RECEIVED

10:15 am, Jun 24, 2009

Alameda County Environmental Health

QUARTERLY GROUNDWATER MONITORING REPORT Fourth Quarter 2008

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94520

SUBMITTED TO:

Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

February 2, 2009

Project No. 6022

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIO	NAL CERTIFICATIONii
ACRONYM	S AND ABBRREVIATIONSiii
INTRODUC	TION
Site Des	cription and Physical Setting1
Site Hist	ory1
SCOPE OF	WORK
METHODS	AND PROCEDURES 4
Groundy	vater Level Measurements 4
Monitor	ing Well Purging and Sampling4
Geotracl	ker Requirements 5
RESULTS	5
Groundy	vater Levels and Gradient5
Groundy	vater Analytical Results 5
DISCUSSIO	N
RECOMME	NDATIONS 7
FIGURES	
Figure 1	Site Location Map
Figure 2	Monitoring Well Locations
Figure 3	Groundwater elevation Contours
Figure 4	Elevation versus Time Hydrograph
Figure 5	TPH-g Concentrations
Figure 6	MW-1 TPH-g and Benzene Concentration Trends
Figure 7	MW-3 TPH-g and Benzene Concentration Trends

TABLES

Table 1 Groundwater Analytical Results

Table 2 Well Construction Details

Table 3 Groundwater Levels and Elevations

APPENDICES

Appendix A Monitoring Well Purge Logs Appendix B Laboratory Analytical Report

PROFESSIONAL CERTIFICATION

QUARTERLY GROUNDWATER MONITORING REPORT Fourth Quarter 2008

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

Project No. 6022 February 2, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tom Henderson President David W. Janney, Senior Geologist DAVID W

PROFESSIONAL CERTIFICATION

QUARTERLY GROUNDWATER MONITORING REPORT Fourth Quarter 2008

Alaska Gas
1310 Central Avenue
Alameda, California 94501
LOP Case No. RO0000022

Project No. 6022 February 2, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tom Henderson	David W. Janney, P.G.
President	Senior Geologist

ACRONYMS AND ABBRREVIATIONS

ACEHS Alameda County Environmental Health Services

AEI All Environmental, Inc.

amsl above mean sea level

ASE Aqua Science Engineers, Inc.

BTEX benzene, toluene, ethyl-benzene, xylenes

COC chain-of-custody

DCA 1,2-dichloroethane

DIPE di-isopropyl ether

EDB ethylene di-bromide

EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

FS/CAP Feasibility Study/Corrective Action Plan

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether

O&G oil and grease

μg/L micrograms per liter

mg/Kg milligrams per kilogram

ml milliliter

MW monitoring well

PDF portable document format

RWQCB Regional Water Quality Control Board

SC specific conductance

tAME tert-amyl methyl ether

tBA tert butyl alcohol

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report presents the results of the third quarter 2008 groundwater monitoring event conducted by Matriks at Alaska Gas (the "Site"), located at 1310 Central Avenue in Alameda, California. The quarterly groundwater monitoring event described in this report was conducted on December 30, 2008 and is part of an ongoing subsurface investigation of petroleum hydrocarbons in soil or groundwater that was caused by an unauthorized release of petroleum fuels from the underground storage tank (UST) system (tanks, associated piping and dispensers) formerly located at the Site. Matriks is conducting this investigation on behalf of the responsible parties, Mr. Leon Zektser, Mr. Nissan Saidian, and Mr. Joe Zadik. The Alameda County Environmental Health Services (ACEHS) is the lead regulatory agency overseeing Site investigation and remediation and the ACEHS case number is RO0000022. The quarterly groundwater monitoring program consists of the collection and laboratory analysis of groundwater samples from five groundwater monitoring wells to assess concentrations of petroleum hydrocarbon compounds in shallow groundwater.

Site Description and Physical Setting

The Site is currently a retail gasoline fueling station located in an area of mixed commercial and residential properties in the south-central part of the island of Alameda. The Site is located at the intersection of Encinal Avenue, Sherman Street, and Central Avenue. A Site location map is shown on **Figure 1** and a Site plan showing physical features and groundwater monitoring well locations is shown on **Figure 2**.

The Site is relatively flat and the investigation area has a surface elevation of approximately 25 feet above mean sea level (amsl). San Francisco Bay and the Alameda Estuary are located approximately one-half mile to the south. Due to the topography of the island and proximity to San Francisco Bay, groundwater beneath the Site is tidally influenced and has a very shallow gradient.

Site History

In May 1996, Petrotek removed three gasoline USTs including one 10,000-gallon, one 7,500-gallon and one 5,000-gallon UST from the western corner of the Site. A 500-gallon waste oil UST adjacent to the building, was also removed from the southern portion of the Site. Fuel dispensers and associated product piping were also removed.

Free-phase petroleum hydrocarbons were observed floating on the groundwater surface in the gasoline UST excavation following removal of the USTs. According to the laboratory analysis, a groundwater sample collected from the gasoline UST excavation contained 2,800 micrograms per liter (μ g/L) of total petroleum hydrocarbons as gasoline (TPH-g) and 100 μ g/L benzene. Soil

samples collected from the same excavation contained up to 5,000 milligrams per kilogram (mg/Kg) of THP-g and 31mg/Kg benzene. Soil samples collected beneath the former dispenser island contained up to 6,800 mg/Kg TPH-g and 63 mg/Kg benzene. A ground water sample collected in the waste oil UST excavation contained 35,000 μ g/L of total petroleum hydrocarbons as diesel (TPH-d) and motor oil range hydrocarbons, and 1,300 μ g/L of TPH-g. A records search at ACEHS did not identify any tank removal reports or subsequent remedial action reports.

Petrotek reportedly excavated and disposed of approximately 600 cubic yards of petroleum hydrocarbon-impacted soil from the UST excavations. It does not appear that confirmation soil samples were collected following removal of the petroleum hydrocarbon-impacted soil. Approximately 15,000 gallons of ground water were also removed from the excavations, treated and discharged to the sanitary sewer. Two new gasoline USTs, dispensers and product piping were installed in the same UST excavation after the petroleum hydrocarbon-impacted soil and ground water were removed.

In November 1998, All Environmental Inc. (AEI) advanced 14 soil borings on the Site, collected soil and groundwater samples from the borings, and submitted them for laboratory analysis. The boring soil samples contained up to 5,900 mg/Kg of TPH-g. The boring grab groundwater samples contained up to 120,000 μ g/L TPH-g and 7,200 μ g/L benzene.

On May 16, 2000, Aqua Science Engineers (ASE) collected groundwater samples from the three wells. Hydrocarbon concentrations detected in the May 16 groundwater samples were less than those detected in the November 1999 sampling event, especially with respect to MW-2. The reason for this is unclear. Sample results are presented in **Table 1**.

On July 28, 2000, ASE advanced 12 Geoprobe borings (borings BH-A through BH-L) to further delineate the lateral and vertical extent of petroleum hydrocarbons and collected soil and grab groundwater samples from each borings. Laboratory analysis detected 0.00061 mg/Kg of MtBE in a soil samples collected from 3.0 feet (ft) below ground surface in boring BH-K. There were no petroleum hydrocarbons or oxygenates detected in soil samples from the other 11 borings, however, petroleum hydrocarbons and oxygenates were detected in grab groundwater samples collected from borings BH-A, B, C, D, I, J, K, and L.

In December 2002, ASE conducted an investigation to assess whether subsurface utility line trenches may provide a groundwater movement pathway. ASE concluded that it did not appear that the utility line trenches act as groundwater movement pathways. This conclusion was based on ASE's assumption that the utility line trench backfill material is native sandy soil and that the highest concentrations of petroleum hydrocarbons in the 12 Geoprobe borings soil samples were located beyond the utility line trenches. Although ASE concluded that the utility line trenches did not provide a groundwater movement pathway, the ACEHS requested that water samples be collected from the sewer in one of the trenches to assess whether petroleum hydrocarbon-impacted groundwater may have entered the sewer line through seams or cracks.

