RECEIVED

2:47 pm, Jul 13, 2009

Alameda County Environmental Health

QUARTERLY GROUNDWATER MONITORING REPORT Third Quarter 2008

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO0000022

PREPARED FOR: Nissan Saidian 5733 Medallion Court Castro Valley, California 94520

SUBMITTED TO: Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

October 16, 2008

Project No. 6022

PREPARED BY: Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIONAL CERTIFICATIONii
ACRONYMS AND ABBRREVIATIONSiii
INTRODUCTION 1
Site Description and Physical Setting1
Site History 1
SCOPE OF WORK
METHODS AND PROCEDURES
Groundwater Level Measurements 4
Monitoring Well Purging and Sampling4
Geotracker Requirements 5
RESULTS
Groundwater Levels and Gradient5
Groundwater Analytical Results5
DISCUSSION
RECOMMENDATIONS

FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well Locations
Figure 3	Groundwater elevation Contours
Figure 4	Elevation versus Time Hydrograph
Figure 5	TPH-g Concentrations
Figure 6	MW-1 TPH-g and Benzene Concentration Trends
Figure 7	MW-3 TPH-g and Benzene Concentration Trends

TABLES

- Table 1Soil Analytical Results
- Table 2Groundwater Analytical Results
- Table 3
 Groundwater Analytical Results from Boring Installations
- Table 4Well Construction Details
- Table 5Groundwater Levels and Elevations

APPENDICES

- Appendix A Monitoring Well Purge Logs
- Appendix B Laboratory Analytical Report

PROFESSIONAL CERTIFICATION

3

QUARTERLY GROUNDWATER MONITORING REPORT Third Quarter2008

Alaska Gas 1310 Central Avenue Alameda, California 94501 LOP Case No. RO000022

Project No. 6022 October 16, 2008

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tom Henderson President David W. Janney, P.G Senior Geologist

ACRONYMS AND ABBRREVIATIONS

ACEHS	Alameda County Environmental Health Services
AEI	All Environmental, Inc.
amsl	above mean sea level
ASE	Aqua Science Engineers, Inc.
BTEX	benzene, toluene, ethyl-benzene, xylenes
COC	chain-of-custody
DCA	1,2-dichloroethane
DIPE	di-isopropyl ether
EDB	ethylene di-bromide
EDF	electronic data file
ESL	Environmental Screening Level
EtBE	ethyl tert-butyl ether
FS/CAP	Feasibility Study/Corrective Action Plan
Geotracker	Geographical Information Management System
Matriks	Matriks Corporation
MtBE	methyl tert-butyl ether
0&G	oil and grease
µg/L	micrograms per liter
mg/Kg	milligrams per kilogram
ml	milliliter
MW	monitoring well
PDF	portable document format
RWQCB	Regional Water Quality Control Board
SC	specific conductance
tAME	tert-amyl methyl ether
tBA	tert butyl alcohol
UST	underground storage tank
VOA	volatile organic analysis

INTRODUCTION

This report has been prepared to describe the results of the third quarter 2008 groundwater monitoring event conducted by Matriks at Alaska Gas (the "Site"), located at 1310 Central Avenue in Alameda, California. The monitoring event described herein is part of an ongoing investigation of subsurface contamination caused by a release of petroleum hydrocarbons from the UST system (tanks, associated piping and dispensers) formerly located at the Site. Matriks is conducting this investigation on behalf of the responsible parties, Mr. Leon Zektser, Mr. Nissan Saidian, and Mr. Joe Zadik. ACEHS is the lead regulatory agency overseeing this investigation. The case number for the Site is RO000022. The quarterly monitoring program consists of collecting groundwater samples from each of the five MWs to monitor the concentrations of petroleum hydrocarbon compounds in shallow groundwater.

Site Description and Physical Setting

The Site is currently a retail gasoline fueling station located in an area of mixed commercial and residential properties in the south-central part of the island of Alameda. The Site is located at the intersection of Encinal Avenue, Sherman Street, and Central Avenue. A Site location map is shown on **Figure 1** and a site plan showing physical features and monitoring well locations is shown on **Figure 2**.

The Site is relatively flat and the investigation area has a surface elevation of approximately 25 feet amsl. San Francisco Bay and the Alameda Estuary are located approximately one half mile from the Site. Due to the topography of the island and proximity to San Francisco Bay, groundwater beneath the Site is tidally influenced and has a very shallow gradient.

Site History

In May 1996, Petrotek removed four USTs from the Site. Three gasoline USTs including one 10,000-gallon, one 7,500-gallon and one 5,000-gallon UST, were removed from the western corner of the Site. A 500-gallon waste oil UST adjacent to the building, was also removed from the southern portion of the Site. Fuel dispensers and associated product piping were also removed.

Free product was observed floating on the groundwater surface in the gasoline UST excavation. According to the laboratory analytical results, a groundwater sample collected from the gasoline UST excavation contained 2,800 μ g/L of TPH-g and 100 μ g/L benzene. Soil samples collected from the excavation contained up to 5,000 mg/Kg of THP-g and 31mg/Kg benzene. Soil samples collected beneath the former dispenser island contained up to 6,800 mg/Kg TPH-g and 63 mg/Kg benzene. A water sample from the waste oil UST excavation contained 35,000 μ g/L of TPH-d and motor oil range hydrocarbons, and 1,300 μ g/L of TPH-g. A records search at

ACEHS did not identify any tank removal reports or subsequent remedial action reports. Sample results are presented on **Table 1**.

Petrotek reportedly excavated and disposed of approximately 600 cubic yards of contaminated soil from both UST excavations. No confirmation soil samples were collected following the soil removal. Approximately 15,000 gallons of water were pumped from the excavations, treated and discharged to the sanitary sewer. Two new gasoline USTs, dispensers and product piping were installed after the excavation work was completed.

In November 1998, AEI drilled 14 soil borings at the Site and collected soil and groundwater samples from the borings and submitted them for laboratory analysis. Up to 5,900 mg/Kg of TPH-g was detected in soil samples collected from the borings. Up to 120,000 μ g/L TPH-g and 7,200 μ g/L benzene were detected in groundwater samples from the borings.

On May 16, 2000, ASE collected groundwater samples from the three wells. Hydrocarbon concentrations detected in the May 16 groundwater samples were much lower than those detected in the December 1999 sampling event, especially with respect to MW-2. The reason for this is unclear. Sample results are presented in **Table 2**.

On July 28, 2000, ASE collected soil and groundwater samples from 12 Geoprobe borings (borings BH-A through BH-L) to further delineate the extent of petroleum hydrocarbons in the down gradient direction. Soil samples collected from 3.0 feet below ground surface (bgs) in boring BH-K contained 0.00061 mg/Kg of MtBE. There were no petroleum hydrocarbons or oxygenates detected in soil samples from the other 11 borings. However, petroleum hydrocarbons and oxygenates were also detected in groundwater samples collected from borings BH-A, B, C, D, I, J, K, and L. Soil sample results are presented in **Table 1** and groundwater sample results are presented in **Table 3**.

In December 2002, ASE conducted an investigation to assess whether subsurface utility line trenches could provide a pathway for the movement of groundwater. Results of the investigation indicated that it does not appear that the utility line trenches act as conduits for the movement of groundwater. This conclusion was based on the reasonable assumption that the backfill of the utility trenches is the exact same sandy material as the native material and that the Geoprobe boring soil samples containing the highest petroleum hydrocarbon concentrations are located beyond the utility line trenches. Although ASE concluded that the utility line trenches did not provide a pathway for the movement of groundwater, the ACEHS requested that water samples be collected from the sewer to determine whether petroleum hydrocarbon contaminated groundwater may have entered the sewer line through seams or cracks.

In January 2004, ASE drilled four additional soil borings at the Site, BH-M through BH-P. The soil samples collected from all four borings contained low concentrations of TPH-d, with the highest concentration (68 mg/Kg) detected in BH-M. No TPH-d, BTEX or oxygenates were detected in any of the other soil samples. The groundwater samples collected from the four borings

contained concentrations of TPH-d up to 170 μ g/L. The groundwater sample collected from boring BH-O also contained 19 μ g/L MtBE. None of the other groundwater samples contained detectable concentrations of TPH-g, BTEX or oxygenates.

Groundwater samples were also collected from the sewer line beneath Central Avenue, both up gradient and down gradient of the Site. Low concentrations of TPH-g were detected in both samples. No BTEX or oxygenates were detected in either of these samples

In December 2005, ASE conducted a records search at the Alameda City Public Works Agency and the California Department of Water Resources to identify water wells with ½ mile radius of the Site. A total of 25 wells were located in the search radius. The results include three domestic wells, 10 irrigation wells, one industrial, two cathodic protection wells, four monitoring wells, and five vapor extraction wells. The nearest well is located more than 1,000 feet east of the Site. The nearest, potentially down gradient, well is located approximately 1,260 feet northwest of the Site. ASE proposed additional soil and groundwater assessment for the Site.

In April 2006, ASE installed two additional borings and two monitoring wells at the Site. Borings BH-Q, BH-R and monitoring wells MW-4 and MW-5 were installed using a drill rig equipped with an 8-inch hollow-stem auger. Petroleum hydrocarbons were detected at a concentration of 11 mg/Kg TPH-d in a soil sample from BH-Q and 1.7 mg/Kg TPH-d in a soil sample from the boring MW-5. For both samples, the laboratory noted that the hydrocarbons reported as TPH-D did not exhibit a typical diesel chromatogram pattern. None of the soil samples contained detectable concentrations of TPH-g, BTEX or oxygenates. Well construction details are presented in **Table 4**.

Groundwater samples collected from BH-Q and BH-R contained detectable hydrocarbon concentrations of 220 μ g/L TPH-d and 770 μ g/L TPH-d, respectively. Similar to the soil samples, the laboratory noted the hydrocarbons reported as TPH-d did not exhibit a typical diesel chromatogram pattern. Based on the results of this investigation, ASE recommended no further definition of the extent of hydrocarbons.

From April 2006 to present, the Site has been monitored on a quarterly basis. In June 2008, the Site owners contracted with Matriks to conduct quarterly groundwater monitoring and prepare for further Site remediation.

SCOPE OF WORK

The scope of work conducted for this quarterly groundwater monitoring event included the following tasks:

• Measurement of static water levels in five monitoring wells;

- Collection of field water quality parameters including pH, temperature, and SC from groundwater in each well;
- Purge at least three casing volumes from each well;
- Collection of groundwater samples from each well;
- Analyze groundwater samples for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Update the Geotracker database; and
- Preparation of this *Quarterly Monitoring Report*.

