

Augeas

Remedial Investigation Report

Jocson Auto Electric 17771 Meekland Avenue Alameda County, California 94541

> Augeas Corporation 799 Main Street, Suite A Half Moon Bay, CA 94019 415/726-7700

Remedial Investigation Report Jocson Auto Electric 17771 Meekland Avenue Alameda County, California

for

Mel Jocson July 16, 1992

Prepared by Augeas Corporation 799 Main Street, Suite A Half Moon Bay, CA 94019

Project Number: JOC060592

This report was prepared under the surpervision of a registered professional engineer. All statements, conclusions and recommendations are based solely upon field observations and analytical test results related to the work performed by Augeas Corporation.

Site conditions are subject to change with time; therefore, our conclusions result only from the interpretation of present conditions and available site information. This report was prepared in accordance with accepted professional standards and technical procedures as certified below.

Reviewed by:

Frederick Moss

Frederick G. Moss, P.E., No. 35162 Senior Engineer

July 15, 19

TABLE OF CONTENTS

1.0	OBJECTIVE	1
2.0	SUMMARY	2
3.0	INTRODUCTION	3
	3.1 Site Background3.2 Geology and Hydrology	3 3
4.0	SCOPE OF WORK	5
	4.1 Soil Borings4.2 Monitoring Well Installation4.3 Groundwater Sampling	5 6 7
5.0	ANALYTICAL RESULTS AND DISCUSSION	8
	5.1 Soil Samples	8
	5.2 Water Samples	8
6.0	RECOMMENDATIONS	9
7.0	LIMITATIONS	10

FIGURES

- 1 Location Map
- 2 General Site Map
- 3 Boring and Monitoring Well Location Map
- 4 Groundwater Gradient Map

TABLES

- 1 Summary of Analytical Results Soil Samples
- 2 Summary of Analytical Results Water Samples
- 3 Water Elevation Table

APPENDICES

- 1 Lithologic Logs Soil Borings
- Well Completion Details
- 3 Field Logs Groundwater Sampling
- 4 Detailed Analytical Reports

1.0 OBJECTIVE

Augeas Corporation was retained by Mel Jocson of Jocson Auto Electric, to assess specific environmental concerns stemming from the presumed leakage or spillage of fuel from former underground storage tanks. The underground tanks were used to store gasoline at one time. The objective of this Remedial Investigation (RI) is to provide additional information on the horizontal and vertical extent of potential contamination and severity of soil and/or ground-water pollution at the site.

2.0 SUMMARY

No soil or groundwater contamination was identified during this investigation. Specific work performed during this Remedial Investigation included:

- 1. Preparation of a Groundwater Investigation Workplan, a site-specific Health and Safety Plan, and completion of monitoring well permits.
- 2. Drilling of four exploratory soil borings.
- 3. Installation of three groundwater monitoring wells.
- Collection of soil samples at 5-foot intervals in the soil borings, down to groundwater. Continuous lithologic logging of each of the boreholes and the field screening of all samples collected with a 580B OVM photoionization detector (PID).
- Development of the monitoring wells and collection of a water sample from each of the newly installed monitoring wells as well as from existing wells.
- 6. Analysis of soil and water samples for volatile aromatic compounds including benzene, toluene, total xylenes, and ethylbenzene (BTEX) and total petroleum hydrocarbon products (TPH) in the gasoline range.
- 7. Preparation of this technical report.

In summary, no soil contamination was found. Groundwater was encountered at a depth of 20 to 23 feet below the ground surface. No evidence of petroleum hydrocarbon contamination was found in the analysis of water samples collected from the three monitoring wells installed during this investigation.

3.0 INTRODUCTION

3.1 Site Background

The site is located northeast of Highway 880 near E. Lewelling Boulevard, at 17771 Meekland Avenue, Alameda County, California (Figure 1). The property was previously developed as a Sunland service station in approximately 1974. On January 3, 1991, two 3,000-gallon storage tanks, one 5,000-gallon storage tank and one 300-gallon waste oil tank, associated product piping, and surface pavements were removed. These tanks were believed to have contained regular and/or unleaded gasoline.

There are currently no underground fuel tanks on the property. The site covers an rectangular shaped area of less one half acre, and measures approximately 250 feet by about 150 feet. One structure exists on the property, the repair bay and office area. Site features are shown on Figure 2.

Underground fuel storage tanks were installed by Sunland Oil. The tank and product lines were inspected following its removal and were found to be intact but with minor deterioration. The soil contamination below and adjacent to the tank, discovered at the time of tank removal, was therefore believed to be caused by spillage as a result of overfill.

3.2 Geology and Hydrogeology

The exploratory borings drilled during this investigation encountered unconsolidated alluvial deposits consisting primarily of clay and silt with occasional layers of poorly-sorted fine sand to silty sand. More specifically, the upper 8 to 15 feet of the soil column consists of clayer silt overlying 15 to 22 feet of interbedded silty sand and silty clay.

Characteristics of the aquifers and occurrence of groundwater at the site is typical for the gently sloping plains adjacent to flat-lying floor of the San Francisco Bay. The alluvial sediments were derived from the erosion of the adjacent Coast Range Hills and deposited in stream and estuary systems. The main part of San Francisco Bay is approximately three miles west of the site.

Jocson Auto Electric, 17771 Meekland, Alameda County, California

The elevation of the site is about 50 feet above sea level according to the U.S.G.S. topographic maps and surveyed elevations of the monitoring wells. The general slope of the ground surface is slightly toward the northeast. Groundwater was encountered in the monitoring wells at a depth of approximately 20 feet below the ground surface. The calculated local groundwater gradient is in a north to southwesterly direction as shown on Figure 4.

4.0 SCOPE OF WORK

4.1 Soil Borings

Four exploratory soil borings were drilled at the site on June 27, 1992. Each of the borings was drilled to a depth of 25 feet. Borehole drilling and sampling operations were accomplished using a truck mounted hollow-stem auger drill rig. Each borehole was continuously logged for the purpose of describing the vertical variations in the soil profile encountered. The lithologic log for each exploratory boring is presented in Appendix 1. Soil samples were collected at five (5) foot intervals, using a split spoon sampler fitted with three 2 x 6 inch brass tubes. The soil from one tube from each sample interval was placed into a sealed plastic bag which was allowed to reach ambient temperature. The gas collected in the headspace of the bag was then analyzed by a PID calibrated for benzene. One of the remaining brass tubes was capped and sealed, and placed on dry ice in a refrigerated container. The remaining soil samples were discarded. PID readings for each sample were recorded on the lithologic log for that boring and can be found in Appendix 1. Only the soil samples with the highest recorded PID readings were submitted to the analytical laboratory for analysis,

In accordance with County of Alameda County Department of Environmental Health and Regional Water Quality Control Board (RWQCB) practices, all soil borings were completely backfilled with a grout composed of bentonite and neat cement. In addition, all soil cuttings and discarded soil samples generated by the borehole drilling and sampling activities were contained and stored onsite for future disposal.

4.2 Monitoring Well Installation

Three groundwater monitoring wells were installed at the site on June 27, 1992. Augeas Corporation obtained the appropriate permits for well installation from the Alameda County Water District (Zone 7). The wells were completed to a depth of 29 feet below ground surface. Well design and completion details are presented in Appendix 2.

The initial soil boring was drilled using 6 7/8 inch ID hollow stem augers. Materials used for the construction of the groundwater monitoring well included 2-inch ID interior/exterior flush-threaded PVC Schedule 40 blank casing and well screen. Well screen perforations were precision machine slotted with a slot size 0.2 inches. Ten feet of well screen was placed at the bottom of the boring. Approximately 8 feet of well screen was located below the water table with two feet of well screen extending above the water table. Approximately 20 feet of blank casing connected the well screen to a subsurface locking Christy Box. The well was also equipped with a locking pressure cap and traffic-rated cover to avoid the potential for vandalism.

met 7.

Following well installation, Augeas Corporation developed the monitoring wells by purging a sufficient amount of water to remove suspended material which had accumulated at the bottom of the well screen. Approximately 20 gallons of water was removed from each well and stored on-site until an analysis of the water could be obtained.

4.3 Groundwater Sampling

Water samples were collected from the wells on June 30 and July 1, 1992. Prior to sampling, the depth to water in all of the wells was gauged to the nearest hundreth of a foot using an interface probe. The wells were also visually inspected for integrity and condition of the casing and wellhead. All wells appeared to be in staisfactory condition. Prior to sampling, the monitoring wells were purged until pH, tempeature, and conductivity of the purge water stabilized, or until dry. Purging data is included in Appendix 3.

Following recovery of the wells to at least 80 percent of their static water level, duplicate groundwater samples were collected using a clean Teflon hand bailer, and placed into three 40 ml vials. Prior to sampling, the bailer was completely disassembled, washed in deionized water and reassembled. Each water sample was labeled, placed into a chest of dry ice, and transported to Sequoia Analytical Laboratory in San Francisco, California under Chain-of-Custody within 24 hours of collection. Each water sample was analyzed for BTXE by EPA method 602 (purgeable aromatics) and TPH in the gasoline range.

5.0 ANALYTICAL RESULTS AND DISCUSSION 5.1 Soil Samples

Soil samples collected from each of the monitoring wellS and the single exploratory soil boring were evaluated for BTEX and TPH-g. The laboratory results are summarized and presented in Table 1. Complete analytical reports are located in Appendix 4. All samples obtained from the exploratory soil borings and submitted for analysis were collected from the depth intervals of 5 to 6.5, 10 to 11.5 and 15 to 16.5 feet. In addition to the soil borings, soil samples were collected from the monitoring well at the above depth interval and at five foot increments down to a depth of 30 feet.

Saturated conditions were encountered during the collection of a soil sample at the groundwater interface at a depth of 20 feet. The water-saturated condition of the 20-foot sample and the subsequent loss of material during the extraction of the sampler from the well, resulted in no representative soil sample being collected for chemical analysis at this depth.

5.2 Water Samples

On June 30 and July 1, 1992, Augeas Corporation collected groundwater samples from the newly installed monitoring wells. A field blank was also collected as a standard quality assurance precaution. Each sample was evaluated for TPH constituents in the gasoline range and BTEX (EPA Methodology 602). The results of these analyses are summarized in Table 2. Complete analytical reports are presented in Appendix 4.

The depth to groundwater in the wells ranged from approximately 19 to 20 feet below grade. This data was combined with wellhead elevation previously collected by HETI, to produce the ground water contour map shown as Figure 4. The map shows ground water gradient ranges from 35.0 to 36.0. Sampling and gauging data is included in Appendix 3.

6.0 RECOMMENDATIONS

The initial goal of this preliminary investigation at the former Sunland service station was twofold: first, to determine whether a soil only, or a soil and groundwater remediation must be considered; and second, if a soil only remediation is required, to determine the lateral and vertical extent of any soil contamination. Both of these goals have been accomplished as a result of this investigation.

The chemical analysis of soil samples collected from exploratory soil borings placed in the vicinity of the former tank excavation were all below laboratory detection limits for fuel hydrocarbons. Although soil contamination was detected at the time of tank removal, all contamination was successfully removed during subsequent overexcavation activities.

Since no fuel hydrocarbon products have been found in the groundwater samples collected from MW-1, MW-2 AND MW-3 and no soil contamination was identified in the soil borings, no further soil or groundwater assessment recommended. Based upon the results of this study, Augeas Corporation requests that site closure be approved by Alameda County Department of Environmental Health.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of Jocson Auto Electric with specific application to the subject site in Alameda County, California. The use of this report, its contents, or any part of it by a party, or its agents, other than the ones for whom this report is prepared, is herewith disallowed.

In part, these findings, conclusions, and recommendations are based on the best available information known or made available by Jocson Auto Electric, regulators, other consultants, laboratories, or other sources. Augeas Corporation did not participate in the performance of construction activities related to tan removal or soil excavations, or the collection, sampling and analysis of soils from the tank excavation or stockpile.

The services provided under this contract as described in this report include professional opinions and judgments based on the data collected. These services have been performed according to generally accepted practices in the environmental industry in this area. The opinions and conclusions contained in this report are based only on information obtained from:

- 1. Observations and measurements by our field staff.
- Contacts and discussions with regulatory agencies, labs, site owners and others.
- 3. Our opinions and judgments based on information available.

The Client, Jocson Auto Electric, acknowledges that Augeas Corporation has been retained for the sole purpose of assisting the Client in evaluation of the environmental conditions at the project site. It is recognized and agreed that Augeas Corporation has assumed responsibility only for performing this

Jocson Auto Electric, 17771 Meekland, Alameda County, California

investigation and presenting this report and conclusions to the Client. The responsibility for making any further evaluation, disclosure or report to any third party or for the taking of corrective, remedial and mitigative action, shall be solely that of the Client. The Client agrees to hold Augeas Corporation harmless from any and all liability, damage, loss, cost, or expense, including attorney fees, in any way arising from the claim of any third party. Augeas Corporation agrees not to make, except to the Client or at the Client's request, any report to any third party not legally required of it.

Table 1
Summary of Analytical Results
Soil Samples

Boring No.	Fuel Hydrocarbons mg/kg	Benzene μg/kg	Tolueпе µg/kg	Ethyl benzene µg/kg	Xylenes μg/kg	
MW-1-10'	ND	ND	ND	ND	ND	
15'	ND	ND	ND	ND	ŅD	
20'	ND	ND	ND	ND	ND	
25'	ND	ND	ND	ND	ND	
30'	ND	ND	ND	ND	ND	
MW-2-10'	ND	ND	ND	ND	ND	
15'	ND	ND	ND	ND .	ND	
20'	ND	ND	ND	ND	ND	
25'	ND	ND	ND	ND	ND	
30'	· ND	ND	ND	ND	ND	
MW-3-10'	ND	ND	ND	ND	ND	
15'	ND	ND	ND	ND	ND	
20'	ND	ND	ND	ND	ND	
25'	ND	ND	ND	ND	ND	
30'	ND	ND	ND	ND	ND	
SB-1-10'	ND	ND	ND	ND	ND	
15'	ND	ND	ND	ND	ND	
20'	ND	ND	ND	ND	ND	
	,					

Project Number: JOC060592

Table 2
Summary of Analytical Results
Water Samples

Boring No.	Fuel Hydrocarbons mg/kg	Benzene μg/kg	Toluene μg/kg	Ethyl benzene µg/kg	Xylenes μg/kg
MW-1	ND	ND	ND	ND	ND
MW-2	ND	ND	ND	ND	ND
к-WМ	ND	ND	ND	ND	ND
Field Blank	ND	ND	ND	ND	ND

Table 3

Water Tab le Elevation Data

Well No.	Elevation Top Casing	DTW	Date Measured	Elevation Water	Remarks/ Observations
MW-1	55.25	19.11	7/1	36.14	
MW-2	54.33	20.02	7/1	34.31	
MW-3	55.05	19.26	7/1	35.79	

Project Number: JOC060592

FIGURE 1 Location Map

FIGURE 2 General Site Map

MEEKLAND AVENUE

AUGEAS CORPORATION	Figure 2- General Site Map	Prepared by: JF
	17771 Meekland Ave, Hayward, California	07/17/92

NORTH

FIGURE 3 Boring and Monitoring Well Location Map

Project Number: JOC060592

MEEKLAND AVENUE

AUGEAS	Figure 3- Boring and Monitoring Well Location Map	Prepared by: JF
CORPORATION	17771 Meekland Ave, Hayward, California	07/17/92

FIGURE 4 Groundwater Gradient Map

MEEKLAND AVENUE

SHASTA

AUGEAS					
CORPORATION					

Figure 4-Groundwater Gradient Map	Prepared by: JF
17771 Meekland Ave, Hayward, California	07/17/92

APPENDIX 1 Lithologic Logs - Soil Borings

LOG OF BORING MW-1

JOB NO. MJ 0592

CLIENT: JOCSON AUTO ELECTRIC

Date Drilled: 06/27/92 Well Casing Top Elevation: ____

Casing Diameter: 2" Filter Pack Type: sand Grout Type: cement/bentonite

	SAMPLE	SAMPLING BLO	SAMPLE	SOIL CLA	Screen Size: 0.020 Boring Diameter: 6 7/8"
	SAMPLER TYPE	SAMPLING RESISTANCE BLOWS/FT.	SAMPLE DEPTH	SOIL CLASSIFICATION	DEPTH IN FEET SOIL DESCRIPTION O Asphalt and base rock
_		m —		2	Light brown clayey silt. Dry with no odor
					Dark grey clayey SILT. Dry with no odor
	\$S	2/5/6	5'	ML	
-	ss	5/10/17	10'	a.	Orange brown SILT with dark grey CLAY layers. Dry with no odor.
-	ss	4/4/4	15'	a.	
	7				- 17
	-				Light brown sandy SILT. Moist and soft. No odor.
	ss	2/4/6	20'	ML	Light grey-brown silty CLAY. Layers of
	ss	1/3/6	25'	a.	brown silt. Damp with no odor.
	ss	1/2/3	30,	a	

BORING LOGGED BY: F.M.

AUGEAS CORPORATION

TITLE:

MW-1 Boring Log

DRAWN BY:	DATE:		PRIOJECT NO.
手		07/182/1982	MJ0592

LOG OF BORING MW-2

JOB NO. MJ 0592

CLIENT: JOCSON AUTO ELECTRIC

æ

Date Drilled: 06/27/92 Well Casing Top Elevation: ____

Casing Diameter: 2" Filter Pack Type: sand Grout Type: cement/bentonite

SAMPLER TYPE	SAMPLING RESISTANCE BLOWS/FT.	SAMPLE DEPTH	SOIL CLASSIFICATION	DEPTI-	1 IN FEE - 0 - 1	Screet Boring	- · · · · · · · · · · · · · · · · · · ·
ss	2/4/6	5'	ML				Dark grey diayey oier. Dry with no oddi.
ss	3/12/15	10'	ML		- 9		Orange brown clayey SILT. Dry with no
							odor. Pebbles. Layers of dark grey silty clay up to 8" thick.
SS	2/3/4	15'	ML				Moist at approximately 14' Sandy silt beginning at approximately 15'
SS	1/2/3	20'	SM	又	- 18		Light brown clayey SAND. Wet with
					- 21		no odor.
							Light grey-brown clayey SILT. Damp to moist. Thin 6" layers of sandy silt: light
SS	2/2/4	25'	ML				brown and wet.
SS	3/3/4	30'	ML		30.5		Total depth 30.5

BORING LOGGED BY: F.M.

AUGEAS CORPORATION

MW-2 Boring Log

DRAWN BY: JF	DATE: 07/02/92	PROJECT NO. MJ0592
-----------------	----------------	-----------------------

LOG OF BORING MW-3

JOB NO. MJ 0592

CLIENT: JOCSON AUTO ELECTRIC

Date Drilled: 06/27/92 Well Casing Top Elevation: ____

Diameter: 2" Casing Filter Pack Type: sand Grout Type: cement/bentonite

Screen Size: 0.020

BORING LOGGED BY: F.M.

AUGEAS CORPORATION

TITLE-

MW-3 Boring Log

DRAWN BY:	DATE:	PAOJECTNO.
JF	07/02/92	MJ0592

LOG OF BORING SB-1

JOB NO. MJ 0592

CLIENT: JOCSON AUTO ELECTRIC

BORING LOGGED BY: F.M.

Date Drilled: 06/27/92

TITLE-

DRAWN BY:

SB-1 Boring Log

07/02/92

PROJECT NO. MJ0592

APPENDIX 2 Well Completion Details

Appendix 3 Field Logs - Groundwater Sampling

Project Number: JOC060592

Augeas Corporation Groundwater Sampling Field Log

Project Name/No: Jacken	Lab I.I). <u>. </u>	
lient: Date: 10-30-97			
Project Manager: P. Constison	Sample	Location I.D.:	MW-3
Sampler: Salas Treat 197	_	Ime: 164	
Casing Diameter: 2 inch (X 3 inch 4 inch	6 inch		
Sample Depth (feet): 19.22			
Depth of Well (feet): Z8,80	Calculated Purp	ma Vol. (mal.)	58
Depth to Water (feet): 414	Actual Purge V	ol. (gal.)1	59
Volume pH E.C. Ten	<u>ts</u>		
Volume pH E.C. Ten	perature	Color	Other
Time Cum (gal.) (units) (umhos/cm) De	egrees C	(visual)	Onici
Time Cum (gar.) (units) (unitos/cm) De	egi cas C		
14.90 <u>80 1.59 6.56 9.50</u>	<u>4,8</u> -	Torba Bron	<i>.</i>
1250 159 159 659 650	p 5	Turkey	
	10.1	10000	
1753 318 1.59 6.56 400 _	<u>19,4</u>	N/AU	
17:57 4:77 1:59 10:58 200	19.4	The	
14.04 9.171 11.09 10.00	211	miny	
1850 636 6,59 <u>460</u> 1	Q.4	Tilbed	
			
Purge Method 2" Bladder Pump Bailer (Teflon) Submersible Pump Cenetrifugal Pump Pneumatic Displacement Pump	Well W	-	_Dedicated _Other
Sample Method			
2" Bladder Pump Bailer (Terlon)	EWell W	Jirord	_ Dedicated
Surface Sampler Dipper	Fultz P		_ Other
Surface Sampler Dipper	Tunz I		_ Outci
Well Integrity: Well flead-book SEAL New	edstable la	E-posted a	le loch
Remarks:			
- 50mple 11mo. 16.04			
V			
Signature:	A ***A**		
Volumes Per Unit Length Selected Well Casing Diameters	Conversion	n Factors	
Volume Per Unit Length	To Convert	Into	Mulitply
Well Casing Cubic L.D. (inches) Gal/ft Ft/ft L/M L/Ft	Ft. of Water	Lbs/sq.in.	0.4335
1.5 0.0918 0.0123 1.140 0.3475	Lbs/Sq. inch	Ft. of Water	2.3070
2.0 0.1632 0.0218 2.027 0.6178 3.0 0.3672 0.0491 4.560 1.3900	Cubic feet Gallons Gallons	Litoer	7.4800 3.7850
4.0 0.6528 0.0873 8.107 2.4710	Feet	Liters Meters	0.30048
6.0 1.4690 0.1963 18.240 5.5600	Inches	Centimeters	2.5400

Augeas Corporation Groundwater Sampling Field Log

Project Name/ No:	Lab I.D.:		
Client: Date: 6-30-92			12
Project Manager: Delana CoAlling	Sample Location I.D.: Mul2		
Sampler: SE Assar brush		Ime: 16:1	
Casing Diameter: 2 inch 3 inch 4 inch		Other	
Sample Depth (feet): 19.96			• ———
Depth of Well (feet): 28.76	Calculated Pu	rge Vol. (gal.)	1.112
Depth to Water (feet): 20.0(32
bepin to water (rear).	Actual I ligo	Voi. (gai.)	54
Jumplet 1679 Field Measuremen			
_	mperature	Color	Other
Time Cum (gal.) (units) (umhos/cm) D	egrees C	(visual)	•
1925 th 1.32 6.30 900	19.0 -	Tirbel Brown	
130 100	00	-T:	
	8.9	Jurpin	
1833 264 1.32 6.59 950 1	Q_{i}	Ludbie	
	<u>a. 1</u> -	7 1	
1836396 1.32 6.60 950	Mi	word	
1939 5.28 6,59 950	<u>a. 1 = -</u>	TURED	<u> </u>
		•	
Purge Method 2" Bladder Pump Bailer (Teflon) Submersible Pump Cenetrifugal Pum Pneumatic Displacement Pump	Well W		Dedicated Other
Sample Method			
Sample Method			-
2" Bladder Pump Bailer (Tellon)	Well W	Vizard	Dedicated
Surface Sampler Dipper	Fultz P		_ Other
Dipper	1 unt2 1	ump	
Well Integrity: Well Head-Good Seal	1000k AUDIO	Gilm	Tech
Remarks:			
500, a Vo tina 01 1847	-		
Signature: \$7	•		
Digitature. On	The same construction of the contract of the c		
Volumes Per Unit Length Selected Well Casing Diameters	Conversi	on Factors	
Volume Per Unit Length	To Convert	Into	Mulitply
Well Casing Cubic LD. (inches) Gal/ft Ft/ft L/M L/Ft	Ft. of Water	I halaa ir	0.4335
1.5 0.0918 0.0123 1.140 0.3475	Lbs/Sq. inch	Lbs/sq.in. Ft. of Water	0.4333 2.3070
2.0 0.1632 0.0218 2.027 0.6178	Cubic feet Gallons		7.4800
3.0 0.3672 0.0491 4.560 1.3900 4.0 0.6528 0.0873 8.107 2.4710	Gallons * Feet	Liters Meters	3.7850 0.30048
6.0 1.4690 0.1963 18.240 5.5600	Inches	Centimeters	2.5400

Augeas Corporation Groundwater Sampling Field Log

Project Name/ No:	Lab I.D.:	
Client:	Date: <u>6-36-4</u>	Σ
Project Manager: Routism	Sample Location I.D.:	Mw-1
Sampler Or Said To	Start TIme:	
Sampler: Saint Track Casing Diameter: 2 inch 3 inch 4 inch	6 inch Other: _	
	o men outer	
Sample Depth (feet):		
Depth of Well (feet):		
Depth to Water (feet):	Actual Purge Vol. (gal.)	
Field Measuremen	<u>ıts</u>	
Volume pH E.C. Ter	nperature Color	Other
Time Cum (gal.) (units) (umhos/cm) De	*	
Time Cum (guil) Yumay (uminogen)	<u> </u>	··
- NOACCESS -		
1 to 1 cors -		
		
Dungs Method		
Purge Method		
2" Bladder Pump Bailer (Telfon)	Well Wired	Dadiaatad
Submersible Pump Cenetrifugal Pum	p Dipper	Other
Pneumatic Displacement Pump		
Sample Method		
)	
2" Bladder Pump Bailer (Teflon)	\(\) Well Wizard \(\) Well Wizard	Dedicated
_ , , , , , , , , , , , , , , , , , , ,		
Surface Sampler Dipper	Fultz Pump	Other
Well Integrity:		
Remarks:		
Sproly Time:		
		·
Signature: \274		
0.Gmm.0.		
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Factors	
Volume Per Unit Length	To Convert Into	Mulitply
Well Casing Cubic		
<u>LD. (inches)</u> <u>Gal/ft Ft/ft L/M L/Ft</u> 1.5 0.0918 0.0123 1.140 0.3475		0.4335
1.5 0.0918 0.0123 1.140 0.3475 2.0 0.1632 0.0218 2.027 0.6178		2.3070 7.4800
3.0 0.3672 0.0491 4.560 1.3900		3.7850
4.0 0.6528 0.0873 8.107 2.4710		0.30048
6.0 1.4690 0.1963 18.240 5.5600	Inches Centimeters	2.5400

Augeas Corporation Groundwater Sampling Field Log

Project Name/ No:	Lab I.D.:
Client:	Date: $\frac{7-1-92}{}$
Project Manager:	Sample Location I.D.: Mw-1
Sampler: Wence	Start Time: 1045
Casing Diameter: 2 inch \(\sum 3 inch \) 4 inch	6 inch Other:
Sample Depth (feet): 20.77	
Depth of Well (feet): 1820	Calculated Purge Vol. (gal.) 1, 37
Depth to Water (feet): 19.11	Actual Purge Vol. (gal.) 1.32
Field Measuremen	ts end of the second of the se
Volume pH E.C. Ten	pperature Color Other
▲	egrees C (visual)
1150 8 1,32 6,05 900 2	1.3 Turked Born
1154 132 1.37 6.34 900 1	9.9 Turbed
1169261 122 166 860 1	<u>aa</u> <u>Tull</u>
1130 2.69 1/36 0.50 050 1	111111111111111111111111111111111111111
120 396 132 656 850 1	9.8 What
1201/620 100	00 7.1
1407 778 6.26 _020 _1	9.8 Turked
Purge Method	
Y STAINLESS	abase (
2" Bladder Pump Bailer (Teflon)	Well WizardDedicated
Submersible Pump Cenetrifugal Pump	pOther
Pneumatic Displacement Pump	•
Sample Method	
Α	
2" Bladder Pump Bailer (Teflon)	Well Wizard Dedicated
Surface Sampler Dipper	Fultz Pump Other
Well Integrity: Well Klad- good Cod	2 reus kine grow Lock
Remarks: 54 m. 0. Time: 1208	East #Dit
Sharpe Time: 108	Equipment Busacci
Signature: 12	MW-IA
Signature. The	Conversion Factors
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Paciois
Volume Per Unit Length	To Convert Into Mulitply
Well Casing Cubic LD. (inches) Gal/ft Ft/ft L/M L/Ft	Ft. of Water Lbs/sq.in. 0.4335
1.5 0.0918 0.0123 1.140 0.3475	Lbs/Sq. inch Ft. of Water 2.3070
2.0 0.1632 0.0218 2.027 0.6178 3.0 0.3672 0.0491 4.560 1.3900	Cubic feet Gallons 7.4800 Gallons Liters 3.7850
4.0 0.6528 0.0873 8.107 2.4710	Feet Meters 0.30048
6.0 1.4690 0.1963 18.240 5.5600	Inches Centimeters 2.5400

Appendix 4 Detailed Analytical Reports

Project Number: JOC060592

5 DAYS TURNAROUND

Environmental Laboratory (1094)

July 6, 1992

ChromaLab File No.: 0692262

AUGEAS CORP.

Attn: Jason French

RE: Eighteen soil samples for Gas/BTEX analysis

Project Name: JOCSON AUTO, HAYWARD

Date Sampled: June 27, 1992 Date Submitted: June 27, 1992

Date Analyzed: July 2, 1992

RESULTS:

Sample	Gasoline	Benzene		Ethyl	Total
<u>I.D.</u>	(mg/Kg)		Toluene	Benzene	Xylenes
	(mg/ Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
MW-1/10'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-1/15'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-1/20'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-1/25'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-1/30'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-2/10'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-2/15'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-2/20'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-2/25'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-2/30'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-3/10'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-3/15'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-3/20'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-3/25'	N.D.	N.D.	N.D.	N.D.	N.D.
MW-3/30'	N.D.	N.D.	N.D.	N.D.	N.D.
SB-1/10'	N.D.	N.D.	N.D.	N.D.	N.D.
SB-1/15'	N.D.	N.D.	N.D.	N.D.	N.D.
SB-1/20'	N.D.	N.D.	N.D.	N.D.	N.D.
BLANK	N.D.	N.D.	N.D.	N.D.	N.D.
SPIKE RECOVERY	85%	108%	105%	102%	101%
DUP. SPIKE RECOVERY	92%	85%	98%	96%	95%
DETECTION LIMIT	1.0	5.0	5.0	5.0	5.0
METHOD OF ANALYSIS	5030/8015	8020	8020	8020	8020

ChromaLab, Inc.

Billy Thach

Analytical Chemist

Eric Tam

Laboratory Director

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063

(475) 364-9600 • FAX (475) 364-9233

Augeas Corporation 799 Main Street, Suite A Half Moon Bay, CA 94019 Attention: Rosanna Garrison

Client Project ID: Sample Matrix:

First Sample #:

Jocson Water Analysis Method:

EPA 5030/8015/8020

206-5425

Sampled:

W STEVENSON 4087182-8154 (409) 782-6308

Jun 30, 1992

Received:

Jun 30, 1992

Reported: Jul 13, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 206-5425 MW -3	Sample I.D. 206-5426 MW - 2	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.
Purgeable Hydrocarbons	50	N.D.	N.D.				
Benzene	0.50	N.D.	N.D.				
Toluene	0.50	N.D.	N.D.				
Ethyl Benzene	0.50	N.D.	N.D.				
Total Xylenes	0.50	N.D.	N.D.				
Chromatogram Pat	tem:						

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0
Date Analyzed:	7/2/92	7/2/92
Instrument Identification:	GCHP 2	GCHP2
Surrogate Recovery, %: (QC Limits = 70-130%)	109	115

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYŢICA Sulcher

Andrea Fulcher Project Manager

Augeas Corporation 799 Main Street, Suite A

Client Project ID:

Jocson Water

Sampled:

Jun 30, 1992

Half Moon Bay, CA 94019

Sample Matrix: Analysis Method:

EPA 3510/3520/8015

Received: Reported: Jun 30, 1992

Attention: Rosanna Garrison

First Sample #:

206-5425

Jul 13, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 206-5425 MW-3	Sample I.D. 206-5426 MW-2	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	
Extractable Hydrocarbons	50	N.D.	N.D.					
Chromatogram Par	ttern:							

Quality Control Data

Report Limit Multiplication Factor: 1.0 1.0 Date Extracted: 7/2/92 7/2/92 Date Analyzed: 7/2/92 7/2/92 Instrument Identification: GCHP 5 Inj.B GCHP 5 Inj.B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL Inleher

Andrea Fulcher Project Manager

Augeas Corporation 799 Main Street, Suite A Half Moon Bay, CA 94019 Client Project ID: Jocson

Attention: Rosanna Garrison

QC Sample Group: 2065425 - 2065426

Reported:

Jul 13, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	,
	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 M. Nipp µg/L Jul 2, 1992 GBLK070292	EPA 8020 M. Nipp µg/L Jul 2, 1992 GBLK070292	EPA 8020 M. Nipp μg/L Jul 2, 1992 GBLK070292	EPA 8020 M. Nipp µg/L Jul 2, 1992 GBLK070292
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	10	10	10	30
Conc. Matrix Spike:	9.3	9.3	9.2	28
Matrix Spike % Recovery:	93	93	92	93
Conc. Matrix Spike Dup.:	10	10	10	30
Matrix Spike Duplicate % Recovery:	100	100	100	100
Relative % Difference:	7.3	7.3	8.3	6.9

SEQUOIA ANALYTICAL Inleher Relative % Difference: Andrea Fulcher

Project Manager

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2065425.AAA <3>

Client Project ID: Jocson

QC Sample Group: 2065425-2065426

Reported: Jul 13, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	
	Diesel
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	3350/8015 R. Lee µg/L Jul 2, 1992 DBLK070192
Sample Conc.:	N.D.
Spike Conc. Added:	300
Conc. Matrix Spike:	200
Matrix Spike % Recovery:	67
Conc. Matrix Spike Dup.:	240
Matrix Spike Duplicate % Recovery:	80
Relative % Difference:	18

SEQUOIA ANALYTICAL

na 1 Chilchen

Andrea Fulcher Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

(Conc. of M.S. + Conc. of M.S.D.) / 2

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

2065425.AAA <4>

Client Project ID:

Jocson Water Sampled:

Jul 1, 1992 Jul 1, 1992

Sample Matrix: Analysis Method:

EPA 3510/3520/8015

Received: Reported:

Jul 15, 1992

Attention: Rosanna Garrison

First Sample #:

207-0231

Reported: Jul 15,

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit µg/L	Sample I.D. 207-0231 MW - 1	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	
Extractable Hydrocarbons	50	N.D.						
Chromatogram Pat	tem:							

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Extracted:

7/6/92

Date Analyzed:

7/6/92

Instrument Identification:

GCHP 5

Extractable Hydrocarbons are quantitated against a fresh diesel standard.

Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL Andrea Inleher

Andrea Fulcher Project Manager

Augeas Corporation 799 Main Street, Suite A Half Moon Bay, CA 94019 Client Project ID: Sample Matrix: Jocson Water Sampled: Received:

Jul 1, 1992 Jul 1, 1992

9

Analysis Method:

EPA 5030/8015/8020

Reported:

Jul 15, 1992

Attention: Rosanna Garrison

First Sample #:

207-0231

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit µg/L	Sample I.D. 207-0231 MW - 1	Sample I.D. 207-0232 MW - 1A	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.
Purgeable Hydrocarbons	50	N.D.	N.D.				
Benzene	0.50	N.D.	N.D.				
Toluene	0.50	N.D.	N.D.				
Ethyl Benzene	0.50	N.D.	N.D.				
Total Xylenes	0.50	N.D.	N.D.				
Chromatogram Par	ttern:		••				

Quality Control Data

Report Limit Multiplication Factor:	. 1.0	1.0
Date Analyzed:	7/6/92	7/6/92
Instrument Identification:	GCHP 3	GCHP 3
Surrogate Recovery, %: (QC Limits = 70-130%)	90	92

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard.

Analytes reported as N.D. were not detected above the stated reporting limit.

Julcher

SEQUOIA ANALYTICAL

Andrea Fulcher Project Manager

2070231.AAA <2>

Client Project ID: Jocson

rrison QC Sample Group: 207-0232

Reported:

Jul 15, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	D	T-1	Ethyl-	V. J	
	Benzene	Toluene	Benzene	Xylenes	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:					
	M. Nîpp "	M. Nipp	M. Nipp	M. Nipp	
Reporting Units:	μg/L	μg/L	μg/L	μg/L	
Date Analyzed:	Jul 6, 1992	Jul 6, 1992	Jul 6, 1992	Jul 6, 1992	
QC Sample #:	GBLK070692	GBLK070692	GBLK070692	GBLK070692	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
		11.5.	11.5.	11.2.	
Spike Conc.					
Added:	10	10	10	30	
Conc. Matrix					
	0.0	0.4	0.5	00	
Spike:	9.6	9.4	9.5	29	
Matrix Spike					
% Recovery:	96	94	95	97	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		٥.		0.	
Conc. Matrix					
Spike Dup.:	10	10	10	30	
Matrix Spike					
Duplicate					
% Recovery:	100	100	100	100	
Relative					
% Difference:	4.1	6.2	5.1	3.4	
% Difference:	4.1	0.2	5.1	ა.4	

SEQUOIA ANALYTICAL

I *JVVIIV Suuci* Andrea Fulcher Project Manager % Recovery: Conc. of M.S. - Conc. of Sample x 100
Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2070231.AAA <3>

Client Project ID: Jocson

QC Sample Group: 207-0231

Reported: Jul 15, 1992

QUALITY CONTROL DATA REPORT

ANALYTE		 	
	Diesel	 	
	- , , , ,		
Method:	0=50 (0045		
Analyst:	3550/8015 M. Tran		
Reporting Units: Date Analyzed:	μg/L Jul 7, 1992		
QC Sample #:	DBLK070692		
QO Sample #.	DBLN0/0092		
Sample Conc.:	N.D.		
Spike Conc.			
Added:	300		
Conc. Matrix			
Spike:	240		
Matrix Spike			
% Recovery:	80		
•			
Conc. Matrix	000		
Spike Dup.:	260		
Matrix Spike			
Duplicate			
% Recovery:	87		
			
Relative			
% Difference:	8.0		

SEQUOIA ANALYTICAL

ł

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

Andrea Fulcher
Project Manager

2070231.AAA <4>

CHAIN OF CUSTODY REPORT TURNARCUNO TIME: REPORT TO: CLIENT: B HR. ADDRESS: HAIFMOON BAY CA 94019 72 IIR. 48 HR. 24 IIR. BILLING TO: 15 DAY 10 DAY 5 DAY PHONE: PON/BILLING REFERENCE: JOCHON HIZO PROJECT HAHE/SITE: SOCSON AHALYSIS REQUESTED DATE: SAMPLER: 6-30-92 SAMPLE NUMBER REHARKS SAMPLING NUMBER TYPE SAMPLE SAMPLE ID#/ TIHE/DATE OF CONT. CONT. DESCRIPTION Hold OIL/GRASE 206510 STATION 4 VOA ZAMS 1507 WATER MW-3 Hold DILIGRAND DOS 1842 WATER MW-2 TRAYEL TIME: RECEIVED BY: DATE :3KIT RELINQUISHED BY 6-30-92 8:00 ON SITE TIME: OTHER: RECEIVED BY: DATE TIME: RELIHOUISHED BY: YES НО WERE SAMPLES: 6/30 8/nr PRESERVED 7 RECEIVED IN LAB BY: DATE TIME: RELIHOUISHED BY: TH GOOD COHOTTION?

2239 Omega Road, #1 • San Ramon, California 94583 415/831-1788 • Facsimile 415/831-8798 Chain of Custody

ANALYSIS REPORT PURGEABLE HALOCARBONS (EPA 601, 8010) NUMBER OF CONTAINERS BASE/NEUTRALS, ACIDS (EPA 625/627, 8270) \$799 Main St. - Suite TOTAL OIL & GREASE (EPA 5520 D&F) VOLATILE ORGANICS (EPA 624, 8240) METALS: Cd, Cr, Pb, Half Moon Bay CAM METALS (18) w/Cr VI PESTICIDES/PCB (EPA 608, 8080) (PHONE NO.) SAMPLERS (SIGNATURE) 726-7700 MATRIX LAB ID. SAMPLE ID. 10:30AK SOIL MW-2 MW-2 X MW-7 MW-2/25' X Noon CHROMALAB FILE # 692262 ORDER # 6886 700PM 1. RELINQUISHED BY 2. RELINQUISHED BY SAMPLE RECEIPT Tocson Auto TOTAL NO. OF CONTAINERS (SIGNATURE) (SIGNATURE) (TIME) **CHAIN OF CUSTODY SEALS** REC'D GOOD CONDITION/COLD (PRINTED NAME) (PRINTED NAME) CONFORMS TO RECORD (COMPANY) mi hand delivered RECEIVED BY RECEIVED BY (LABORATORY) RECEIVED BY Hold analysis on 5 dap samples - will call (SIGNATURE) (SIGNATURE) You Keung Tam (PRINTED NAME) (PRINTED NAME) CHROMALAB (COMPANY)

2239 Omega Road, #1 • San Ramon, California 94583 510/831-1788 • Facsimile 510/831-8798 Chain of Custody

														DATE	6	/2	7/4	72	PAGE _	<u> </u>	OF	3
	E-										AN	ALYSIS	S REPO									
PROJ. MGR. COMPANY ADDRESS Tag Hall SAMPLERS (SIGNATURE) SAMPLE ID.	SON FR MGEA MOON DATE TIME	5+-Sutof Day (415) 726-7700 MATRIX LABID.	(E)	TPH - Gasoline (5030, 8015) w/BTeX (EPA 602,8020)	TPH - Diesel (EPA 3510/3550, 8015)	PURGEABLE AROMATICS BTEX (EPA 602, 8020)	PURGEABLE HALOCARBONS (EPA 601, 8010)	VOLATILE ORGANICS (EPA 624, 8240, 524.2)	BASENEUTRALS, ACIDS (EPA 625/627, 8270, 525)	TOTAL OIL & GREASE (EPA 5520 E&F)	PESTICIDES/PC8 (EPA 608, 8080)	PHENOLS (EPA 604, 8040)	TOTAL RECOVERABLE HYDROCARBONS (EPA 418.1)		METALS: Cd, Cr, Pb, Zn, Ni	CAM METALS (17)	PRIORITY POLLUTANT METALS (13)	-EXTRACTION (TCLP, STLC)				NUMBER OF CONTAINERS
MW-1/5	6/278:30	45014																				1
MW-1/101	1 /	/		×																		1
MW-1/15				×																		. 1
MW-1/20'				×																		
MW-1 /25				><																		
MW-1 /301	10:00	au/		×																		1
SB-1/5'	200 P	m/																				
58-1/10	1			X																		1
SB-1/15'	2:30	Ph		×)
PROJECT INFORMA	<u> </u>	SAMPLE RECE	IPT	J	RELIN	QUISH	ED BY				i. RE	LINQUI	SHED B	Y			2. F	ELINO	JISHED	BY		3.
JOCSON A	uto	L NO. OF CONTAINERS		9	/0/01/	ATURE)	<u>1/k</u>	No	丛	COM	7010	NATURI			·····		ME) (BIGNATL	IDS.			(TIME)
PROJECT NUMBER:	CHAI	N OF CUSTODY SEALS			(SIGNA	Fre	46	loc:	5 E	(TIME	PA	MAIUH	c)			, , , ,	MC) (
SHIPPING ID. NO.		D GOOD CONDITION/CO	DLD			red NAM			ch	(DATE		INTED N	AME)			SOF	rfe) (PRINTED	NAME)	((DATE)
/A:	IAR N				(СОМ	ANYO	RU	<u> </u>	ر کر ا	//4	(CO	MPANY)			_/		(COMPAN	iY)			
handdeli		·····			RECE	IVED B	Υ				1. RÈ	CEIVE	BY				2. F	RECEIVI	ED BY (L	LABORAT	ORY)	3.
special instructions/con Hold au Samplas	שבחום:	au 51	doe	10	/PION	ATURE)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		(TIMI	E) /e/	SNATUR					ME) (SIGNATU	IDE)			700
	7-17		Δ	7	(SIGN)	A I UHE)				(IIIM)	E) (SIC	MUTANE				(11	"" ^[]	Yiu		ına-	Cam	6/27/
Samples	1 - w	n ll cal	L		(PRIN	TED NAM	IE)			(DAT	E) (BR	NTEO N	IAME)	*****	-,	(DA	(TE) (PRINTEO	NAME)			(DATE)
1					СОМ	PANY)					(CC	MPANY)					(-/-//C LAB)	OM	46	<u> </u>	

2239 Omega Road, #1 • San Ramon, California 94583 510/831-1788 • Facsimile 510/831-8798

Chain of Custody

DATE 6/27/92 PAGE 3 OF 3 **ANALYSIS REPORT** on French PURGEABLE HALOCARBONS (EPA 601, 8010) TPH - Gasoline (5030, 8015) w/BTeX (EPA 602,8020) BASE/NEUTRALS, ACIDS (EPA 625/627, 8270, 525) PRIORITY POLLUTANT METALS (13) VOLATILE ORGANICS (EPA 624, 8240, 524.2) TOTAL OIL & GREASE (EPA 5520 E&F) METALS: Cd, Cr, Pb, PESTICIDES/PCB (EPA 608, 8080) TPH - Gasoline (EPA 5030, 8015) PHENOLS (EPA 604, 8040) RELINQUISHED BY RELINQUISHED BY SAMPLE RECEIPT TOTAL NO. OF CONTAINERS CHAIN OF CUSTODY SEALS REC'D GOOD CONDITION/COLD (PRINTED NAME) (PRINTED NAME) CONFORMS TO RECORD (COMPANY) RECEIVED BY RÉCEIVED BY Hold analysis on 5 deep samples - will call (TIME) (SIGNATURE) (SIGNATURE) (PRINTED NAME) (PRINTED NAME) CHROMALAD (COMPANY) (COMPANY)

reported together w/th project received the con-

CILICAL WEIGHT TO

CHAIN OF CUSTODY REPORT Josson Aven Augens Corp. TURHARCUHO TIHE: REPORT TO: CLIENT: B HR. 799 Main St., Ste A ADDRESS: 72 IIR. 24 HR. 48 IIR. HAVE Half MOON Bay BILLING TO: 15 DAY 10 DAY 5 DAY (415) PHONE: POM/BILLING REFERENCE: PROJECT NAME/SITE: Jucson Auts ANALYSIS REQUESTED DATE: SAMPLER: SAMPLE KUHBER REHARKS SAMPLING TYPE NUMBER SAMPLE SAMPLE ID#/ TIME/DATE OF CONT. CONT. DESCRIPTION HOTTATE Hold ON/61645 2070231 400A 7197 1208 WHER mul 2070232 MATER 2-104 MWIA TRAYEL TIHE: RECEIVED BY: TIME: DATE RELINOUISHED BY ON SITE TIME: 7-1-92 3:45 OTHER: RECEIVED BY: TIHE: DATE RELIHOUISHED BY: ΝО YES WERE SAMPLES: RECEIVED IN LAB BY: 7-1/1545 PRESERVED 1 DATE TIHE: RELINOUISHED BY: TH GOOD CONDITION?