In January 2004, ASE drilled four additional soil borings, BH-M through BH-P and the soil samples collected from each boring contained concentrations of TPH-d, with the highest concentration of 68 mg/Kg detected in BH-M. No TPH-d, BTEX or oxygenates were detected in any of the other soil samples. The groundwater samples collected from the borings contained TPH-d concentrations as high as 170 μ g/Land the groundwater sample collected from boring BH-O also contained 19 μ g/L MtBE. None of the other groundwater samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Groundwater samples were also collected from the sewer line beneath Central Avenue, both up gradient and down gradient of the Site. Low concentrations of TPH-g were detected in both samples. No BTEX or oxygenates were detected in either of these samples.

In December 2005, ASE conducted a records search at the Alameda City Public Works Agency and the California Department of Water Resources to identify water wells with ½ mile radius of the Site. A total of 25 wells were located within the search radius. The results included three domestic wells, 10 irrigation wells, one industrial well, two cathodic protection wells, four groundwater monitoring wells, and five vapor extraction wells. The nearest well is located more than 1,000 feet east of the Site. The nearest, potentially down gradient, well is located approximately 1,260 feet northwest of the Site. Based on the records search, ASE proposed additional soil and groundwater assessment for the Site.

In April 2006, ASE advanced two additional borings and installed two groundwater monitoring wells. Borings BH-Q, BH-R and monitoring wells MW-4 and MW-5 were installed using a drill rig equipped with an 8-inch hollow-stem auger. Petroleum hydrocarbons were detected by laboroatory analysis at a concentration of 11 mg/Kg TPH-d in a soil sample from BH-Q and 1.7 mg/Kg TPH-d in a soil sample from the boring MW-5. The laboratory noted that the hydrocarbons reported as TPH-D in each sample did not exhibit a typical diesel chromatogram pattern. None of the soil samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Well construction details are presented in **Table 2**.

Groundwater samples collected from BH-Q and BH-R contained detectable concentrations of petroleum hydrocarbon of 220 μ g/L TPH-d and 770 μ g/L TPH-d, respectively. Similar to the soil samples, the laboratory noted the hydrocarbons reported as TPH-d did not exhibit a typical diesel chromatogram pattern. Based on the results of this investigation, ASE recommended no further delineation of the extent of petroleum hydrocarbons in soil or groundwater.

From April 2006 to present, groundwater monitoring well samples have been collected and analyzed on a quarterly basis. In June 2008, the Site owners contracted with Matriks to conduct quarterly groundwater monitoring and prepare for further Site remediation.

SCOPE OF WORK

The scope of work conducted for this quarterly groundwater monitoring event included the following tasks:

- Measurement of static water levels in five groundwater monitoring wells;
- Collection of field water quality parameters including pH, temperature, and specific conductance (SC) from groundwater in each well;
- Purging at least three casing volumes from each well;
- Collection and analysis of groundwater water samples from each well for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the Monitoring Well Purging and Sampling section of this report for analytical methods used);
- Update of the Geotracker database; and
- Preparation of this Quarterly Monitoring Report.

METHODS AND PROCEDURES

Groundwater Level Measurements

Prior to measuring the depth to groundwater, the cap of each well was removed and the water level was given an opportunity to equilibrate with atmospheric pressure for approximately 30 minutes before recording measurements using an electronic water depth indicator. The static water levels were referenced to the surveyed marks notched into the top of each well casing and the depth-to-water measurements were used to calculate the purge volume of for each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a new disposable bailer. Groundwater temperature, pH, and SC were measured intermittently during purging with a Hanna multimeter water quality instrument which was calibrated by the equipment rental service prior to on-site use. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled and sealed 55-gallon, DOT-approved steel drums and temporarily stored on-site.

A new disposable bailer dedicated to each well, was used to remove the groundwater samples and transfer them to the appropriate laboratory prepared containers. Care was taken to remove the headspace in each container. Each sample container was labeled with the project number, sample ID, and collection date. The same information was recorded on the laboratory

chain-of-custody (COC) form. Samples were stored in a cooler filled with ice for transport to the laboratory.

Samples were transported and submitted to McCampbell Analytical, Inc. of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

Depth-to-water was measured in each monitoring well. The groundwater flow direction for this monitoring event was calculated to be N20°W with a gradient of 0.005. Well construction details are presented in **Table 2**. Groundwater levels and elevations are summarized in **Table 3**. Groundwater elevation contours are depicted on **Figure 3**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 4**.

Groundwater Analytical Results

TPH-g, BTEX, and MtBE were detected by laboratory analysis in the highest concentrations in groundwater monitoring wells MW-1 and MW-3. TPH-g was detected in MW-1 and MW-3 at concentrations of 5,300 μ g/L and 9,100 μ g/L, respectively. TPH-g was also detected in MW-5 at a concentration of 210 μ g/L. TPH-g was not detected in groundwater samples collected from the other monitoring wells.

Benzene was also detected in MW-1 at concentrations of 12 μ g/L and MW-3 at a concentration of 160 μ g/L. Benzene was not detected in samples collected from the other groundwater monitoring wells. MtBE was detected in MW-1, MW-2, MW-3, MW-4, and MW-5 at concentrations of 7.1 μ g/L, 13 μ g/L, 150 μ g/L, 1.2 μ g/L, and 610 μ g/L, respectively.

Groundwater analytical results are summarized in **Table 3**. A copy of the laboratory analytical report is included in **Appendix B**. **Figure 5** shows TPH-g and benzene concentration trends in well MW-1 and **Figure 6** shows these same concentration trends in MW-3.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by AB2886 (Water Code Section 13195-13198). EDFs are prepared and formatted by the laboratory and submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. A well status and usage report (GEO WELL file) is submitted for each monitoring

event. A complete electronic copy of this report (GEO_REPORT file) in PDF format was also submitted. Update maps (GEO_MAP files) are submitted when site features such as monitoring wells or soil borings are added.

DISCUSSION

In general, petroleum hydrocarbon concentrations have decreased since groundwater monitoring began in September 1999. This appears to indicate that natural attenuation and degradation are occurring.

The highest concentrations of petroleum hydrocarbons were detected in monitoring wells MW-1 and MW-3. TPH-g, TPH-d, and benzene in these wells was detected above the environmental screening limits (ESLs) of 100 μ g/L, 100 μ g/L, and 1.0 μ g/L, respectively, established by the San Francisco Bay RWQCB. MtBE was also detected above the ESL in MW-3.

TPH-g, benzene, and MtBE were also detected above the ESLs in well MW-5. This appears to indicate that petroleum hydrocarbons are migrating down gradient from the Site.

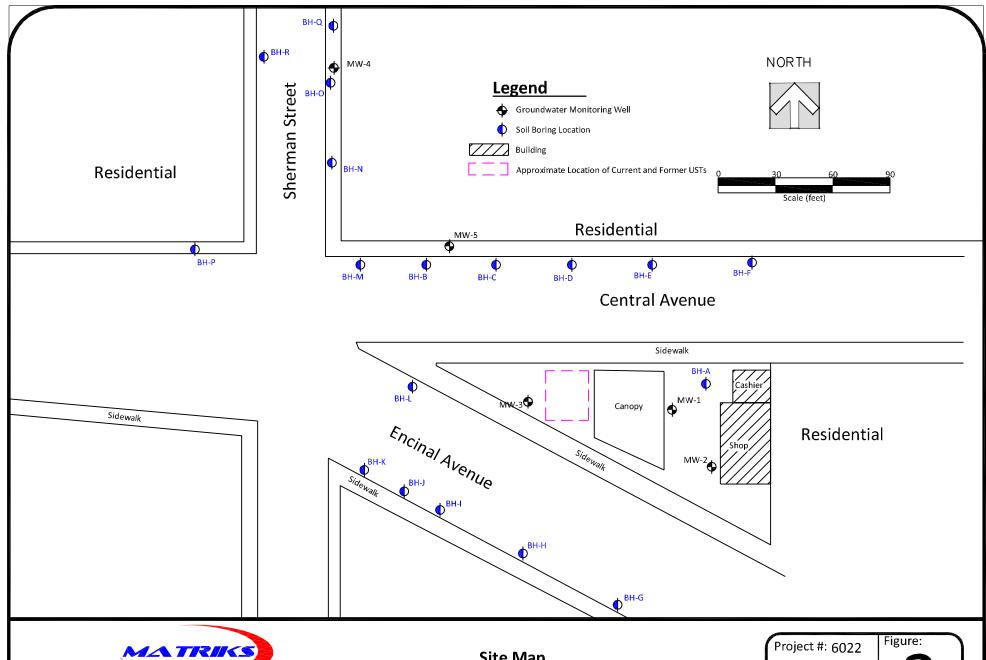
MtBE was detected in down gradient well MW-4 at a concentration of 1.1 μ g/L. This concentration is less than the ESL for MTBE of 5 μ g/L but this also appears to indicate that petroleum hydrocarbons are migrating down gradient within groundwater. Petroleum hydrocarbon concentrations detected in MW-1 and MW-2 appear to be consistent with their spatial relationship to the former USTs.