METHODS AND PROCEDURES

Groundwater Level Measurements

The quarterly groundwater monitoring event described in this report was conducted on September 27, 2008. The cap of each well was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before recording measurements using an electronic water depth indicator. The static water levels were referenced to the surveyed marks on the top of each well casing and the depth-to-water measurements were used to calculate the purge volume of for each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a clean disposable bailer. Groundwater temperature, pH, and SC were measured intermittently during purging with a portable water quality instrument. The Horiba 444 water quality instrument was calibrated by the equipment rental service prior to use. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled and sealed 55-gallon, DOT-approved steel drums and temporarily stored onsite.

Following purging, groundwater samples were collected from each monitoring well using a clean disposable bailer and placed in the appropriate laboratory prepared containers. Care was taken to fill the containers to eliminate headspace and chemical volatilization. Samples were labeled with the project number, sample ID, and collection date. The same information was recorded on the chain-of-custody (COC) forms. Samples were stored in a cooler filled with ice for transport to the laboratory.

Samples were submitted under COC control to McCampbell Analytical, Inc. of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by AB2886 (Water Code Section 13195-13198). EDFs are prepared and formatted by the laboratory and submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. A well status and usage report (GEO_WELL file) is submitted for each monitoring event. A complete electronic copy of this report (GEO_REPORT file) in PDF format was also submitted. Update maps (GEO_MAP files) are submitted when site features such as monitoring wells or soil borings are added.

RESULTS

Groundwater Levels and Gradient

Depth-to-water was measured in each monitoring well. The groundwater flow direction for this monitoring event was calculated at N20^oW with a gradient of 0.011. Well construction details for each well are described in **Table 4**. Groundwater levels and elevations are summarized in **Table 5**. Groundwater elevation contours are depicted on **Figure 3**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 4**.

Groundwater Analytical Results

TPH-g, BTEX, and MtBE are the primary constituents of concern and occur in the highest concentrations in wells MW-1 and MW-3. TPH-g was detected in MW-1 at a concentration of 12,000 μ g/L and in MW-3 at a concentration of 11,000 μ g/L. TPH-g was also detected in MW-5 at a concentration of 670 μ g/L. MW-5 is located approximately 60 feet down gradient (north) of the Site. TPH-g was not detected in samples collected from the other monitoring wells.

Benzene was also detected in MW-1 at a concentration of 32 μ g/L and MW-3 at a concentration of 190 μ g/L. Benzene was not detected in samples collected from the other monitoring wells.

MtBE was detected in MW-2 at a concentration of 7 μ g/L, in MW-3 at a concentration of 160 μ g/L, in MW-4 at a concentration of 1.3 μ g/L, and in MW-5 at 650 μ g/L. MtBE was not detected in MW-1.

Groundwater analytical data for the current and previous quarters are summarized in **Table 3**. TPH-g concentrations in monitoring wells for the current sampling event are shown on **Figure 5**. A copy of the laboratory analytical report is included in **Appendix B**. **Figure 6** shows TPH-g and benzene concentration trends in well MW-1 and **Figure 7** shows these same concentration trends in MW-3.

DISCUSSION

In general, petroleum hydrocarbon concentrations have decreased since groundwater monitoring began in September 1999. This appears to indicate that natural attenuation and degradation are slowly taking place.

The highest concentrations of petroleum hydrocarbons were detected in monitoring wells MW-1 and MW-3. TPH-g, TPH-d, and benzene in these wells was detected above the ESLs established by the San Francisco Bay RWQCB. MtBE was also detected above the ESL in MW-3.

TPH-g, benzene, and MtBE were also detected above the ESLs in well MW-5. This appears to indicate that petroleum hydrocarbons are migrating downgradient from the Site.

MtBE was detected in down gradient well MW-4 at a concentration of 1.1 μ g/L. This concentration is less than the ESL for MTBE. This also appears to indicate that petroleum hydrocarbons are migrating downgradient from the Site.

Petroleum hydrocarbon concentrations in groundwater tend to increase with seasonally low groundwater elevations.

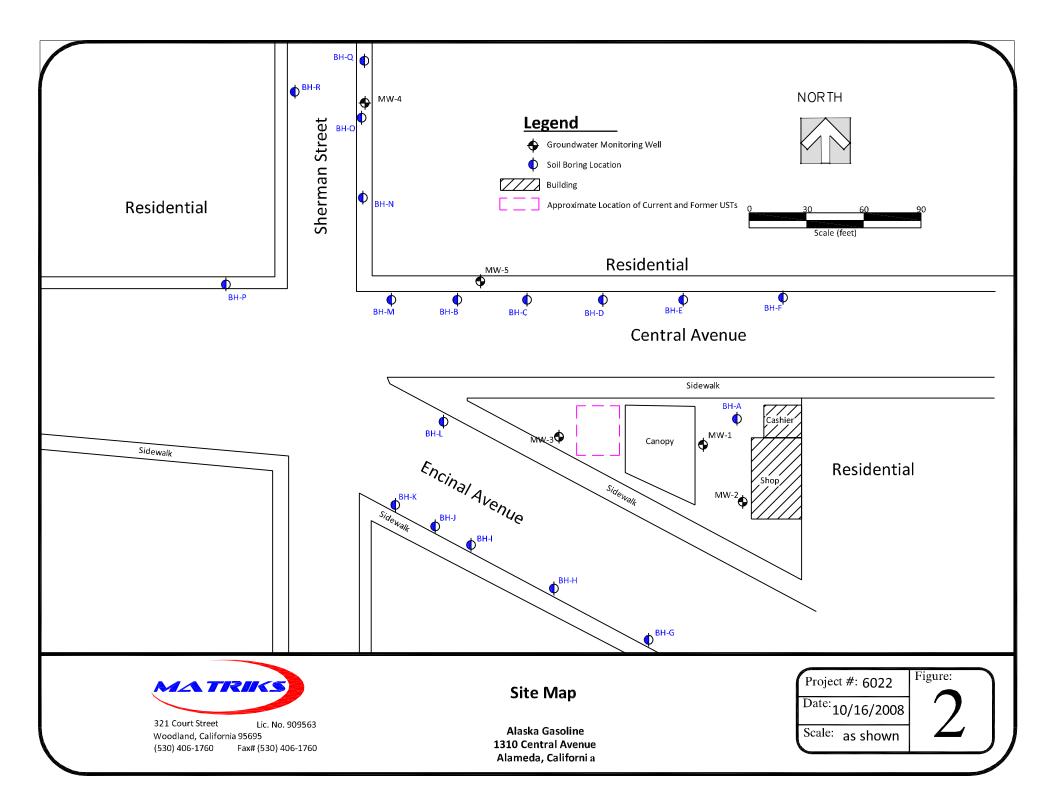
The source of TPH-d in soil and groundwater samples has not been identified. It is possible that diesel was a component of the waste stored in the former waste oil UST. AEI reported in December 1998, that diesel was detected in soil in boring BH-10 only, at a concentration of 300 mg/Kg. The laboratory analytical results in the appendix of their report indicated diesel was detected at a concentration of 300 mg/Kg, at a depth of 8 feet in boring BH-6, not in boring BH-10. Furthermore, AEI also reported that TPH-d was detected in groundwater samples collected from each boring, with the highest concentration detected in boring BH-11, apparently upgradient of the former waste oil UST. AEI also reported that petroleum as O&G was detected in soil in borings BH-9 through BH-11, at a concentrations ranging between 16 and 3,100 mg/Kg. No O&G was detected in groundwater samples collected from these same borings. If the former waste oil UST was the source of the diesel, it would be reasonable to expect the highest concentrations in groundwater to be

downgradient of the former waste oil UST. However, with the exception of boring B-11, the AEI results have relatively high concentrations of diesel in groundwater samples distal from the former waste oil UST. All of these factors combined may indicate an off-site TPH-d source or contamination of the samples in the field or in the laboratory.

While benzene and MtBE appear to be migrating in the downgradient direction in low concentrations, The possibility of vapor intrusion into these structures and down gradient must be considered.

RECOMMENDATIONS

We recommend continued quarterly water quality sampling. We also recommend the preparation of a Feasibility Study/Corrective Action Plan (FS/CAP) to address remedial alternatives for petroleum hydrocarbons primarily in groundwater but remedial consideration should also be given to the soil. It is our belief that ozone sparging will be an effective remedial action given the soil and groundwater conditions at the Site and its small area. The FS/CAP may also include limited additional characterization of soil or groundwater to further assess the concentrations of TPH-d.


