RECEIVED

2:41 pm, Jul 13, 2009

Alameda County Environmental Health

QUARTERLY GROUNDWATER MONITORING REPORT First Quarter 2009

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94520

SUBMITTED TO:

Alameda County Environmental Health Services
Local Oversight Program
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

May 15, 2009

Project No. 6022

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIO	NAL CERTIFICATION	ii
ACRONYMS	AND ABBRREVIATIONSi	ii
INTRODUCT	TION	1
Site Desci	iption and Physical Setting	1
Site Histo	ry	1
SCOPE OF V	VORK	3
METHODS A	AND PROCEDURES	4
Groundw	ater Level Measurements	4
Monitorir	ng Well Purging and Sampling	4
Geotrack	er Requirements	5
RESULTS		5
Groundw	ater Levels and Gradient	5
Groundw	ater Analytical Results	5
DISCUSSION	l	5
RECOMMEN	NDATIONS	6
FIGURES		
FIGURES Figure 1	Site Location Map	
Figure 2	Monitoring Well Locations	
Figure 3	Groundwater elevation Contours	
Figure 4	Elevation versus Time Hydrograph	
Figure 5	TPH-g Concentrations	
Figure 6	MW-1 TPH-g and Benzene Concentration Trends	
Figure 7	MW-3 TPH-g and Benzene Concentration Trends	

TABLES

Table 1 Groundwater Analytical Results

Table 2 Well Construction Details

Table 3 Groundwater Levels and Elevations

APPENDICES

Appendix A Monitoring Well Purge Logs Appendix B Laboratory Analytical Report

PROFESSIONAL CERTIFICATION

QUARTERLY GROUNDWATER MONITORING REPORT First Quarter 2009

Alaska Gas
1310 Central Avenue
Alameda, California 94501
LOP Case No. RO0000022

Project No. 6022 May 25, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recompensations presented herein is at the sole risk of said user.

Tom Henderson

President

David W. Janney,

Senior Geologist

ACRONYMS AND ABBRREVIATIONS

ACEHS Alameda County Environmental Health Services

AEI All Environmental, Inc.

amsl above mean sea level

ASE Aqua Science Engineers, Inc.

BTEX benzene, toluene, ethyl-benzene, xylenes

COC chain-of-custody

DCA 1,2-dichloroethane

DIPE di-isopropyl ether

EDB ethylene di-bromide

EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

FS/CAP Feasibility Study/Corrective Action Plan

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether

O&G oil and grease

μg/L micrograms per liter

mg/Kg milligrams per kilogram

ml milliliter

MW monitoring well

PDF portable document format

RWQCB Regional Water Quality Control Board

SC specific conductance

tAME tert-amyl methyl ether

tBA tert butyl alcohol

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report presents the results of the third quarter 2008 groundwater monitoring event conducted by Matriks at Alaska Gas (the "Site"), located at 1310 Central Avenue in Alameda, California. The quarterly groundwater monitoring event described in this report was conducted on December 30, 2008 and is part of an ongoing subsurface investigation of petroleum hydrocarbons in soil or groundwater that was caused by an unauthorized release of petroleum fuels from the underground storage tank (UST) system (tanks, associated piping and dispensers) formerly located at the Site. Matriks is conducting this investigation on behalf of the responsible parties, Mr. Leon Zektser, Mr. Nissan Saidian, and Mr. Joe Zadik. The Alameda County Environmental Health Services (ACEHS) is the lead regulatory agency overseeing Site investigation and remediation and the ACEHS case number is RO0000022. The quarterly groundwater monitoring program consists of the collection and laboratory analysis of groundwater samples from five groundwater monitoring wells to assess concentrations of petroleum hydrocarbon compounds in shallow groundwater.

Site Description and Physical Setting

The Site is currently a retail gasoline fueling station located in an area of mixed commercial and residential properties in the south-central part of the island of Alameda. The Site is located at the intersection of Encinal Avenue, Sherman Street, and Central Avenue. A Site location map is shown on **Figure 1** and a Site plan showing physical features and groundwater monitoring well locations is shown on **Figure 2**.

The Site is relatively flat and the investigation area has a surface elevation of approximately 25 feet above mean sea level (amsl). San Francisco Bay and the Alameda Estuary are located approximately one-half mile to the south. Due to the topography of the island and proximity to San Francisco Bay, groundwater beneath the Site is tidally influenced and has a very shallow gradient.

Site History

In May 1996, Petrotek removed three gasoline USTs including one 10,000-gallon, one 7,500-gallon and one 5,000-gallon UST from the western corner of the Site. A 500-gallon waste oil UST adjacent to the building, was also removed from the southern portion of the Site. Fuel dispensers and associated product piping were also removed.

Free-phase petroleum hydrocarbons were observed floating on the groundwater surface in the gasoline UST excavation following removal of the USTs. According to the laboratory analysis, a groundwater sample collected from the gasoline UST excavation contained 2,800 micrograms per liter (μ g/L) of total petroleum hydrocarbons as gasoline (TPH-g) and 100 μ g/L benzene. Soil

May 15, 2009 Project No. 6022 Page 2

samples collected from the same excavation contained up to 5,000 milligrams per kilogram (mg/Kg) of THP-g and 31mg/Kg benzene. Soil samples collected beneath the former dispenser island contained up to 6,800 mg/Kg TPH-g and 63 mg/Kg benzene. A ground water sample collected in the waste oil UST excavation contained 35,000 μ g/L of total petroleum hydrocarbons as diesel (TPH-d) and motor oil range hydrocarbons, and 1,300 μ g/L of TPH-g. A records search at ACEHS did not identify any tank removal reports or subsequent remedial action reports.

Petrotek reportedly excavated and disposed of approximately 600 cubic yards of petroleum hydrocarbon-impacted soil from the UST excavations. It does not appear that confirmation soil samples were collected following removal of the petroleum hydrocarbon-impacted soil. Approximately 15,000 gallons of ground water were also removed from the excavations, treated and discharged to the sanitary sewer. Two new gasoline USTs, dispensers and product piping were installed in the same UST excavation after the petroleum hydrocarbon-impacted soil and ground water were removed.

In November 1998, All Environmental Inc. (AEI) advanced 14 soil borings on the Site, collected soil and groundwater samples from the borings, and submitted them for laboratory analysis. The boring soil samples contained up to 5,900 mg/Kg of TPH-g. The boring grab groundwater samples contained up to 120,000 μ g/L TPH-g and 7,200 μ g/L benzene.

On May 16, 2000, Aqua Science Engineers (ASE) collected groundwater samples from the three wells. Hydrocarbon concentrations detected in the May 16 groundwater samples were less than those detected in the November 1999 sampling event, especially with respect to MW-2. The reason for this is unclear. Sample results are presented in **Table 1**.

On July 28, 2000, ASE advanced 12 Geoprobe borings (borings BH-A through BH-L) to further delineate the lateral and vertical extent of petroleum hydrocarbons and collected soil and grab groundwater samples from each borings. Laboratory analysis detected 0.00061 mg/Kg of MtBE in a soil samples collected from 3.0 feet (ft) below ground surface in boring BH-K. There were no petroleum hydrocarbons or oxygenates detected in soil samples from the other 11 borings, however, petroleum hydrocarbons and oxygenates were detected in grab groundwater samples collected from borings BH-A, B, C, D, I, J, K, and L.

In December 2002, ASE conducted an investigation to assess whether subsurface utility line trenches may provide a groundwater movement pathway. ASE concluded that it did not appear that the utility line trenches act as groundwater movement pathways. This conclusion was based on ASE's assumption that the utility line trench backfill material is native sandy soil and that the highest concentrations of petroleum hydrocarbons in the 12 Geoprobe borings soil samples were located beyond the utility line trenches. Although ASE concluded that the utility line trenches did not provide a groundwater movement pathway, the ACEHS requested that water samples be collected from the sewer in one of the trenches to assess whether petroleum hydrocarbon-impacted groundwater may have entered the sewer line through seams or cracks.

In January 2004, ASE drilled four additional soil borings, BH-M through BH-P and the soil samples collected from each boring contained concentrations of TPH-d, with the highest concentration of 68 mg/Kg detected in BH-M. No TPH-d, BTEX or oxygenates were detected in any of the other soil samples. The groundwater samples collected from the borings contained TPH-d concentrations as high as 170 μ g/Land the groundwater sample collected from boring BH-O also contained 19 μ g/L MtBE. None of the other groundwater samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Groundwater samples were also collected from the sewer line beneath Central Avenue, both up gradient and down gradient of the Site. Low concentrations of TPH-g were detected in both samples. No BTEX or oxygenates were detected in either of these samples.

In December 2005, ASE conducted a records search at the Alameda City Public Works Agency and the California Department of Water Resources to identify water wells with ½ mile radius of the Site. A total of 25 wells were located within the search radius. The results included three domestic wells, 10 irrigation wells, one industrial well, two cathodic protection wells, four groundwater monitoring wells, and five vapor extraction wells. The nearest well is located more than 1,000 feet east of the Site. The nearest, potentially down gradient, well is located approximately 1,260 feet northwest of the Site. Based on the records search, ASE proposed additional soil and groundwater assessment for the Site.

In April 2006, ASE advanced two additional borings and installed two groundwater monitoring wells. Borings BH-Q, BH-R and monitoring wells MW-4 and MW-5 were installed using a drill rig equipped with an 8-inch hollow-stem auger. Petroleum hydrocarbons were detected by laboratory analysis at a concentration of 11 mg/Kg TPH-d in a soil sample from BH-Q and 1.7 mg/Kg TPH-d in a soil sample from the boring MW-5. The laboratory noted that the hydrocarbons reported as TPH-D in each sample did not exhibit a typical diesel chromatogram pattern. None of the soil samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Well construction details are presented in **Table 2.**

Groundwater samples collected from BH-Q and BH-R contained detectable concentrations of petroleum hydrocarbon of 220 μ g/L TPH-d and 770 μ g/L TPH-d, respectively. Similar to the soil samples, the laboratory noted the hydrocarbons reported as TPH-d did not exhibit a typical diesel chromatogram pattern. Based on the results of this investigation, ASE recommended no further delineation of the extent of petroleum hydrocarbons in soil or groundwater.

From April 2006 to present, groundwater monitoring well samples have been collected and analyzed on a quarterly basis. In June 2008, the Site owners contracted with Matriks to conduct quarterly groundwater monitoring and prepare for further Site remediation.

SCOPE OF WORK

The scope of work conducted for this quarterly groundwater monitoring event included the following tasks:

- Measurement of static water levels in five groundwater monitoring wells;
- Collection of field water quality parameters including pH, temperature, and specific conductance (SC) from groundwater in each well;
- Purging at least three casing volumes from each well;
- Collection and analysis of groundwater water samples from each well for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the Monitoring Well Purging and Sampling section of this report for analytical methods used);
- Update of the Geotracker database; and
- Preparation of this Quarterly Monitoring Report.

METHODS AND PROCEDURES

Groundwater Level Measurements

Prior to measuring the depth to groundwater, the cap of each well was removed and the water level was given an opportunity to equilibrate with atmospheric pressure for approximately 30 minutes before recording measurements using an electronic water depth indicator. The static water levels were referenced to the surveyed marks notched into the top of each well casing and the depth-to-water measurements were used to calculate the purge volume of for each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a new disposable bailer. Groundwater temperature, pH, and SC were measured intermittently during purging with a Hanna multimeter water quality instrument which was calibrated by the equipment rental service prior to on-site use. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled and sealed 55-gallon, DOT-approved steel drums and temporarily stored on-site.

A new disposable bailer dedicated to each well, was used to remove the groundwater samples and transfer them to the appropriate laboratory prepared containers. Care was taken to remove the headspace in each container. Each sample container was labeled with the project number, sample ID, and collection date. The same information was recorded on the laboratory

chain-of-custody (COC) form. Samples were stored in a cooler filled with ice for transport to the laboratory.

Samples were transported and submitted to McCampbell Analytical, Inc. of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

Depth-to-water was measured in each monitoring well. The groundwater flow direction for this monitoring event was calculated to be N20°W with a gradient of 0.018. Well construction details are presented in **Table 2**. Groundwater levels and elevations are summarized in **Table 3**. Groundwater elevation contours are depicted on **Figure 3**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 4**.

Groundwater Analytical Results

TPH-g, BTEX, and MtBE were detected by laboratory analysis in the highest concentrations in groundwater monitoring wells MW-1 and MW-3. TPH-g was detected in MW-1 and MW-3 at concentrations of 1,900 μ g/L and 9,200 μ g/L, respectively. TPH-g was also detected in MW-5 at a concentration of 200 μ g/L. TPH-g was not detected in groundwater samples collected from the other monitoring wells.

Benzene was also detected in MW-3 at a concentration of 150 μ g/L. Benzene was not detected in samples collected from the other groundwater monitoring wells. MtBE was detected in MW-1, MW-2, MW-3, MW-4, and MW-5 at concentrations of 22 μ g/L, 5.4 μ g/L, 120 μ g/L, 0.9 μ g/L, and 610 μ g/L, respectively.

Groundwater analytical results are summarized in **Table 3**. A copy of the laboratory analytical report is included in **Appendix B**. **Figure 5** shows TPH-g and benzene concentration trends in well MW-1 and **Figure 6** shows these same concentration trends in MW-3.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by AB2886 (Water Code Section 13195-13198). EDFs are prepared and formatted by the laboratory and submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. A well status and usage report (GEO WELL file) is submitted for each monitoring

May 15, 2009 Project No. 6022 Page 6

event. A complete electronic copy of this report (GEO_REPORT file) in PDF format was also submitted. Update maps (GEO_MAP files) are submitted when site features such as monitoring wells or soil borings are added.

DISCUSSION

In general, petroleum hydrocarbon concentrations have decreased since groundwater monitoring began in September 1999. This appears to indicate that natural attenuation and degradation are occurring.

The highest concentrations of petroleum hydrocarbons were detected in monitoring wells MW-1 and MW-3. TPH-g, TPH-d, and benzene in these wells was detected above the environmental screening limits (ESLs) of 100 μ g/L, 100 μ g/L, and 1.0 μ g/L, respectively, established by the San Francisco Bay RWQCB. MtBE was also detected above the ESL in MW-3.

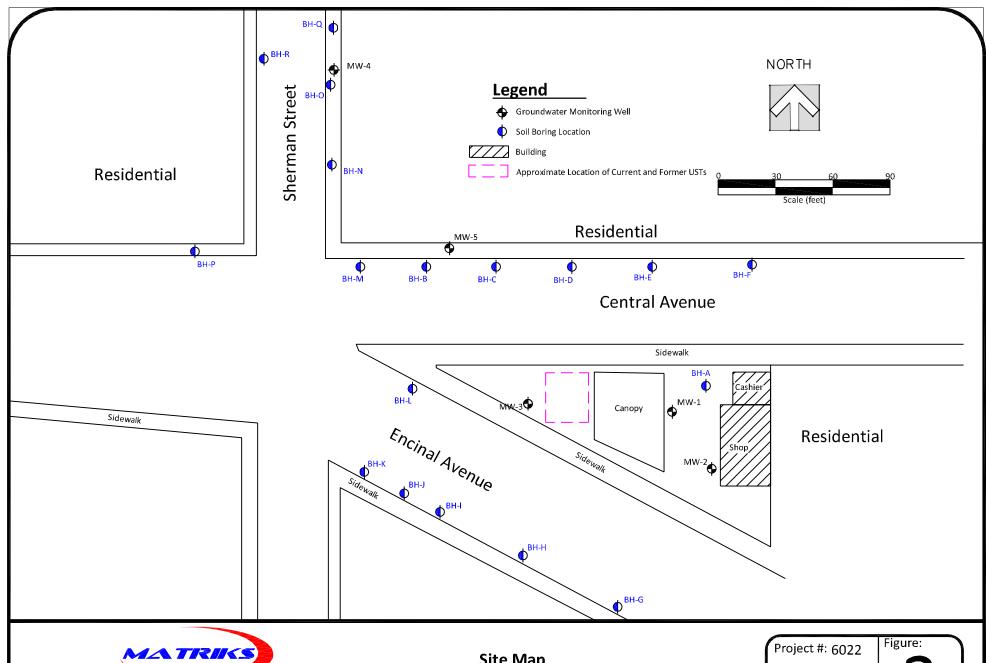
TPH-g, benzene, and MtBE were also detected above the ESLs in well MW-5. This appears to indicate that petroleum hydrocarbons are migrating down gradient from the Site.

MtBE was detected in down gradient well MW-4 at a concentration of 0.9 $\mu g/L$. This concentration is less than the ESL for MTBE of 5 $\mu g/L$ but this also appears to indicate that petroleum hydrocarbons are migrating down gradient within groundwater. Petroleum hydrocarbon concentrations detected in MW-1 and MW-2 appear to be consistent with their spatial relationship to the former USTs.

While benzene and MtBE appear to be migrating in the down gradient direction in low concentrations, the possibility of vapor intrusion into down gradient buildings must be considered.

RECOMMENDATIONS

We recommend the preparation of a Feasibility Study/Corrective Action Plan (FS/CAP) to address remedial alternatives for petroleum hydrocarbons primarily in groundwater but remedial consideration should also be given to the soil proximal to the former USTs. Our preliminary analysis indicates that ozone sparging will be an effective remedial action given the soil and groundwater conditions at the Site and its small apparent lateral extent. The FS/CAP may also include limited additional characterization of soil or groundwater to further assess the concentrations of TPH-d. We also recommend semi-annual groundwater monitoring.


FIGURES

 $\textbf{FIGURE}\ 1$

Site Location Map Alaska Gas 1310 Central Avenue, Alameda, CA

321 Court Street Lic. No. 909563 Woodland, California 95695 (530) 406-1760 Fax# (530) 406-1760

Site Map

Alaska Gasoline 1310 Central Avenue Alameda, California

Date: 5/15/2009

Scale: as shown

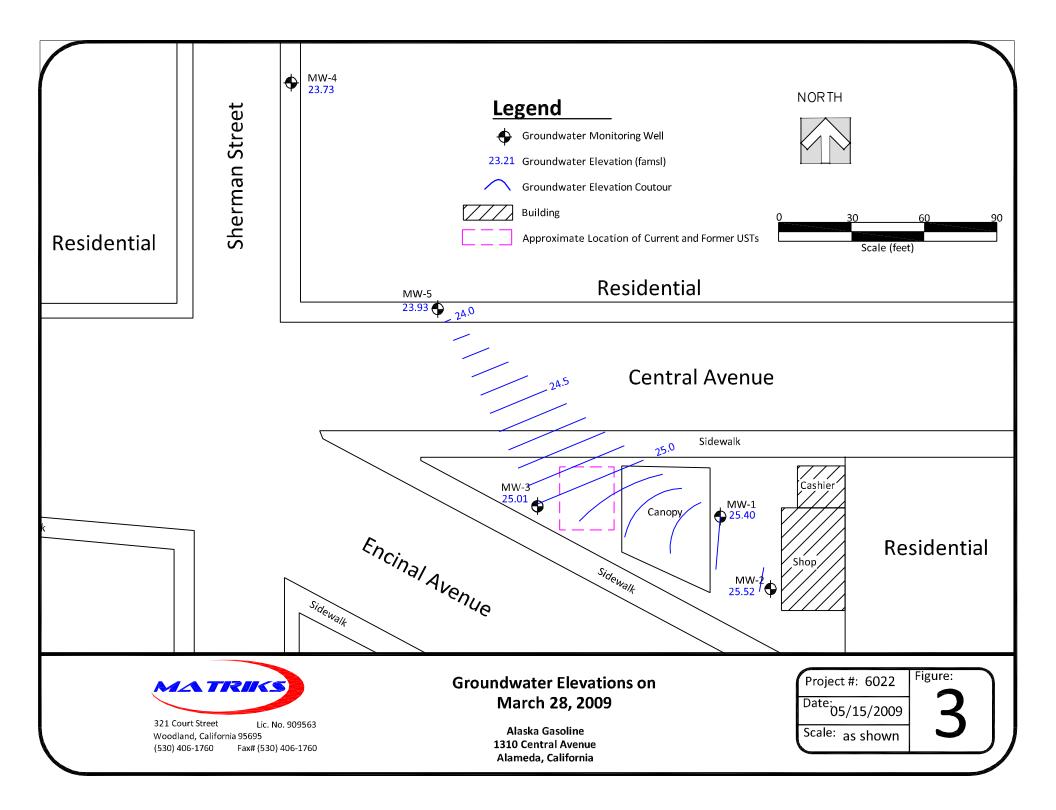
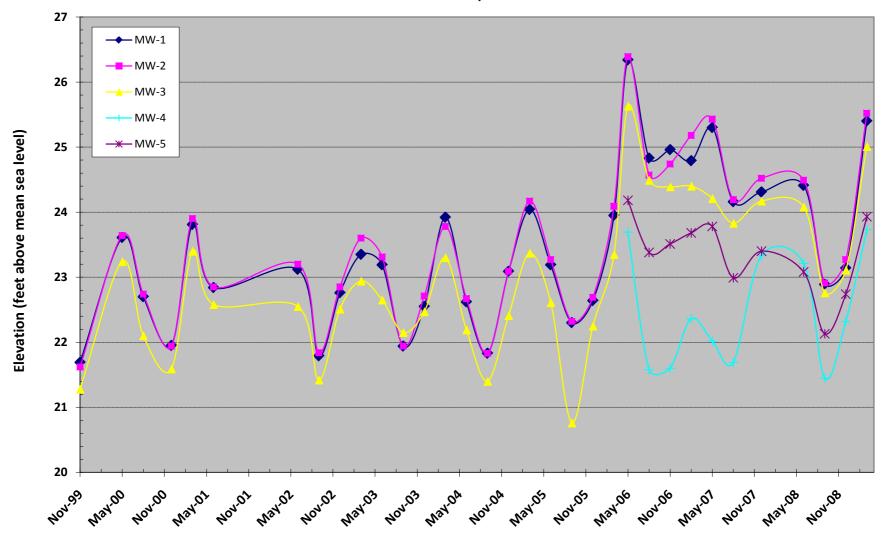



Figure 4. Monitoring Well Hydrographs
Alaska Gas
Alameda, CA

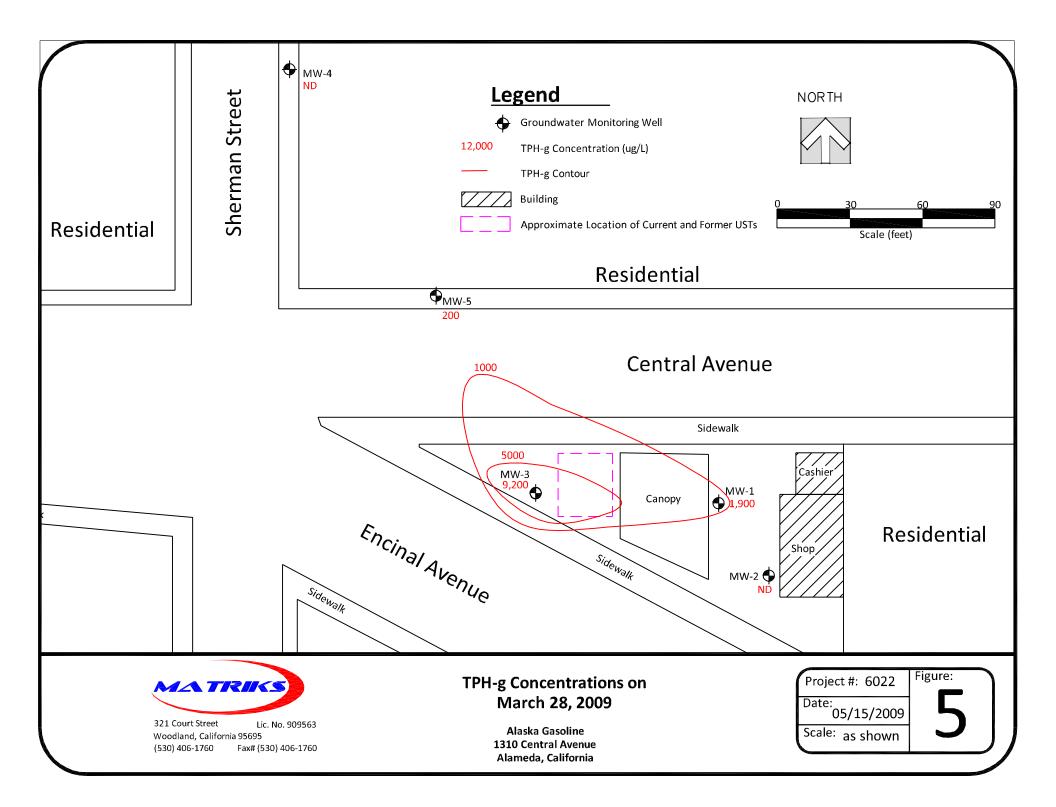


Figure 6. TPH-g and Benzene vs. Time in Well MW-1 Alaska Gas

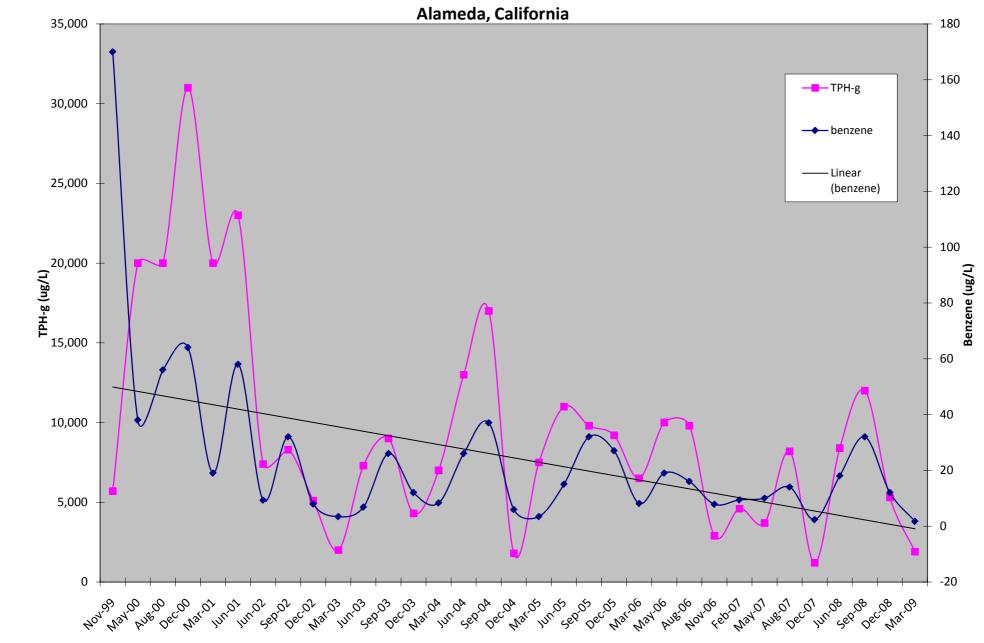
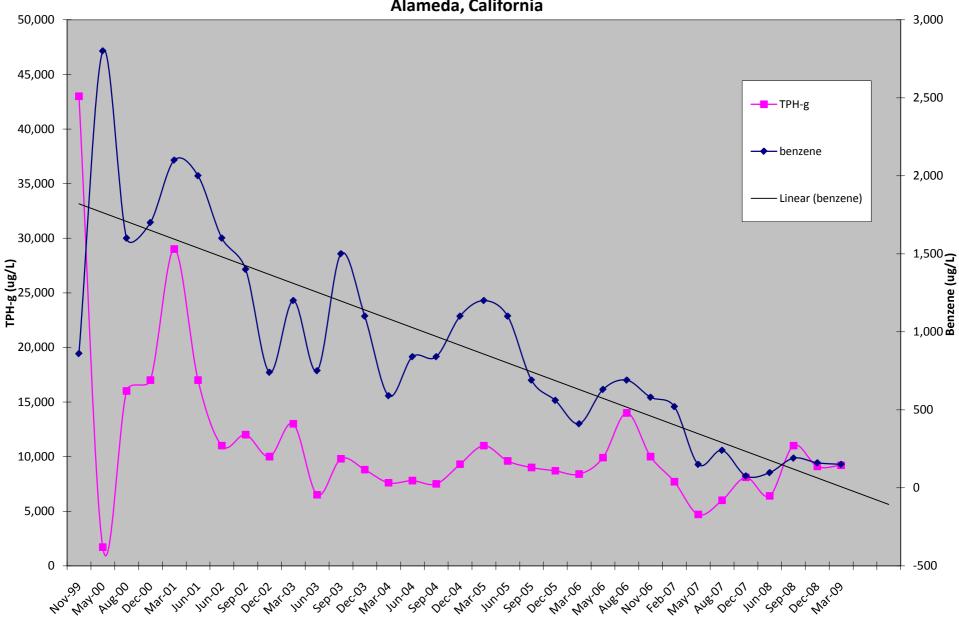



Figure 7. TPH-g and Benzene vs Time in Well MW-3
Alaska Gas
Alameda, California

TABLES

Well ID Date TPH-g TPH-d benzene toluene benzene xylenes MtB MW-1 11/06/99 5,700 8,700 170 59 22 85 20,0 05/16/00 20,000 <7,500 38 6.3 740 1,600 <5. 08/03/00 20,000 <6,000 56 9.7 920 1,600 <0. 12/05/00 31,000 <4,000 64 27 820 2,200 <1 03/05/01 20,000 <4,000 19 <5.0 480 870 <5 06/04/01 23,000 <7,000 58 50 710 2,100 5. 06/05/02 7,400 <1,500 9.3 6.7 180 230 <1 09/09/02 8,300 <3500 32 20 390 670 <2 12/19/02 5,100 NS 7.9 2.5 56 93 <1 06/03/	NA .0 <5.0 .5 <0.5 0 <5.0 .5 <5.0 .6 <5.0 .0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 .5 <0.5 .6 <5.0 .7 <1.0 .8 <0.5 .9 <1.0 .9 <1.0 .9 <1.0 .0 <1.0 .0 .0 .0 .0 .0 .0 .0	**************************************	Other Oxygenates NA <5.0 <0.5 <5.0 <5.0 <5.0 <1.0 <2.0 <1.0 <0.5 <0.5
MW-1 11/06/99 5,700 8,700 170 59 22 85 20,0 05/16/00 20,000 <7,500 38 6.3 740 1,600 <5. 08/03/00 20,000 <6,000 56 9.7 920 1,600 <0. 12/05/00 31,000 <4,000 64 27 820 2,200 <1 03/05/01 20,000 <4,000 19 <5.0 480 870 <5 06/04/01 23,000 <7,000 58 50 710 2,100 5.3 06/05/02 7,400 <1,500 9.3 6.7 180 230 <1. 09/09/02 8,300 <3500 32 20 390 670 <2. 12/19/02 5,100 NS 7.9 2.5 56 93 <1. 03/10/03 2,000 <2,000 3.4 2.9 80 98 <0. 06/03/03 7,300	NA .0 <5.0 .5 <0.5 0 <5.0 .5 <5.0 .6 <5.0 .0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 .5 <0.5 .6 <5.0 .7 <1.0 .8 <0.5 .9 <1.0 .9 <1.0 .9 <1.0 .0 <1.0 .0 .0 .0 .0 .0 .0 .0	NA <50 <50 <50 <50 <50 <50 <50 <10 <20 <10 <5.0 <5.0 <5.0	NA <5.0 <0.5 <5.0 <5.0 <5.0 <5.0 <1.0 <2.0 <1.0 <0.5 <0.5
05/16/00 20,000 <7,500	.0 <5.0 .5 <0.5 0 <5.0 5 <5.0 1 <5.0 .0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<50 <50 <50 <50 <50 <10 <20 <10 <5.0 <5.0	<5.0 <0.5 <5.0 <5.0 <1.0 <2.0 <1.0 <0.5 <0.5
08/03/00 20,000 <6,000 56 9.7 920 1,600 <0. 12/05/00 31,000 <4,000 64 27 820 2,200 <1 03/05/01 20,000 <4,000 19 <5.0 480 870 <5 06/04/01 23,000 <7,000 58 50 710 2,100 5.3 06/05/02 7,400 <1,500 9.3 6.7 180 230 <1. 09/09/02 8,300 <3500 32 20 390 670 <2. 12/19/02 5,100 NS 7.9 2.5 56 93 <1. 03/10/03 2,000 <2,000 3.4 2.9 80 98 <0. 06/03/03 7,300 <4,000 6.8 9.9 300 1,000 2.3	.5 <0.5 0 <5.0 5 <5.0 1 <5.0 .0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<50 <50 <50 <50 <10 <20 <10 <5.0 <5.0	<0.5 <5.0 <5.0 <5.0 <1.0 <2.0 <1.0 <0.5 <0.5
12/05/00 31,000 <4,000 64 27 820 2,200 <1 03/05/01 20,000 <4,000 19 <5.0 480 870 <5 06/04/01 23,000 <7,000 58 50 710 2,100 5.3 06/05/02 7,400 <1,500 9.3 6.7 180 230 <1. 09/09/02 8,300 <3500 32 20 390 670 <2. 12/19/02 5,100 NS 7.9 2.5 56 93 <1. 03/10/03 2,000 <2,000 3.4 2.9 80 98 <0. 06/03/03 7,300 <4,000 6.8 9.9 300 1,000 2.3	0 <5.0 5 <5.0 1 <5.0 0 <1.0 0 <2.0 0 <1.0 5 <0.5 3 <0.5 5 <1.5	<50 <50 <50 <10 <20 <10 <5.0 <5.0	<5.0 <5.0 <5.0 <1.0 <2.0 <1.0 <0.5 <0.5
03/05/01 20,000 <4,000	5 <5.0 1 <5.0 .0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<50 <50 <10 <20 <10 <5.0 <5.0	<5.0 <5.0 <1.0 <2.0 <1.0 <0.5 <0.5
06/04/01 23,000 <7,000	1 <5.0 .0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<50 <10 <20 <10 <5.0 <5.0	<5.0 <1.0 <2.0 <1.0 <0.5 <0.5
06/05/02 7,400 <1,500	.0 <1.0 .0 <2.0 .0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<10 <20 <10 <5.0 <5.0	<1.0 <2.0 <1.0 <0.5 <0.5
09/09/02 8,300 <3500 32 20 390 670 <2. 12/19/02 5,100 NS 7.9 2.5 56 93 <1. 03/10/03 2,000 <2,000 3.4 2.9 80 98 <0. 06/03/03 7,300 <4,000 6.8 9.9 300 1,000 2.3	.0 <2.0 .0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<20 <10 <5.0 <5.0	<2.0 <1.0 <0.5 <0.5
12/19/02 5,100 NS 7.9 2.5 56 93 <1. 03/10/03 2,000 <2,000 3.4 2.9 80 98 <0. 06/03/03 7,300 <4,000 6.8 9.9 300 1,000 2.3	.0 <1.0 .5 <0.5 3 <0.5 5 <1.5	<10 <5.0 <5.0	<1.0 <0.5 <0.5
03/10/03 2,000 <2,000	.5 <0.5 3 <0.5 5 <1.5	<5.0 <5.0	<0.5 <0.5
06/03/03 7,300 <4,000 6.8 9.9 300 1,000 2.3	3 <0.5 5 <1.5	<5.0	<0.5
	5 <1.5		
00/40/20 0000 000 000 400 400 400		<20	_1 F
09/19/03 9,000 <3,000 26 22 420 1,200 4.5			<1.5
12/22/03 4,300 <2,000 12 6.7 200 290 9. 3	1 <1.0	<10	<1.0
03/12/04 7,000 <3,000 8.3 8.2 250 760 3.9	9 <2.0	<20	<2.0
06/11/04 13,000 <4,000 26 27 530 1,700 <2.	.5 <2.5	<15	<2.5
09/13/04 17,000 <4,000 37 42 840 2,000 <5.	.0 <5.0	<50	<5.0
12/16/04 1,800 <1,000 5.9 1.9 100 35 16	< 0.5	<5.0	<0.5
03/21/05 7,500 <3,000 3.4 4.2 290 760 <1.	.5 <1.5	<20	<1.5
06/23/05 11,000 <8,000 15 11 370 910 2.4	4 <1.5	<7.0	<1.5
09/30/05 9,800 <4,000 32 25 540 680 1.6	6 <1.5	<7.0	<1.5
12/08/05 9,200 <4,000 27 21 500 490 2.2	2 <1.5	<7.0	<1.5
03/01/06 6,500 <4,000 8.1 9.4 370 660 18	3 <1.5	<6.0	<1.5
05/25/06 10,000 <3,000 19 14 900 620 <1.	.5 <1.5	<7.0	<1.5
08/10/06 9,800 <1,500 16 8.1 640 180 <1.	.5 <1.5	<7.0	<1.5
11/21/06 2,900 <1,000 7.8 2.5 160 12 2.5	5 2.5	<5.0	<0.5
02/06/07 4,600 <1,500 9.4 6 380 220 1	<0.50	<5.0	<0.50
05/08/07 3,700 <800 10 4.6 320 86 1.5	5 <0.50	<5.0	<0.50
08/06/07 8,200 <2,000 14 8.8 730 180 <0.5	50 <0.50	<5.0	<0.50
12/26/07 1,200 <300 2.3 1.1 89 21 4.8	8 <0.50	<5.0	<0.50
06/28/08 8,400 3,900 18 26 670 1,100 <2.	.5 <2.5	<10	<2.5
09/27/08 12,000 4,600 32 49 1,200 680 <2	5 <25	<100	<25
12/30/08 5,300 3,700 12 31 300 27 7	1 <5.0	<20	<5.0
03/28/09 1,900 920 < 1.7 <1.7 77 58 22	2 <1.7	<6.7	<1.7

Well ID	Date										I
	Date					ethyl-					Other
	24.0	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-2	11/06/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
	05/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/03/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/05/00	<50	1,400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	03/05/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/04/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/05/02	<50	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/09/02	<50	1,300	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	12/19/02	<50		<0.5	<0.5	<0.5	<0.5	16	<0.5	<5.0	<0.5
	03/10/03	<50	3,000	<0.5	<0.5	<0.5	<0.5	1	<0.5	<5.0	<0.5
	06/03/03	<50	700	<0.5	<0.5	<0.5	<0.5	2	<0.5	<5.0	<0.5
	09/19/03	<50	1,400	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<5.0	<0.5
	12/22/03	<50	1,000	<0.5	<0.5	<0.5	<0.5	39	<0.5	<5.0	<0.5
	03/12/04	<50	250	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<5.0	<0.5
	06/11/04	<50	920	<0.5	<0.5	<0.5	<0.5	0.75	<0.5	<5.0	<0.5
	09/13/04	<50	140	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<5.0	<0.5
	12/16/04	<50	150	<0.5	<0.5	<0.5	<0.5	12	<0.5	<5.0	<0.5
	03/21/05	<50	130	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/23/05	<50	1,100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/30/05	<50	300	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<5.0	<0.5
	12/08/05	<50	600	<0.5	<0.5	<0.5	<0.5	1.9	<0.5	<5.0	<0.5
	03/01/06	<50	920	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/25/06	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/10/06	<50	870	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	11/21/06	<50	130	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<5.0	<0.5
	02/06/07	<50	450	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/26/07	<50	190	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<5.0	<0.5
	06/28/08	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<2.0
	09/27/08	<50	78	<0.5	<0.5	<0.5	<0.5	7	<0.5	<2.0	<0.5
	12/30/08	<50	100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5
	03/28/09	<50	60	<0.5	<0.5	<0.5	<0.5	5.4	<0.5	<0.5	<0.5

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-3	11/06/99	43,000	870	860	70	<0.5	65	120,000	NA	NA	NA
	05/16/00	1,700	<5,000	2,800	60	380	190	990	9.1	350	<5.0
	08/03/00	16,000	<2,000	1,600	29	210	53	1,200	21	260	<2.0
	12/05/00	17,000	5800	1,700	45	460	240	1,100	21	230	<5.0
	03/05/01	29,000	<1,300	2,100	68	280	100	180	<8.0	<80	<8.0
	06/04/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
	06/05/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
	09/09/02	12,000	<800	1,400	44	130	27	760	<10	160	<5.0
	12/19/02	10,000	NS	740	32	180	38	86	<5.0	<50	<5.0
	03/10/03	13,000	<6,000	1,200	42	240	35	470	5.3	140	<2.5
	06/03/03	6,500	<3,000	750	21	46	15	1,300	<50	280	<10
	09/19/03	9,800	<3,000	1,500	38	170	32	420	<10	150	<5.0
	12/22/03	8,800	<2,000	1,100	32	82	20	330	5.8	52	<2.5
	03/12/04	7,600	<3,000	590	23	69	17	470	9.2	63	<1.5
	06/11/04	7,800	<2,000	840	19	58	15	710	12	140	<2.5
	09/13/04	7,500	<1,500	840	17	23	7.8	730	15	93	<2.5
	12/16/04	9,300	<2,000	1,100	26	76	13	600	12	130	<2.5
	03/21/05	11,000	<3,000	1,200	37	190	24	460	9.3	100	<2.5
	06/23/05	9,600	<4,000	1,100	28	93	23	370	8.2	67	<1.5
	09/30/05	9,000	<3,000	690	18	32	14	380	8.4	72	<1.5
	12/08/05	8,700	<3,000	560	23	38	12	350	6.9	82	<1.5
	03/01/06	8,400	<2,000	410	24	42	13	360	8	58	<1.5
	05/25/06	9,900	<2,000	630	25	13	13	190	5.3	59	<1.5
	08/10/06	14,000	<3,000	690	43	130	26	200	5.4	70	<1.5
	11/21/06	10,000	<3,000	580	37	96	25	240	6.3	72	<1.5
	02/06/07	7,700	<1,000	520	36	90	23	260	7.4	54	<1.5
	05/08/07	4,700	<800	150	0.86	<0.5	<0.5	170	5	52	<0.5
	08/06/07	6,000	<1,000	240	26	34	17	180	5	55	<0.5
	12/26/07	8,100	<1,500	76	14	17	12	150	4.3	37	<0.9
	06/28/08	6,400	3,100	97	17	19	13	200	5.6	38	<5.0
	09/27/08	11,000	15,000	190	24	29	16	160	<5.0	40	<5.0
	12/30/08	9,100	2,300	160	24	31	18	150	5	100	<5.0
	03/28/09	9,200	4,300	150	25	34	22	120	<5.0	38	<5.0

Alameda, California

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-4	05/25/06	<50	86	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	08/10/06	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	11/21/06	<50	<50	<0.5	<0.5	<0.5	<0.5	0.59	<0.5	<5.0	<0.5
	02/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<5.0	<0.5
	12/26/07	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	06/28/08	<50	88	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5
	09/27/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	12/30/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5
	03/28/09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5
MW-5	11/21/06	410	<80	<2.5	<2.5	<2.5	<2.5	1,800	28	44	<2.5
	05/25/06	55	<50	<0.5	<0.5	<0.5	<0.5	1,100	19	9.1	<0.5
	08/10/06	<250	<50	<2.5	<2.5	<2.5	<2.5	1,500	25	28	<2.5
	02/06/07	430	<50	6.9	<2.5	<2.5	<2.5	1,600	26	34	<2.5
	05/08/07	<250	<50	<2.5	<2.5	<2.5	<2.5	1,200	20	38	<2.5
	08/06/07	330	<80	<2.5	<2.5	<2.5	<2.5	1,000	20	39	<2.5
	12/26/07	490	<50	<2.5	<2.5	<2.5	<2.5	1,000	18	28	<2.5
	06/28/08	510	290	6.2	1.0	<0.5	2.3	550	11	<40	<10
	09/27/08	670	320	<17	<17	<17	<17	650	<17	95	<17
	12/30/08	210	130	<0.5	0.8	0.99	<0.5	610	12	<40	<10
	03/28/09	200	100	<17	<17	<17	<17	610	<17	<67	<17
	ESL	100	100	1.0	40	30	20	5	NE	50,000	NA

Notes:

Units are micrograms per liter (ug/L).

NT analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

MtBE methyl tert-butyl ether tAME tert-amyl methyl ether

tBA tert-butanol

Table 2 Well Construction Details Alaska Gas

Well ID	Date Installed	Total Depth (feet bg)	Screened Interval (feet bg)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet bg)	Bentonite Interval (feet bg)	Grout Interval (feet bg)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Westing Coordinates (feet)
MW-1	10/11/99	18	17.35-2.5	Silty Sand	0.02	18-1.5	1.5-0.5	0.5-0	29.18	15.20394	46.13606
MW-2	10/11/99	18	18-4	Silty Sand	0.02	18-3	3-1.5	1.5-0	29.55	14.93558	45.97882
MW-3	10/11/99	20	19-4	Silty Sand	0.02	20-3	3-1.5	1.5-0	27.74	15.28672	47.24157
MW-4	04/03/06	16	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.23	17.12115	48.05243
MW-5	04/04/06	17	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.78	16.21022	47.48996

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-1	11/06/99	26.85	5.16	21.69
	05/16/00		3.24	23.61
	08/03/00		4.15	22.70
	12/05/00		4.90	21.95
	03/05/01		3.04	23.81
	06/04/01		4.01	22.84
	06/05/02		3.73	23.12
	09/09/02		5.06	21.79
	12/19/02		4.09	22.76
	03/10/03		3.50	23.35
	06/03/03		3.66	23.19
	09/19/03		4.91	21.94
	12/22/03		4.30	22.55
	03/12/04		2.93	23.92
	06/11/04		4.23	22.62
	09/13/04		5.02	21.83
	12/16/04		3.76	23.09
	03/21/05		2.81	24.04
	06/23/05		3.66	23.19
	09/30/05		4.55	22.30
	12/08/05		4.21	22.64
	03/01/06		2.90	23.95
	05/25/06	29.18	2.84	26.34
	08/10/06		4.35	24.83
	11/21/06		4.22	24.96
	02/06/07		4.39	24.79
	05/08/07		3.88	25.30
	08/06/07		5.02	24.16
	12/26/07		4.87	24.31
	06/28/08		4.77	24.41
	09/27/08		6.29	22.89
	12/30/08		6.04	23.14
	03/28/09		3.78	25.40

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-2	11/06/99	27.18	5.56	21.62
	05/16/00		3.54	23.64
	08/03/00		4.44	22.74
	12/05/00		5.24	21.94
	03/05/01		3.28	23.90
	06/04/01		4.33	22.85
	06/05/02		3.98	23.20
	09/09/02		5.34	21.84
	12/19/02		4.33	22.85
	03/10/03		3.58	23.60
	06/03/03		3.87	23.31
	09/19/03		5.24	21.94
	12/22/03		4.47	22.71
	03/12/04		3.40	23.78
	06/11/04		4.51	22.67
	09/13/04		5.35	21.83
	12/16/04		4.09	23.09
	03/21/05		3.01	24.17
	06/23/05		3.91	23.27
	09/30/05		4.86	22.32
	12/08/05		4.49	22.69
	03/01/06		3.09	24.09
	05/25/06	29.55	3.16	26.39
	08/10/06		4.98	24.57
	11/21/06		4.81	24.74
	02/06/07		4.37	25.18
	05/08/07		4.12	25.43
	08/06/07		5.36	24.19
	12/26/07		5.03	24.52
	06/28/08		5.06	24.49
	09/27/08		6.64	22.91
	12/30/08		6.28	23.27
	03/28/09		4.03	25.52

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-3	11/06/99	25.3	4.02	21.28
	05/16/00		2.06	23.24
	08/03/00		3.20	22.10
	12/05/00		3.71	21.59
	03/05/01		1.90	23.40
	06/04/01		2.72	22.58
	06/05/02		2.75	22.55
	09/09/02		3.88	21.42
	12/19/02		2.79	22.51
	03/10/03		2.36	22.94
	06/03/03		2.65	22.65
	09/19/03		3.15	22.15
	12/22/03		2.83	22.47
	03/12/04		2.00	23.30
	06/11/04		3.11	22.19
	09/13/04		3.90	21.40
	12/16/04		2.89	22.41
	03/21/05		1.93	23.37
	06/23/05		2.69	22.61
	09/30/05		4.54	20.76
	12/08/05		3.05	22.25
	03/01/06		1.95	23.35
	05/25/06	27.74	2.11	25.63
	08/10/06		3.25	24.49
	11/21/06		3.35	24.39
	02/06/07		3.34	24.40
	05/08/07		3.53	24.21
	08/06/07		3.91	23.83
	12/26/07		3.57	24.17
	06/28/08		3.66	24.08
	09/27/08		4.98	22.76
	12/30/08		4.63	23.11
	03/28/09		2.73	25.01

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-4	05/25/06	26.23	2.54	23.69
	08/10/06		4.65	21.58
	11/21/06		4.63	21.60
	02/06/07		3.87	22.36
	05/08/07		4.21	22.02
	08/06/07		4.54	21.69
	12/26/07		2.90	23.33
	06/28/08		3.02	23.21
	09/27/08		4.78	21.45
	12/30/08		3.91	22.32
	03/28/09		2.50	23.73
MW-5	05/25/06	26.78	2.60	24.18
	08/10/06		3.40	23.38
	11/21/06		3.27	23.51
	02/06/07		3.10	23.68
	05/08/07		3.00	23.78
	08/06/07		3.79	22.99
	12/26/07		3.38	23.40
	06/28/08		3.70	23.08
	09/27/08		4.65	22.13
	12/30/08		4.04	22.74
	03/28/09		2.85	23.93

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level. Wells resurveyed on April 27, 2006

DAILY REPORT FORM

Job # Location:	Alam	reda	rvisor:	3			 Su M T	u W Th F&a
Weather:	Warm	Sunny)	_			•	
Description	on of Activi							
			inels - sa	mpler	ws-c/	vanup · 1	travel home - uni	lond.
			Employe	ee Initials				
Cost			Lilipioy	ie iniciais				
Code	# hrs	# hrs	# hrs	# hrs	# hrs	# hrs	Work Perfo	ormed
	200						Samply	
	200						haul	
	4							
	400						to fal	
	Equipme	ent Used		# Hours		Rental Ec		# Hours
L	valer leve		Lun	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			al indiator	" Hours
	Ptc me					PTC m		
								
	aterial Use	.д		Quar	atity	i j	Visitor	•
	bailers	<u>u</u>		Quai		1 1	A ISITOI	<u> </u>
	disposable	Lin		1		1 1		
	יפאטנטין	14 /				1 1		
						1 1		
						1 [
						1 1		
								-
Su	bcontracto	rs			Tasks Pe	erformed		# Hrs
			1					

MONITORING WELL SAMPLING LOG

SITE NAME	E/LOCATIO	n: Al	amedi	١		-	PROJEC	T:	
DATE:	3jz8		•				SAMPLE	R'S INITIALS:	CM
WELL ID:	MW- z			WELL DIAM	METER (in):				
WELL DEPT	H (ft):	12.2	78	DEPTH TO	WATER (ft):	4103	WATER C	COLUMN Ht (ft):	7.99
STANDING To obtain sta				1.32 the water co	lumn height by	3 VOLUMES (§	gal): 3,47 well or 0.66 for a		
PURGE MET	HOD:		Mini-Wh	,	RGE MEASURE	SAMPLING ME	THOD:	disposable PE	bailer
	r				r:	EMEN 13			
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)			Comments	
1300	1	21.9	6.57	5457					
	2	2016	6.50	365					
1302	3	19.7	6.48	576					
1303	4	19.2	6.48	581					
			0. (0	امر					
						60 010	d e 1305		
						Sample	0 (120)	,	
			-						
					Ai .	I.			
WELL ID:	MW- J	E Washington		WELL DIAM	METER (in):	2			
WELL DEPT	H (ft):	11.03	er:	DEPTH TO	WATER (ft):	3.78	WATER C	OLUMN Ht (ft):	7.25
STANDING Y	WATER VOI	_UME (gal):		1,2		3 VOLUMES (g	gal): 3.6	1	
To obtain sta	nding volum	e in gallons,	multiply		lumn height by	0.17 for 2-inch v	well or 0.66 for a	4-inch well.	
PURGE MET	HOD:	Baile or	Mini-Wh			SAMPLING ME	THOD:	disposable PE	bailer
				PUI	RGE MEASURE	MENTS			
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)			Comments	
1315	1.5	23,5	6.67	SUZ					
1318	3.5	20,2	6.67	562					
1321	4.5	19.5	6.66	568		4 -00)	mala as f		
		1 (13	J. 00	200		7000	recharge		
					-				
						Samole) e1325		,

MONITORING WELL SAMPLING LOG

SITE NAME/LOCATION: Alamada							PROJECT:				
DATE:	3/2	8/09	-			W)	SAMPLER'S INITIALS:	1_			
WELL ID:	MW-	ζ		WELL DIA	METER (in):	2					
WELL DEPT	TH (ft):	16.03	•	DEPTH TO	WATER (ft):	2.73	WATER COLUMN Ht (ft): 13.	3			
		LUME (gal): ne in gallons,		Z.Z the water co	lumn height by		well or 0.66 for a 4-inch well.				
PURGE MET	ГНОD:			naler Pump		SAMPLING M	ETHOD: disposable PE bailer				
		(circle t	he correct		RGE MEASURE	EMENTS					
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments				
1332	Z	20.4	6,52	681							
1336	4,5	19.4	656	678			Y.				
1338	6.5	1914	6.58	659		odor	Sheen				
				V.							
						Sample	e) e 1340				
						_					
WELL ID:	MW-	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		WELL DIAM	NETER (in):	Witt sine Scotland	THE STATE OF THE S	Pelosy.			
WELL DEPT	H (ft):		e.	DEPTH TO	WATER (ft):		WATER COLUMN Ht (ft):				
STANDING \	WATER VOI	LUME (gal):				3 VOLUMES (gal):				
To obtain sta	nding volum	e in gallons,	multiply t	the water co			well or 0.66 for a 4-inch well.				
PURGE MET	HOD:	Bailer or	Mini-Wh			SAMPLING ME	disposable PE bailer				
		·		PUI	RGE MEASURE	MENTS					
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments				
								- 11			

MONITORING WELL SAMPLING LOG

SITE NAME/LOCATION: Almeda							PROJECT:				
DATE:	3/28/						SAMPLER'S INITIALS:				
WELL ID:	MW- 5			WELL DIAM	METER (in):						
WELL DEPT	H (ft):	1418	-	DEPTH TO	WATER (ft):	2.8 5	WATER COLUMN Ht (ft):				
STANDING Y				1,48 the water co	lumn height by		(gal): 6 well or 0.66 for a 4-inch well.				
PURGE MET	THOD:			naler Pump		SAMPLING M	ETHOD: disposable PE bailer				
	(circle the correct method) PURGE MEASUREMENTS										
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments				
	mate	r not 1	work-i	ny	I.						
				7		Purged	6 gattons				
						Sampre	1 C 1713				
		MERKEN I ST			tana Kasabilitan						
WELL ID:	MW-4			WELL DIAM	METER (in):		х				
WELL DEPT	H (ft):	14,2		DEPTH TO	WATER (ft):	7.50	WATER COLUMN Ht (ft): 1/17				
STANDING V				1.99 the water co	lumn height by		(gal):				
PURGE MET	THOD:		Mini-Wh			SAMPLING M	ETHOD: disposable PE bailer				
		,		·	RGE MEASURE	EMENTS					
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments				
1230	l	7	6.76	318							
	Z	20.5	6.76	362		Dm,	Slow recharge				
1245	5	17.6	6.90	401		- N					
	16					Sampled	C 1245				

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: Alameda	Date Sampled: 03/28/09
321 Court Street		Date Received: 03/30/09
Woodland, CA 95695	Client Contact: Tom Henderson	Date Reported: 04/06/09
moodalia, cri yooyo	Client P.O.:	Date Completed: 04/06/09

WorkOrder: 0903739

April 06, 2009

D				
Dear	Т	O	m	ľ

Enclosed within are:

- 5 analyzed samples from your project: Alameda, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD 0903 TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com ☐ GeoTracker EDF ☐ PDF ☐ Excel ☐ Write On (DW) Telephone: (877) 252-9262 Fax: (925) 252-9269 Bill To: Matriks Analysis Request Report To: Tom Henderson Other Comments Company: Matriks Corp. EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 321Court Street Samples Woodland, CA 95695 E-Mail:thenderson@matrikscorp.com MTBE / BTEX & TPH as Gas (602 / 8021 + CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) for Metals Tele: (530)406-1760 Fax: (530)406-1071 MTBE / BTEX ONLY (EPA 602 / 8021) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) analysis: EPA 515 / 8151 (Acidic Cl Herbicides) Project #: Project Name: Alameda Yes / No Lead (200.7 / 200.8 / 6010 / 6020) Project Location: Central Ayenue, Alameda, CA EPA 507 / 8141 (NP Pesticides) TPH-g, BTEX, 5-0xy (8260) Sampler Signature: METHOD SAMPLING MATRIX TPH as Diesel (8015) PRESERVED # Containers LOCATION/ SAMPLE ID Field Point Sludge Time Other HNO3 Name Date None ICE Soil 3/28/09 MW-1 1325 5 4 х MW-2 3/28/09 1305 5 5 4 X 3/28/09 5 5 4 MW-3 1340 X 3/28/09 1245 5 5 4 MW-4 X X 3/28/09 1213 5 4 MW-5 5 X 0 GOOD CONDITION Envirotech Received By: COMMENTS: * = 4 VOA + 1 Amber Relinquished By: Time: mulde HEAD SPACE ABSENT DECHLORINATED IN LAB Time: Received By: DON M Relinquished By Dates APPROPRIATE CONTAINERS PRESERVED IN LAB ENULROTECH Received By: Relinquished By: Date: Time: DON M 3/30/09 19:55 VOAS O&G METALS OTHER ENVIROTECH

PRESERVATION

pH<2

McCampbell Analytical, Inc.

1534 Willo Pittsburg, (925) 252

Tom Henderson

321 Court Street

Matriks Corporation

Report to:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

ClientCode: MCW

Page 1 of 1

Date Received: 03/30/2009

WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	☐ J-flag
		Bil	I to:		Req	uested TAT:	5 days
thenderson@matrik	scorp.com		Robert Neely				

WorkOrder: 0903739

cc: Matriks Corporation PO: 321 Court Street

Woodland, CA 95695 ProjectNo: Alameda Woodland, CA 95695 Date Printed: 03/30/2009

(530) 406-1760 FAX (530) 406-1771

Email:

						Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0903739-001	MW-1	Water	3/28/2009 13:25		В	Α	Α									
0903739-002	MW-2	Water	3/28/2009 13:05		В		Α									
0903739-003	MW-3	Water	3/28/2009 13:40		В		Α									
0903739-004	MW-4	Water	3/28/2009 12:45		В		Α									
0903739-005	MW-5	Water	3/28/2009 12:13		В		Α									

Test Legend:

1	GMBTEXOXYPB_W	2 PREDF REPORT	3 TPH(D)_W	4	5	
6		7	8	9	10	
11		12				

Prepared by: Samantha Arbuckle

Comments:

Sample Receipt Checklist

Client Name:	Matriks Corporation				Date ar	nd Time Received:	03/30/09 8	:46:23 PM
Project Name:	Alameda				Checkl	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0903739 Matrix	<u>Water</u>			Carrier	: <u>EnviroTech</u>		
		Chain of	Cus	stody (C	OC) Informa	<u>tion</u>		
Chain of custody	present?	Y	'es	V	No 🗆			
Chain of custody signed when relinquished and received?			'es	V	No 🗆			
Chain of custody	agrees with sample labels?	Y	'es	✓	No 🗌			
Sample IDs noted	by Client on COC?	Y	'es	V	No 🗆			
Date and Time of	collection noted by Client on C	COC? Y	'es	~	No 🗆			
Sampler's name r	noted on COC?	Y	'es	V	No 🗆			
		<u>Sam</u>	ple	Receipt	Information			
Custody seals in	tact on shipping container/coo	oler? Y	'es		No 🗆		NA 🗹	
Shipping containe	er/cooler in good condition?	Y	'es	V	No 🗆			
Samples in prope	er containers/bottles?	Y	'es	V	No 🗆			
Sample containe	rs intact?	Y	'es	✓	No 🗆			
Sufficient sample	e volume for indicated test?	Y	'es	✓	No 🗌			
	<u>s</u>	ample Preserva	tion	and Ho	ld Time (HT)	Information		
All samples recei	ived within holding time?	Y	'es	✓	No 🗌			
Container/Temp B	Blank temperature	С	coole	r Temp:	6.2°C		NA \square	
Water - VOA vial	ls have zero headspace / no	bubbles? Y	'es	V	No 🗆	No VOA vials subm	itted \square	
Sample labels ch	necked for correct preservation	n? Y	'es	~	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Y	'es		No 🗆		NA 🗹	
Samples Receive	ed on Ice?	Y	'es	V	No 🗆			
		(Ice Type:	WE	TICE)			
* NOTE: If the "N	No" box is checked, see com	ments below.						
=====	=======	=====			====	======	====	
Client contacted:		Date contacted	:			Contacted	by:	
Comments:								

When Guanty Counts		Telephone. 677-232-7262 1 ax. 723-232-7267					
Matriks Corporation	Client Project ID:	Alameda	Date Sampled:	03/28/09			
321 Court Street			Date Received:	03/30/09			
	Client Contact: To	om Henderson	Date Extracted:	04/02/09-04/03/09			
Woodland, CA 95695	Client P.O.:		Date Analyzed:	04/02/09-04/03/09			

TPH(g)MBTEX + Oxygenates + EDB and 1,2-DCA*

Extraction Method: SW5030B	Anal	Analytical Method: SW8260B							
Lab ID	0903739-001B	0903739-002B	0903739-003B	0903739-004B					
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting				
Matrix	W	W	W	W	DF =1				
DF	3.3	1	10	1	S	W			
Compound		Concentration							
TPH(g)	1900	ND	9200	ND	NA	50			
tert-Amyl methyl ether (TAME)	ND<1.7	ND	ND<5.0	ND	NA	0.5			
Benzene	ND<1.7	ND	150	ND	NA	0.5			
t-Butyl alcohol (TBA)	ND<6.7	ND	38	ND	NA	2.0			
1,2-Dibromoethane (EDB)	ND<1.7	ND	ND<5.0	ND	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND<1.7	ND	ND<5.0	ND	NA	0.5			
Diisopropyl ether (DIPE)	ND<1.7	ND	ND<5.0	ND	NA	0.5			
Ethylbenzene	77	ND	34	ND	NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND<1.7	ND	ND<5.0	ND	NA	0.5			
Methyl-t-butyl ether (MTBE)	22	5.4	120	0.90	NA	0.5			
Toluene	ND<1.7	ND	25	ND	NA	0.5			
Xylenes	58	ND	22	ND	NA	0.5			
	Surr	ogate Recoveries	s (%)						
%SS1:	87	85	87	86					
%SS2:	104	103	104	103					
%SS3:	84	80	81	84					
Comments			b6						

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

"When Ouality	"When Ouality Counts"		Telephone: 877-252-9262 Fax: 925-252-9269						
Matriks Corporation	Client Pro	oject ID: Alan	neda	Date Sampled:	03/28/09				
321 Court Street				Date Received:	Date Received: 03/30/09				
321 Court Succi	Client Co	ontact: Tom H	Date Extracted:	Date Extracted: 04/02/09-04/03/09					
Woodland, CA 95695	Client P.C	O.:		Date Analyzed:	04/02/09-0	4/03/09			
	TPH(g)MBTEX	+ Oxygenates	+ EDB and 1,2-D	CA*					
Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0903739									
Lab ID	0903739-005B								
Client ID	MW-5				Reporting Limit for				
Matrix	W				DF	7 =1			
DF	1				S	W			
Compound		Cor	ncentration		ug/kg	μg/L			
TPH(g)	200				NA	50			
tert-Amyl methyl ether (TAME)	ND<17				NA	0.5			
Benzene	ND<17				NA	0.5			
t-Butyl alcohol (TBA)	ND<67				NA	2.0			
1,2-Dibromoethane (EDB)	ND<17				NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND<17				NA	0.5			
Diisopropyl ether (DIPE)	ND<17				NA	0.5			
Ethylbenzene	ND<17				NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND<17				NA	0.5			
Methyl-t-butyl ether (MTBE)	610				NA	0.5			
Toluene	ND<17				NA	0.5			
Xylenes	ND<17				NA	0.5			
	Surro	ogate Recover	ies (%)						
%SS1:	83								
% SS2:	99				<u> </u>				
%SS3:	73				<u> </u>				
Comments		l							

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

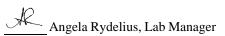
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Matriks Corporation	Client Project ID: Alameda	Date Sampled: 03/28/09
321 Court Street		Date Received: 03/30/09
	Client Contact: Tom Henderson	Date Extracted: 03/30/09
Woodland, CA 95695	Client P.O.:	Date Analyzed 03/31/09-04/01/09

Total Extractable Petroleum Hydrocarbons*


Extraction method SW3510C Analytical methods: SW8015B Work Order: 0903739

Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS
0903739-001A	MW-1	W	920,e4	1	105
0903739-002A	MW-2	W	60,e2	1	96
0903739-003A	MW-3	W	4300,e4	1	101
0903739-004A	MW-4	W	ND	1	105
0903739-005A	MW-5	W	100,e4	1	107

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 42352 WorkOrder 0903739

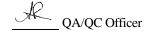
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0903737-001										001F		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١
7 tildiy to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	108	106	1.49	105	105	0	70 - 130	30	70 - 130	30
Benzene	ND	10	125	123	1.78	119	119	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	94.2	97.8	3.75	91.5	92	0.596	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	107	107	0	111	112	0.430	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	122	120	1.58	119	119	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	120	120	0	114	114	0	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	96.8	96.8	0	97.1	97.6	0.450	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	117	115	1.64	108	109	1.26	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	122	121	1.08	121	122	0.850	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	114	111	2.18	112	113	0.676	70 - 130	30	70 - 130	30
Toluene	ND	10	117	117	0	123	124	0.762	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	125	123	1.59	128	129	0.580	70 - 130	30	70 - 130	30
%SS1:	72	25	84	83	1.33	78	78	0	70 - 130	30	70 - 130	30
% SS2:	105	25	100	101	0.707	88	88	0	70 - 130	30	70 - 130	30
% SS3:	86	2.5	80	80	0	84	83	1.21	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 42352 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903739-001B	03/28/09 1:25 PM	1 04/03/09	04/03/09 12:46 AM	0903739-002B	03/28/09 1:05 PM	04/02/09	04/02/09 6:06 PM
0903739-003B	03/28/09 1:40 PM	1 04/02/09	04/02/09 6:51 PM	0903739-004B	03/28/09 12:45 PM	04/03/09	04/03/09 1:29 AM
0903739-005B	03/28/09 12:13 PM	1 04/03/09	04/03/09 2:13 AM	0903739-005B	03/28/09 12:13 PM	04/03/09	04/03/09 4:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015B

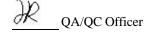
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 42290 WorkOrder: 0903739

EPA Method SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	90.8	88.1	3.01	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	87	82	5.90	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 42290 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903739-001A	03/28/09 1:25 PM	03/30/09	03/31/09 5:33 AM	0903739-002A	03/28/09 1:05 PM	03/30/09	04/01/09 9:54 PM
0903739-003A	03/28/09 1:40 PM	03/30/09	03/31/09 7:50 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015B

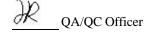
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 42360 WorkOrder: 0903739

EPA Method SW8015B					8	Spiked San	nple ID:	: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	101	100	0.548	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	104	104	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 42360 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903739-004A	03/28/09 12:45 PM	I 03/30/09	03/31/09 9:03 AM	0903739-005A	03/28/09 12:13 PM	03/30/09	03/31/09 2:13 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