AEI reported in December 1998, that TPH-d was detected in soil in boring BH-10 only, at a concentration of 300 mg/kg. The laboratory analytical results in the appendix of their report indicated diesel was detected at a concentration of 300 mg/Kg, at a depth of 8 feet in boring BH-6, not in boring BH-10. Furthermore, AEI also reported that TPH-d was detected in groundwater samples collected from each boring, with the highest concentration detected in boring BH-11, apparently upgradient of the former waste oil UST. AEI also reported that petroleum as O&G was detected in soil in borings BH-9 through BH-11, at a concentrations ranging between 16 and 3,100 mg/Kg. No O&G was detected in groundwater samples collected from these same borings. If the former waste-oil UST was the source of the diesel, it would be reasonable to expect the highest concentrations of O&G in groundwater and soil proximal to the former waste-oil UST. It would also be reasonable to expect the highest concentrations in groundwater to be immediately down gradient of the former waste-oil UST. With the exception of boring B-11, the AEI results have relatively low concentrations of TPH-d proximal to the former waste-oil UST and high concentrations of TPH-d in groundwater samples distal from the former waste-oil UST. All of these factors combined may indicate an off-site and presently unidentified source for TPH-d in groundwater contamination of the samples in the field or in the laboratory. It does not appear that a trip blank was used while transporting the samples from the field to the lab.

While benzene and MtBE appear to be migrating in the down gradient direction in low concentrations, the possibility of vapor intrusion into down gradient buildings must be considered.

RECOMMENDATIONS

We recommend the preparation of a Feasibility Study/Corrective Action Plan (FS/CAP) to address remedial alternatives for petroleum hydrocarbons primarily in groundwater but remedial consideration should also be given to the soil proximal to the former USTs. Our preliminary analysis indicates that ozone sparging will be an effective remedial action given the soil and groundwater conditions at the Site and its small apparent lateral extent. The FS/CAP may also include limited additional characterization of soil or groundwater to further assess the concentrations of TPH-d. We also recommend continued quarterly groundwater monitoring.


FIGURES

 $\textbf{FIGURE}\ 1$

Site Location Map Alaska Gas 1310 Central Avenue, Alameda, CA

321 Court Street Lic. No. 909563 Woodland, California 95695 (530) 406-1760 Fax# (530) 406-1760

Site Map

Alaska Gasoline 1310 Central Avenue Alameda, California

Date: 2/02/2009

Scale: as shown

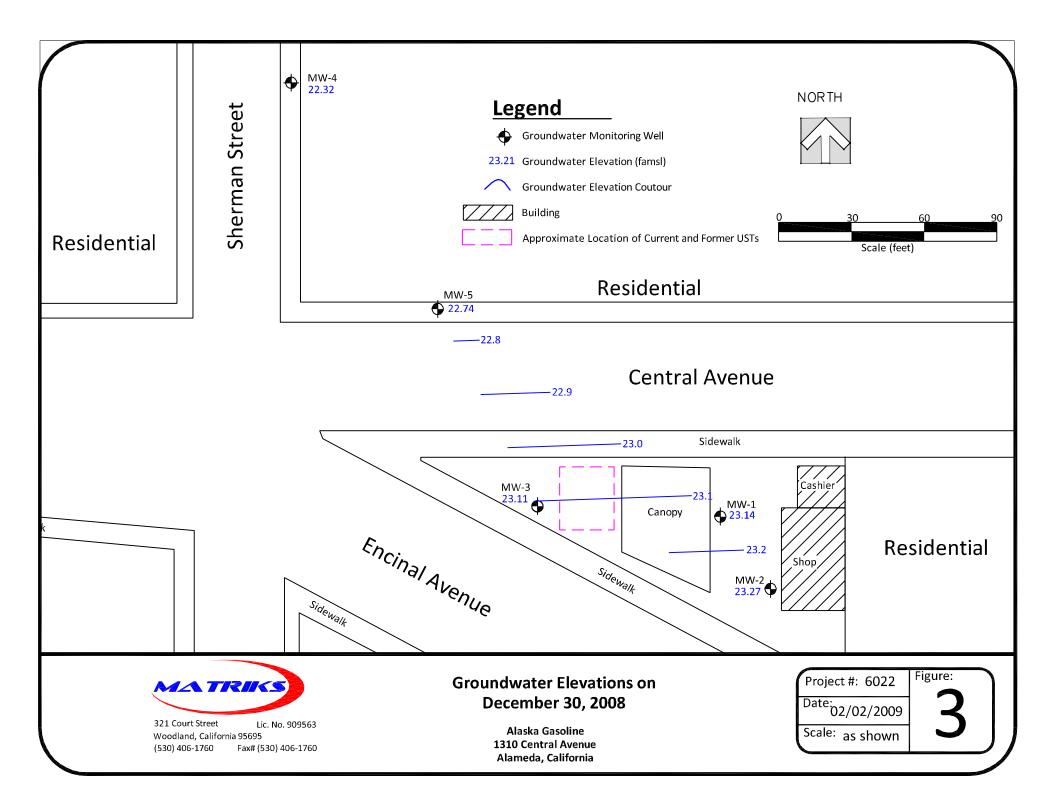


Figure 4. Monitoring Well Hydrographs
Alaska Gas
Alameda, CA

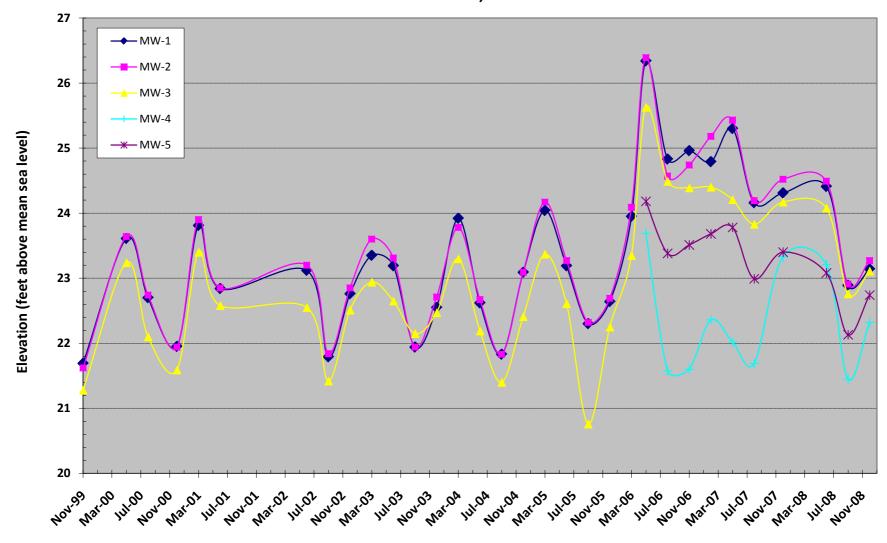


Figure 6. TPH-g and Benzene vs. Time in Well MW-1 Alaska Gas

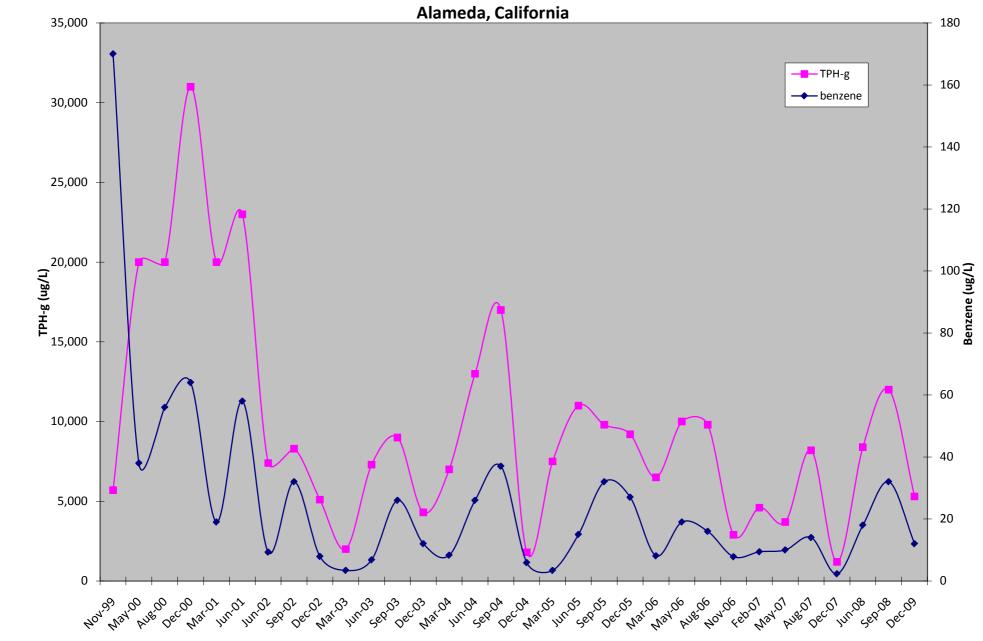
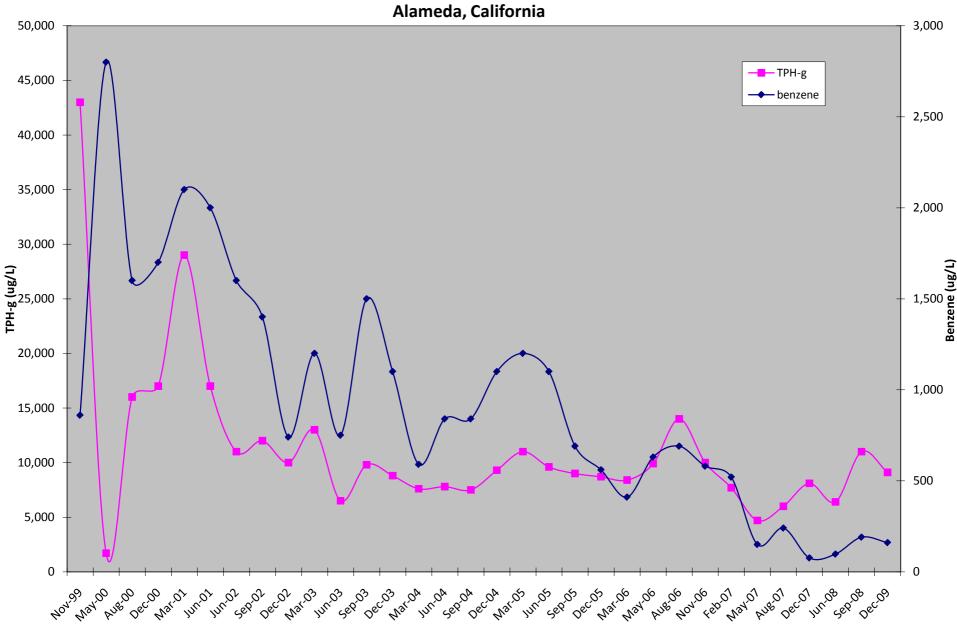



Figure 7. TPH-g and Benzene vs Time in Well MW-3

Alaska Gas

Alameda, California

TABLES

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygenates
MW-1	11/06/99	5,700	8,700	170	59	22	85	20,000	NA	NA	NA
	05/16/00	20,000	<7,500	38	6.3	740	1,600	<5.0	<5.0	<50	<5.0
	08/03/00	20,000	<6,000	56	9.7	920	1,600	<0.5	<0.5	<50	<0.5
	12/05/00	31,000	<4,000	64	27	820	2,200	<10	<5.0	<50	<5.0
	03/05/01	20,000	<4,000	19	<5.0	480	870	<5	<5.0	<50	<5.0
	06/04/01	23,000	<7,000	58	50	710	2,100	5.1	<5.0	<50	<5.0
	06/05/02	7,400	<1,500	9.3	6.7	180	230	<1.0	<1.0	<10	<1.0
	09/09/02	8,300	<3500	32	20	390	670	<2.0	<2.0	<20	<2.0
	12/19/02	5,100	NS	7.9	2.5	56	93	<1.0	<1.0	<10	<1.0
	03/10/03	2,000	<2,000	3.4	2.9	80	98	<0.5	<0.5	<5.0	<0.5
	06/03/03	7,300	<4,000	6.8	9.9	300	1,000	2.3	<0.5	<5.0	<0.5
	09/19/03	9,000	<3,000	26	22	420	1,200	4.5	<1.5	<20	<1.5
	12/22/03	4,300	<2,000	12	6.7	200	290	9.1	<1.0	<10	<1.0
	03/12/04	7,000	<3,000	8.3	8.2	250	760	3.9	<2.0	<20	<2.0
	06/11/04	13,000	<4,000	26	27	530	1,700	<2.5	<2.5	<15	<2.5
	09/13/04	17,000	<4,000	37	42	840	2,000	<5.0	<5.0	<50	<5.0
	12/16/04	1,800	<1,000	5.9	1.9	100	35	16	<0.5	<5.0	<0.5
	03/21/05	7,500	<3,000	3.4	4.2	290	760	<1.5	<1.5	<20	<1.5
	06/23/05	11,000	<8,000	15	11	370	910	2.4	<1.5	<7.0	<1.5
	09/30/05	9,800	<4,000	32	25	540	680	1.6	<1.5	<7.0	<1.5
	12/08/05	9,200	<4,000	27	21	500	490	2.2	<1.5	<7.0	<1.5
	03/01/06	6,500	<4,000	8.1	9.4	370	660	18	<1.5	<6.0	<1.5
	05/25/06	10,000	<3,000	19	14	900	620	<1.5	<1.5	<7.0	<1.5
	08/10/06	9,800	<1,500	16	8.1	640	180	<1.5	<1.5	<7.0	<1.5
	11/21/06	2,900	<1,000	7.8	2.5	160	12	2.5	2.5	<5.0	<0.5
	02/06/07	4,600	<1,500	9.4	6	380	220	1	<0.50	<5.0	<0.50
	05/08/07	3,700	<800	10	4.6	320	86	1.5	<0.50	<5.0	<0.50
	08/06/07	8,200	<2,000	14	8.8	730	180	<0.50	<0.50	<5.0	<0.50
	12/26/07	1,200	<300	2.3	1.1	89	21	4.8	<0.50	<5.0	<0.50
	06/28/08	8,400	3,900	18	26	670	1,100	<2.5	<2.5	<10	<2.5
	09/27/08	12,000	4,600	32	49	1,200	680	<25	<25	<100	<25
	12/30/08	5,300	3,700	12	31	300	27	7.1	<5.0	<20	<5.0

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygenates
MW-2	11/06/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
	05/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/03/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/05/00	<50	1,400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	03/05/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/04/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/05/02	<50	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/09/02	<50	1,300	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	12/19/02	<50		<0.5	<0.5	<0.5	<0.5	16	<0.5	<5.0	<0.5
	03/10/03	<50	3,000	<0.5	<0.5	<0.5	<0.5	1	<0.5	<5.0	<0.5
	06/03/03	<50	700	<0.5	<0.5	<0.5	<0.5	2	<0.5	<5.0	<0.5
	09/19/03	<50	1,400	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<5.0	<0.5
	12/22/03	<50	1,000	<0.5	<0.5	<0.5	<0.5	39	<0.5	<5.0	<0.5
	03/12/04	<50	250	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<5.0	<0.5
	06/11/04	<50	920	<0.5	<0.5	<0.5	<0.5	0.75	<0.5	<5.0	<0.5
	09/13/04	<50	140	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<5.0	<0.5
	12/16/04	<50	150	<0.5	<0.5	<0.5	<0.5	12	<0.5	<5.0	<0.5
	03/21/05	<50	130	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/23/05	<50	1,100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/30/05	<50	300	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<5.0	<0.5
	12/08/05	<50	600	<0.5	<0.5	<0.5	<0.5	1.9	<0.5	<5.0	<0.5
	03/01/06	<50	920	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/25/06	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/10/06	<50	870	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	11/21/06	<50	130	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<5.0	<0.5
	02/06/07	<50	450	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/26/07	<50	190	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<5.0	<0.5
	06/28/08	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<2.0
	09/27/08	<50	78	<0.5	<0.5	<0.5	<0.5	7	<0.5	<2.0	<0.5
	12/30/08	<50	100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5

Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygenates
MW-3	11/06/99	43,000	870	860	70	<0.5	65	120,000	NA	NA	NA
	05/16/00	1,700	<5,000	2,800	60	380	190	990	9.1	350	<5.0
	08/03/00	16,000	<2,000	1,600	29	210	53	1,200	21	260	<2.0
	12/05/00	17,000	5800	1,700	45	460	240	1,100	21	230	<5.0
	03/05/01	29,000	<1,300	2,100	68	280	100	180	<8.0	<80	<8.0
	06/04/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
	06/05/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
	09/09/02	12,000	<800	1,400	44	130	27	760	<10	160	<5.0
	12/19/02	10,000	NS	740	32	180	38	86	<5.0	<50	<5.0
	03/10/03	13,000	<6,000	1,200	42	240	35	470	5.3	140	<2.5
	06/03/03	6,500	<3,000	750	21	46	15	1,300	<50	280	<10
	09/19/03	9,800	<3,000	1,500	38	170	32	420	<10	150	<5.0
	12/22/03	8,800	<2,000	1,100	32	82	20	330	5.8	52	<2.5
	03/12/04	7,600	<3,000	590	23	69	17	470	9.2	63	<1.5
	06/11/04	7,800	<2,000	840	19	58	15	710	12	140	<2.5
	09/13/04	7,500	<1,500	840	17	23	7.8	730	15	93	<2.5
	12/16/04	9,300	<2,000	1,100	26	76	13	600	12	130	<2.5
	03/21/05	11,000	<3,000	1,200	37	190	24	460	9.3	100	<2.5
	06/23/05	9,600	<4,000	1,100	28	93	23	370	8.2	67	<1.5
	09/30/05	9,000	<3,000	690	18	32	14	380	8.4	72	<1.5
	12/08/05	8,700	<3,000	560	23	38	12	350	6.9	82	<1.5
	03/01/06	8,400	<2,000	410	24	42	13	360	8	58	<1.5
	05/25/06	9,900	<2,000	630	25	13	13	190	5.3	59	<1.5
	08/10/06	14,000	<3,000	690	43	130	26	200	5.4	70	<1.5
	11/21/06	10,000	<3,000	580	37	96	25	240	6.3	72	<1.5
	02/06/07	7,700	<1,000	520	36	90	23	260	7.4	54	<1.5
	05/08/07	4,700	<800	150	0.86	<0.5	<0.5	170	5	52	<0.5
	08/06/07	6,000	<1,000	240	26	34	17	180	5	55	<0.5
	12/26/07	8,100	<1,500	76	14	17	12	150	4.3	37	<0.9
	06/28/08	6,400	3,100	97	17	19	13	200	5.6	38	<5.0
	09/27/08	11,000	15,000	190	24	29	16	160	<5.0	40	<5.0
	12/30/08	9,100	2,300	160	24	31	18	150	5	100	<5.0

Alameda, California

						ethyl-					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	-	xylenes	MtBE	tAME	tBA	Oxygenates
MW-4	05/25/06	<50	86	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	08/10/06	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	11/21/06	<50	<50	<0.5	<0.5	<0.5	<0.5	0.59	<0.5	<5.0	<0.5
	02/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<5.0	<0.5
	12/26/07	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	06/28/08	<50	88	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5
	09/27/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	12/30/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5
MW-5	11/21/06	410	<80	<2.5	<2.5	<2.5	<2.5	1,800	28	44	<2.5
	05/25/06	55	<50	<0.5	<0.5	<0.5	<0.5	1,100	19	9.1	<0.5
	08/10/06	<250	<50	<2.5	<2.5	<2.5	<2.5	1,500	25	28	<2.5
	02/06/07	430	<50	6.9	<2.5	<2.5	<2.5	1,600	26	34	<2.5
	05/08/07	<250	<50	<2.5	<2.5	<2.5	<2.5	1,200	20	38	<2.5
	08/06/07	330	<80	<2.5	<2.5	<2.5	<2.5	1,000	20	39	<2.5
	12/26/07	490	<50	<2.5	<2.5	<2.5	<2.5	1,000	18	28	<2.5
	06/28/08	510	290	6.2	1.0	<0.5	2.3	550	11	<40	<10
	09/27/08	670	320	<17	<17	<17	<17	650	<17	95	<17
	12/30/08	210	130	<0.5	0.8	0.99	<0.5	610	12	<40	<10
E	SL	100	100	1.0	40	30	20	5	NE	50,000	NA

Notes:

Units are micrograms per liter (ug/L).

NT analyte not tested MtBE methyl tert-butyl ether
TPH-g total petroleum hydrocarbons as gasoline tAME tert-amyl methyl ether

TPH-d total petroleum hydrocarbons as diesel tBA tert-butanol

Table 2 Well Construction Details Alaska Gas

Well ID	Date Installed	Total Depth (feet bg)	Screened Interval (feet bg)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet bg)	Bentonite Interval (feet bg)	Grout Interval (feet bg)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Westing Coordinates (feet)
MW-1	10/11/99	18	17.35-2.5	Silty Sand	0.02	18-1.5	1.5-0.5	0.5-0	29.18	15.20394	46.13606
MW-2	10/11/99	18	18-4	Silty Sand	0.02	18-3	3-1.5	1.5-0	29.55	14.93558	45.97882
MW-3	10/11/99	20	19-4	Silty Sand	0.02	20-3	3-1.5	1.5-0	27.74	15.28672	47.24157
MW-4	04/03/06	16	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.23	17.12115	48.05243
MW-5	04/04/06	17	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.78	16.21022	47.48996

Well ID	Doto	Top of Casing Elevation	Depth to Water	Groundwater
Well ID	Date	(msl)	(feet)	Elevation
MW-1	11/06/99	26.85	5.16	21.69
	05/16/00		3.24	23.61
	08/03/00		4.15	22.70
	12/05/00		4.90	21.95
	03/05/01		3.04	23.81
	06/04/01		4.01	22.84
	06/05/02		3.73	23.12
	09/09/02		5.06	21.79
	12/19/02		4.09	22.76
	03/10/03		3.50	23.35
	06/03/03		3.66	23.19
	09/19/03		4.91	21.94
	12/22/03		4.30	22.55
	03/12/04		2.93	23.92
	06/11/04		4.23	22.62
	09/13/04		5.02	21.83
	12/16/04		3.76	23.09
	03/21/05		2.81	24.04
	06/23/05		3.66	23.19
	09/30/05		4.55	22.30
	12/08/05		4.21	22.64
	03/01/06		2.90	23.95
	05/25/06	29.18	2.84	26.34
	08/10/06		4.35	24.83
	11/21/06		4.22	24.96
	02/06/07		4.39	24.79
	05/08/07		3.88	25.30
	08/06/07		5.02	24.16
	12/26/07		4.87	24.31
	06/28/08		4.77	24.41
	09/27/08		6.29	22.89
	12/30/08		6.04	23.14

M-ILID	Data	Top of Casing Elevation	Depth to Water	Groundwater
Well ID	Date	(msl)	(feet)	Elevation
MW-2	11/06/99	27.18	5.56	21.62
	05/16/00		3.54	23.64
	08/03/00		4.44	22.74
	12/05/00		5.24	21.94
	03/05/01		3.28	23.90
	06/04/01		4.33	22.85
	06/05/02		3.98	23.20
	09/09/02		5.34	21.84
	12/19/02		4.33	22.85
	03/10/03		3.58	23.60
	06/03/03		3.87	23.31
	09/19/03		5.24	21.94
	12/22/03		4.47	22.71
	03/12/04		3.40	23.78
	06/11/04		4.51	22.67
	09/13/04		5.35	21.83
	12/16/04		4.09	23.09
	03/21/05		3.01	24.17
	06/23/05		3.91	23.27
	09/30/05		4.86	22.32
	12/08/05		4.49	22.69
	03/01/06		3.09	24.09
	05/25/06	29.55	3.16	26.39
	08/10/06		4.98	24.57
	11/21/06		4.81	24.74
	02/06/07		4.37	25.18
	05/08/07		4.12	25.43
	08/06/07		5.36	24.19
	12/26/07		5.03	24.52
	06/28/08		5.06	24.49
	09/27/08		6.64	22.91
	12/30/08		6.28	23.27

Well ID	D-4-	Top of Casing Elevation	Depth to Water	Groundwater
Well ID	Date	(msl)	(feet)	Elevation
MW-3	11/06/99	25.3	4.02	21.28
	05/16/00		2.06	23.24
	08/03/00		3.20	22.10
	12/05/00		3.71	21.59
	03/05/01		1.90	23.40
	06/04/01		2.72	22.58
	06/05/02		2.75	22.55
	09/09/02		3.88	21.42
	12/19/02		2.79	22.51
	03/10/03		2.36	22.94
	06/03/03		2.65	22.65
	09/19/03		3.15	22.15
	12/22/03		2.83	22.47
	03/12/04		2.00	23.30
	06/11/04		3.11	22.19
	09/13/04		3.90	21.40
	12/16/04		2.89	22.41
	03/21/05		1.93	23.37
	06/23/05		2.69	22.61
	09/30/05		4.54	20.76
	12/08/05		3.05	22.25
	03/01/06		1.95	23.35
	05/25/06	27.74	2.11	25.63
	08/10/06		3.25	24.49
	11/21/06		3.35	24.39
	02/06/07		3.34	24.40
	05/08/07		3.53	24.21
	08/06/07		3.91	23.83
	12/26/07		3.57	24.17
	06/28/08		3.66	24.08
	09/27/08		4.98	22.76
	12/30/08		4.63	23.11

Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-4	05/25/06	26.23	2.54	23.69
	08/10/06		4.65	21.58
	11/21/06		4.63	21.60
	02/06/07		3.87	22.36
	05/08/07		4.21	22.02
	08/06/07		4.54	21.69
	12/26/07		2.90	23.33
	06/28/08		3.02	23.21
	09/27/08		4.78	21.45
	12/30/08		3.91	22.32
MW-5	05/25/06	26.78	2.60	24.18
	08/10/06		3.40	23.38
	11/21/06		3.27	23.51
	02/06/07		3.10	23.68
	05/08/07		3.00	23.78
	08/06/07		3.79	22.99
	12/26/07		3.38	23.40
	06/28/08		3.70	23.08
	09/27/08		4.65	22.13
	12/30/08		4.04	22.74

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level. Wells resurveyed on April 27, 2006

MONITORING WELL SAMPLING LOG											
SITE NAMI	E/LOCATIO	N: A	lame	da		PROJECT #:					
DATE:	12/30/		-0.			SAMPLER'S INITIALS:					
WELL ID:	MW- Z			WELL DIA	METER (in):	2					
WELL DEPT	ΓΗ (ft):	12.2	=> =>	DEPTH TO	WATER (ft):	6.28 WATER COLUMN Ht (ft): 5.92					
STANDING	WATER VO	LUME (gal):		0.98	_	3 VOLUMES (gal): 2-94					
To obtain sta	To obtain standing volume in gallons, multiply the water column height by 0.17 for 2-inch well or 0.66 for a 4-inch well.										
PURGE ME	ГНОД:		13/10/2007	aler Pump	-	SAMPLING METHOD: disposable PE bailer					
		(circle t	he correct	·	RGE MEASURI	EMENTS					
— .	Gallons	Temp		SC		Community					
Time	Purged	(F)	pН	(uS)		Comments					
						DO prior to purging					
1330	t	64.6	5.93	52b							
1331	2	65.4	5.90	541							
1332	3	65.3	5.91	533							
						Sumpled E1335					
						,					
WELL ID:	MW\			WELL DIA	METER (in):						
WELL DEPT	H (ft):	11103		DEPTH TO	WATER (ft):	6.04 WATER COLUMN Ht (ft): 4.99					
STANDING	WATER VOI	_UME (gal):		0.82		3 VOLUMES (gal): 2-48					
To obtain sta	ınding volum	e in gallons,	multiply		lumn height by	0.17 for 2-inch well or 0.66 for a 4-inch well.					
PURGE MET	THOD:			aler Pump	•	SAMPLING METHOD: disposable PE bailer					
		(circle t	he correct	<i>'</i>	RGE MEASURI	EMENTS					
T:	Gallons	Temp		SC							
Time	Purged	(F)	pН	(uS)		Comments					
	THE WAY	rae ëre	e Riel H	et talen a		DO prior to purging					
13(0	(65.1	6.22	560							
1313	2	65.4	6.24	553							
1318	3	66.2	6.25	548							

e1321

MONITORING WELL SAMPLING LOG

SITE NAME	E/LOCATIO)N: <u>A</u>]	ame	da			PROJECT #:	
DATE:	12 3		_	N X I			SAMPLER'S INITIALS:	CM
WELL ID:	MW-4		=	WELL DIA	METER (in):			
WELL DEPT	ΓΗ (ft):	14,2	∃):	DEPTH TO	WATER (ft):	3.91	WATER COLUMN Ht (ft):	10.29
STANDING To obtain sta		, ,		1.71 the water co	ilumn height by		5.12 0.66 for a 4-inch well.	
PURGE MET	гнор:	The state of the s	Mini-Wh	naler Pump	-	SAMPLING METHOD	disposable PR	E bailer
		(circle c	He correct		IRGE MEASURE	EMENTS		
Time	Gallons Purged	Temp (F)	рН	SC (uS)			Comments	
	10%	Wild!		400		DO prior to purging		
1226	t	60.7	6.81					
1228	2	62.2						
1252	3	64.0						
1253	4	63.0	6.60	401				
						Samoled e	1258	
	لا يحملني اللك	0,845,1-2		اللوكات اللاسات				Tel cultura
WELL ID:		<u>-</u>	_	WELL DIAM	METER (in):			
WELL DEPT	H (ft):	1418	*	DEPTH TO	WATER (ft):	4.04	WATER COLUMN Ht (ft):	10.72
STANDING Y	WATER VOI	_UME (gal):	,	1.78		3 VOLUMES (gal):	5.33	
					•	0.17 for 2-inch well or		
PURGE MET	HOD:		Mini-Wh	method)	ē.	SAMPLING METHOD	disposable PE	bailer
		12		PU	RGE MEASURE	EMENTS		
Time	Gallons Purged	Temp (F)	рН	SC (uS)			Comments	
	RIE 1	Test of the		Man or		DO prior to purging		
1235	1	6911	4.58	730				
1236	2		6.54	741				
1238	3	64.9	6.55	734				
1239	4		6.56	726				
	5	65.1	6.53	723				

MONITORING WELL SAMPLING LOG

SITE NAM	E/LOCATIO	<u>N: Д</u>	<u> </u>	PROJECT #:									
DATE:	12 30	108					SAMPLER'S INITIALS:						
WELL ID:	MW-3) <u>'</u>		WELL DIAM	METER (in):								
WELL DEP	ΓΗ (ft):	16.03		DEPTH TO	WATER (ft):	4.63	WATER COLUMN Ht (ft): 11,4						
	WATER VOI			1.89	i Jump boight by	3 VOLUMES (gal): <u>5.67</u> ll or 0.66 for a 4-inch well.						
PURGE MET	•			ialer Pump	dilli lieight by	SAMPLING METH							
TORGE ME	11100.		he correct	method)	RGE MEASURI		Cisposable i E Bailei						
	Gallons	Tomp	1	SC	RGE MEASURI	I I							
Time	Purged	Temp (F)	pН	(uS)			Comments						
DO prior to purging													
1342 2 64.9 5.77 600													
1345	3	65.6	5.81	597									
1347	5	66.6	5.89	591									
1348	Ь	66.2	5.87	584									
						Sample	1 e 1350						
WELL ID:	MW-			WELL DIAM	METER (in):								
WELL DEPT	ΓΗ (ft):			DEPTH TO	WATER (ft):	 .	WATER COLUMN Ht (ft):						
STANDING	WATER VOI	_UME (gal):				3 VOLUMES (gal):						
				the water co	lumn height by	0.17 for 2-inch we	ll or 0.66 for a 4-inch well.						
PURGE ME	ГНОD:	Bailer or	Mini-Wh	aler Pump		SAMPLING METH	HOD: disposable PE bailer						
			he correct				<u> </u>						
					RGE MEASURI	EMENTS							
Time	Gallons Purged	Temp (F)	рН	SC (uS)			Comments						
	11097		48.	11 8 - 0		DO prior to purg	ing						
						, , ,	5						
							_						
						Ÿ							

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Analytical,	Inc.
"When Quality Counts"	

Matriks Corporation	Client Project ID: Alameda	Date Sampled: 12/30/08
321 Court Street		Date Received: 12/31/08
Woodland, CA 95695	Client Contact: Clayton Mokri	Date Reported: 01/08/09
**************************************	Client P.O.:	Date Completed: 01/08/09

WorkOrder: 0812835

January 08, 2009

Dear Clayton:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: Alameda,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

0812835

N N	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD									Τ					C	H	AI	N	OF	C	US	ST	OI	Y	R	EC	O	RI	0_	_/				
		PITTSBU												ı	A CALLITAGE OF THE ARTISTS																			
We We	ebsite: www.m	ccampbel	Lcom En		ain@	mcc	amı	bel	l.com	n				ı	_	- 70					· [1	DE	107	RUS	H	24	HR		48 F			2 HR	
Te	lephone: (877	7) 252-92	62		Fax:	: (92	25)	252-	926	9				1	G	eo I	ra	cke	r E	DF	· ×													W) 📮
Report To: Clu	.1. 04 10	·	· ·	Bill To			16.0		_	-	_	_		+	_	-		_			mal		Re	THE RESERVE		mp	ie is	еп	uen	tan		Othe		s required Comments
Company: Mg	have Mori	- 1		om re	1. 1-14	arr	IF S	_	_	_	_	_	_	+						P	шал		Ke	ques	,,,					\vdash	-	Tine		Comments
	Cours 5	+								_			_	٦	BE		(F)					li er												Filter
bloo	slend (A	-	F	-Mai	l: Ca	10k	rie	0	יענכ					1	8015) / MTBE		ES S					l di												Samples
Tele: (530) 90	7 7106			ax: ()			-		121			┪	3		8520			0		3/6						6020	9070)					for Metals
Project #:				rojec		me:	AI	au	40	Ca							19	18.1	OC	802		oclos		ides			(AAs)	10/	9/9					analysis: Yes / No
Project Location:	1310 CAN	shal A						-10-		_	-				9021+		90	as (4	(HV	602	cides	Y.	88	r big	8	3	/PP	9/8	09/	(02)				103/110
Sampler Signatur		-												٦	(602 / 8		reas	od l	8021	Vd	Pesti	NE	licid	G H	00	00.5	AHS	200.8	8.00	0/66				
METHOD										-	as (6	9	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)								
	LOCATION/			E .	Type Containers	\vdash			Т	Ť	FRE	146	VE	٦	8	TPH as Diesel (8015)	0 11	H	11/8	NO X	808/	2 PC	8	818	24/8	15/8	M/8	18 (2)	ls (20	87003	1353			
SAMPLE ID	Field Point			Containers	E E					1				1	BTEX & TPH	lesel	rolen	rolen	3/6	BTE	808	808/	/ 81	181	3/2	3/6	US 0	Mets	Meta	0.77	1	7		
	Name	Date	Time	l i	0	Water	_	.	Sludge	힐	(m)	3	ő	Other	X	as	Pet	Pe	502	3E /1	508	809	507	515	2	525	827	117	TS	(20	000	8		
				#	E	¥ 8	Soil	Air	Slu	Other		HCL	HINO	5	BE	8	Tota	Tota	EPA	MIT	EPA	EPA	EPA	EPA	EPA	EPA	EPA	3	TOL	Lend	5			
MD-1		12/30/03	1321	5	.4	5		1	\top	+	-	5	+	+	×	×														·	K		Н	
MW-Z		12/30/08		5	i	Ti				7				Ť	1																1			
MW-3		12130/08		5		Ħ	Н	+	+	+	\top	1	†	+	Ħ	Ħ														\Box	T		\vdash	
MW-4		12130/08		5	\vdash	Ħ		_	+	+		H	+	+	#	Ħ					7,									Н	H		\vdash	
M12.5		1		5		Ħ		+	+	+	+	H	+	1	単	+				-			-						-	Н	\perp	-		
MV-S		12/34/08		-	-	+	Н	+	+	+	+	+	+	+	+	-	-				_	-		-							-	+	\vdash	
				-		⊢	H	+	+	+	+	+	+	+	+	-	-		_				-	-	-	_	-	-		\vdash	-	-	\vdash	
				_		_	Н	-	+	4	+	+	+	+	-	-	_	_				-	_	-			-	_	-	\vdash	_	_	\sqcup	
						┖			_	4		_	_	1		_								_						Ш			\sqcup	
11.07																																		
												T																						
									T	T		T		T																				
						\vdash		1		1	+	+	+	+	_													-						
						+		+	+	+		+	+	+	+	+													-	\vdash		-	\vdash	
					_	\vdash		+	+	+	+	+	+	+	+	+	-		-					-		_			-	\vdash		+	\vdash	
Polingulah d Do		Date:	There	Day	land 2		Ш		-	Ť				+	ICE	/to	2	لو			/	_		_					CO	VD-C	ENTS	e.	Ш	
Refinquished By:		12/3/1/2	Time:	Rece	ived B	-	1	1	1	_	_	_		- 1	GO	OD	CON	DIT	ION	V		/	-											
Relinquished By:	,	Date: /	Time	Race	ived B	ber			_	_			_	4	HE	AD S	PAC	EA	BSE	NT_	AP	_		1			1	: 4	Ve	a -	+ 1	au	-60	
List Well		12/51/08	1520	/	ived B	4.	-	to	01	6	8	4)	DECHLORINATED IN LAB_ APPROPRIATE CONTAINERS																				
Relinquished By:	an	Date:	Time:	Rece	ived B	V.C)	1		-	_	_	_	PRESERVED IN LAB																				
	100 BR -	1	1700				V	1)				VOAS O&G METALS OTHER																					
Enviro-Tech 1281 1700 h. Burks										PRESERVATION pH<2																								

McCampbell Analytical, Inc.

(530) 406-1760

1534 Willow Pass Rd Pittsburg, CA 94565-1701

FAX (530) 406-1771

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	rder: 0812835	Clie	ntCode: MCW		
		WriteOn	✓ EDF	Excel	Fax	Email	HardCopy	ThirdParty	☐ J-flag
Report to:				Ві	ill to:		Req	uested TAT:	5 days
Clayton Mokri	Email:	thenderson@ma	trikscorp.com;	Cmokri	Robert Neely	1			
Matriks Corporation	CC:				Matriks Corp	oration			
321 Court Street	PO:				321 Court St	reet	Dat	te Received:	12/31/2008
Woodland, CA 95695	ProjectNo:	Alameda			Woodland, C	A 95695	Dat	e Printed:	12/31/2008

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0812835-001	MW-1	Water	12/30/2008 13:21		С	Α	Α	В								
0812835-002	MW-2	Water	12/30/2008 13:35		С	Α		В								
0812835-003	MW-3	Water	12/30/2008 13:50		С	Α		В								
0812835-004	MW-4	Water	12/30/2008 12:58		С	Α		В								
0812835-005	MW-5	Water	12/30/2008		С	Α		В								

Test Legend:

1 5-OXYS_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(D)_W	5
6	7	8	9	10
11	12			
				Prepared by: Kimberly Burks

Comments:

Sample Receipt Checklist

Client Name:	Matriks Corporation				Date	and Time Received:	12/31/2008	5:04:45 PM
Project Name:	Alameda				Chec	cklist completed and	reviewed by:	Kimberly Burks
WorkOrder N°:	0812835 Matrix	<u>Water</u>			Carri	er: <u>EnviroTech</u>		
		Chain o	of Cu	stody (C	OC) Inform	nation_		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinquished ar	nd received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample labels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆			
Date and Time of	collection noted by Client on C	COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>Sar</u>	nple	Receipt	Informatio	<u>n</u>		
Custody seals int	tact on shipping container/coo	oler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good condition?		Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	✓	No 🗌			
	<u>S</u> :	ample Preserv	atior	n and Ho	ld Time (H	T) Information		
All samples recei	ved within holding time?		Yes	✓	No 🗌			
Container/Temp E	Blank temperature	(Coole	r Temp:	3.2°C		NA 🗆	
Water - VOA vial	ls have zero headspace / no	bubbles?	Yes	✓	No 🗆	No VOA vials subr	nitted	
Sample labels ch	necked for correct preservation	n?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Type:	WE	T ICE)			
* NOTE: If the "N	No" box is checked, see com	ments below.						
=====	=======		==	=		=====		======
Client contacted:		Date contacted	d:			Contacte	d by:	
Comments:								

Matriks Corporation	Client Pr	roject ID: Alamed	Date Sampled:	12/30/08		
321 Court Street				Date Received:	12/31/08	
	Client C	ontact: Clayton N	Mokri	Date Extracted:	01/03/09-0	1/05/09
Woodland, CA 95695	Client P.	O.:		Date Analyzed	01/03/09-0	1/05/09
	Oxygenated Vol	atile Organics by	P&T and GC/M	S*		
Extraction Method: SW5030B	Anal	lytical Method: SW826		Work Order:	0812835	
Lab ID	0812835-001C	0812835-002C	0812835-003C	0812835-004C		
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting DF	
Matrix	W	W	W	W		-1
DF	10	1	10	1	S	W
Compound		Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND<5.0	ND	5.0	ND	NA	0.5
t-Butyl alcohol (TBA)	ND<20	ND	100	ND	NA	2.0
Diisopropyl ether (DIPE)	ND<5.0	ND	ND<5.0	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)	ND<5.0	ND	ND<5.0	ND	NA	0.5

Surrogate Recoveries (%)

13

150

1.2

NA

0.5

%551:	96	98	92	97	
Comments	a3				
	~				1 11 mar b 4 4

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

7.1

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content / matrix interference.

Methyl-t-butyl ether (MTBE)

Matriks Corporation		Client Pro	oject ID: Alamed	la	Date Sampled:	12/30/08			
321 Court Street					Date Received:	12/31/08			
	(Client Co	ontact: Clayton N	Mokri	Date Extracted:	01/03/09-0	1/05/09		
Woodland, CA 95695		Client P.0	О.:		Date Analyzed	01/03/09-01/05/09			
	Oxygena	ated Vol	atile Organics by	P&T and GC/M	IS*				
Extraction Method: SW5030B		Anal	ytical Method: SW826	0B		Work Order: 0812835			
Lab ID	081283	5-005C							
Client ID	MW	V-5				Limit for =1			
Matrix	W	V]			
DF	20	0		S	W				
Compound			Conce	entration		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	12	2				NA	0.5		
t-Butyl alcohol (TBA)	ND<	<40				NA	2.0		
Diisopropyl ether (DIPE)	ND<	<10				NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND<	<10				NA	0.5		
Methyl-t-butyl ether (MTBE)	61	10				NA	0.5		
		Surre	ogate Recoveries	s (%)					
%SS1:	9'	7							
Comments									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content / matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Matriks Corporation	Client Project ID: Alameda	Date Sampled: 12/30/08
321 Court Street		Date Received: 12/31/08
	Client Contact: Clayton Mokri	Date Extracted: 01/06/09-01/08/09
Woodland, CA 95695	Client P.O.:	Date Analyzed 01/06/09-01/08/09

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gas	soline Rai	nge (C6-C12) Volatile 1	Hydrocarboı	ns as Gasolir	ne with BTI	EX and MTBI	- 7*		
Extraction	method SW5030B		Analy	tical methods SV	W8021B/8015Cr	m		Work Ord	der: 081	2835
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	5300,d1,b6	ND<50	12	31	300	27	10	114
002A	MW-2	w	ND	13	ND	ND	ND	ND	1	98
003A	MW-3	w	9100,d1,b6	ND<400	160	24	31	18	10	101
004A	MW-4	w	ND	ND	ND	ND	ND	ND	1	97
005A	MW-5	w	210,d2,d9	680	ND	0.78	0.99	ND	1	108
	ting Limit for DF =1;	W	50	5	0.5	0.5	0.5	0.5	μ;	g/L
	ans not detected at or e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant
- d2) heavier gasoline range compounds are significant (aged gasoline?)
- d9) no recognizable pattern

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

The state of the s		
Matriks Corporation	Client Project ID: Alameda	Date Sampled: 12/30/08
321 Court Street		Date Received: 12/31/08
	Client Contact: Clayton Mokri	Date Extracted: 12/31/08
Woodland, CA 95695	Client P.O.:	Date Analyzed 01/02/09-01/05/09

Total Extractable Petroleum Hydrocarbons*

Extraction method SW3510C Analytical methods: SW8015B Work Order: 0812835

Extraction method 3 w 3	3100	Anaryticarii	nethous. Swootsb	WOLK Older. 08	12633
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS
0812835-001B	MW-1	w	3700,e11,b6	1	118
0812835-002B	MW-2	w	100,e7,e2	1	99
0812835-003B	MW-3	w	2300,e4	1	101
)812835-004B	MW-4	w	ND	1	97
0812835-005B	MW-5	w	130,e4,e2	1	94

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b6) lighter than water immiscible sheen/product is present
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant
- e11) stoddard solvent/mineral spirit (?)

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40624 WorkOrder: 0812835

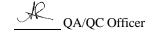
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0812834-00										002C		
Analyte	Sample	ple Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD			Acce	Acceptance Criteria (%)						
Amaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	111	110	0.878	87.7	88.8	1.25	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	103	105	1.89	82.7	82.3	0.481	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	113	111	1.87	94.7	95	0.314	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	128	127	0.951	103	104	0.370	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	0.73	10	124	125	1.05	95.4	97.1	1.77	70 - 130	30	70 - 130	30
%SS1:	97	25	102	106	3.50	98	97	1.17	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40624 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812835-001C	12/30/08 1:21 PM	01/03/09	01/03/09 1:46 AM	0812835-002C	12/30/08 1:35 PM	01/03/09	01/03/09 2:29 AM
0812835-003C	12/30/08 1:50 PM	01/03/09	01/03/09 3:11 AM	0812835-004C	12/30/08 12:58 PM	01/03/09	01/03/09 3:54 AM
0812835-005C	12/30/08	01/05/09	01/05/09 2:03 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40625 WorkOrder 0812835

EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0901004-002A												
Analyte	Sample	Spiked	MS	MSD MS-MSD LCS LCSD LCS-LCSD Acceptance				e Criteria (%)				
7 and 19 to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	97.6	95.3	2.32	97.3	92.9	4.61	70 - 130	20	70 - 130	20
MTBE	ND	10	97.5	80.7	18.8	88.7	77.7	13.2	70 - 130	20	70 - 130	20
Benzene	ND	10	94.5	83.5	12.4	90.6	96.2	6.04	70 - 130	20	70 - 130	20
Toluene	ND	10	94	87.1	7.61	91.3	97.3	6.44	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	98.3	94.7	3.73	96.9	102	4.93	70 - 130	20	70 - 130	20
Xylenes	ND	30	108	107	1.26	107	113	6.02	70 - 130	20	70 - 130	20
%SS:	102	10	93	94	1.19	93	100	6.97	70 - 130	20	70 - 130	20

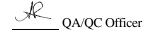
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40625 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812835-001A	12/30/08 1:21 PM	01/06/09	01/06/09 11:47 PM	0812835-002A	12/30/08 1:35 PM	01/07/09	01/07/09 2:55 PM
0812835-003A	12/30/08 1:50 PM	01/08/09	01/08/09 5:15 AM	0812835-004A	12/30/08 12:58 PM	01/07/09	01/07/09 3:26 PM
0812835-005A	12/30/08	01/07/09	01/07/09 3:56 PM	0812835-005A	12/30/08	01/08/09	01/08/09 6:23 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

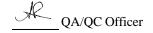
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40623 WorkOrder: 0812835

EPA Method SW8015B Extraction SW3510C								Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	105	98.2	6.96	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	102	101	0.532	N/A	N/A	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40623 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812835-001B	12/30/08 1:21 PM	12/31/08	01/02/09 3:17 PM	0812835-002B	12/30/08 1:35 PM	12/31/08	01/05/09 8:47 PM
0812835-003B	12/30/08 1:50 PM	12/31/08	01/02/09 4:26 PM	0812835-004B	12/30/08 12:58 PM	12/31/08	01/02/09 3:17 PM
0812835-005B	12/30/08	12/31/08	01/02/09 2:09 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