FIGURES

 ${\rm FIGURE}\;1$

Site Location Map Alaska Gas 1310 Central Avenue, Alameda, CA

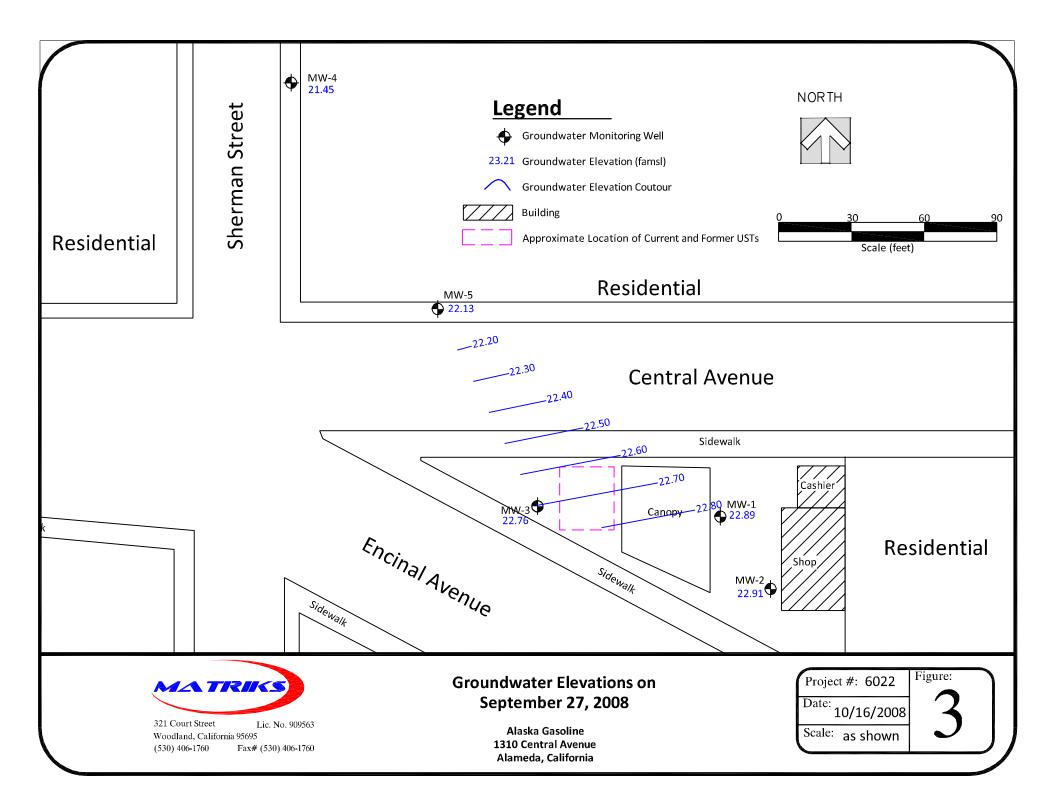
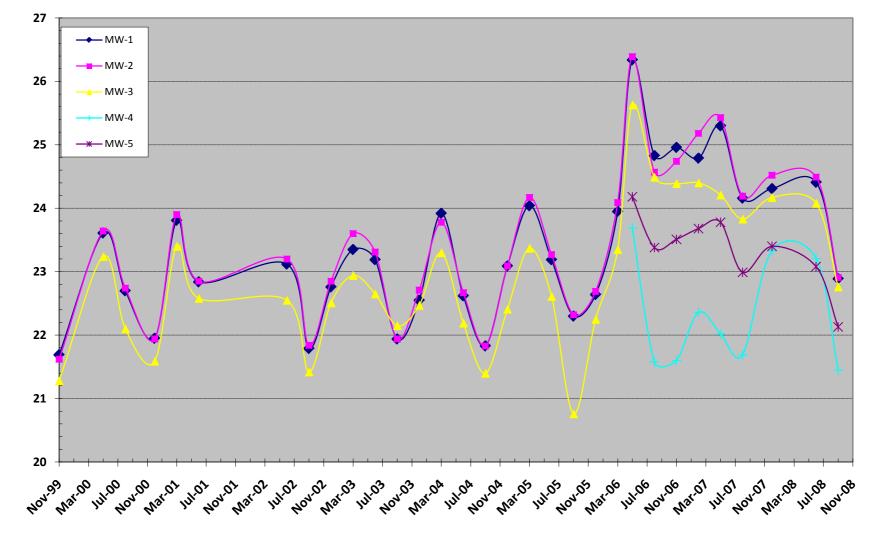
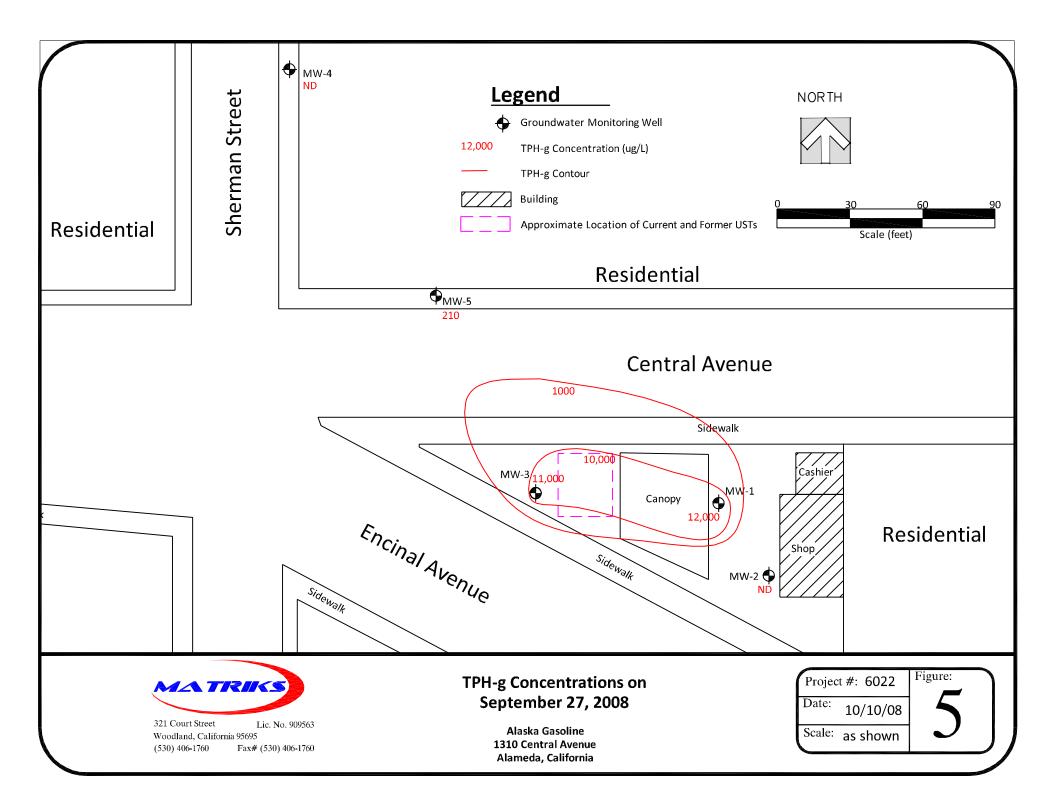




Figure 4. Monitoring Well Hydrographs Alaska Gas Alameda, CA

Elevation (feet above mean sea level)

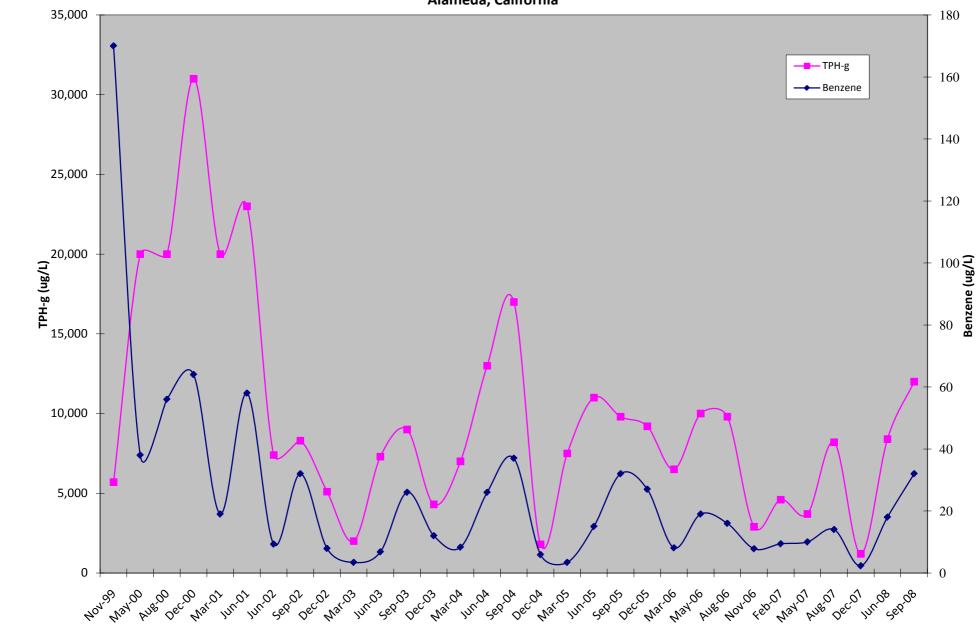


Figure 6. TPH-g and Benzene vs. Time in Well MW-1 Alaska Gas Alameda, California

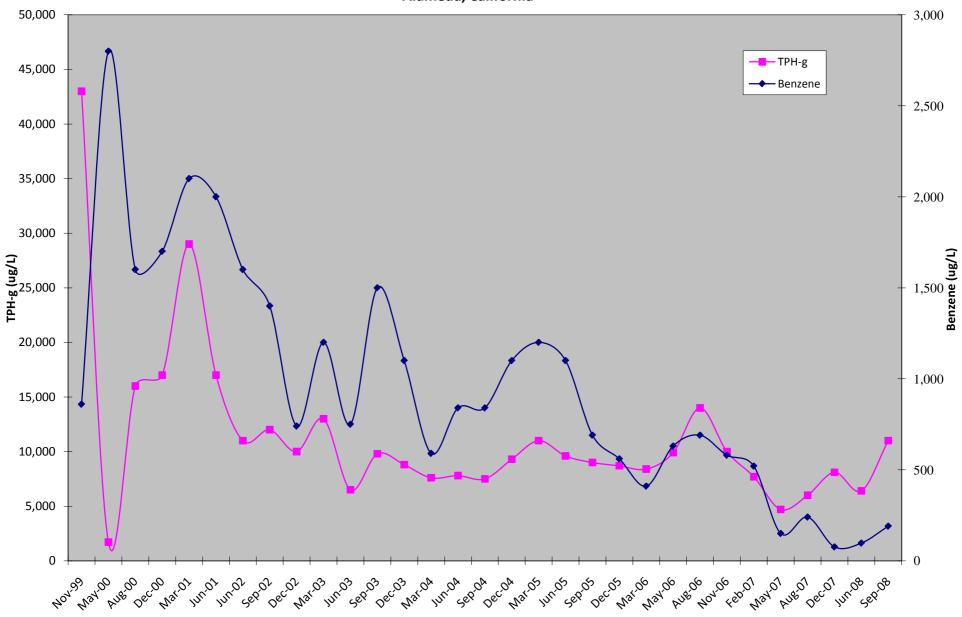


Figure 7. TPH-g and Benzene vs Time in Well MW-3 Alaska Gas Alameda, California

TABLES

Table 1 Soil Analytical Results Alaska Gas Alameda, California

							ethyl-					Other
Boring	Depth(ft)/ Location	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	Oxygen-
			_	-						-	-	ates
1	Fuel Tank Ex.	05/02/96	5,000	NA	31	250	74	560	<5.0	NA	NA	NA
2	Fuel Tank Ex.	05/02/96	2,900	NA	<2.0	16	8.3	190	<5.0	NA	NA	NA
3	Fuel Tank Ex.	05/02/96	4,400	NA	25	190	75	400	<5.0	NA	NA	NA
4	Fuel Tank Ex.	05/02/96	3,600	NA	2.6	34	21	250	<5.0	NA	NA	NA
5	N. Waste Oil Tank	05/02/96	<5.0	<200	<0.05	<0.05	<0.05	<0.05	<0.10	NA	NA	NA
6	Waste Oil Tank	05/08/96	470	<1,000	<0.25	<0.25	0.30	0.85	<0.50	NA	NA	NA
D1	Beneath Dispenser	05/09/96	6,800	NA	63	370	120	680	<40	NA	NA	NA
D2	Beneath	05/09/96	3,700	NA	<10	20	9.7	280	<20	NA	NA	NA
D3	Dispenser Beneath	05/09/96	1,500	NA	<4.0	<4.0	<4.0	20	<8.0	NA	NA	NA
D5	Dispenser Beneath	05/09/96	2,600	NA	<8.0	28	12	200	<16	NA	NA	NA
D6	Dispenser Beneath	05/09/96	<5.0	NA	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	NA	NA	NA
T1	Dispenser Unknown	05/09/96	2,100	NA	<4.0	5.7	<4.0	140	<8.0	NA	NA	NA
T2	Trench Unknown	05/09/96	1,400	NA	<2.0	5.1	<2.0	20	<5.0	NA	NA	NA
BH-1 4'	Trench 4	11/12/98	810	<1	<2.0 27	170	<2.0 110	560	< 0.02	NA	NA	NA
BH-1 8'	8	11/12/98	1,100	<1	9.8	33	110	64	<0.02	NA	NA	NA
BH-2 4'	4	11/12/98	5,900	<1	2.9	76	57	410	1.8	NA	NA	NA
BH-3 4'	4	11/12/98	570	<1	< 0.005	0.065	0.073	0.38	<0.02	NA	NA	NA
BH-4 3'	3	11/12/98	4,600	<1	<0.005	13	47	310	<0.02	NA	NA	NA
BH-5 4'	4	11/12/98	3,700	<1	<0.005	3.2	29	190	<0.02	NA	NA	NA
BH-6 4'	4	11/11/98	< 0.05	<1	<0.005	<0.005	< 0.005	< 0.015	<0.02	NA	NA	NA
BH-7 4'	4	11/12/98	2,600	<1	<0.005	< 0.005	6.9	68	<0.02	NA	NA	NA
BH-8 6'	6	11/11/98	270	<1	0.18	0.11	0.45	1.2	<0.02	NA	NA	NA
BH-8.1 5'	5	11/11/98	< 0.05	<1	< 0.005	0.008	<0.005	< 0.015	<0.02	NA	NA	NA
BH-9 5'	5	11/11/98	< 0.05	<1	<0.005	0.00	<0.005	<0.015	<0.02	NA	NA	NA
BH-10 8'	8	11/11/98	250	300	<0.005	< 0.005	0.19	1.4	<0.02	NA	NA	NA
BH-11 5'	5	11/11/98	< 0.05	<1	< 0.005	< 0.005	< 0.005	< 0.015	<0.02	NA	NA	NA
BH-11.1 7'	7	11/11/98	< 0.05	<1	< 0.005	< 0.005	< 0.005	<0.015	<0.02	NA	NA	NA
BH-12 5'	5	11/11/98	< 0.05	<1	< 0.005	< 0.005	< 0.005	< 0.015	<0.02	NA	NA	NA
BH-12 5 BH-13 5'	5	11/11/98	< 0.05	<1	< 0.005	< 0.005	< 0.005	<0.015	<0.02	NA	NA	NA
BH-14 5'	5	11/11/98	<0.05	<1	<0.005	< 0.005	<0.005	<0.015	<0.02	NA	NA	NA
BH-A	3.5	07/28/00	<1.0	<1.0	< 0.005	< 0.005	< 0.005	<0.015	< 0.02	< 0.005	<0.005	< 0.005
BH-B	2.5	07/28/00	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-C	3.0	07/28/00	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
BH-D	3.0	07/28/00	<1.0	<1.0	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
BH-E	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
BH-F	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005
BH-G	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
BH-H	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
BH-I	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
BH-J	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	0.0061	<0.005	<0.005	<0.005
BH-K	3.0	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
BH-L	3.5	07/28/00	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Table 1 Soil Analytical Results Alaska Gas Alameda, California

Boring	Depth(ft)/ Location	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Other Oxygen- ates
BH-M	2.5	01/14/04	<1.0	68*	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
BH-N	2.5	01/14/04	<1.0	7.2*	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
BH-O	2.0	01/14/04	<1.0	2.2*	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
BH-P	2.0	01/14/04	<1.0	4.9*	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
BH-Q	2.0	04/03/06	<1.0	11*	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
BH-R	2.0	04/03/06	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005
MW-4	2.0	04/03/06	<1.0	<1.0	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
MW-5	2.0	04/03/06	<1.0	1.7*	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	ESL		100	100	0.044	2.9	3.3	1.5	0.023	NE	NE	NE
,		Notos										

Notes:

Units are milligrams per kilogram (mg/KG).

NE ESL has not been established

TPH-g total petroleum hydrocarbons as gasoline

MtBE methyl tert-butyl ether tAME tert-amyl methyl ether tBA tert-butanol

TPH-d total petroleum hydrocarbons as diesel NA Not analyzed

* Laboratory noted that the hydrocarbons reported as TPH-d exhibited a non-typical diesel pattern.

Alaska Gas Alameda, California

											Other
						ethyl-					Oxygen-
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	ates
MW-1	11/06/99	5,700	8,700	170	59	22	85	20,000	NA	NA	NA
	05/16/00	20,000	<7,500	38	6.3	740	1,600	<5.0	<5.0	<50	<5.0
	08/03/00	20,000	<6,000	56	9.7	920	1,600	<0.5	<0.5	<50	<0.5
	12/05/00	31,000	<4,000	64	27	820	2,200	<10	<5.0	<50	<5.0
	03/05/01	20,000	<4,000	19	<5.0	480	870	<5	<5.0	<50	<5.0
	06/04/01	23,000	<7,000	58	50	710	2,100	5.1	<5.0	<50	<5.0
	06/05/02	7,400	<1,500	9.3	6.7	180	230	<1.0	<1.0	<10	<1.0
	09/09/02	8,300	<3500	32	20	390	670	<2.0	<2.0	<20	<2.0
	12/19/02	5,100	NS	7.9	2.5	56	93	<1.0	<1.0	<10	<1.0
	03/10/03	2,000	<2,000	3.4	2.9	80	98	<0.5	<0.5	<5.0	<0.5
	06/03/03	7,300	<4,000	6.8	9.9	300	1,000	2.3	<0.5	<5.0	<0.5
	09/19/03	9,000	<3,000	26	22	420	1,200	4.5	<1.5	<20	<1.5
	12/22/03	4,300	<2,000	12	6.7	200	290	9.1	<1.0	<10	<1.0
	03/12/04	7,000	<3,000	8.3	8.2	250	760	3.9	<2.0	<20	<2.0
	06/11/04	13,000	<4,000	26	27	530	1,700	<2.5	<2.5	<15	<2.5
	09/13/04	17,000	<4,000	37	42	840	2,000	<5.0	<5.0	<50	<5.0
	12/16/04	1,800	<1,000	5.9	1.9	100	35	16	<0.5	<5.0	<0.5
	03/21/05	7,500	<3,000	3.4	4.2	290	760	<1.5	<1.5	<20	<1.5
	06/23/05	11,000	<8,000	15	11	370	910	2.4	<1.5	<7.0	<1.5
	09/30/05	9,800	<4,000	32	25	540	680	1.6	<1.5	<7.0	<1.5
	12/08/05	9,200	<4,000	27	21	500	490	2.2	<1.5	<7.0	<1.5
	03/01/06	6,500	<4,000	8.1	9.4	370	660	18	<1.5	<6.0	<1.5
	05/25/06	10,000	<3,000	19	14	900	620	<1.5	<1.5	<7.0	<1.5
	08/10/06	9,800	<1,500	16	8.1	640	180	<1.5	<1.5	<7.0	<1.5
	11/21/06	2,900	<1,000	7.8	2.5	160	12	2.5	2.5	<5.0	<0.5
	02/06/07	4,600	<1,500	9.4	6	380	220	1	<0.50	<5.0	<0.50
	05/08/07	3,700	<800	10	4.6	320	86	1.5	<0.50	<5.0	<0.50
	08/06/07	8,200	<2,000	14	8.8	730	180	<0.50	<0.50	<5.0	<0.50
	12/26/07	1,200	<300	2.3	1.1	89	21	4.8	<0.50	<5.0	<0.50
	06/28/08	8,400	3,900	18	26	670	1,100	<2.5	<2.5	<10	<2.5
	09/27/08	12,000	4,600	32	49	1,200	680	<25	<25	<100	<25

Alaska Gas Alameda, California

											Other
						ethyl-					Oxygen-
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	ates
MW-2	11/06/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
	05/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/03/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/05/00	<50	1,400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	03/05/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/04/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/05/02	<50	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/09/02	<50	1,300	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<5.0	<0.5
	12/19/02	<50		<0.5	<0.5	<0.5	<0.5	16	<0.5	<5.0	<0.5
	03/10/03	<50	3,000	<0.5	<0.5	<0.5	<0.5	1	<0.5	<5.0	<0.5
	06/03/03	<50	700	<0.5	<0.5	<0.5	<0.5	2	<0.5	<5.0	<0.5
	09/19/03	<50	1,400	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<5.0	<0.5
	12/22/03	<50	1,000	<0.5	<0.5	<0.5	<0.5	39	<0.5	<5.0	<0.5
	03/12/04	<50	250	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<5.0	<0.5
	06/11/04	<50	920	<0.5	<0.5	<0.5	<0.5	0.75	<0.5	<5.0	<0.5
	09/13/04	<50	140	<0.5	<0.5	<0.5	<0.5	1.5	<0.5	<5.0	<0.5
	12/16/04	<50	150	<0.5	<0.5	<0.5	<0.5	12	<0.5	<5.0	<0.5
	03/21/05	<50	130	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	06/23/05	<50	1,100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	09/30/05	<50	300	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<5.0	<0.5
	12/08/05	<50	600	<0.5	<0.5	<0.5	<0.5	1.9	<0.5	<5.0	<0.5
	03/01/06	<50	920	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/25/06	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/10/06	<50	870	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	11/21/06	<50	130	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<5.0	<0.5
	02/06/07	<50	450	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	160	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	12/26/07	<50	190	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<5.0	<0.5
	06/28/08	<50	180	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<2.0
	09/27/08	<50	78	<0.5	<0.5	<0.5	<0.5	7	<0.5	<2.0	<0.5

Alaska Gas Alameda, California

											Other
						ethyl-					Oxygen-
Well ID	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	ates
MW-3	11/06/99	43,000	870	860	70	<0.5	65	120,000	NA	NA	NA
	05/16/00	1,700	<5,000	2,800	60	380	190	990	9.1	350	<5.0
	08/03/00	16,000	<2,000	1,600	29	210	53	1,200	21	260	<2.0
	12/05/00	17,000	5800	1,700	45	460	240	1,100	21	230	<5.0
	03/05/01	29,000	<1,300	2,100	68	280	100	180	<8.0	<80	<8.0
	06/04/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
	06/05/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
	09/09/02	12,000	<800	1,400	44	130	27	760	<10	160	<5.0
	12/19/02	10,000	NS	740	32	180	38	86	<5.0	<50	<5.0
	03/10/03	13,000	<6,000	1,200	42	240	35	470	5.3	140	<2.5
	06/03/03	6,500	<3,000	750	21	46	15	1,300	<50	280	<10
	09/19/03	9,800	<3,000	1,500	38	170	32	420	<10	150	<5.0
	12/22/03	8,800	<2,000	1,100	32	82	20	330	5.8	52	<2.5
	03/12/04	7,600	<3,000	590	23	69	17	470	9.2	63	<1.5
	06/11/04	7,800	<2,000	840	19	58	15	710	12	140	<2.5
	09/13/04	7,500	<1,500	840	17	23	7.8	730	15	93	<2.5
	12/16/04	9,300	<2,000	1,100	26	76	13	600	12	130	<2.5
	03/21/05	11,000	<3,000	1,200	37	190	24	460	9.3	100	<2.5
	06/23/05	9,600	<4,000	1,100	28	93	23	370	8.2	67	<1.5
	09/30/05	9,000	<3,000	690	18	32	14	380	8.4	72	<1.5
	12/08/05	8,700	<3,000	560	23	38	12	350	6.9	82	<1.5
	03/01/06	8,400	<2,000	410	24	42	13	360	8	58	<1.5
	05/25/06	9,900	<2,000	630	25	13	13	190	5.3	59	<1.5
	08/10/06	14,000	<3,000	690	43	130	26	200	5.4	70	<1.5
	11/21/06	10,000	<3,000	580	37	96	25	240	6.3	72	<1.5
	02/06/07	7,700	<1,000	520	36	90	23	260	7.4	54	<1.5
	05/08/07	4,700	<800	150	0.86	<0.5	<0.5	170	5	52	<0.5
	08/06/07	6,000	<1,000	240	26	34	17	180	5	55	<0.5
	12/26/07	8,100	<1,500	76	14	17	12	150	4.3	37	<0.9
	06/28/08	6,400	3,100	97	17	19	13	200	5.6	38	<5.0
	09/27/08	11,000	15,000	190	24	29	16	160	<5.0	40	<5.0

Alaska Gas Alameda, California

						athul					Other
Well ID	Date	TPH-g	TPH-d	benzene	toluene	ethyl- benzene	xylenes	MtBE	tAME	tBA	Oxygen- ates
		_					,				
MW-4	05/25/06	<50	86	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	08/10/06	<50	<50	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<5.0	<0.5
	11/21/06	<50	<50	<0.5	<0.5	<0.5	<0.5	0.59	<0.5	<5.0	<0.5
	02/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	05/08/07	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
	08/06/07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.82	<0.5	<5.0	<0.5
	12/26/07	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
	06/28/08	<50	88	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5
	09/27/08	<50	<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<5.0	<0.5
MW-5	11/21/06	410	<80	<2.5	<2.5	<2.5	<2.5	1,800	28	44	<2.5
	05/25/06	55	<50	<0.5	<0.5	<0.5	<0.5	1,100	19	9.1	<0.5
	08/10/06	<250	<50	<2.5	<2.5	<2.5	<2.5	1,500	25	28	<2.5
	02/06/07	430	<50	6.9	<2.5	<2.5	<2.5	1,600	26	34	<2.5
	05/08/07	<250	<50	<2.5	<2.5	<2.5	<2.5	1,200	20	38	<2.5
	08/06/07	330	<80	<2.5	<2.5	<2.5	<2.5	1,000	20	39	<2.5
	12/26/07	490	<50	<2.5	<2.5	<2.5	<2.5	1,000	18	28	<2.5
	06/28/08	510	290	6.2	1.0	<0.5	2.3	550	11	<40	<10
	09/27/08	670	320	<17	<17	<17	<17	650	<17	95	<17
E	SL	100	100	1.0	40	30	20	5	NE	50,000	NA

Notes:

Units are micrograms per liter (ug/L).

- NT analyte not tested
- TPH-g total petroleum hydrocarbons as gasoline
- TPH-d total petroleum hydrocarbons as diesel
- MtBE methyl tert-butyl ether
- tAME tert-amyl methyl ether
 - tBA tert-butanol

Table 3 Groundwater Analytical Results from Boring Installations Alaska Gas Alameda, California

											Other
						ethyl-					Oxygen-
Boring	Date	TPH-g	TPH-d	benzene	toluene	benzene	xylenes	MtBE	tAME	tBA	ates
BH-A	07/28/00	<50	<50	<0.5	0.7	<0.5	0.9	<0.5	<0.5	<5.0	<0.5
BH-B	07/28/00	1,800	<2000	270	8.8	18	13	4100	5.6	440	<3.0
BH-C	07/28/00	230	<100	11	1.2	<0.5	0.98	760	6.6	130	<0.5
BH-D	07/28/00	<50	72	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<5.0	<0.5
BH-E	07/28/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-F	07/28/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-G	07/28/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-H	07/28/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-I	07/28/00	<50	<50	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<5.0	<0.5
BH-J	07/28/00	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-K	07/28/00	<50	520	<0.5	<0.5	<0.5	<0.5	0.77	<0.5	<5.0	<0.5
BH-L	07/28/00	<50	<50	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<5.0	<0.5
BH-M	01/14/04	<50	170*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-N	01/14/04	<50	68	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-O	01/14/04	<50	100	<0.5	<0.5	<0.5	<0.5	19	<0.5	<5.0	<0.5
BH-P	01/14/04	<50	72	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-Q	04/03/06	<50	220*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
BH-R	04/03/06	<50	770*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5
E	SL	100	100	1	2.9	3.3	1.5	5	NE	NE	NE

Notes:

Units are milligrams per kilogram (mg/KG).

NE ESL has not been established

TPH-gtotal petroleum hydrocarbons as gasolineTPH-dtotal petroleum hydrocarbons as diesel

MtBE methyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol

* Laboratory noted that the hydrocarbons reported as TPH-d exhibited a non-typical diesel pattern.

Table 4 Well Construction Details Alaska Gas Alameda, California

Well ID	Date Installed	Total Depth (feet bg)	Screened Interval (feet bg)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet bg)	Bentonite Interval (feet bg)	Grout Interval (feet bg)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Westing Coordinates (feet)
MW-1	10/11/99	18	17.35-2.5	Silty Sand	0.02	18-1.5	1.5-0.5	0.5-0	29.18	15.20394	46.13606
MW-2	10/11/99	18	18-4	Silty Sand	0.02	18-3	3-1.5	1.5-0	29.55	14.93558	45.97882
MW-3	10/11/99	20	19-4	Silty Sand	0.02	20-3	3-1.5	1.5-0	27.74	15.28672	47.24157
MW-4	04/03/06	16	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.23	17.12115	48.05243
MW-5	04/04/06	17	15-5	Sand-Clayey Sand	0.02	15-4.5	4.5-4	4-0.5	26.78	16.21022	47.48996

Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-1	11/06/99	26.85	5.16	21.69
	05/16/00		3.24	23.61
	08/03/00		4.15	22.70
	12/05/00		4.90	21.95
	03/05/01		3.04	23.81
	06/04/01		4.01	22.84
	06/05/02		3.73	23.12
	09/09/02		5.06	21.79
	12/19/02		4.09	22.76
	03/10/03		3.50	23.35
	06/03/03		3.66	23.19
	09/19/03		4.91	21.94
	12/22/03		4.30	22.55
	03/12/04		2.93	23.92
	06/11/04		4.23	22.62
	09/13/04		5.02	21.83
	12/16/04		3.76	23.09
	03/21/05		2.81	24.04
	06/23/05		3.66	23.19
	09/30/05		4.55	22.30
	12/08/05		4.21	22.64
	03/01/06		2.90	23.95
	05/25/06	29.18	2.84	26.34
	08/10/06		4.35	24.83
	11/21/06		4.22	24.96
	02/06/07		4.39	24.79
	05/08/07		3.88	25.30
	08/06/07		5.02	24.16
	12/26/07		4.87	24.31
	06/28/08		4.77	24.41
	09/27/08		6.29	22.89

Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-2	11/06/99	27.18	5.56	21.62
	05/16/00		3.54	23.64
	08/03/00		4.44	22.74
	12/05/00		5.24	21.94
	03/05/01		3.28	23.90
	06/04/01		4.33	22.85
	06/05/02		3.98	23.20
	09/09/02		5.34	21.84
	12/19/02		4.33	22.85
	03/10/03		3.58	23.60
	06/03/03		3.87	23.31
	09/19/03		5.24	21.94
	12/22/03		4.47	22.71
	03/12/04		3.40	23.78
	06/11/04		4.51	22.67
	09/13/04		5.35	21.83
	12/16/04		4.09	23.09
	03/21/05		3.01	24.17
	06/23/05		3.91	23.27
	09/30/05		4.86	22.32
	12/08/05		4.49	22.69
	03/01/06		3.09	24.09
	05/25/06	29.55	3.16	26.39
	08/10/06		4.98	24.57
	11/21/06		4.81	24.74
	02/06/07		4.37	25.18
	05/08/07		4.12	25.43
	08/06/07		5.36	24.19
	12/26/07		5.03	24.52
	06/28/08		5.06	24.49
	09/27/08		6.64	22.91

Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-3	11/06/99	25.3	4.02	21.28
	05/16/00		2.06	23.24
	08/03/00		3.20	22.10
	12/05/00		3.71	21.59
	03/05/01		1.90	23.40
	06/04/01		2.72	22.58
	06/05/02		2.75	22.55
	09/09/02		3.88	21.42
	12/19/02		2.79	22.51
	03/10/03		2.36	22.94
	06/03/03		2.65	22.65
	09/19/03		3.15	22.15
	12/22/03		2.83	22.47
	03/12/04		2.00	23.30
	06/11/04		3.11	22.19
	09/13/04		3.90	21.40
	12/16/04		2.89	22.41
	03/21/05		1.93	23.37
	06/23/05		2.69	22.61
	09/30/05		4.54	20.76
	12/08/05		3.05	22.25
	03/01/06		1.95	23.35
	05/25/06	27.74	2.11	25.63
	08/10/06		3.25	24.49
	11/21/06		3.35	24.39
	02/06/07		3.34	24.40
	05/08/07		3.53	24.21
	08/06/07		3.91	23.83
	12/26/07		3.57	24.17
	06/28/08		3.66	24.08
	09/27/08		4.98	22.76

Alameda, California

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation
MW-4	05/25/06	26.23	2.54	23.69
	08/10/06		4.65	21.58
	11/21/06		4.63	21.60
	02/06/07		3.87	22.36
	05/08/07		4.21	22.02
	08/06/07		4.54	21.69
	12/26/07		2.90	23.33
	06/28/08		3.02	23.21
	09/27/08		4.78	21.45
MW-5	05/25/06	26.78	2.60	24.18
	08/10/06		3.40	23.38
	11/21/06		3.27	23.51
	02/06/07		3.10	23.68
	05/08/07		3.00	23.78
	08/06/07		3.79	22.99
	12/26/07		3.38	23.40
	06/28/08		3.70	23.08
	09/27/08		4.65	22.13

All measurements are in feet. DTW = Depth to water below top of PVC casing.

TOC = Top of casing. ELEV = Elevation above mean sea level.

D = The change in water level (elevation this quarter minus elevation last quarter). Wells resurveyed on April 27, 2006

APPENDIX A

MONITORING WELL PURGE LOGS

MONITORING WELL SAMPLING LOG

SITE NAME/LOCATION: Alaska Cas						PROJECT #: 002		
DATE:	9/27	108	SAMPLER'S INITIALS:	м.				
WELL ID:	MW- Z	-		WELL DIA	METER (in):	2		
WELL DEPTH (ft): 12.2			- -	DEPTH TO WATER (ft):		6.64 WATER COLUMN Ht (ft): 5	56	
STANDING WATER VOLUME (gal): 0.92 3 VOLUMES (gal): 2.8								
To obtain sta	Inding volum	e in gallons,	multiply	the water co	olumn height by	0.17 for 2-inch well or 0.66 for a 4-inch well.		
PURGE METHOD: Bailer or Mini-Whaler Pump SAMPLING M						SAMPLING METHOD: disposable PE bail	er	
		(circle t	he correct		RGE MEASURE	EMENTS		
Time	Gallons Purged	Temp (F)	рН	SC (uS)		Comments		
	Fulged	(1)		(us)		DO prior to purging		
1339	1	75.5	6.52	344		F F		
1341	Z	74.4	6.36	414				
1343	3	74.3	6.37	479				
1345	4	73.9	630	459		good recharge		
						Sampled e 1350		
				1 				
WELL ID:		- Milair 91545			AETER (in):			
			-					
WELL DEPT	H (TT):		_	DEPTH TO	WATER (ft):			
						WATER COLUMN Ht (ft):		
	WATER VOL	10 /	,			3 VOLUMES (gal):		
To obtain sta	Inding volum	e in gallons,	multiply t			3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well.		
	Inding volum	e in gallons, Bailer or	multiply t Mini-Wh	aler Pump		3 VOLUMES (gal):	er	
To obtain sta	Inding volum	e in gallons, Bailer or	multiply t	aler Pump		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE baile	er	
To obtain sta	Inding volum	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh	aler Pump		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE baile	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle th	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE baile MENTS	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bails EMENTS Comments	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bails EMENTS Comments	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bails EMENTS Comments	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bails EMENTS Comments	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bails EMENTS Comments	er	
To obtain sta	HOD: Gallons	e in gallons, Bailer or (circle the second s	multiply t Mini-Wh he correct	aler Pump ^{method)} PU SC		3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: disposable PE bails EMENTS Comments	er	

MONITORING WELL SAMPLING LOG

SITE NAME/LOCATION: ALSKA Gas						PROJECT #: <u>ののこ</u>				
DATE:	9/2	-7/08					SAMPLE	R'S INITIALS:	CM	
WELL ID:	MW-3			WELL DIA	METER (in):	Z				
WELL DEPTH (ft): <u>۱۵، ت</u>		-	DEPTH TO WATER (ft):		4,98	WATER C	OLUMN Ht (ft):	11.05		
STANDING				1,83		3 VOLUMES	(gal): <u>5.5</u>	-		
To obtain standing volume in gallons, multiply the water column height by 0.17 for 2-inch well or 0.66 for a 4-inch well.										
			Mini-Whaler Pump SAMPLING ME			ETHOD: disposable PE bailer				
	(circle the correct method) PURGE MEASUREMENTS									
Time	Gallons	Temp	рН	SC				Comments		
- I line	Purged	(F)	pn	(uS)	-			comments		
				장리아그의		DO prior to p	urging			
1414	2	74.4	6,32	629						
1417	4 5	73.5	6.37	647						
1419	6	73.4	6.45							
			0	0 4 1		Sampi-0	0 1475			
1						Jampioo	C. 1765			
وحيدهم		90 HB #- 10.0	9011C - E			allenginger om er	communication and a state	الالبة عيارة الجمراة علم	الأوالحالية	
WELL ID:	MW- (WELL DIA	AETER (in):	Z				
WELL DEPT	H (ft):	11.03	•	DEPTH TO	WATER (ft):	6.29	WATER C	OLUMN Ht (ft):	41,74	
STANDING WATER VOLUME (gal): 3 VOLUMES (gal):										
							well or 0.66 for a			
PURGE MET	HOD:	Bailer or	Mini-Wh	aler Pump		SAMPLING M	THOD:	disposable PE	bailer	
		(circle ti	he correct	,	RGE MEASURE	MENTS				
Time	Gallons	Temp	-11	SC				<u> </u>		
Time	Purged	(F)	рН	(uS)				Comments		
	対象が知り			év mél fi		DO prior to p	urging			
1356	í	24.5	6,40	503		Slow re	charge			
1400	2	741.2	6.51	521		Sand Co	ming into	well		
1403	2.5	74.3	6,55	509						
						Samound	e 1405			
						Sumpino	- 1-105			
						· · · · · · · · · · · · · · · · · · ·				

MONITORING WELL SAMPLING LOG

SITE NAME	LOCATIO	<u>N: A</u>	laska	Gas			PROJECT	Г#: <u>00</u>	۲
DATE:	9/27/	vB	-8				SAMPLER	R'S INITIALS:	<u> </u>
WELL ID:	MW-S		-7	WELL DIA	AETER (in):	2			
WELL DEPT	H (ft):	14.8	-8	DEPTH TO	WATER (ft):	41.65	WATER C	OLUMN Ht (ft)	: 10,15
STANDING \				1,68			gal): <u>5,05</u>		
To obtain sta	nding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch	well or 0.66 for a 4	4-inch well.	
PURGE MET	HOD:		Mini-Wh	method)		SAMPLING ME	ETHOD:	disposable P	E bailer
					RGE MEASURI				
Time	Gallons Purged	Temp (F)	рН	SC (uS)				Comments	
				, nav ^a supe		DO prior to pu	urging		
1300	<u> </u>	711	6.67	572		Some ode	or / NO Shu	<i>Lin</i>	
1301	Z	70.8	6.64	621					
1305	3	70,3	6.60	8רר		Sampled	e1310		
	4	70,3	6.64	768					
1307	5	70,0	6.66	754					
WELL ID:	MW-4	- Allow	-	WELL DIAM	AETER (in):	2		un alessa an anna an	
WELL ID:		14.2	-):		AETER (in): WATER (ft):	"Z. 4178	WATER C	OLUMN Ht (ft)	: 9,42
	H (ft):	14,2	-): -				WATER Co gal): _ ビルフ	OLUMN Ht (ft)	: 9,42
WELL DEPT	H (ft): WATER VOL	<u>/4,て</u> _UME (gal):	-): -	DEPTH TO	WATER (ft):	3 VOLUMES (: <u>१,42</u>
WELL DEPT	'H (ft): WATER VOL nding volum	14,2 UME (gal): e in gallons, faile or	- multiply Mini-Wh	DEPTH TO	WATER (ft):	3 VOLUMES (gal): <u>4,7</u> well or 0.66 for a 4		
WELL DEPT STANDING \ To obtain sta	'H (ft): WATER VOL nding volum	14,2 UME (gal): e in gallons, faile or	- multiply	DEPTH TO <u>1.56</u> the water co aler Pump method)	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME	gal): <u>4,7</u> well or 0.66 for a 4	4-inch well.	
WELL DEPT STANDING \ To obtain sta	H (ft): WATER VOL nding volum HOD: Gallons	14, Z UME (gal): e in gallons, faile or (circle t	- multiply Mini-Wh	DEPTH TO <u>1,56</u> the water co aler Pump method) PU SC	WATER (ft):	3 VOLUMES (0.17 for 2-inch SAMPLING ME	gal): <u> </u>	4-inch well.	
WELL DEPT STANDING N To obtain sta PURGE MET	H (ft): WATER VOL nding volum HOD:	UME (gal): e in gallons, faile or (circle t	- multiply Mini-Wh he correct	DEPTH TO <u>1,56</u> the water co valer Pump method) PU	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS	gal): <u>4,7</u> well or 0.66 for a 4 ETHOD:	4-inch well. disposable F	
WELL DEPT STANDING N To obtain sta PURGE MET	H (ft): WATER VOL nding volum HOD: Gallons Purged	14, Z UME (gal): e in gallons, Baile or (circle t Temp (F)	multiply Mini-Wh he correct	DEPTH TO <u>1,56</u> the water co aler Pump method) PU SC (uS)	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS DO prior to pu	gal): ビルフ well or 0.66 for a 4 ETHOD:	4-inch well. disposable F	
WELL DEPT STANDING N To obtain sta PURGE MET Time	H (ft): WATER VOL nding volum HOD: Gallons Purged	14, Z UME (gal): e in gallons, faile or (circle t	multiply Mini-Wh the correct PH	DEPTH TO <u>1,56</u> the water co aler Pump method) PU SC (uS) 44 Z	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS DO prior to pu	gal): <u>4,7</u> well or 0.66 for a 4 ETHOD: urging	4-inch well. disposable F	
WELL DEPT STANDING N To obtain sta PURGE MET Time	H (ft): MATER VOL nding volum HOD: Gallons Purged I 2_	14, 2 UME (gal): e in gallons, Baile or (circle t Temp (F)	multiply Mini-Wh he correct pH	DEPTH TO 1,56 the water co haler Pump method) PU SC (uS) 442 422	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS DO prior to pu	gal): ビルフ well or 0.66 for a 4 ETHOD:	4-inch well. disposable F	
WELL DEPT STANDING N To obtain sta PURGE MET Time 1252 1320 1321	H (ft): WATER VOL nding volum HOD: Gallons Purged I 2_ 3	14, Z UME (gal): e in gallons, Baile) or (circle t Temp (F) 72, 7	multiply Mini-Wh the correct pH 6.84 6.91 6.91	DEPTH TO 1,56 the water co aler Pump method) PU SC (uS) 442 422 426	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS DO prior to pu	gal): <u>4,7</u> well or 0.66 for a 4 ETHOD: urging	4-inch well. disposable F	
WELL DEPT STANDING N To obtain sta PURGE MET Time	H (ft): MATER VOL nding volum HOD: Gallons Purged I 2_	14, 2 UME (gal): e in gallons, Baile or (circle t Temp (F)	multiply Mini-Wh he correct pH	DEPTH TO 1,56 the water co haler Pump method) PU SC (uS) 442 422	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS DO prior to pu	gal): <u>4,7</u> well or 0.66 for a 4 ETHOD: urging	4-inch well. disposable F	
WELL DEPT STANDING N To obtain sta PURGE MET Time 1252 1320 1321	H (ft): WATER VOL nding volum HOD: Gallons Purged I 2_ 3	14, Z UME (gal): e in gallons, Baile) or (circle t Temp (F) 72, 7	multiply Mini-Wh the correct pH 6.84 6.91 6.91	DEPTH TO 1,56 the water co aler Pump method) PU SC (uS) 442 422 426	WATER (ft): lumn height by	3 VOLUMES (0.17 for 2-inch SAMPLING ME EMENTS DO prior to pu	gal): <u>4,7</u> well or 0.66 for a 4 ETHOD: urging	4-inch well. disposable F	

APPENDIX B

LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell A		Web: www.mce	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Matriks Corporation	Client Project ID: Alamed	la	Date Sampled:	09/27/08					
321 Court Street			Date Received:	09/29/08					
Woodland, CA 95695	Client Contact: Robert No	eely	Date Reported:	10/06/08					
Woodiand, CrY 95095	Client P.O.:		Date Completed:	10/06/08					

WorkOrder: 0809883

October 07, 2008

Dear Robert:

Enclosed within are:

- 1) The results of the **5** analyzed samples from your project: Alameda,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Т	ebsite: <u>www.m</u> lephone: (877) 252-92	62		Fax	: (92	5) 25	52-9	269	9				G	eoJ	fra	cke	r E	DF		F	DE	k if] san	Exc	el is e	fflu	V	Vri	te C d "J)n (I " flag	HR 5 DAY DW) 🛛 g is required
Report Tor Mot	RI & Counco	ist, net	- B	ill To	: Ma	tri	KS	Loi	P,										A	aly	sis F										ther	Comme
Company: Mah													_			£					ers											Filter
	Loost St												_	8015) / MTBE		/B&					ngen											Samples
	ioland CA	15695		-Mai		10K	rie	00	neo	ist		et	_	N/ (S		520 E					0						20)	50)		5		for Met
Tele: (530)9	2-7106			ax: ()	1.						-			4/5	8.1)	Cs)	021)		clors		les)			(8)	0/0	09/0		OXY		analysis
Project #:		1 1 10		rojec			419	m	209	L			-	51+		(166	s (41	HVO	02/8	ides)	Aro		bici			PNA	601	6010	6	1.		Yes / No
Project Location		al mue,	Alai	neve	~ (4				_		_	-	/ 80		Case	rbom	121 ()	PA 6	estici	LY;	cides	Her	8	8	Hs	10.8	0.8/	602	5		
Sampler Signatu				<u> </u>		Γ.					MET	гног	D	(602		& Gr	rocal	0/8	V (EI	GP	s ON	Pesti	lico	No.	0 (S)	(PA	1/20	1/20	010	×		
		SAMP	PLING	- 20	lers		MAT	FRI	x	PI	RES	ERV	ED	Gas	015)	0II C	Hyd	801	NL	081	CB.	NP	Acid	826	827	831	(200.	200.	.8/	BTE		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH as Gas (602/8021+	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congenery	EPA 507/8141 (NP Pesticides)	EPA 515/ 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	TPH9 , 737	7	
MW-5		9/27/08	1310	5	×	X				×	X				X															X		
MW-4		1 1	1330		1	1				ť	1				1														1	1		
MW-3			MZS	++	++	H		+	-													+	-									-
	-			++	+	H		+	+						H			-	-	-	+	+	+	+	+	-		-		+	\vdash	
MW-1			1405	+				+	+		+				+			-	-	-	-	+	+	+	+	-	-	-				
MW-Z		+	1350	~		-	-	+	+	+	-		-		-		-	-	-	+	-	+	+	-	+	-	-	-		1		
				-	-		-	-	-	+	-						_	_	_	-	+	+	-	-	-	-	-	_				
				-				-	-	+	-							_			-	-	-	_	-	_	_	_				_
								_	_	+	-							_		_	_	_	_	_	_	_	_	_				_
Relinquished By:	1	Date:	Time:	Rece	ived I	By:			_	_	-			ICI	E/t*	-		Ve	SI	6.	3.	C		_	-		(CON	IME	INTS:	1:	
1n	-	1/29/08	845	m	u	ß	in	_						GO	DOD	CON	DIT	ON	1	J												
Relinquished By:	, 20	Date:	Time:		ived,		A	1-						DE	CHL	LORI	INAT	ED I	IN L	B	M	+	X			X		41	100	1+	· lai	mber
Relinquished By: EMMTA - (C	n sk-	9hh	1950	4	201	1	the	U	1					AP	PRO	RVE	ATE	CON	TAL	NER	s	1	A	N	11	11	H	- 1	X	n	NG(5
Relinquished By:		Date:	Time:		eived 1	2	1-	1	-	-	-		_		AND ROL			Arras	-	_											5	

6.3

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	rg, CA 94565-1701 252-9262					Work	Order:	0809	883	Client	Code: MCV	V			
			WriteOn	EDF		Excel	[Fax	E	Email	HardCop	y 🗌 Tł	nirdParty	□ J-	flag
Report to:							Bill to:				R	equeste	d TAT:	5 c	days
Robert Nee Matriks Cor 321 Court S Woodland, (530) 406-17	poration Street CA 95695	Email: cc: PO: ProjectNo:		matrikscorp.com	; Cmo	kri	Ма 32 ⁻	1 Court	eely orporation : Street I, CA 9569			ate Rec ate Prin		09/29/ 09/30/	
									Reques	sted Tests	s (See legen	d below)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6	7 8	9	10	11	12
0809883-001	MW-5		Water	9/27/2008 13:10		А	В								
0809883-002	MW-4		Water	9/27/2008 13:30		А	В								
0809883-003	MW-3		Water	9/27/2008 14:25		А	В								

А

А

В

В

9/27/2008 14:05

9/27/2008 13:50

Test Legend:

0809883-004

0809883-005

1	G-MBTEX_W] [2	MBTEXOXY
6] [7	
11] [12	

2	MBTEXOXY-8260B_W	
,		
2		l

Water

Water

3	
8	

4	
9	

[5			
ſ	10			

The following SampIDs: 001A, 002A, 003A, 004A, 005A contain testgroup.

MW-1

MW-2

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Samantha Arbuckle

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Matriks Corporat	ion				Date	and T	ime Received:	9/29/2008	9:09:08 PM
Project Name:	Alameda					Chec	cklist o	completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0809883	Matrix	<u>Water</u>			Carri	er:	<u>EnviroTech</u>		
			<u>Chair</u>	n of Cu	stody (C	COC) Inform	ation	<u>1</u>		
Chain of custody	present?			Yes	\checkmark	No 🗆				
Chain of custody	signed when relinqui	shed and	received?	Yes	✓	No 🗆				
Chain of custody	agrees with sample I	abels?		Yes	✓	No 🗌				
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆				
Date and Time of	collection noted by Cli	ient on C	OC?	Yes	\checkmark	No 🗆				
Sampler's name r	noted on COC?			Yes	✓	No 🗆				
			<u>s</u>	ample	Receipt	Informatio	<u>n</u>			
Custody seals int	tact on shipping conta	iner/cool	er?	Yes	\checkmark	No 🗆			NA 🗆	
Shipping containe	er/cooler in good cond	lition?		Yes	\checkmark	No 🗆				
Samples in prope	er containers/bottles?			Yes	✓	No 🗆				
Sample containe	rs intact?			Yes	\checkmark	No 🗆				
Sufficient sample	volume for indicated	test?		Yes	✓	No 🗌				
		<u>Sa</u>	mple Prese	rvatior	n and Ho	old Time (H	T) Inf	ormation		
All samples recei	ved within holding tim	e?		Yes	✓	No 🗌				
Container/Temp E	Blank temperature			Coole	r Temp:	6.3°C			NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no b	ubbles?	Yes	✓	No 🗆	No	VOA vials subm	itted 🗆	
Sample labels ch	necked for correct pres	servation	?	Yes	✓	No 🗌				
TTLC Metal - pH	acceptable upon recei	ipt (pH<2))?	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	~	No 🗆				
			(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	ee comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

<u>McC</u>	Campbell Analyti	ical, Inc.		Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam		
	"When Ouality Counts"		Telephone: 8	77-252-9262 Fax: 925-252-92	69	
Matriks Corporat	ion	Client Project ID:	Alameda	Date Sampled: 09/27	/08	
321 Court Street			/08			
021 0001000000		Client Contact: R	08-10/03/08			
Woodland, CA 95	5695	Client P.O.:		Date Analyzed 10/01	/08-10/0	3/08
	Gasoline Ra	ange (C6-C12) Vola	tile Hydrocarbons as G	asoline*		
Extraction method SW5	030B	Analytical n	methods SW8015Cm	Work O	rder: 08	09883
Lab ID	Client ID	Matrix	TPH	(g)	DF	% SS
001A	MW-5	W	670,d	1,b1	1	104
002A	MW-4	w	ND,	b1	1	92
003A	MW-3	W	11,000,	d1,b1	10	102
004A	MW-1	W	12,000,	d2,b1	20	105
005A MW-2		W	ND,	b1	1	91
-	ing Limit for DF =1;	W	50)	μ	g/L
	ans not detected at or the reporting limit	S	NA	A		A

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

d1) weakly modified or unmodified gasoline is significant

d2) heavier gasoline range compounds are significant (aged gasoline?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality	Counts"		Telephone: 8	77-252-9262 Fax: 92	5-252-9269		
Matriks Corporation	Client Pr	roject ID: Alame	da	Date Sampled:	09/27/08		
321 Court Street				Date Received: 09/29/08			
	Client C	ontact: Robert N	Date Extracted: 10/03/08				
Woodland, CA 95695	Client P.	0.:		Date Analyzed:	10/03/08		
	Oxyger	nates and BTEX b	y GC/MS*				
Extraction Method: SW5030B		lytical Method: SW826	-		Work Order:	0809883	
Lab ID	0809883-001B	0809883-002B	0809883-003B	0809883-004B			
Client ID	MW-5	MW-4	MW-3	MW-1	Reporting		
Matrix	W	W	W	W	- DF =1		
DF	33	1	10	50	S	W	
Compound		Conc	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<17	ND	ND<5.0	ND<25	NA	0.5	
Benzene	ND<17	ND	190	32	NA	0.5	
t-Butyl alcohol (TBA)	95	ND	40	ND<100	NA	2.0	
Diisopropyl ether (DIPE)	ND<17	ND	ND<5.0	ND<25	NA	0.5	
Ethylbenzene	ND<17	ND	29	1200	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND<17	ND	ND<5.0	ND<25	NA	0.5	
Methyl-t-butyl ether (MTBE)	650	1.3	160	ND<25	NA	0.5	
Toluene	ND<17	ND	24	49	NA	0.5	
Xylenes	ND<17	ND	16	680	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS1:	80	78	77	79			
%SS2:	77	80	79	78			
%SS3:	77	76	73	75			
Comments	b1	b1	b1	b1			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

"When Ouality	alytical, Inc	Web:	www.mccampbell.com E-mail: main Telephone: 877-252-9262 Fax: 92	@mccampbell.co 5-252-9269	om
Matriks Corporation	Client Pro	ject ID: Alameda	Date Sampled:	09/27/08	
			Date Received:	09/29/08	
321 Court Street	Client Co.	ntarti Dahart Masla			
		ntact: Robert Neely	Date Extracted:		
Woodland, CA 95695	Client P.O	.:	Date Analyzed:	10/03/08	
	Oxygena	tes and BTEX by GC/	MS*		
Extraction Method: SW5030B		tical Method: SW8260B		Work Order:	0809883
Lab ID	0809883-005B				
Client ID	MW-2			Reporting	Limit fo
Matrix	W			– DF	=1
DF	1			s	W
Compound		Concentrati	Concentration		
tert-Amyl methyl ether (TAME)	ND			NA	0.5
Benzene	ND			NA	0.5
	ND			NA	2.0
t-Butyl alcohol (TBA)					
· · · · ·	ND			NA	0.5
Diisopropyl ether (DIPE)				NA NA	0.5
Diisopropyl ether (DIPE) Ethylbenzene	ND				
Diisopropyl ether (DIPE) Ethylbenzene Ethyl tert-butyl ether (ETBE)	ND ND			NA	0.5
Diisopropyl ether (DIPE) Ethylbenzene Ethyl tert-butyl ether (ETBE) Methyl-t-butyl ether (MTBE)	ND ND ND			NA NA	0.5
Diisopropyl ether (DIPE) Ethylbenzene Ethyl tert-butyl ether (ETBE) Methyl-t-butyl ether (MTBE) Foluene	ND ND ND 7.0			NA NA NA	0.5 0.5 0.5
Diisopropyl ether (DIPE) Ethylbenzene Ethyl tert-butyl ether (ETBE) Methyl-t-butyl ether (MTBE) Toluene	ND ND ND 7.0 ND ND	gate Recoveries (%)		NA NA NA NA	0.5 0.5 0.5 0.5
Diisopropyl ether (DIPE) Ethylbenzene Ethyl tert-butyl ether (ETBE) Methyl-t-butyl ether (MTBE) Toluene	ND ND ND 7.0 ND ND	gate Recoveries (%)		NA NA NA NA	0.5 0.5 0.5 0.5
Diisopropyl ether (DIPE) Ethylbenzene Ethyl tert-butyl ether (ETBE) Methyl-t-butyl ether (MTBE) Toluene Xylenes	ND ND ND 7.0 ND ND Surro	gate Recoveries (%)		NA NA NA NA	0.5 0.5 0.5 0.5
	ND ND ND ND ND ND ND Surro 77	gate Recoveries (%)		NA NA NA NA	0.5 0.5 0.5 0.5

b1) aqueous sample that contains greater than ~1 vol. % sediment

<u>McC</u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccam 377-252-9262 Fax: 925-252-92	pbell.com	
Matriks Corporat	tion	Client Project ID:	Alameda	Date Sampled: 09/27	/08	
321 Court Street				Date Received: 09/29	/08	
521 Courbicot		Client Contact: R	obert Neely	Date Extracted: 09/30/	/08	
Woodland, CA 9	5695	Client P.O.:		Date Analyzed 10/04	/08-10/0	6/08
Extraction method SW			roleum Hydrocarbons* methods: SW8015B	Work Or	der: 08	09883
Lab ID	Client ID	Matrix	TPH-Dies (C10-C23)		DF	% SS
0809883-001A	MW-5	W	320,e4,e2	,b1	1	112
0809883-002A	MW-4	W	ND,b1	1	113	
0809883-003A	MW-3	W	15,000,e4	1	109	
0809883-004A	MW-1	W	4600,e4,l	1	114	
0809883-005A	MW-2	W	78,e2,b	1	1	106

Reporting Limit for DF =1;	W	50	µg/L	
ND means not detected at or above the reporting limit	S	NA	NA	1
above the reporting mint				

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 38576 WorkOrder 0809883 EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0809864-008A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 94.8 93.9 0.972 100 99.3 0.743 70 - 130 70 - 130 60 20 20 MTBE 10 104 ND 96.7 97.7 1.03 115 9.67 70 - 130 2.0 70 - 130 20 Benzene ND 10 93.3 93.4 0.0689 99.3 96.7 2.64 70 - 130 20 70 - 130 20 Toluene ND 10 84.9 85 0.109 100 97.8 2.50 70 - 130 20 70 - 13020 Ethylbenzene ND 10 94.9 95.7 0.871 106 103 2.25 70 - 130 20 70 - 130 20 Xylenes ND 30 92.7 94.3 1.65 118 116 1.66 70 - 130 2.0 70 - 130 20 %SS: 96 10 98 96 2.42 92 89 3.29 70 - 130 20 70 - 130 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38576 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809883-001A	09/27/08 1:10 PM	10/01/08	10/01/08 8:42 PM	0809883-001A	09/27/08 1:10 PM	10/03/08	10/03/08 5:34 AM
0809883-002A	09/27/08 1:30 PM	10/03/08	10/03/08 12:48 AM	0809883-003A	09/27/08 2:25 PM	10/03/08	10/03/08 2:34 AM
0809883-004A	09/27/08 2:05 PM	10/01/08	10/01/08 10:45 PM	0809883-005A	09/27/08 1:50 PM	10/02/08	10/02/08 6:11 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

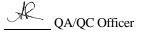
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matrix: Water					BatchID: 38586 WorkOrder 08098				83	
EPA Method SW8260B	Extraction SW5030B Spiked Sample ID: 0809								: 0809880-0	02B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	117	114	2.75	106	105	1.25	70 - 130	30	70 - 130	30
Benzene	ND	10	112	110	1.58	101	100	0.724	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	121	111	8.06	83.4	85.1	2.00	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	118	118	0	95	95.3	0.293	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	109	107	2.25	114	114	0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	102	100	1.85	113	111	1.74	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	119	116	2.62	111	110	1.07	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	108	106	2.07	97	95.8	1.32	70 - 130	30	70 - 130	30
Toluene	ND	10	115	117	0.974	106	105	0.575	70 - 130	30	70 - 130	30
%SS1:	86	25	81	81	0	88	86	1.37	70 - 130	30	70 - 130	30
%SS2:	87	25	79	82	3.05	91	91	0	70 - 130	30	70 - 130	30
%SS3:	89	2.5	74	74	0	77	76	1.67	70 - 130	30	70 - 130	30

BATCH 38586 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809883-001B	09/27/08 1:10 PM	10/03/08	10/03/08 10:27 PM	0809883-002B	09/27/08 1:30 PM	10/03/08	10/03/08 5:51 PM
0809883-003B	09/27/08 2:25 PM	10/03/08	10/03/08 11:09 PM	0809883-004B	09/27/08 2:05 PM	10/03/08	10/03/08 11:52 PM
0809883-005B	09/27/08 1:50 PM	10/03/08	10/03/08 6:33 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water					BatchID: 38587		WorkOrder 0809883					
EPA Method SW8015B	Extra	Extraction SW3510C					Spiked Sample ID: N/A					
Analyte	Sample	Sample Spiked MS			MSD MS-MSD		LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	μg/L μg/L % Rec. % Rec. % RP		% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	105	106	0.989	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	82	84	1.97	N/A	N/A	70 - 130	30
All target compounds in the Metho NONE	l Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 38587 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809883-001A	09/27/08 1:10 PM	09/30/08	10/04/08 10:19 AM	0809883-002A	09/27/08 1:30 PM	09/30/08	10/04/08 7:25 PM
0809883-003A	09/27/08 2:25 PM	09/30/08	10/05/08 1:11 AM	0809883-004A	09/27/08 2:05 PM	09/30/08	10/04/08 9:42 PM
0809883-005A	09/27/08 1:50 PM	09/30/08	10/06/08 10:11 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer