	12	6.7	200	290	9.1	<1.0	<10	<1.0
	03/12/04	7,000	<3,000	8.3	8.2	250	760	3.9	<2.0	<20	<2.0
	06/11/04	13,000	<4,000	26	27	530	1,700	<2.5	<2.5	<15	<2.5
	09/13/04	17,000	<4,000	37	42	840	2,000	<5.0	<5.0	<50	<5.0
	12/16/04	1,800	<1,000	5.9	1.9	100	35	16	<0.5	<5.0	<0.5
	03/21/05	7,500	<3,000	3.4	4.2	290	760	<1.5	<1.5	<20	<1.5
	06/23/05	11,000	<8,000	15	11	370	910	2.4	<1.5	<7.0	<1.5
	09/30/05	9,800	<4,000	32	25	540	680	1.6	<1.5	<7.0	<1.5
	12/08/05	9,200	<4,000	27	21	500	490	2.2	<1.5	<7.0	<1.5
	03/01/06	6,500	<4,000	8.1	9.4	370	660	18	<1.5	<6.0	<1.5
	05/25/06	10,000	<3,000	19	14	900	620	<1.5	<1.5	<7.0	<1.5
	08/10/06	9,800	<1,500	16	8.1	640	180	<1.5	<1.5	<7.0	<1.5
	11/21/06	2,900	<1,000	7.8	2.5	160	12	2.5	2.5	<5.0	<0.5
	02/06/07	4,600	<1,500	9.4	6	380	220	1	<0.50	<5.0	<0.50
	05/08/07	3,700	<800	10	4.6	320	86	1.5	<0.50	<5.0	<0.50
	08/06/07	8,200	<2,000	14	8.8	730	180	<0.50	<0.50	<5.0	<0.50
	12/26/07	1,200	<300	2.3	1.1	89	21	4.8	<0.50	<5.0	<0.50
	03/31/08	2,000	<800	2.2	1.6	99	75	1.8	<0.50	<5.0	<0.50
	06/28/08	8,400	3900*	18	26	670	1,100	<2.5	<2.5	<10	<2.5
	09/27/08	12,000	4600*	32	49	1,200	680	<25	<25	<100	<25
	12/30/08	5,300	3,700	12	31	300	27	7.1	<5.0	<20	<5.0
	03/28/09	1,900	920*	<1.7	<1.7	77	58	22	<1.7	<6.7	<1.7
	09/12/09	7,800	9,400	34	110	690	200	3.0	<0.5	140	<0.5

Alameda, California

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygenates
MW-2	11/06/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
	05/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/03/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/05/00	<50	1,400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	03/05/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/04/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/05/02	<50	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/09/02	<50	1,300	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	12/19/02	<50		<0.5	<0.5	<0.5	<0.5	16	<0.5	<5.0	<0.5
	03/10/03	<50	3,000	<0.5	<0.5	<0.5	<0.5	1	<0.5	<5.0	<0.5
	06/03/03	<50	700	<0.5	<0.5	<0.5	<0.5	2	<0.5	<5.0	<0.5
	09/19/03	<50	1,400	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<5.0	<0.5
	12/22/03	<50	1,000	<0.5	<0.5	<0.5	<0.5	39	<0.5	<5.0	<0.5
	03/12/04	<50	250	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<5.0	<0.5
	06/11/04	<50	920	<0.5	<0.5	<0.5	<0.5	0.75	<0.5	<5.0	<0.5
	09/13/04	<50	140	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<5.0	<0.5
	12/16/04	<50	150	<0.5	<0.5	<0.5	<0.5	12	<0.5	<5.0	<0.5
	03/21/05	<50	130	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/23/05	<50	1,100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/30/05	<50	300	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<5.0	<0.5
	12/08/05	<50	600	<0.5	<0.5	<0.5	<0.5	1.9	<0.5	<5.0	<0.5
	03/01/06	<50	920	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/25/06	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/10/06	<50	870	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	11/21/06	<50	130	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<5.0	<0.5
	02/06/07	<50	450	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/26/07	<50	190	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<5.0	<0.5
	03/31/08	Inaccessa	able Not S	ampled							
	06/28/08	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<2.0
	09/27/08	<50	78	<0.5	<0.5	<0.5	<0.5	7	<0.5	<2.0	<0.5
	12/30/08	<50	100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5
	03/28/09	<50	60	<0.5	<0.5	<0.5	<0.5	5.4	<0.5	<0.5	<0.5
	09/12/09	<50	91	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<2.0	<0.5

Alameda, California

Well ID	Data			honzono	taluana	ethyl-	vulanas	M+DE	tAME	tBA	Other
_	Date	TPH-g	TPH-d			benzene		MtBE	-	-	Oxygenates
MW-3	11/06/99	43,000	870	860	70	< 0.5	65	120,000	NA	NA	NA
	05/16/00	17,000	<5,000	2,800	60	380	190	990	9.1	350	<5.0
	08/03/00	16,000	<2,000	1,600	29	210	53	1,200	21	260	<2.0
	12/05/00	17,000	5800	1,700	45	460	240	1,100	21	230	<5.0
	03/05/01	29,000	<1,300	2,100	68	280	100	180	<8.0	<80	<8.0
	06/04/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
	06/05/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
	09/09/02	12,000	<800	1,400	44	130	27	760	<10	160	<5.0
	12/19/02	10,000	NS	740	32	180	38	86	<5.0	<50	<5.0
	03/10/03	13,000	<6,000	1,200	42	240	35	470	5.3	140	<2.5
	06/03/03	6,500	<3,000	750	21	46	15	1,300	<50	280	<10
	09/19/03	9,800	<3,000	1,500	38	170	32	420	<10	150	<5.0
	12/22/03	8,800	<2,000	1,100	32	82	20	330	5.8	52	<2.5
	03/12/04	7,600	<3,000	590	23	69	17	470	9.2	63	<1.5
	06/11/04	7,800	<2,000	840	19	58	15	710	12	140	<2.5
	09/13/04	7,500	<1,500	840	17	23	7.8	730	15	93	<2.5
	12/16/04	9,300	<2,000	1,100	26	76	13	600	12	130	<2.5
	03/21/05	11,000	<3,000	1,200	37	190	24	460	9.3	100	<2.5
	06/23/05	9,600	<4,000	1,100	28	93	23	370	8.2	67	<1.5
	09/30/05	9,000	<3,000	690	18	32	14	380	8.4	72	<1.5
	12/08/05	8,700	<3,000	560	23	38	12	350	6.9	82	<1.5
	03/01/06	8,400	<2,000	410	24	42	13	360	8	58	<1.5
	05/25/06	9,900	<2,000	630	25	13	13	190	5.3	59	<1.5
	08/10/06	14,000	<3,000	690	43	130	26	200	5.4	70	<1.5
	11/21/06	10,000	<3,000	580	37	96	25	240	6.3	72	<1.5
	02/06/07	7,700	<1,000	520	36	90	23	260	7.4	54	<1.5
	05/08/07	4,700	<800	150	0.86	<0.5	<0.5	170	5	52	<0.5
	08/06/07	6,000	<1,000	240	26	34	17	180	5	55	<0.5
	12/26/07	8,100	<1,500	76	14	17	12	150	4.3	37	<0.9
	03/31/08	7,900	<1,500	250	30	62	20	140	4.5	47	<0.90
	06/28/08	6,400	3100*	97	17	19	13	200	5.6	38	<5.0
	09/27/08	11,000	15000*	190	24	29	16	160	<5.0	40	<5.0
	12/30/08	9,100	2300*	160	24	31	18	150	5	100	<5.0
	03/28/09	9,200	4300*	150	25	34	22	120	<5.0	38	<5.0
	09/12/09	6,100	2700*	110	21	14	18	170	<5.0	38	<0.5

Alameda, California

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygenates
MW-4	05/25/06	410	<80	<2.5	<2.5	<2.5	<2.5	1800	28	44	<2.5
	08/10/06	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	11/21/06	<50	<50	<0.5	<0.5	<0.5	<0.5	0.59	<0.5	<5.0	<0.5
	02/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<5.0	<0.5
	12/26/07	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	03/31/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	06/28/08	<50	88	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5
	09/27/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	12/30/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5
	03/28/09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5
	09/12/09	<50	240	<0.5	<0.5	<0.5	<0.5	1.0	<0.5	<2.0	<0.5
MW-5	05/25/06	<50	86	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	08/10/06	55	<50	<0.5	<0.5	<0.5	<0.5	1,100	19	9.1	<0.5
	11/21/06	<250	<50	<2.5	<2.5	<2.5	<2.5	1,500	25	28	<2.5
	02/06/07	430	<50	6.9	<2.5	<2.5	<2.5	1,600	26	34	<2.5
	05/08/07	<250	<50	<2.5	<2.5	<2.5	<2.5	1,200	20	38	<2.5
	08/06/07	330	<80	<2.5	<2.5	<2.5	<2.5	1,000	20	39	<2.5
	12/26/07	490	<50	<2.5	<2.5	<2.5	<2.5	1,000	18	28	<2.5
	03/31/08	520	<100	6.0	1.9	<1.5	2.5	520	16	33	<1.5
	06/28/08	510	290*	6.2	1.0	<0.5	2.3	550	11	<40	<10
	09/27/08	670	320*	<17	<17	<17	<17	650	<17	95	<17
	12/30/08	210	130*	<0.5	0.8	0.99	<0.5	610	12	<40	<10
	03/28/09	200	100*	<17	<17	<17	<17	610	<17	<67	<17
	09/12/09	230	130*	1.6	1.3	<0.5	1.4	540	11	<40	<10
	ESL	100	100	1.0	40	30	20	5	NE	50,000	NA

Notes:

Units are micrograms per liter (ug/L).

NT analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

* Laboratory noted that TPH-g range is significant

MtBE methyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol

APPENDIX A

MONITORING WELL PURGE LOGS

MONITORING WELL SAMPLING LOG

SITE NAME	LOCATIC	N:	9/4m	reda	Anto a contrato da contrato	F	PROJECT #:
DATE:	9/12	109	-			2	SAMPLER'S INITIALS: CM
WELL ID:	MW-Z	<u> </u>	_	WELL DIAM	METER (in):	2	
WELL DEPT	'H (ft):	12.2	-	DEPTH TO	WATER (ft):	6.59	WATER COLUMN Ht (ft): 5.61
STANDING Y				0,9 the water co		3 VOLUMES (gal):	
PURGE MET	25.	Caile or	Mini-Wh	aler Pump		SAMPLING METHOD:	
		(circle t	he correct		RGE MEASURE	EMENTS	
Time	Gallons	Temp	рН	SC	DO		Comments
	Purged	(C)	-	(uS)	(mg/L)	DO prior to purging	ORP -55
1548	1	73.04	6.52	404	9.36		UNP -33
1549	2	72.73	6.46	440	8.75		
1550	3		6.47	451	8.46		
1551	4	72.57	6.46	457	8.71	n 1947 en 1947	
1301			0. 00	-(3 /		Sampled 15	54
							•
WELL ID:	MW- /		-	WELL DIAM	AETER (in):	~	
WELL DEPT	Ή (ft):	11.03	- -	DEPTH TO	WATER (ft):	6.24	WATER COLUMN Ht (ft): <u>4-79</u>
STANDING	WATER VOI	LUME (gal):		0.8		3 VOLUMES (gal):	2.9
To obtain sta	Inding volum	e in gallons,	multiply		lumn height by	0.17 for 2-inch well or 0	0.66 for a 4-inch well.
PURGE MET	HOD:	Bailer or	Mini-Wh	naler Pump		SAMPLING METHOD:	disposable PE bailer
		(chere e			RGE MEASURE	EMENTS	
Time	Gallons	Temp		SC	DO		Comments
Time	Purged	(C)	рН	(uS)	(mg/L)		comments
			111-15-0		3.22	DO prior to purging	ORP -196
1606	1	73,9	6.55	737	6.5	Tup = 73,9	
1609	2	125.0 (0.7.12) - 14.14 (2) 11.2	6.61	694	4.6		
1611	2.5	72.75	6.67	566	4,4		
						Sampled 1014	
-							

MONITORING WELL SAMPLING LOG

SILE NAME	E/LOCATIO	N: Ala	meda			PROJECT #:
DATE:	9/12/	09				SAMPLER'S INITIALS: CM
WELL ID:	MW- C	1		WELL DIAM	METER (in):	2
WELL DEPT	「H (ft):	14.2		DEPTH TO	WATER (ft):	<u>4.93</u> WATER COLUMN Ht (ft): 9,27
STANDING To obtain sta				1.5 the water co	Contraction of the second s	3 VOLUMES (gal): <u>9, 5</u> 0.17 for 2-inch well or 0.66 for a 4-inch well.
PURGE MET	THOD:		Mini-Wh	aler Pump		SAMPLING METHOD: disposable PE bailer
				PU	RGE MEASURE	EMENTS
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)	Comments
					2.74	DO prior to purging ORP ~149.4
1453	1.5	69.9	6.84	433	6.88	
1526	3.5	68.9	7.15	266	14.9	Zgel bailed dry
	4.5	68.4	6.84	453	10.8	
						Sampled C1531
WELL ID:	MW-5	5		WELL DIAM	METER (in):	2
WELL ID: WELL DEPT	1977 - 1987 - Carl - Carl	· 1418	-		AETER (in): WATER (ft):	
WELL DEPT	「H (ft):	14.8	-	DEPTH TO		<u> </u>
WELL DEPT	TH (ft): WATER VO	ાત્મ પ્ર LUME (gal):		DEPTH TO	WATER (ft):	
WELL DEPT STANDING	TH (ft): WATER VO	لاطنة LUME (gal): The in gallons, Baile or	multiply Mini-Wh	DEPTH TO	WATER (ft):	<u>4.48</u> WATER COLUMN Ht (ft): <u>/0.32</u> 3 VOLUMES (gal): <u>5、1</u>
WELL DEPT STANDING	TH (ft): WATER VO	لاطنة LUME (gal): The in gallons, Baile or	multiply	DEPTH TO	WATER (ft):	५.५४ WATER COLUMN Ht (ft): /o.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer
WELL DEPT STANDING	TH (ft): WATER VO	LUME (gal): the in gallons, Baile or (circle t	multiply Mini-Wh	DEPTH TO	WATER (ft):	५.५४ WATER COLUMN Ht (ft): /o.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer
WELL DEPT STANDING To obtain sta PURGE MET	TH (ft): WATER VOI anding volum THOD: Gallons	LUME (gal): te in gallons, Baile or (circle t	multiply Mini-Wh he correct	DEPTH TO 1,7 the water co aler Pump method) PU SC	WATER (ft): lumn height by RGE MEASURI DO (mg/L)	प. पठे WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS Comments
WELL DEPT STANDING To obtain sta PURGE MET	TH (ft): WATER VOI anding volum THOD: Gallons Purged	LUME (gal): te in gallons, Baile or (circle t Temp (C)	multiply Mini-Wh he correct p H	DEPTH TO /, 7 the water co aler Pump method) PU SC (uS)	WATER (ft): lumn height by RGE MEASURI DO (mg/L) ?.2 §	प. पठे WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS Comments
WELL DEPT STANDING Y To obtain sta PURGE MET Time	TH (ft): WATER VOI anding volum THOD: Gallons Purged	LUME (gal): the in gallons, Baile or (circle t	Mini-Wh he correct pH	DEPTH TO 1,7 the water co aler Pump method) PU SC	WATER (ft): lumn height by RGE MEASURI DO (mg/L)	प. पठे WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS Comments
WELL DEPT STANDING To obtain sta PURGE MET	TH (ft): WATER VOI anding volum THOD: Gallons Purged	LUME (gal): te in gallons, Baile or (circle t Temp (C)	multiply Mini-Wh he correct pH 6.69 6.67	DEPTH TO 1.7 the water co valer Pump method) PU SC (uS) 815 826	WATER (ft): lumn height by RGE MEASURI DO (mg/L) 7.28 6.87	प. पठे WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS Comments
WELL DEPT STANDING To obtain sta PURGE MET	TH (ft): WATER VOI anding volum THOD: Gallons Purged	LUME (gal): te in gallons, Bailed or (circle t Temp (C) G9.3	Mini-Wh he correct pH	DEPTH TO 1.7 the water co aler Pump method) PU SC (uS) \$15	WATER (ft): lumn height by RGE MEASURI DO (mg/L) 7.28 6.87 7.01	प. पठे WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS Comments
WELL DEPT STANDING To obtain sta PURGE MET Time ISO9 ISO9 ISO9	TH (ft): WATER VOI anding volum THOD: Gallons Purged	<u>14:8</u> LUME (gal): e in gallons, Bailed or (circle t Temp (C) 69.3 69.7 69.1	multiply Mini-Wh he correct pH 6.69 6.68	DEPTH TO 1.7 the water co aler Pump method) PU SC (uS) 815 826 829	WATER (ft): lumn height by RGE MEASURI DO (mg/L) 7.28 6.87 7.21 6.87	प. पठे WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS Comments
WELL DEPT STANDING To obtain sta PURGE MET Time ISO 9 IS[0 IS[2 IS]3 IS[7]	TH (ft): WATER VOI anding volum THOD: Gallons Purged	IME (gal): LUME (gal): te in gallons, Baile or (circle t Temp (C) GR.5 GR.3 GR.3 GR.7	multiply Mini-Wh he correct pH 6.69 6.63 6.63	DEPTH TO 1.7 the water co aler Pump method) PU SC (uS) 815 826 829 826 829	WATER (ft): lumn height by RGE MEASURI DO (mg/L) 7.28 6.87 7.07 6.87 7.07 6.81	4.48 WATER COLUMN Ht (ft): 10.32 3 VOLUMES (gal): 5.1 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bailer EMENTS D0 prior to purging 020 ~ 166

MONITORING WELL SAMPLING LOG

SITE NAME	LOCATIO	N: A	lamed	9			PROJECT #:	
DATE:	9/12/	oq			÷		SAMPLER'S INITIALS:	CM
WELL ID:	MW-3			WELL DIAM	METER (in):	2		
WELL DEPT	H (ft):	16.03		DEPTH TO	WATER (ft):	4.80	WATER COLUMN Ht (ft):	11,23
STANDING		100 C	the local sector of the	1.9		3 VOLUMES (gal):		
To obtain sta	nding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch well or	r 0.66 for a 4-inch well.	
PURGE MET	HOD:		Mini-Wh	aler Pump method)		SAMPLING METHOD	disposable PE	bailer
				PU	RGE MEASURE	EMENTS	241 HE SHE HER MILLION (2017) HER CONTROL OF MILLION AND THE	
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)		Comments	
	, argea	(0)		(00)	3,58	DO prior to purging	0RP - 168	
1627	1	75.23	6.47	726	7.09			
1628	2	74.11	6.51	722	6.81			1
1631	3	71.80	6.54	717	7.59			
1632	4	71.55	6.53	715	7.68			
1634	Ь	71.44	6.51	708	7.63			
WELL ID:	Ø		•0800* »- •05		AETER (in):			
WELL DEPT	H (ft):			DEPTH TO	WATER (ft):		WATER COLUMN Ht (ft):	
STANDING		Concernent Accounter				3 VOLUMES (gal):	1 <u></u>	
To obtain sta	nding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch well or	r 0.66 for a 4-inch well.	
PURGE MET	HOD:		Mini-Wh			SAMPLING METHOD	disposable PE	E bailer
					RGE MEASURE	EMENTS		
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)		Comments	
						DO prior to purging		

APPENDIX B

LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

When Oual		Web: www.mc	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	ain@mccampbell.com
Matriks Corporation	Client Project ID: Alaska	Gas; Alameda	Date Sampled:	09/12/09
321 Court Street			Date Received:	09/14/09
Woodland, CA 95695	Client Contact: Tom Hen	derson	Date Reported:	09/21/09
Woodland, CH 95095	Client P.O.:		Date Completed:	09/18/09

WorkOrder: 0909397

September 21, 2009

Dear Tom:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: Alaska Gas; Alameda,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

												2								0	1	10	79	73	30	7	フ				
	ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccampbel) 252-92	LLOW PA RG, CA 94 I <u>l.com</u> En 62	SS RO 1565-17 nail: n	AD 701 nain@ Fax:	mcc	amp	bell.	com)							OU	ND			E PD Che	F ck i	RUS	H Ex	24 cel	HR		48 H Wri	ite On id "J"	72 H n (D flag	W) 🖵 is required
Tele: (530)92 Project #: Project Location	itrits Court st Oland, Ca 2-7106 : Alama	×	I F	E-Mai Tax: (Projec	il:) ne:	Alo	ski	6	25			/ 8021 + 8015) / MTBE		use (1664 / 5520 E/B&F)	bons (418.1)	21 (HVOCs)			1	ides)			OCs)	Hs / PNAs)	0.8 / 6010 / 6020)	0.8 / 6010 / 6020)	6020)	Ot	ier	Comments Filter Samples for Metals analysis: Yes / No
Sampler Signatu	LOCATION/ Field Point Name	SAMI Date	Time	# Containers	Type Containers	Water	NA	Air		PR		CONH CONH	BTEX & TPH as Gas (602/8021	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	70×4 - 2pb 5		
+10 MW-1 +6 MW-2 +6 MW-3 + MW-4 +1 MW-5		9/12/02	1614 1554 1636 1531 1570	5	×	5				5	5		×	X															*		
Relinquished By: Relinquished By: Relinquished By: Relinquished By:	. 0.	Date: 9/14 Date:	Time: Boo Time: 1946 Time:	Rece	tived B Arota	iy:	- R - R		0%	5			GO HE DE	OD AD S CHL PRO		DIT CE A NAT	ED I CON	NT_IN LA		4		2 1	×	+ 1	1	300	c0	MM	ENTS:		

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

С

Page 1 of 1

	252-9262					Work	Order:	0909.	397	ClientCo	de: MCW			
		WaterTrax	WriteOn	EDF		Excel	[Fax	Ema	ail [HardCopy	ThirdPar	y 🔲 J	l-flag
Report to:							Bill to:				Rec	uested TAT	: 5	days
Tom Hende	erson	Email:	thenderson@r	matrikscorp.com			Ro	bert Ne	ely					
Matriks Cor	poration	CC:					Ma	triks Co	orporation					
321 Court S	Street	PO:					32	1 Court	Street		Dai	te Receivea	: 09/14	/2009
Woodland,	CA 95695	ProjectNo:	Alaska Gas; A	lameda			Wo	odland	, CA 95695		Dat	te Printed:	09/14	/2009
(530) 406-17	60 FAX (530) 406-1771													
					[Requeste	d Tests (S	See legend k	oelow)		
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7 8	9 10	11	12
0909397-001	MW-1		Water	9/12/2009 16:14		В	А	А	С					
0909397-002	MW-2		Water	9/12/2009 15:54		В	А		С					

В

А

9/12/2009 16:36

0909397-004 MW-4 Water 9/12/2009 15:31 В А С В С 0909397-005 MW-5 Water 9/12/2009 15:16 А

Water

Test Legend:

0909397-003

1	9-OXYS_W	
6		
11		

MW-3

3	PREDF REPORT
8	

4	TPH(D)_W
9	

5	
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Matriks Corporat	ion				Dat	e and	d Time Received:	9/14/2009	8:08:44 PM
Project Name:	Alaska Gas; Alan	neda				Che	ecklis	st completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	0909397	Matrix	Water			Car	rrier:	EnviroTech (RC	<u>C)</u>	
			<u>Chain</u>	of Cu	stody (C	OC) Infor	mati	on		
Chain of custody p	present?			Yes	\checkmark	No]			
Chain of custody s	signed when relinquis	shed and	d received?	Yes	\checkmark	No 🗆]			
Chain of custody a	agrees with sample la	abels?		Yes	✓	No]			
Sample IDs noted b	by Client on COC?			Yes	\checkmark	No 🗆]			
Date and Time of c	collection noted by Cli	ent on C	OC?	Yes	✓	No 🗆]			
Sampler's name no	oted on COC?			Yes	\checkmark	No]			
			Sa	ample	Receipt	Informati	on			
Custody seals inta	act on shipping contai	iner/cool	er?	Yes		No 🗆]		NA 🔽	
Shipping container	r/cooler in good condi	ition?		Yes	\checkmark	No 🗆]			
Samples in proper	containers/bottles?			Yes	✓	No 🗆]			
Sample containers	s intact?			Yes	\checkmark	No]			
Sufficient sample	volume for indicated	test?		Yes		No]			
		<u>Sa</u>	mple Preser	vatior	and Hol	ld Time (I	HT) I	nformation		
All samples receive	ed within holding time	e?		Yes	✓	No]			
Container/Temp BI	lank temperature			Coole	r Temp:	4.2°C			NA 🗆	
Water - VOA vials	have zero headspac	ce / no b	ubbles?	Yes	✓	No 🗆	J N	lo VOA vials submi	itted 🗆	
Sample labels che	ecked for correct pres	servation	ו?	Yes	✓	No]			
TTLC Metal - pH a	cceptable upon recei	pt (pH<2	2)?	Yes		No			NA 🗹	
Samples Received	d on Ice?			Yes	✓	No				
			(Ice Type	e: WE	TICE)					
* NOTE: If the "No	o" box is checked, se	e comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Quality		<u>ıc.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 92	@mccampbell.c	com	
Matriks Corporation	Client P	roject ID: Alask	a Gas; Alameda	Date Sampled:	09/12/09		
321 Court Street				Date Received:	09/14/09		
521 Court Succi	Client C	Contact: Tom He	enderson	Date Extracted:	09/15/09-0	19/16/09	
Woodland, CA 95695	Client P.	.0.:		Date Analyzed:	09/15/09-0	19/16/09	
Oxygenat	ed Volatile Orga	nics + EDB and	1,2-DCA by P&T	and GC/MS*			
Extraction Method: SW5030B	Ana	lytical Method: SW8	260B		Work Order:	0909397	
Lab ID	0909397-001B	0909397-002B	0909397-003B	0909397-004B			
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting DF	timit for =1	
Matrix	W	W	W	W			
DF	1	1	10	1	S	W	
Compound		Con	centration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND	ND	ND<5.0	ND	NA	0.5	
t-Butyl alcohol (TBA)	140	ND	38	ND	NA	2.0	
1,2-Dibromoethane (EDB)	ND	ND	ND<5.0	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND<5.0	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND<5.0	ND	NA	0.5	
Ethanol	ND	ND	ND<500	ND	NA	50	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND<5.0	ND	NA	0.5	
Methanol	ND	ND	ND<5000	ND	NA	500	
Methyl-t-butyl ether (MTBE)	3.0	4.7	170	1.0	NA	0.5	
	Suri	ogate Recoveri	es (%)				
%SS1:	86	76	85	76			
Comments	b6,b1	b1	b1				
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample		olid samples in mg	/kg, product/oil/non-a	queous liquid sampl	es and all TC	LP & SPL	
ND means not detected above the report	ing limit; N/A mean	ıs analyte not appl	icable to this analysi	s.			
# surrogate diluted out of range or coelut	es with another pea	ık; &) low surrogat	e due to matrix inter	ference.			
1) aquaous sample that contains greater	then 1 rel 0/ and	limont					

b1) aqueous sample that contains greater than ~1 vol. % sedimentb6) lighter than water immiscible sheen/product is present

McCampbell An "When Quality		al, Inc.			Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:	@mccampbell.c	om	
Matriks Corporation	0	Client Proje	ct ID: Ala	iska (Gas; Alameda	Date Sampled:	09/12/09		
321 Court Street						Date Received:	09/14/09		
521 Court Street	C	Client Conta	act: Tom H	Hend	derson	Date Extracted:	09/15/09-0	9/16/09	
Woodland, CA 95695	C	Client P.O.:				Date Analyzed:	09/15/09-0	9/16/09	
•••	ed Volatil	0		ŕ	2-DCA by P&T	and GC/MS*			
Extraction Method: SW5030B	0909397	· · ·	al Method: SW	V8260)B		Work Order:	0909397	
Client ID	MW						- Deporting Limit for		
							Reporting Limit for DF =1		
Matrix	W								
DF	20)					S	W	
Compound			Co	once	ntration	1	ug/kg	µg/L	
tert-Amyl methyl ether (TAME)	11	l					NA	0.5	
t-Butyl alcohol (TBA)	ND<	<40					NA	2.0	
1,2-Dibromoethane (EDB)	ND<	<10					NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<	<10					NA	0.5	
Diisopropyl ether (DIPE)	ND<10						NA	0.5	
Ethanol	ND<1	000					NA	50	
Ethyl tert-butyl ether (ETBE)	ND<	<10					NA	0.5	
Methanol	ND<10	0,000					NA	500	
Methyl-t-butyl ether (MTBE)	54	0					NA	0.5	
		Surroga	te Recove	ries	(%)				
%SS1:	77	7							
Comments	b1								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl		-	samples in m	ng/kg	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP	
ND means not detected above the reporti	ng limit; N	J/A means an	alyte not app	plica	ble to this analysi	S.			
# surrogate diluted out of range or coelut	es with and	other peak; &	z) low surrog	gate d	lue to matrix inter	ference.			
b1) aqueous sample that contains greater	than ~1 vo	ol. % sedimer	nt						

b1) aqueous sample that contains greater than ~1 vol. % see b6) lighter than water immiscible sheen/product is present

	McCampbe	ell Ana		Inc.	Wet	: www.mccamp	ass Road, Pittsburg bell.com E-mail 77-252-9262 Fa	main@mccamp	bell.com			
Matriks	s Corporation		Clie	nt Project ID:	Alaska Gas;	Alameda	Date Sample	ed: 09/12	2/09			
321 Co	ourt Street						Ethylbenzene Xylenes DF % SS Comm 690 200 20 113 d1,b6 ND ND 1 98 b1 14 18 10 # d1,b ND ND 1 100					
521 CO	uit Succi		Clie	nt Contact: To	m Henderso	on	Date Extract	ed: 09/15	5/09-09/	/16/09		
Woodla	and, CA 95695		Clie	nt P.O.:			Date Analyz	xed: 09/15	5/09-09/	16/09		
	G	asoline Ra	nge (C6-C	12) Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [*]	*			
Extraction	n method: SW5030B	1 1		Analy	tical methods:	SW8021B/8015			Wor		1	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comment	
001A	MW-1	w	7800	ND<100	34	110	690	200	20	113	d1,b6,b1	
002A	MW-2	W	ND	ND	ND	ND	ND	ND	1	98	b1	
003A	MW-3	w	6100	170	110	21	14	18	10	#	d1,b1	
004A	MW-4	W	ND	ND	ND	ND	ND	ND	1	100		
005A	MW-5	w	230	540	1.6	1.3	ND	1.4	1	112	d1,b1	
	ing Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5		μg/I		
	ans not detected at or e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Хg	

in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all id vapor samples are r TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

	"When Ouality Counts"	<u>ical, Inc.</u>	Web: www.mccam		mail: main	@mccampbe	
Matriks Corporati		Client Project II	D: Alaska Gas; Alameda	Date Sam		09/12/09	
Marines Corporati		Chemit Project II	J. Alaska Gas, Alaineda		_		
321 Court Street				Date Rec	eived:	09/14/09	
		Client Contact:	Tom Henderson	Date Extr	acted:	09/14/09	
Woodland, CA 95	695	Client P.O.:		Date Ana	lyzed	09/17/09	-09/18/09
	Te	otal Extractable F	Petroleum Hydrocarbons*				
Extraction method: SW3	3510C	Analytic	cal methods: SW8015B			Work Order	0909397
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments
0909397-001C	MW-1	W	9400		1	105	e11,e2,b6,b1
0909397-002C	MW-2	W	91		1	97	e2,b1
0909397-003C	MW-3	W	2700		1	105	e4,e2,b1
0909397-004C	MW-4	W	240		1	95	e7,e2
0909397-005C	MW-5	W	130	130			e4,e2,b1
	g Limit for DF =1;	W	50			μg/I	_
	s not detected at or ne reporting limit	S	NA			NA	

* water samples are reported in ug/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L.$

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e11) stoddard solvent/mineral spirit (?)

"When Ouality Counts"

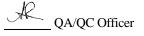
QC SUMMARY REPORT FOR SW8260B

MSD % Rec. 86.8 94.1 98.8	MS-MSD % RPD 3.21 5.13 2.97		LCSD % Rec. 91.1 91.4	\$ LCS-LCSD % RPD 0.748 4.15	-	eptance	: 0909380-0 Criteria (%) LCS/LCSD 70 - 130 70 - 130	
% Rec. 86.8 94.1	% RPD 3.21 5.13	% Rec. 90.4 95.3	% Rec. 91.1 91.4	% RPD 0.748	MS / MSD 70 - 130	RPD	LCS/LCSD 70 - 130	RPD
86.8 94.1	3.21 5.13	90.4 95.3	91.1 91.4	0.748	70 - 130	30	70 - 130	
94.1	5.13	95.3	91.4					30
				4.15	70 - 130	30	70 130	
98.8	2.97	104					70 - 150	30
		104	101	2.69	70 - 130	30	70 - 130	30
95	3.70	101	101	0	70 - 130	30	70 - 130	30
107	4.57	117	117	0	70 - 130	30	70 - 130	30
96.6	2.10	105	104	0.949	70 - 130	30	70 - 130	30
96.7	1.35	105	103	2.36	70 - 130	30	70 - 130	30
77	1.14	76	77	1.83	70 - 130	30	70 - 130	30
	96.6 96.7 77	96.6 2.10 96.7 1.35 77 1.14	96.6 2.10 105 96.7 1.35 105 77 1.14 76	96.6 2.10 105 104 96.7 1.35 105 103 77 1.14 76 77	96.6 2.10 105 104 0.949 96.7 1.35 105 103 2.36 77 1.14 76 77 1.83	96.6 2.10 105 104 0.949 70 - 130 96.7 1.35 105 103 2.36 70 - 130	96.6 2.10 105 104 0.949 70 - 130 30 96.7 1.35 105 103 2.36 70 - 130 30 77 1.14 76 77 1.83 70 - 130 30	96.6 2.10 105 104 0.949 70 - 130 30 70 - 130 96.7 1.35 105 103 2.36 70 - 130 30 70 - 130 77 1.14 76 77 1.83 70 - 130 30 70 - 130

BATCH 45823 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909397-001B	09/12/09 4:14 PM	I 09/15/09	09/15/09 3:43 PM	0909397-002B	09/12/09 3:54 PM	09/15/09	09/15/09 4:21 PM
0909397-003B	09/12/09 4:36 PM	I 09/15/09	09/15/09 8:10 PM	0909397-004B	09/12/09 3:31 PM	09/15/09	09/15/09 5:38 PM
0909397-005B	09/12/09 3:16 PM	09/16/09	09/16/09 3:01 PM				·

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		(QC Matrix: Water				Batch	ID: 45822	WorkOrder: 0909397			
EPA Method SW8021B/8015Bm	Extrac	action SW5030B					Spiked Sample ID: 0909379-001A					001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	106	103	2.40	126	113	11.1	70 - 130	20	70 - 130	20
MTBE	ND	10	105	102	2.61	106	98.2	7.45	70 - 130	20	70 - 130	20
Benzene	ND	10	99.1	104	5.14	91.8	89.2	2.91	70 - 130	20	70 - 130	20
Toluene	ND	10	97.3	102	5.22	98.2	87.9	11.1	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.7	101	4.87	89.3	87.1	2.54	70 - 130	20	70 - 130	20
Xylenes	ND	30	98.1	103	4.72	90.2	87.7	2.82	70 - 130	20	70 - 130	20
%SS:	104	10	97	99	2.57	106	96	10.5	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 45822 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909397-001A	09/12/09 4:14 PM	09/15/09	09/15/09 5:07 PM	0909397-002A	09/12/09 3:54 PM	09/16/09	09/16/09 5:11 PM
0909397-003A	09/12/09 4:36 PM	09/16/09	09/16/09 6:53 PM	0909397-004A	09/12/09 3:31 PM	09/16/09	09/16/09 5:41 PM
0909397-005A	09/12/09 3:16 PM	09/16/09	09/16/09 6:30 AM	0909397-005A	09/12/09 3:16 PM	09/16/09	09/16/09 7:59 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water			QC Matrix	k: Water		BatchID: 45824			WorkOrder: 0909397			
EPA Method SW8015B	Extra	Extraction SW3510C					Spiked Sample ID: N/A					
Analyte	Sample Spiked MS MSD			MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	RPD MS / MSD RPD LCS		LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	102	101	0.427	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	97	97	0	N/A	N/A	70 - 130	30
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 45824 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909397-001C	09/12/09 4:14 PM	09/14/09	09/18/09 12:39 PM	0909397-002C	09/12/09 3:54 PM	09/14/09	09/18/09 6:32 PM
0909397-003C	09/12/09 4:36 PM	09/14/09	09/17/09 4:53 AM	0909397-004C	09/12/09 3:31 PM	09/14/09	09/17/09 6:01 AM
0909397-005C	09/12/09 3:16 PM	09/14/09	09/17/09 7:10 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer