

RECEIVED

1:17 pm, Jan 26, 2009

Alameda County Environmental Health

January 21, 2009

Mr. Steven Plunkett Hazardous Materials Specialist Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: UST Site- 801 Maritime Street Port of Oakland, Oakland, CA Fuel Leak Case RO0000019

Dear Mr. Plunkett:

The Port of Oakland (Port) herein submits a technical report for your consideration. *Technical Report on Further Investigation at 801 Maritime Street, Oakland, California Underground Storage Tank Site, Requested by Alameda County Health Care Services Agency, Fuel Leak Case No. RO0000019 (Global ID # T0600101102), was prepared on behalf of the Port by R&M Environmental and Infrastructure Engineering, Inc. This report is a continuation of a prior site investigation (in March 2007) requested by Alameda County in July 2008. Based on all of the findings to date, the Port requests that the 801 Maritime Street site be considered for closure. Further discussion of candidacy of the site for closure is presented in the enclosed report. Should you have any questions, please contact John Prall at (510) 627-1373 or by e-mail at jprall@portoakland.com.*

I declare under penalty of perjury, that the information contained in this letter and attachment is true and correct to the best of my knowledge.

Sincerely. Richard Sinkoff

Director, Environmental Programs and Planning Division

Enclosure Noted.

CC: John Prall, Port of Oakland Michele Heffes, Port of Oakland Deborah Ballati, Farella Braun + Martell, LLP Chris Noma, Wendel Rosen Black and Dean, LLP

530 Water Street 🛛 Jack London Square 🖉 P.O. Box 2064 🖾 Oakland, California 94604-2064 Telephone: (510) 627-1100 📓 Facsimile: (510) 627-1826 📓 Web Page: www.portofoakland.com On Further Site Investigation At 801 Maritime Street, Oakland, California Underground Storage Tank Site Requested by Alameda County Health Care Services Agency Fuel Leak Case No. RO0000019 (Global ID # T0600101102)

TECHNICAL REPORT

Prepared for

PORT OF OAKLAND Environmental Programs and Planning Division 530 Water Street Oakland, CA 94607

Prepared by

R&M Environmental and Infrastructure Engineering, Inc. 7994 Capwell Drive Oakland, CA 94621-2015

Under

Contract/Resolution No. 5135 On-call Environmental Compliance Consulting Services at the Port of Oakland Technical Service Order 9

ł

James E. Gribi, P.G. Rafael Carranza

Co

Masood Ghassemi, Ph.D., P.E.

January 15, 2009

	Page
SUMMARY	S-1
1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION AND HISTORY	2
2.1 LOCATION	2
2.2 SITE AND OPERATION HISTORY	2
2.3 SITE CHARACTERIZATION AND ASSESSMENT CHRONOLOGY	4
3.0 FIELD ACTIVITIES	5
3.1 SITE CHARACTERIZATION	5
3.1.1 Borehole Locations	5
3.1.2 Preparatory Activities	5
3.1.3 Soil and Grab Groundwater Sampling	5
3.1.4 Water Sampling and Depth Measurements at Monitoring Well MW-1	6
3.1.5 Soil and Water Sample Analysis	7
4.0 RESULTS AND DISCUSSION	8
4.1 SITE CHARACTERIZATION	8
4.1.1 Field Observations and Borehole Logs	8
4.1.2 Soil and Grab Groundwater Analytical Results (September 25, 2008 Sampling)	8
4.1.3 Soil and Grab Groundwater Analytical Results (March 15, 2007 Sampling)	9
4.2 MW-1 GROUNDWATER SAMPLE ANALYTICAL RESULTS	10
4.3 QUALITY ASSURANCE AND QUALITY CONTROL OF DATA	10
5.0 OVERALL ASSESSMENT OF THE AVAILABLE DATA AND RECOMMENDATIONS	10
5.1 SOIL CHARACTERIZATION RESULTS	11
5.2 GROUNDWATER CHARACTERIZATION RESULTS	11
5.3 CASE FOR SITE CLOSURE	12

CONTENTS

APPENDICES

- A. PHOTOGRAPHS
- B. QA/QC SUMMARY REVIEWS, CERTIFIED ANALYTICAL REPORTS FOR SOIL/GROUNDWATER SAMPLING, AND CHAIN-OF-CUSTODY DOCUMENTATION
- C. DRILLING PERMIT DOCUMENTATION
- D. BORING LOGS
- E. LETTER FROM ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY TO PORT OF OAKLAND (DECEMBER 20, 2006)
- F. LETTER FROM ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY TO PORT OF OAKLAND (JULY 28, 2008)
- G. LETTER FROM PORT OF OAKLAND TO ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY (MAY 31, 2006)
- H. WELL MW-1 SAMPLING SHEET

TABLES

- 1. SUMMARY OF SEPTEMBER 25, 2008 SOIL SAMPLE ANALYTICAL RESULTS
- 2. SUMMARY OF SEPTEMBER 25, 2008 GRAB GROUNDWATER SAMPLE ANALYTICAL RESULTS
- 3. SEPTEMBER 25, 2008 AND PREVIOUS GROUNDWATER MONITORING RESULTS FOR MW-1
- 4. SUMMARY OF MARCH 15, 2007 SOIL SAMPLE ANALYTICAL RESULTS
- 5. SUMMARY OF MARCH 15, 2007 GRAB GROUNDWATER SAMPLE ANALYTICAL RESULTS
- 6. ENVIRONMENTAL SCREENING LEVELS FOR CHEMICALS COMMONLY FOUND IN SOIL AND GROUNDWATER AT SITES WHERE RELEASES OF HAZARDOUS CHEMICALS HAVE OCCURRED
- 7. MAXIMUM CONTAMINANT LEVELS FOR DRINKING WATER, U.S EPA AND STATE OF CALIFORNIA

FIGURES

- 1. VICINITY MAP
- 2. SITE MAP
- 3. BORING LOCATIONS
- 4. SW-NE (PARALLEL TO GROUNDWATER FLOW) STRATIGRAPHIC CROSS SECTION OF THE SITE
- 5. NW-SE (PERPENDICULAR TO GROUNDWATER FLOW) STRATIGRAPHIC CROSS SECTION OF THE SITE
- 6. SOIL SAMPLING ANALYTICAL RESULTS
- 7. GRAB GROUNDWATER SAMPLING ANALYTICAL RESULTS

ACRONYMS

AC	Asphaltic concrete
ACHCSA	Alameda County Health Care Services Agency
ACPWA	Alameda County Public Works Agency
APN	Assessors Parcel Number
Army	United States Army
Baseline	Baseline Environmental Consulting
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and xylenes
D.O.	dissolved oxygen
DTB	Depth to bottom
DTW	Depth to water
EPA	Environmental Protection Agency
ESL	Environmental Screening Level
Ft	Feet
IDW	Investigative-derived waste
NM	Not measured
MCL	Maximum Contaminant Level
MTBE	Methyl tertiary-butyl ether
ORP	Oxidation-reduction potential
PID	Photoionization detector
Port	Port of Oakland
PVC	Polyvinyl chloride
R&M	R&M Environmental and Infrastructure Engineering, Inc.
RWQCB	Regional Water Quality Control Board
TDS	Total Dissolved Solids
TOC	Top of casing
TPH-d	Total petroleum hydrocarbons as diesel
TPH-g	Total petroleum hydrocarbons as gasoline
TRPH	Total recoverable petroleum hydrocarbons
QA/QC	Quality Assurance/Quality Control
USA	Underground Service Alert
USCS	Unified Soil Classification System
UST	Underground storage tank
VOA	Volatile organic analysis
VOCs	Volatile organic compounds

SUMMARY

Responding to a July 28, 2008 directive from the Alameda County Health Care Service Agency ("ACHCSA"), further site characterization has been conducted at a Port of Oakland ("Port") former underground storage tank ("UST") site located at 801 Maritime Street, Oakland, California. This additional site characterization, performed by R&M Environmental and Infrastructure Engineering, Inc. ("R&M") for the Port on September 25, 2008, consisted of advancing 5 additional borings and collecting and analyzing 10 soil samples and 5 grab groundwater samples. The aim of this and a March 15, 2007 predecessor effort, which consisted of advancing an initial 10 borings and collecting and analyzing a total of 19 soil samples and 10 grab groundwater samples, has been to determine the nature and extent of petroleum-impacted soil and groundwater at the site. This report discusses the results of the most recent site characterization efforts and makes recommendation for regulatory site closure consideration by ACHCSA.

Borehole logs have been prepared for the total of 15 borings from this and the prior investigation that have been performed at the site. The logs reveal a subsurface material that is primarily imported fill material down to a depth of approximately 7 feet ("ft"), generally consisting of gravelly material containing asphalt and concrete pieces. Between 7.5 ft below ground surface ("bgs") to 15 ft bgs the material consists of hydraulically placed sands and silts. Below 15 ft bgs is a soft silty clay-clayey silt layer generally called Young Bay Mud. Groundwater is encountered at approximately 7.5 ft bgs.

Analysis of a total of 29 soil samples collected at the 15 boring locations show non-detect levels of benzene (the petroleum constituent of most environmental concern) and methyl tertiary-butyl ether ("MTBE"). Except for one soil sample from boring RM-5 (see Figure 3 for location) exhibiting traces of ethylbenzene, toluene, and xylenes (concentrations ranging from 0.036 mg/kg to 0.18 mg/kg), these petroleum constituents were not detected in the remaining soil samples. Total Petroleum Hydrocarbons as diesel ("TPH-d") was not detected in 11 of the 29 soil samples and was present at low concentrations, ranging from 2 mg/kg in sample RM-12-10.5 to 150 mg/kg in sample RM-5-5, in the remaining 18 samples. For the samples with detectable concentrations of TPH-d, the laboratory generally noted the presence of strongly aged gasoline or diesel compounds or the absence of a recognizable TPH-d chromatographic pattern. Except for the one sample from RM-5 with a TPH-d value 150 mg/kg, all detected TPH-d levels are below the environmental screening level ("ESL") of 180 mg/kg for shallow

soils and commercial land use where the groundwater is not a source of drinking water¹. The ESLs have been developed by the California Regional Water Quality Control Board ("RWQCB"), San Francisco Bay Region, for screening for environmental concerns at sites with contaminated soil and groundwater. Under most circumstances, the presence of a chemical in soil, soil gas, or groundwater at the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment.

Analysis of grab groundwater samples collected at the 15 boring locations detected only very low concentrations of hydrocarbons at RM-5 (TPH-g = 73 μ g/L, TPH-d = 57 μ g/L), RM-13 (TPH-d = 150 μ g/L), and RM-14 (TPH-g = 65 μ g/L, TPH-d = 59 μ g/L), which are located downgradient of the original source area. Benzene, toluene, ethylbenzene, and xylenes ("BTEX") in water samples from RM-5 and RM-14 ranged from 1.0 μ g/L to 4.5 μ g/L. These concentrations are below ESLs and the U.S. EPA drinking water standards.

There have been 13 rounds of groundwater monitoring at the on-site monitoring well MW-1, installed in July 1996. The groundwater monitoring results indicate that despite a fairly wide fluctuation in the reported concentration of TPH-d, there is an overall decreasing trend in the concentrations of all constituents, particularly BTEX. While high concentrations of TPH-d have been reported for the two sampling events in 2007, the laboratory has noted that heavier hydrocarbons contributed to the quantitation or that the sample exhibited a chromatographic pattern that did not resemble the standard. No MTBE has ever been detected in the water samples and BTEX levels have stabilized at very low levels, with average concentrations of 3.8 μ g/L (benzene), 2.2 μ g/L (toluene), 1.1 μ g/L (ethylbenzene), and 5.0 μ g/L (xylenes) for the past three monitoring events.

Site characterization and groundwater monitoring have been ongoing at the site since 1996. Based on the findings, the following considerations make a strong case for site closure, which is hereby recommended:

- The release source (i.e., the USTs) have been eliminated. In addition to the original removal of the USTs, approximately 1,500 cubic yards of impacted soils were removed from the UST pit in 1989;
- The site has been adequately characterized. An extensive site characterization has been performed and the results indicating a very low level of residual impact on soil and groundwater. This low level of residual impact appears to be confined to a small area downgradient of the former location of the USTs. The detected levels of contaminants of concerns in the soil and

¹ Values from Table B in "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," INTERIM FINAL - November 2007 (Revised May 2008). California Regional Water Quality Control Board, San Francisco Bay Region.

groundwater in this area are generally below the 2008 ESLs, with the groundwater meeting the U.S. EPA drinking water quality standards (i.e., the Maximum Contaminant Levels); and

The site represents no significant health and safety risks. The lack of sensitive receptors in the surrounding area, the site being more than 1,800 ft from the Bay, and the low level of localized residual contamination in a confined area covered by asphaltic concrete, i.e., AC, preclude contact for a significant health and safety risk.

Based on the above considerations, it is our professional opinion that continuing with attempts at further site characterization and/or remediation may be more detrimental than beneficial to the environment; hence, we recommend that ACHCSA consider the site for low-risk closure.

1.0 INTRODUCTION

Removal of three underground storage tanks ("UST")² from a Port of Oakland ("Port") site at 801 Maritime Street, Oakland, California in February 1989 and subsequent construction and sampling of monitoring well (MW-1) revealed evidence of fuel releases to the soil and groundwater³. The Alameda County Health Care Services Agency ("ACHCSA") requested the Port to undertake additional site characterization and groundwater monitoring to generate supplementary data needed for site closure consideration⁴. The additional site characterization, which consisted of advancing 10 borings and collecting and analyzing soil and grab groundwater samples and redeveloping and sampling monitoring well MW-1, was performed during the months of March and April 2007, with the findings that indicated only minor petroleum hydrocarbon impacts, apparently localized at or near one of the borings (boring RM-5)⁵.

ACHCSA recently reviewed the file for the subject fuel leak case and concluded that further site characterization would be warranted to better define the vertical and lateral extent of contamination in the source area⁶. This report presents and discusses the results of this latest site characterization effort, which was performed in September 2008 and consisted of the following:

- Advancing borings at five locations and collecting and analyzing soil and grab groundwater samples; and
- to Collecting and analyzing groundwater samples from the on-site monitoring well MW-1.

As requested by ACHCSA, this technical report also includes hydrogeologic cross sections for the site that incorporate historical soil boring and monitoring data. This report concludes (in Section 5.0) with an overall assessment of all the available site characterization data and recommends consideration for regulatory site closure in light of the insignificant, localized nature of residual contaminants that are at concentrations below regulatory standards for health, safety, and environmental protections.

² UST ID numbers: CF-06, CF-07, and CF-35.

³ "Report on Tank Removal and Remediation Activities, 801 Maritime Street", prepared for the Port of Oakland by Baseline Environmental Consulting, April 1989.

⁴ Letter from Mr. Barney M. Chan of Alameda County Health Care Services Agency to Mr. John Prall of Port of Oakland, December 20, 2006 (Copy of the letter is in Appendix E).

⁵ Report on "Additional Site Investigation at 801 Maritime Street, Underground Storage Tank Site, Port of Oakland, Oakland, California, Fuel Leak Case RO0000019", prepared for the Port of Oakland by R&M Environmental and Infrastructure Engineering, Inc., August 27, 2007.

⁶ Letter dated July 28, 2008 from Mr. Steven Plunkett of ACHCSA to Mr. John Prall of the Port of Oakland (copy of the letter is in Appendix F).

2.0 SITE DESCRIPTION AND HISTORY⁷

2.1 LOCATION

Figure 1 is a vicinity map for the project site. Even though the site is identified as 801 Maritime Street, that address no longer exists. Prior to 1989, the USTs at this site lay adjacent to a large warehouse (see Figure 2) used by a Port tenant. The warehouse and yard were separate from the nearby Berth 24 maritime shipping terminal. Since 1989, the warehouse has been demolished, fences have been removed, and the local streets have been abandoned or reconfigured. Today, the 801 Maritime Street site is part of an expanded Berth 24 container terminal and the only evidence of the former land use is in reports and historic aerial photographs. The current street address of the Berth 24 terminal is 909 Maritime Street. Photo #1 shows the general site location as it appears today.

The site does not have a unique Assessor Parcel Number ("APN"); it is part of a much larger assessor tax parcel (APN 000-0320-001-00) that includes 445 acres of land about evenly split between dry land and submerged land.

2.2 SITE AND OPERATION HISTORY

801 Maritime Street was the site of a large commercial warehouse used for the temporary storage of bailed cotton. The site also included a set of three USTs (used by the Port's tenant for vehicle refueling) and two sets of fueling dispensers. The Port originally surmised that the USTs may have been installed in 1959 but, based on a recent investigation by Port staff member Mr. John Prall, and a Port environmental consultant, Baseline Environmental Consulting ("Baseline"), the Port now suspects the USTs may have been installed in the 1940s by the United States Army ("Army"). The Army is known to have had a service station in the same area as the 801 Maritime Street USTs. More recent maps prepared by the Port in 1958 and 1959 also show three existing USTs in place in the same area and spatial orientation.

⁷ Most of the information in this section has been excerpted from a 31 May 2006 letter from Ms. Roberta Reinstein, Manager, Port Environment and Safety Department, to Mr. Barney Chan of Alameda County Health Care Services Agency (Appendix G).

The three USTs at the site (identified by the Port as CF-06, CF-07, and CF-35) were removed on February 16, 1989. During removal, Baseline reported that all three USTs were of single wall steel construction and each was strapped to a concrete slab due to buoyancy problems with the shallow groundwater conditions³. UST CF-06 had a capacity of 10,000 gallons and was used to store diesel fuel. USTs CF-07 and CF-35 had capacities of 20,000 and 10,000 gallons, respectively, and were used to store diesel fuel although both USTs had been configured to also store gasoline.

Visual examination of the USTs after removal did not reveal any evidence of corrosion, punctures or leaks; however, discolored soils and petroleum odors were noted. Groundwater that accumulated in the excavation contained oil and exhibited sheen. The impacted groundwater was pumped out of the excavation pit and hauled away for proper disposal. The UST removal and related field activities were conducted under the oversight of ACHCSA. Originally, this site was assigned by the ACHCSA a unique identification number of STID #3780 and is now designated as #RO0000019.

Analysis of soil and groundwater samples collected during the removal of the USTs indicated that: (1) there had been a release of petroleum hydrocarbons; (2) the release consisted of primarily diesel hydrocarbons; (3) the soil under the fill ends for two of the USTs contained the highest diesel hydrocarbon concentrations (1,600 and 3,600 mg/kg); and (4) volatile hydrocarbons (gasoline and benzene, toluene, ethylbenzene, and xylenes ("BTEX") were present in the vicinity of one of the USTs. The analytical results were transmitted by the Port to ACHCSA in March 1989. Subsequently, ACHCSA required the Port to file an Unauthorized Release Report, characterize the release, perform a preliminary assessment, and develop a remediation plan. In response to ACHCSA's directive, Baseline completed a report in April 1989 entitled "*Report on Tank Removal and Remediation Activities, 801 Maritime Street*".

Approximately 1,500 cubic yards of contaminated soils removed from the UST pit were stockpiled near the excavation and bioremediated on site under the guidance of Baseline. After treatment, the cleaned soil was transported to the Port's Building L-615 site at the North Field of the Oakland International Airport and used as fill at the ground surface. Baseline reported on the on-site bioremediation effort in its March 1990 report, entitled "*Report on Verification Sampling for Bioremediation Program at 801 Maritime Street, Oakland*".

2.3 SITE CHARACTERIZATION AND ASSESSMENT CHRONOLOGY

On October 8, 1992, ACHCSA submitted a letter to the Regional Water Quality Control Board ("RWQCB") with a recommendation to the RWQCB stating that "no further action [for the 801 Maritime Site] is required at this time". The ACHCSA also requested that the RWQCB forward notification of the final site closure determination. On March 14, 1994, ACHCSA reopened the site to further investigation, citing a finding from the April 1989 Baseline report as justification. The Port, through ERM-WEST, prepared a site-specific work plan and Alisto Engineering Group installed a single monitoring well in July 1996, as originally recommended by Baseline. Quarterly groundwater monitoring activities continued from 1996 to 2001.

On December 20, 2006, ACHCSA made a determination that additional technical information was needed to move the site toward closure⁴. The information request was partially fulfilled by the Port's May 2006 submission to the ACHCSA⁷. Additional site characterization, which consisted of advancing 10 borings and collecting and analyzing soil and grab groundwater samples and redeveloping and sampling monitoring well MW-1, was performed during the months of March and April 2007; the findings indicated only minor petroleum hydrocarbon impacts, apparently localized at or near one of the borings (i.e., boring RM-5)⁵.

ACHCSA recently reviewed the file for the subject fuel leak case and concluded that further site characterization would be warranted to better define the vertical and lateral extent of contamination in the source area⁸. This report discusses the results of this latest site characterization effort, which was performed in September 2008, and presents an overall assessment of <u>all</u> the post-UST-removal site characterization data.

⁸ Letter dated July 28, 2008 from Mr. Steven Plunkett of ACHCSA to Mr. John Prall of the Port of Oakland (copy of the letter is in Appendix F).

3.0 FIELD ACTIVITIES

3.1 SITE CHARACTERIZATION

3.1.1 Borehole Locations

Figure 3 shows the locations of previous and new (September 2008) soil borings advanced to collect soil and grab groundwater samples. As requested by ACHCSA, a total of 5 new borings were advanced: four (designated as RM-11 through RM-14) downgradient of former boring location RM-5, and one (designated as RM-15) in the original source area, between the February 16, 1989 soil sampling locations B-2 and C-2.

3.1.2 Preparatory Activities

Key activities preceding drilling included the following:

- Marking proposed drilling locations on the pavements (Photo #2);
- Securing a drilling permit (No. W2008-0672) from the Alameda County Public Works Agency ("ACPWA"). A copy of this permit is presented in Appendix C;
- Obtaining subsurface utility clearance of the proposed drilling locations (Photo #3) and notification of the Underground Service Alert ("USA") (secured USA Ticket No. 511093). The subsurface utility clearance was performed by C. Cruz Sub-Surface Locators, Inc. (Milpitas, CA) on September 23, 2008;
- Securing services of a licensed driller (Gregg Drilling, Martinez, CA; C-57 License #485165) that advanced the borings and collected soil and grab groundwater samples;
- Arranging with a state-certified analytical laboratory (Curtis & Tompkins, Berkeley, CA) to provide sample containers and coolers and analyze the samples; and
- Notifying the regulatory inspector, Mr. Ron Smalley (Tel.: 510-670-5407), Alameda County Public Works Agency, of the drilling date of September 25 (notified via telephone on September 17, 2008).

3.1.3 Soil and Grab Groundwater Sampling

All borings were advanced by the "direct push" method using a Geoprobe rig. The drilling and collection of samples followed the following protocol:

- Used hollow-stem auger to drill past surface asphalt layer (Photo #4). Where possible, hand augered boreholes to a depth of 5 ft before employing the "direct push" method⁹ (Photo #5);
- A registered geologist logged the boreholes (see Boring Logs in Appendix D). The geologist visually inspected and described soil samples according to the Unified Soil Classification System ("USCS"; Photo #6), noted any distinct petroleum or gasoline odor or coloration, collected a portion of the soil samples in Ziploc bags, sealed the bags, and placed them in the sun for release of hydrocarbons, if any. The geologist then obtained photoionization detector ("PID") readings for each bagged sample and noted the results on the boring logs;
- Collected soil samples at depth intervals of approximately 5 ft or less, with the total number of soil samples collected at each boring varying from 1 to 3; used new butyrate tubes measuring approximately 2 inches in diameter by 4 feet in length to retrieve the samples; the tubes were then placed flat on a work table and cut open for examination and borehole logging and for selection of sample location along the length of the tube depths. The soil from the selected locations were placed in new 6-inch long butyrate tube sections that were cut specifically for this purpose;
- The sample containers were labeled with borehole number, sample depth, project number, date, and time, and then placed in a cooler with ice and delivered to Curtis & Tompkins (Berkeley, CA), a state-certified analytical laboratory, under chain-of-custody documentation, for analysis;
- Clean temporary piezometers with 3/4-inch diameter poly vinyl chloride ("PVC") screen and riser pipes were installed in each borehole (Photo #7). The well screens were closed at the bottom with PVC plugs (bottom caps). A bailer was used to retrieve a single "grab" water sample from each piezometer for laboratory analysis. These samples were collected in laboratory-supplied 40-mL glass volatile organic analysis ("VOA") containers and 1-L amber bottles;
- Following sampling, all boreholes were backfilled from total depth to surface with cement grout.
 A bentonite plug was used to backfill the last few inches; the borehole was topped off with cement slurry dyed to match the surrounding surface (Photo #8); and
- All investigation-derived wastes ("IDW") created by advancing borings, decontamination, soil sampling, groundwater monitoring, and borehole backfilling were collected in buckets and transferred to two 55-gallon drums that were left on site for profiling and disposal by the Port (Photo #9).

3.1.4 Water Sampling and Depth Measurements at Monitoring Well MW-1

The procedures for purging, sampling, and field measurements at MW-1 were as follows:

 Measured both the depth-to-water ("DTW") and depth-to-bottom ("DTB") from the top of casing ("TOC") to the nearest 0.01 foot;

⁹ Hand augering was not possible at all locations. Refusal occurred due to the presence of hard subsurface materials; in fact, boring location RM-13 had to be relocated twice from its original intended location so that the desired depth could be fully penetrated.

- Using the measured DTW and DTB, calculated the water column length, wetted well volume, well purge volume, and the depth at which to set the ¹/₄-inch polyethylene tubing for the peristaltic pump;
- Purged a minimum of 3 wetted well volumes while recording the following water quality parameters at regular intervals: temperature, pH, dissolved oxygen ("D.O."), oxidation-reduction potential ("ORP"), and electrical conductivity; and
- Continuously monitored DTW during purging to ensure that an appropriate pumping rate was achieved and that drawdown would be minimized.

Once a minimum of 3 wetted well volumes (calculated to be 3.6 gallons) were purged and the recorded field water quality data had stabilized sufficiently, samples were collected, labeled, documented on a chain-of-custody form, placed into a cooler with ice, and delivered to Curtis & Tompkins, Ltd. for analysis.

In order to prevent the possibilities of contamination from an external source, all equipment lowered into the well was thoroughly washed with Liquinox phosphate-free detergent, and triple rinsed with distilled water before sampling. The sampling sheet recorded during sample collection is presented in Appendix H.

3.1.5 Soil and Water Sample Analysis

The 10 soil samples and 5 grab groundwater samples that were collected from the 5 borings were analyzed for the following analytes using the indicated methods:

- total Petroleum Hydrocarbons as gasoline ("TPH-g") by EPA Method 8015B;
- Total Petroleum Hydrocarbons as diesel ("TPH-d") by EPA Method 8015B with silica gel cleanup by EPA Method 3630C; and
- **DETEX** and fuel oxygenates by EPA Method 8260B.

Groundwater samples from monitoring well MW-1 were analyzed for the following analytes using the indicated methods:

- ♦ TPH-g by EPA Method 8015B;
- ***** TPH-d by EPA Method 8015B with silica gel clean-up by EPA Method 3630C;
- ***** BTEX and methyl tertiary-butyl ether ("MTBE") by EPA Method 8021B; and
- total dissolved solids ("TDS") by EPA Method 160.1.

4.0 RESULTS AND DISCUSSION

4.1 SITE CHARACTERIZATION

4.1.1 Field Observations and Borehole Logs

Boring logs for the 5 boreholes advanced on September 25, 2008 at locations designated as RM-11 through RM-15 in Figure 3 are contained in Appendix D. These logs and logs for previously advanced borings RM-1 through RM-10 have been used to construct two stratigraphic cross sections of the site presented in Figures 4 and 5. The information presented in these figures and field observations made on September 25 when borings RM-11 through RM-15 were being advance indicate the following:

- The subsurface material down to a depth of approximately 7 ft appeared to be imported fill material, generally consisting of gravelly material containing asphalt and concrete pieces (Photos #10 and #11). The presence of asphalt/concrete layers and/or large rocks at some locations prevented hand augering of the first few feet of the depth as it had been intended. Refusal was encountered at the originally planned RM-13 location at 3.5 ft below ground surface ("bgs") forcing the relocation of RM-13 to a second location nearby where again refusal was encountered, this time at 6.5 ft bgs (Photo #12), and finally to a third location where total depth could be reached;
- The gravelly layer encountered to a depth of approximately 7 ft bgs was underlain by a layer of olive grey/brown fine-medium sized loose sand (hydraulically placed material) (Photos #13 and #14) which extended to the maximum depth of penetration, approximately 15 ft (Note: in MW-1 Young Bay Mud consisting of a soft silty clay-clayey silt layer had been encountered below this depth);
- **t** Groundwater was encountered at approximately 7.5 ft bgs in all borings;
- PID readings were taken in all borings at depths where samples were retrieved and all had no detections (i.e.: 0.0 ppm); and
- No hydrocarbon odors or staining was noted in any of the borings.

4.1.2 Soil and Grab Groundwater Analytical Results (September 25, 2008 Sampling)

Laboratory reports containing analytical results for samples collected on September 25, 2008 at boring locations RM-11 through RM-15 are presented in Appendix B, and are summarized in Table 1 for soil samples and in Table 2 for grab-groundwater samples.

Analytical results for soil samples (Table 1) indicate the following:

- ***** BTEX constituents and MTBE were not detected in any of the soil samples;
- TPH-g was present in only one of the 10 soil samples and at very low concentration level (0.98 mg/kg in the soil sample collected from a depth of approximately 7 ft at boring RM-14); and
- Although the analytical laboratory reported TPH-d values ranging from 2.0 mg/kg to 140 mg/kg for soil samples from 4 of the 5 borings, the laboratory qualified these results by noting that the chromatographic patterns for these samples did not resemble the TPH-d standard.

Analytical results for grab groundwater samples (Table 2) indicate the following:

- Except for low concentrations of BTEX constituents detected in the grab groundwater sample from boring RM-14 (values ranging from 1.1 µg/L to 4.5 µg/L), BTEX and MTBE were not detected in the water samples;
- TPH-g was detected in the water sample from only one of the borings (65 µg/L in boring RM-14); and
- The laboratory-reported TPH-d values of 150 µg/L and 59 µg/L for groundwater samples from borings RM-13 and RM-14, respectively, were qualified by noting that the chromatographic patterns for these samples did not resemble the TPH-d standard.

4.1.3 Soil and Grab Groundwater Analytical Results (March 15, 2007 Sampling)

As noted previously, a prior site characterization effort, conducted in March 17, 2007, consisted of advancing borings RM-1 through RM-10 and collecting and analyzing soil and grab groundwater at these locations. The analytical results for those samples are presented in Table 4 for soil samples and in Table 5 for grab groundwater samples. The data in these tables indicate:

- Except for the soil sample from RM-5, which showed very low concentrations of xylenes, ethylbenzene, and toluene, BTEX and MTBE were not detected in any of the soil samples, suggesting a localized nature of the noted minor impact;
- No MTBE was detected in any of the 19 soil samples collected from the 10 borings;
- TPH-g was detected in only 2 of the 19 soil samples (samples from 4-ft depth in boring RM-3 and from 10-ft depth in boring RM-6 that contained 2.2 mg/kg and 36 mg/kg of TPH-g, respectively). The laboratory noted that chromatograms for these samples suggested strongly aged gasoline or diesel range compounds;
- Low levels of TPH-d, ranging from 3.1 mg/kg to 150 mg/kg were detected in 10 of the 19 soil samples, with samples from 5-ft depth in boring RM-5 and from 4-ft depth in boring RM-3 exhibiting the highest values (150 mg/kg and 49 mg/kg, respectively). The laboratory qualified the TPH-d results by noting that the sample chromatograms suggested the presence of strongly aged diesel compounds, but no recognizable pattern; and

 Only the grab groundwater sample from boring RM-5 had detectable concentrations of TPH-g, TPH-d, toluene, ethylbenzene, xylenes, and MTBE. Benzene was not detected in any of the water samples, including the sample from RM-5.

4.2 MW-1 GROUNDWATER SAMPLE ANALYTICAL RESULTS

Table 3 presents analytical results for the groundwater sample collected from MW-1 on September 25, 2008 plus data from 12 previous monitoring events¹⁰. The September 25, 2008 data indicate TPH-g and TPH-d concentrations of 80 μ g/L and ND<50 μ g/L, respectively, fairly low levels of BTEX compounds (1.0 μ g/L ethylbenzene to 4.6 μ g/L xylenes) and a non-detect level of MTBE.

The results shown in Table 3 for the 13 round of groundwater monitoring at MW-1 suggest the following:

- While there has been a fairly wide fluctuation in the reported concentration of TPH-d, there is an overall decreasing trend in the concentrations of all constituents, particularly the BTEX compounds; and
- While high concentrations of TPH-d have been reported for the two sampling events in 2007, the laboratory has noted that heavier hydrocarbons contributed to the quantitation or that the sample exhibited a chromatographic pattern that did not resemble the standard.

4.3 QUALITY ASSURANCE AND QUALITY CONTROL OF DATA

A summary review of the quality assurance and quality control ("QA/QC") analyses performed by the laboratories is presented in Appendix B. The QA/QC analysis indicates that the analytical results provided by the laboratories are accurate and fall within laboratory acceptance criteria.

5.0 OVERALL ASSESSMENT OF THE AVAILABLE DATA AND RECOMMENDATIONS

Figures 6 and 7 present, respectively, the analytical results for the 29 soil samples and 15 grab groundwater samples collected at the 15 borings that have been advanced at the site to date. Analytical results for the 13 rounds of water sampling at monitoring well MW-1 are presented in Table 3. This section reviews these results and compares them with regulatory guidelines and standards for environmental screening at petroleum hydrocarbon contaminated sites (presented in Table 6) and the very stringent drinking water quality standards (shown in Table 7).

¹⁰ Included in this table are also other field-measured data, such as depth to water, water temperature, pH, etc. These data show the absence of wide fluctuations and anomalies. The field sampling sheet containing notes and observations made during the September 25, 2008 sampling is presented in Appendix H.

5.1 SOIL CHARACTERIZATION RESULTS

The soil sample analytical results presented in Figure 6 (and in Tables 1 and 4) indicate the following:

- Non-detect level of benzene (the petroleum constituent of most environmental concern) and MTBE in all 29 soil samples;
- Non-detect level of other BTEX constituents (i.e., ethylbenzene, toluene, and xylenes) in 28 of the 29 soil samples, with only trace amounts of these constituents (0.036 mg/kg to 0.18 mg/kg) detected in sample RM-5-5;
- Non-detect levels of TPH-d in 11 of the 29 soil samples with low concentrations, ranging from 2 mg/kg in sample RM-12-10.5 to 150 mg/kg in sample RM-5-5, in the remaining 18 samples¹¹. For these samples with detectable concentrations of TPH-d, the laboratory generally noted the presence of strongly aged gasoline or diesel compounds or the absence of a recognizable TPH-d chromatographic pattern. Except for the one sample from RM-5 with a TPH-d value 150 mg/kg, all detected TPH-d levels are below the May 2008 ESL of 150 mg/kg for shallow soils and commercial land use where the groundwater is not a source of drinking water (Table B in RWQCB document: "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," INTERIM FINAL November 2007, Revised May 2008);
- Contamination of soil with low levels of products of petroleum origin (primarily, diesel-type hydrocarbons) appear to be confined to the immediate vicinity of boring RM-5, which is downgradient of the original source area; and
- With the exception of one soil sample from RM-5 that showed a TPH-d value equal to the ESL value of 150 mg/kg for TPH-d, the detected TPH-d levels are less than the ESL.

5.2 GROUNDWATER CHARACTERIZATION RESULTS

The analytical results presented in Figure 7 and Tables 2 and 5 for the grab groundwater samples

collected at the 15 boring locations indicate the following:

- Except for water samples collected from RM-5, RM-13, and RM-14, the concentrations of TPHg, TPH-d, BTEX, and MTBE were below the detection limits. TPH-g was detected in only one water sample (at boring location RM-14 at a level of 65 μg/L);
- At two locations were BTEX was detected (i.e., RM-5 and RM-14), the concentration of individual BTEX constituents were very low, ranging from 1.0 µg/L for xylenes in RM-5 to 4.5 µg/L for xylenes in RM-13;
- The laboratory-reported TPH-d concentrations of 57 µg/L for RM-5, 59 µg/L for RM-14, and 150 µg/L for RM-13 are qualified by a notation that the samples exhibited a chromatographic pattern not resembling the standard;

¹¹ Note that the three soil samples collected from depths of 7.5 ft bgs, 11 ft bgs, and 15 ft bgs at boring RM-15, which is in the original source area, had TPH-d levels of 2.4 mg/kg, 44 mg/kg, and 7.7 mg/kg, respectively, with the laboratory qualifier that "sample exhibits chromatographic pattern which does not resemble standard."

- The low levels of petroleum product contamination in the water samples from RM-5, RM-13, and RM-14 are significantly less than May 2008 ESL values of 43 µg/L to 1,800 µg/L (see Table 6) for shallow soils where the groundwater is not a source of drinking water. The levels of BTEX constituents detected in water samples from RM-5 and RM-14 are also below the MCL drinking water standards set by the US EPA. The benzene concentration of 3.3 µg/L in the water sample from RM-14 exceeds the California MCL value of 1 µg/L for benzene; and
- RM-5, RM-13, and RM-14, the three borings with detectable concentrations of petroleum products in water samples, are downgradient of the original source area. The fact that the water sample from boring RM-15 in the original source area appears to be free of contamination suggests that any contaminant plume that may have originated in the source area has effectively moved downgradient, with RM-5, RM-13, and RM-14 representing the upgradient fringe of such a plume.

The analytical results for 13 monitoring events at monitoring well MW-1 are presented in Table 3. As discussed in Section 4.2, the collected water quality data indicate that despite a fairly wide fluctuation in the reported concentration of TPH-d, there is an overall decreasing trend in the concentrations of all constituents, particularly the BTEX compounds. While high concentrations of TPH-d have been reported for the two sampling events in 2007, the laboratory has noted that heavier hydrocarbons contributed to the quantitation or the sample exhibited a chromatographic pattern that did not resemble the standard. No MTBE has ever been detected in the water samples and BTEX has stabilized at very low levels, with average concentrations of 3.8 μ g/L (benzene), 2.2 μ g/L (toluene), 1.1 μ g/L (ethylbenzene), and 5.0 μ g/L (xylenes) for the past three rounds of monitoring events. These values are below the MCL drinking water standards set by US EPA (Table 7), although the benzene concentration of 3.8 μ g/L exceeds the California MCL value of 1 μ g/L for benzene.

5.3 CASE FOR SITE CLOSURE

Site characterization and groundwater monitoring have been ongoing at the site since 1996. Based on the findings, the following considerations make a strong case for site closure, which is hereby recommended:

- The release source (i.e., the USTs) have been eliminated. In addition to the original removal of the USTs, approximately 1,500 cubic yards of impacted soils were removed from the tank pit;
- The site has been adequately characterized. A fairly extensive site characterization has been performed with the results indicating a very low level of residual impact on soil and groundwater. This low level of residual impact appears to be confined to a small area downgradient of the former location of the USTs. The detected levels of contaminants of concerns in the soil and groundwater in this area are generally below the applicable ESLs, with the groundwater meeting the U.S. EPA MCLs; and
- The site represents no significant health and safety risks. The lack of sensitive receptors in the surrounding area, the site being more than 1,800 ft from the Bay, and the low level of localized

residual contamination in a confined area preclude significant health and safety risks.

Based on the above considerations, it is our professional opinion that continuing with attempts at further site characterization and/or remediation may be more detrimental than beneficial to the environment; hence, this request for no further-action consideration for the subject site.

TABLES

Table 1: Summary of September 25, 2008 Soil Sample Analytical Results

Port of Oakland

801 Maritime street, Oakland, CA

Soil Sampling Anlytical Results for RM-11 through RM-15; Sampling performed September 25, 2008

Soil Sample	RM-11-7	RM-11-10.5	RM-12-7	RM-12-10.5	RM-13-7	RM-13-11	RM-14-7	RM-15-7.5	RM-15-11	RM-15-15
TPH (mg/kg)										
Gasoline (C7-C12)	ND<0.94	ND<1.0	ND<0.96	ND<0.99	ND<1.0	ND<1.1	0.98	ND<1.1	ND<0.93	ND<1.1
Diesel (C10-C24)	ND<1.0	ND<1.0	ND<1.0	2.0, Y	98, Y	11, Y	140, Y	2.4, Y	44, Y	7.7, Y
BTEX and MTBE (µg/kg)										
Benzene	ND<4.6	ND<4.7	ND<5.0	ND<4.8	ND<5.0	ND<5.0	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Toluene	ND<4.6	ND<4.7	ND<5.0	ND<4.8	ND<5.0	ND<5.0	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Ethylbenzene	ND<4.6	ND<4.7	ND<5.0	ND<4.8	ND<5.0	ND<5.0	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Xylenes	ND<4.6	ND<4.7	ND<5.0	ND<4.8	ND<5.0	ND<5.0	ND<4.9	ND<5.0	ND<4.9	ND<5.0
MTBE	ND<4.6	ND<4.7	ND<5.0	ND<4.8	ND<5.0	ND<5.0	ND<4.9	ND<5.0	ND<4.9	ND<5.0

Notes:

See Appendix B for laboratory report

See Figure 3 for boring locations

RM = Boring

1 = Boring #

7 = Sample depth, ft

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

MTBE = Methyl tert-butyl ether

ND = not detected

Y = Notation by the laboratory: the sample exhibits chromatographic pattern which does not resemble standard

Table 2: Summary of September 25, 2008 Grab Groundwater Sample Analytical Results

Port of Oakland

801 Maritime Street, Oakland, CA

Grab Groundwater Sampling Anlytical Results for RM-11 through RM-15; Sampling performed September 25, 2008

	Results are in μg/L								
Water Sample	RM-11	RM-12	RM-13	RM-14	RM-15				
ТРН	-	-	-	-	-				
Gasoline (C7-C12)	ND<50	ND<50	ND<50	65	ND<50				
Diesel (C10-C24)	ND<63	ND<63	150, Y	59, Y	ND<50				
BTEX and MTBE									
Benzene	ND<0.5	ND<0.5	ND<0.5	3.3	ND<0.5				
Toluene	ND<0.5	ND<0.5	ND<0.5	1.8	ND<0.5				
Ethylbenzene	ND<0.5	ND<0.5	ND<0.5	1.1	ND<0.5				
Xylenes	ND<0.5	ND<0.5	ND<0.5	4.5	ND<0.5				
MTBE	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
1,2-Dibromoethane (EDB)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
1,2-Dichloroethane (EDC)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
Methyl tert-Amyl Ether (TAME)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
Ethyl tert-Butyl Ether (ETBE)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
Isopropyl Ether (DIPE)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3.1				
Tert-Butyl Alcohol (TBA)	ND<10	ND<10	ND<10	ND<10	ND<10				
Ethanol (ETOH)	ND<1,000	ND<1,000	ND<1,000	ND<1,000	ND<1,000				

Notes:

See Appendix B for laboratory report

See Figure 3 for boring locations

RM = Boring

1 = Boring #

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

MTBE = Methyl tert-butyl ether

ND = not detected

Y = Notation by the laboratory: the sample exhibits chromatographic pattern which does not resemble standard

Table 3SEPTEMBER 25, 2008 AND PREVIOUS GROUNDWATER MONITORING RESULTS FOR MW-1801 MARITIME STREETOAKLAND, CA 94607

							Event						
Parameters	9/25/2008	7/10/1996	12/27/1996	3/25/1997	6/23/1997	9/30/1997	12/31/1997	4/17/2001	7/26/2001	10/21/2001	3/13/2002	4/12/2007	9/28/2007
TPH-g (μg/L)	80	180	180	180	170	190	130	160	130	160	110	62	76
TPH-d (μg/L)	ND<50	7,100	670	19	3,000	830	ND<48	59	ND<50	ND<100	ND<50	4,800 (H)	4,000 (Y)
Benzene (µg/L)	3.4	27	30	21	20	35	26	11	17	14	8.5	3.5	4.6
Toluene (μg/L)	1.9	14	15	11	11	17	14	6.2	8.7	6.9	4.2	2.2	2.4
Ethyl Benzene (µg/L)	1.0	5.4	5.8	4	4.1	5.2	4.3	2.6	3.2	2.6	1.3	1.2	1.2
Xylenes (µg/L)	4.6	23	26	17	18	22	18	11.2	14.2	11.5	7.3	5.2	5.1
MTBE (µg/L)	ND<2.0	NA	NA	NA	NA	NA	NA	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0
TDS (mg/L)	1,730	NA	NA	1,840	1,320	2,020	1,880	1,860	1,880	1,860	1,100	1,560	1,650
Temp (C ^o)	23.83											17.76	23.36
E.C. (mS/cm)	4.777											4.489	4.672
D.O. (mg/L)	0.36											0.33	0.10
рН	11.81											12.52	12.59
ORP (mV)	-156.3											-162.5	-157.4
DTW (ft)	7.82	7.36	7.55	7.31	7.55	7.46	7.17	7.59	7.65	7.71	6.66	7.60	7.79
DTB (ft)	15.20											15.20	15.12
GW Elevation (ft AMSL)	6.36	6.45	6.26	6.50	6.26	6.09	6.38	6.59	6.53	6.47	7.52	6.58	6.39

Notes:

Analytical reports for water sample collected on 9/25/2008 are contained in Appendix B

Groundwater elevations refereneced to the Port Datum

Port Datum = Mean Sea Level - 3.20 feet

NA = Not Analyzed

DTW = Depth to water

DTB = Depth to bottom

AMSL = Above mean sea level

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

MTBE = Methyl tert-butyl ether

TDS = Total dissolved solids

E.C. = Electrical conductivity

D.O. = Dissolved oxygen

ORP = Oxidation reduction potential

H = Heavier hydrocarbons contributed to the quantitation

Y = Notation by the laboratory: the sample exhibits chromatographic pattern that does not resemble standard

GW Elevations for 4/12/2007, 9/28/2007, and 9/25/2008 were calculated based on 2001 surveyed top-of-casing elevations of 14.18 feet (Port of Oakland Datum)

Table 4: Summary of March 15, 2007 Soil Sample Analytical Results

Port of Oakland

801 Maritime street, Oakland, CA

Soil Sampling Anlytical Results for RM-1 through RM-10; Sampling performed March 15, 2007

					Results are	in mg/Kg						
Soil Sample	RM-1-8	RM-2-7	RM-2-10	RM-3-4	RM-3-11	RM-4-6	RM-4-11	RM-5-5	RM-6-7	RM-6-10	RM-7-6	RM-7-10
<u>TPH</u>												
Gasoline (C7-C12)	ND<1	ND<1	ND<1	2.2,g	ND<1	ND<1	ND<1	36,g,m	ND<1	ND<1	ND<1	ND<1
Diesel (C10-C24)	ND<1	ND<1	ND<1	49,a	6.4,g,b	5.1,g,b	9.7,g,b	150,g,b	ND<1	16,g,b	ND<1	ND<1
BTEX and MTBE												
Benzene	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015
Toluene	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.067	ND<0.005	ND<0.005	ND<0.005	ND<0.005
Ethylbenzene	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.036	ND<0.005	ND<0.005	ND<0.005	ND<0.005
Xylenes	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.18	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MTBE	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05

Results are in mg/Kg									
Soil Sample	RM-8-5	RM-8-11	RM-9-5	RM-9-8	RM-9-11.5	RM-10-6	RM-10-11		
<u>TPH</u>									
Gasoline (C7-C12)	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1		
Diesel (C10-C24)	ND<1	6.2,g,b	ND<1	4.9,g,b	9.1,g,b	ND<1	3.1,g,b		
BTEX and MTBE									
Benzene	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015	ND<0.015		
Toluene	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005		
Ethylbenzene	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005		
Xylenes	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005		
MTBE	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05		

See Appendix B for laboratory report

See Figure 3 for boring locations

- RM = Boring
- 1 = Boring #

8 =sample depth, ft

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Mthyl tert-butyl ether

ND = Not detected

a = Unmodified or weakly modified diesel is significant

b = Diesel range compounds are significant; no recognizable pattern

g = Strongly aged gasoline or diesel range compounds are significant

m = No recognizable pattern

Table 5: Summary of March 15, 2007 Grab Groundwater Sample Analytical Results

Port of Oakland

801 Maritime street, Oakland, CA

Ground Water Sampling Anlytical Results for RM-1 through RM-10; Sampling performed March 15, 2007

	Results are in µg/L										
Water Sample	RM-1	RM-2	RM-3	RM-4	RM-5	RM-6	RM-7	RM-8	RM-9	RM-10	
<u>TPH</u>	ГРН										
Gasoline (C7-C12)	ND<50	ND<50	ND<50	ND<50	73, a	ND<50	ND<50	ND<50	ND<50	ND<50	
Diesel (C10-C24)	ND<50	ND<50	ND<50	ND<50	57, b	ND<50	ND<50	ND<50	ND<50	ND<50	
BTEX and MTBE											
Benzene	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Toluene	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.8	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Ethylbenzene	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Xylenes	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
MTBE	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	

Sample Designation: Example RM-10

RM = Boring

10 = Boring #

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Mthyl tert-butyl ether

ND = Not detected

a = Unmodified or weakly modified gasline is significant

b = Diesel range compounds are significant; no recogniable pattern

See Appendix B for laboratory report

See Figure 3 for boring locations

TABLE 6 - ENVIRONMENTAL SCREENING LEVELS FOR CHEMICALS COMMONLY FOUND IN SOIL AND GROUNDWATER AT SITES WHERE RELEASES OF HAZARDOUS CHEMICALS HAVE OCCURRED*

SOILS:

	May 2008 Environmental Scre	ening Level (ESL) for Soil, mg/kg				
CONSTITUENT	Not a Potential Drinking Source					
CONSTITUENT	Shallow Soil <u><</u> 3 m bgs)	Deep Soil (>3m bgs)				
	Commercial	Commercial				
ТРН						
Gasoline (C7-C12)	180	180				
Diesel (C10-C24)	180	180				
BTEX and MTBE						
Benzene	0.27	2				
Toluene	9.3	9.3				
Ethylbenzene	4.7	4.7				
Xylenes	11	11				
МТВЕ	8.4	8.4				

GROUNDWATER:

	May 2008 Environmental Screenin	ıg Level (ESL) for Groundwater, μg/L					
CONSTUTENT	Not a Potential Drinking Source						
	Shallow Soil <u><</u> 3 m bgs)	Deep Soil (>3m bgs)					
<u>трн</u>							
Gasoline (C7-C12)	210	210					
Diesel (C10-C24)	210	210					
BTEX and MTBE							
Benzene	46	46					
Toluene	130	130					
Ethylbenzene	43	43					
Xylenes	100	100					
МТВЕ	1,800	1,800					

*Notes:

- 1) Source: California Regional Water Quality Control Board, San Francisco Bay Region, "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," INTERIM FINAL - November 2007 (Revised May 2008); Tables B and D in the document.
- 2) The ESLs are considered to be conservative. Under most circumstances, and within the limitations described, the presence of a chemical in soil, soil gas or groundwater at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment. Additional evaluation will generally be necessary at sites where a chemical is present at concentrations above the corresponding ESL. Active remediation may or may not be required depending on site-specific conditions and considerations.

TABLE 7: MAXIMUM CONTAMINANT LEVELS FOR DRINKING WATER, U.S EPA AND STATE OF CALIFORNIA

CONSTITUENT	Units = µg/L					
CONSTITUENT	EPA (a)	CA (b)				
Benzene	5	1				
Ethylbenzene	700	300				
Toluene	1000	150				
Xylenes	10,000	175				

Source:

- (a) List of Drinking Water Contaminants & their MCLs;
- http://www.epa.gov/safewater/contaminantslistmcl
- (b) California Department of Public Health: MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants (Last Updated: October 10, 2008);

http://www.cdph.ca.gov/certlic/drinkingwater/Documents/MCLreview/MCLs-DLRs-PHGs.xls

FIGURES

Stratigraphic Cross Section of the Site DIAMOND MANUFACTURING 1763 & 1753 TIMOTHY DR. SAN LEANDRO, CA 94578

DATE: 3-7-2008

FIGURE: 4

R&M Environmental and Infrastructure Engineering, Inc

Approximate extent of 1989 Removal Action

<u>Note:</u> See Tables 1 & 4 for analytical results

DESIGNED BY:	CHECKED BY:	SOIL SAMPLING ANALYTICAL	DATE: 10/10/2008	FIGURE: 6
DRAWN BY: RC	SCALE:	Port of Oakland	R&ME	nvironmental
PROJECT NO:		801 Maritime Street Oakland, CA	and Infrastr	ucture Engineering, Inc.

Note: See Tables 2 & 5 for analytical results

Approximate extent of 1989 Removal Action

DESIGNED BY:	CHECKED BY:	GRAB GROUNDWATER SAMPLING
DRAWN BY: RC	SCALE:	Port of Oakland
PROJECT NO:		0akland_CA

DATE: 10/10/2008 FIGURE: 7

R&M Environmental and Infrastructure Engineering. Inc.

APPENDIX A

PHOTOGRAPHS

Photo #1 - General site location as it appears today.

Photo #2 - Marking of the proposed boring locations.

Photo #3 - Subsurface utility clearance of the proposed drilling locations.

Photo #4 - Using hollow-stem auger to drill past surface asphalt layer.

Photo #5 - Hand augering boreholes to a depth of 5 ft before employing the "direct push" method.

Photo #6 - The geologist visually inspecting and describing soil samples according to the Unified Soil Classification System.

Photo #7 - Temporary piezometer with 3/4-inch diameter PVC screen and riser pipe being installed in borehole RM-12.

Photo #8 - Borehole being topped off with cement slurry and dyed to match the surrounding surface.

Photo #9 - Two 55-gallon drums containing the investigative derived waste water and soil that were left on site for profiling and disposal by the Port of Oakland.

(Boring RM-14)

(Boring RM-13)

Photos #10 and #11 - The subsurface material down to a depth of approximately 7 ft that appeared to be imported fill material, generally consisted of gravelly material containing asphalt and concrete pieces.

Photo #12 - Refusal was encountered at the originally planned RM-13 location (top left hole) at 3.5 ft below ground surface forcing to relocate RM-13 to a second location nearby (bottom hole) where again refusal was encountered, this time at 6.5 ft bgs, and finally to a third location where total depth could be reached (top right hole).

(Boring RM-13)

(Boring RM-15)

Photos #13 and #14 - Gravelly layer encountered to a depth of approximately 7 ft bgs that was underlain by a layer of olive grey/brown fine-medium sized loose sand which extended to the maximum depth of penetration.

APPENDIX B

QA/QC SUMMARY REVIEWS, CERTIFIED ANALYTICAL REPORTS FOR SOIL/GROUNDWATER SAMPLING, AND CHAIN-OF-CUSTODY DOCUMENTATION

R&M Environmental and Infrastructure Engineering, Inc.

Memo

To: Masood Ghassemi

From: Rafael Carranza

Date: October 3, 2008

Re: QA/QC Review of Analytical Data September 25, 2008 Sampling Event Project Number (4009 – 801 Maritime Street, Oakland, CA)

On September 25, 2008 groundwater samples were collected from monitoring well MW-1 located at Berth 24, 801 Maritime Street, Oakland, CA. The samples were analyzed by Curtis & Tompkins, Ltd (Berkeley, CA) for the following parameters:

Analysis Methods

- total petroleum hydrocarbon as gasoline via EPA Method 8015B;
- Total petroleum hydrocarbon as diesel via EPA Methods 8015B with silica gel clean-up via EPA Method 3630C;
- Benzene, toluene, ethylbenzene, xylenes and methyl tert-butyl ether via EPA Method 8021B; and
- total dissolved solids via EPA Method 160.1.

The following data set was reviewed in support of this investigation:

Data Set	Date Sampled	Matrix
206385	9/25/2008	Groundwater

The quality assurance/quality control ("QA/QC") analytical results in association with the analytical results for groundwater samples were evaluated for achievement of any method-specific QA/QC criteria. The QA/QC review results are discussed in the following pages.

Masood Ghassemi October 3, 2008 Page 2

- 1. <u>Chain-of-Custody</u>: No problems were noted with the chain-of-custody ("COC") forms.
- 2. <u>Requested Analyses Completed:</u> All analyses were performed as requested on the COC. The following requests were noted on the COCs and performed by the laboratory as requested:
 - Silica gel cleanup (SGCU) analysis was performed on sample MW-1 when analyzing for TPH-d
- 3. <u>Holding Times</u>: All samples were extracted and/or analyzed within the appropriate holding times.
- 4. <u>Sample Preservation</u>: No problems were noted with sample preservation.
- 5. <u>Laboratory Method Blanks</u>: Method blanks were reviewed to determine the potential for sample cross contamination due to handling within the laboratory. No detections of target compounds were noted in the method blanks.
- 6. <u>Surrogates</u>: Surrogates are added for organic analyses. Surrogates are compounds not normally found in the environment that are added (spiked) to samples and analyzed for percent recovery ("REC"). Maximum and minimum limits on the REC are set by the laboratory for the method used.

All surrogate RECs were within control limits.

7. Laboratory Control Sample ("LCS")/Laboratory Control Sample Duplicate ("LCSD"): The LCS and LCSD are analyte-free, lab-created samples that are spiked with a known amount of target analyte(s) and analyzed to verify the extraction process. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine REC. The purpose of the LCS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference. The LCSD is a duplicate preparation and analysis of the LCS. Results of the LCS and LCSD are compared to each other to determine analytical precision using the relative percent difference ("RPD"). Curtis and Tompkins provided blind spike ("BS") and Blind Spike Duplicate ("BSD") samples in their analytical report (# 206385), which are also prepared and analyzed similarly to LCS/LCSD samples.

Note: A high response was observed for ethylbenzene in the LCS and the affected data was qualified in the report with a "b".

Masood Ghassemi October 3, 2008 Page 3

8. <u>Matrix Spike and Matrix Spike Duplicate ("MS/MSD")</u>: MS/MSDs are typically run for inorganic and/or organic analyses. A sample is split into three portions (original, MS, and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results are compared against the un-spiked portion of the sample for REC of the spike. Additionally, the results are compared against each other using a RPD to determine reproducibility.

All MS/MSD results were within QC limits.

- 9. <u>Field Duplicate Results</u>: A field duplicate was not collected during the sampling event.
- 10. Detection and Quantitation Limits: No dilutions were required for the analyses.
- 11. <u>Conclusion</u>: No data were rejected as a result of this data review. The data are usable, as qualified, in reporting the results of this sampling event.

Curti Analyt	s & Tompkins, Ltd. ical Laboratory Since 1878	CH	łA	IN		OF CU	S	Т	C	Y							Page	€	/	of	<u>/</u>
(2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax	С&Т	LOGII	N #:	2	06385	5									Analy	sis 				
Project	No.: 4009	Sampl Repor	er: 🗶 t To:	rci rci	el anar	<u>Chrranza</u> 12ª Qrandi	ner 1	1	npres	n/zl. com				1 day up							
	Name. OUT MANPME	Compa	any: T	<u>~ 7</u>		nrinnen	12	, ,		····				5	5						
Turnaro	pund Time: Standard	Telept	one:		553	-2145	13 /							w/ si lice							
			N	/ atr	ix]	P	rese	ervativ	ve				7							
Lab No.	Sample ID.	Sampling Date Time	Soil	Water		# of Containers	HCL	H₂SO₄	HN ⁰	none	-Hat	8 RXX	MTBE	- Hall	7 1 5	EDF					
	MW-1	8:21		X		6X40mL VOA	\mathbf{X}				×	\mathbf{x}	X			\mathbf{X}		+-			
<u> </u>	mw-1	8:24				IXIL amber		•		X				X		X	\square			_	
2	RCTB	9:15				1x250nl poly Y XYOml VOA	×	•			X	X	X		X	X					
												,									
											-								-		
Notes:	Directly invoice the		REL	INQ	UISH	ED BY: Pafa	11	air	anga	- <u>-</u>	RE	CE	IVE	D B)	/:	LII	l		-	1	
Port	of Oakland, attn:				41	8 9/3	108	14	2:30 Date	E / TIME	0	N		~	9/	25/28	1.	4:3	0 DAT	re / T	ME
Joh	n Prall	Preservative Correct?							DATE	E / TIME		/							DA	Г <u>Е / Т</u>	ME
1									DATE	E / TIME	_										ME

đ,

SIGNATURE

C00

COOLER RECEIPT CHECKLIST	ins, Ltd.
Login # 206385 Date Received 9/25/08 Number of coolers 1 Client 7 2M EN. Project 861 MARITIME	·····
Date Opened 9/25/08 By (print) M NILLANGLA (sign) Date Logged in 9-26-08 By (print) F Nichols (sign) Cattle	l
1. Did cooler come with a shipping slip (airbill, etc)?	Ø
 2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival?	NO NO NO
Bubble WrapFoam blocksBagsNoneCloth materialCardboardStyrofoamPaper towels7. Temperature documentation:StyrofoamStyrofoam	
Type of ice used: Wet Blue/Gel None Temp(°C)	
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling process had begun	
 8. Were Method 5035 sampling containers present?	NO
10. Are samples in the appropriate containers for indicated tests?	NO
12. Do the sample labels agree with succedy non-arr?	NO
13. Was sufficient amount of sample sent for tests requested?	NO
14. Are the samples appropriately preserved?	NU N/A
15. Are bubbles > 6mm absent in VOA samples?	N/A
10. Was the client contacted concerning this sample delivery?	NO
ByDate:	
COMMENTS 2/6 MW-1 VOAS w/ Bubble	

SOP Volume: **Client Services** Section: 1.1.2 Page: l of t

Rev. 6 Number 1 of 3 Effective: 23 July 2008 F:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Curtis &	Tompkin	is Laboi	ratorie	es Analy	ytical	l Repor	t		
Lab #: Client: Project#:	206385 R&M Environm 4009	nental		Locati Prep:	.on:	801 EPA	. Maritim A 5030B	le		
Matrix: Units: Diln Fac:	Water ug/L 1.000			Sample Receiv	ed: red:	09/ 09/	25/08 25/08			
Field ID: M Type: S	MW-1 SAMPLE			Lab II):	206	385-001			
Analyte		Resul	t	<u></u>	<u> </u>	Batch#	Analyzed		Analysis	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		80 ND 3 1 2 2	. 4 . 9 . 0 . 8 . 8	50 2. 0. 0. 0. 0.	0 1 50 1 50 1 50 1 50 1 50 1 50 1	43047 43047 43047 43047 43147 43047 43047	09/29/08 09/29/08 09/29/08 09/29/08 10/01/08 09/29/08 09/29/08	EPA EPA EPA EPA EPA EPA	8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B	
6		0.580	T :	D-1-1-1	3 1					
Trifluorotoluene Bromofluorobenzen Trifluorotoluene Bromofluorobenzen	(FID) ne (FID) (PID) ne (PID)	101 100 99 99	61-149 65-146 52-143 56-141	143047 143047 143047 143047 143047	09/29/08 09/29/08 09/29/08 09/29/08	8 EPA 8 EPA 8 EPA 8 EPA 8 EPA	8015B 8015B 8021B 8021B	15		
Field ID: (Type: S Lab ID: 2	QCTB SAMPLE 206385-002			Batch‡ Analyz	⊧: ≥ed∶	143 09/	8047 29/08			
Analyt	te		Result		RI	1		Anal	lysis	
Gasoline C7-Cl2 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND			5	2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA EPA EPA EPA EPA EPA EPA	8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B		
Surrog	ato	%REC	Limite	7	nalveie					
Trifluorotoluene Bromofluorobenzen Trifluorotoluene Bromofluorobenzen	(FID) ne (FID) (PID) ne (PID)	101 103 93 99	61-149 65-146 52-143 56-141	EPA 801 EPA 801 EPA 802 EPA 802	5B 5B 21B 21B					

	Curtis & Tompkins Labora	atories Analyti	ical Report
Lab #: Client: Project#:	206385 R&M Environmental 4009	Location: Prep:	801 Maritime EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Sampled: Received:	09/25/08 09/25/08

Type: Lab ID:	BLANK QC462625		Batch#: Analyzed:	1430 09/2	47 9/08	
	Analyte	Result		RL	Analysis	
Gasoline C7	-C12	ND		50	EPA 8015B	
MTBE		ND		2.0	EPA 8021B	
Benzene		ND		0.50	EPA 8021B	
Toluene		ND		0.50	EPA 8021B	
Ethylbenzen	e	ND		0.50	EPA 8021B	
m,p-Xylenes		ND		0.50	EPA 8021B	
o-Xvlene		ND		0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	105	61-149	EPA 8015B
Bromofluorobenzene (FID)	106	65-146	EPA 8015B
Trifluorotoluene (PID)	104	52-143	EPA 8021B
Bromofluorobenzene (PID)	105	56-141	EPA 8021B

Type:	BLANK	Analyzed:	10/01/08
Lab ID:	OC463081	Analysis:	EPA 8021B
Batch#:	143147	1110127020	

Analyte	I	Result		RL	
Ethylbenzene	ND			0.50	
Surrogate	I	Result	%REC	Limits	
Trifluorotoluene (FID)	NA				
Bromofluorobenzene (FID)	NA				
Trifluorotoluene (PID)			96	52-143	
Bromofluorobenzene (PID)			96	56-141	

Curtis & Tompkins Laboratories Analytical Report									
Lab #:	206385	Location:	801 Maritime						
Client:	R&M Environmental	Prep:	EPA 5030B						
Project#:	4009	Analysis:	EPA 8015B						
Туре:	LCS	Diln Fac:	1.000						
Lab ID:	QC462626	Batch#:	143047						
Matrix:	Water	Analyzed:	09/29/08						
Units:	ug/L								

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	970.4	97	78-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	119	61-149
Bromofluorobenzene (FID)	107	65-146

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	206385	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 5030B		
Project#:	4009	Analysis:	EPA 8021B		
Туре:	LCS	Diln Fac:	1.000		
Lab ID:	QC462627	Batch#:	143047		
Matrix:	Water	Analyzed:	09/29/08		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.00	100	61-143
Benzene	10.00	11.22	112	80-120
Toluene	10.00	11.05	110	77-120
Ethylbenzene	10.00	11.79 b	118	79-123
m,p-Xylenes	10.00	11.44	114	78-123
o-Xylene	10.00	10.45	105	78-122

Surrogate	%REC	Limits
Trifluorotoluene (PID)	106	52-143
Bromofluorobenzene (PID)	104	56-141

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	206385	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 5030B		
Project#:	4009	Analysis:	EPA 8015B		
Field ID:	MW-1	Batch#:	143047		
MSS Lab ID:	206385-001	Sampled:	09/25/08		
Matrix:	Water	Received:	09/25/08		
Units:	ug/L	Analyzed:	09/29/08		
Diln Fac:	1.000				

Туре:	MS			Lab ID:		QC462632			
	Analyte	MSS Re	sult	Spike	ed	Result	%REC	Limi	ts
Gasoline	e C7-C12	7	9.71	2,000)	1,918	92	65-1	20
	Surrogate	%REC	Limits						
Trifluor	otoluene (FID)	127	61-149						
Bromoflu	lorobenzene (FID)	106	65-146						
Type:	MSD			Lab ID:		00462633			
TIPC	1100					20102033			
	Analyte		Spiked		Result	%REC	Limits	RPD L	im
Gasoline	e C7-C12		2,000		1,946	93	65-120	1 2	20

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	125	61-149	
Bromofluorobenzene (FID)	105	65-146	

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	206385	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 5030B		
Project#:	4009	Analysis:	EPA 8021B		
Туре:	LCS	Diln Fac:	1.000		
Lab ID:	QC463083	Batch#:	143147		
Matrix:	Water	Analyzed:	10/01/08		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
Ethylbenzene	10.00	11.18	112	79-123

Surrogate	%REC	Limits
Trifluorotoluene (PID)	97	52-143
Bromofluorobenzene (PID)	99	56-141

	1	otal I	Extracta	ble Hydrocarbo	າຮ	
Lab #:	206385			Location:	801 Maritime	
Client:	R&M Environme	ental		Prep:	EPA 3520C	
Project#:	4009			Analysis:	EPA 8015B	
Field ID:	MW-1			Sampled:	09/25/08	
Matrix:	Water			Received:	09/25/08	
Units:	ug/L			Prepared:	09/29/08	
Diln Fac:	1.000			Analyzed:	10/01/08	
Batch#:	143060					
Type: Lab ID:	SAMPLE 206385-001			Cleanup Method:	EPA 3630C	
Anal	yte		Result	RL		
Diesel C10-C24		NI)	50		
Surro	gate	%REC	Limits			
Hexacosane		120	58-127			
Type:	BLANK			Cleanup Method:	EPA 3630C	
Lab ID:	00462712			ercanap neenoa		
	QC102/12					
Anal	yte		Result	RL		
Diesel C10-C24		NI)	50		
Surro	gate	%REC	Limits			

Total Extractable Hydrocarbons					
Lab #:	206385	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 3520C		
Project#:	4009	Analysis:	EPA 8015B		
Туре:	LCS	Diln Fac:	1.000		
Lab ID:	QC462713	Batch#:	143060		
Matrix:	Water	Prepared:	09/29/08		
Units:	ug/L	Analyzed:	10/01/08		

Cleanup Method: EPA 3630C

Analyte	5	Spiked	Result	%REC	Limits
Diesel C10-C24	2	2,500	2,193	88	52-120
Surrogate	%REC	Limits			
Hexacosane	103	58-127			

		Total 1	Extracta	ble Hydrocarbo	ns			
Lab #:	206385			Location:	801 Maritime			
Client:	R&M Environm	nental		Prep:	EPA 3520C			
Project#:	4009			Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ			Batch#:	143060			
MSS Lab ID:	206246-005			Sampled:	09/23/08			
Matrix:	Water			Received:	09/23/08			
Units:	ug/L			Prepared:	09/29/08			
Diln Fac:	1.000			Analyzed:	10/01/08			
Type: Lab ID:	MS QC462714			Cleanup Method:	EPA 3630C			
Analyt	e	MSS Res	sult	Spiked	Result	%REC	Limi	ts
Analyt Diesel C10-C24	e	MSS Res 919	sult 9.0	Spiked 2,500	Result 3,528	%REC 104	Limi 43-1	21
Analyt Diesel C10-C24	e gate	MSS Res 919 %REC	sult 9.0 Limits	Spiked 2,500	Result 3,528	%REC 104	Limi 43-1	ts 21
Analyt Diesel C10-C24 Surro Hexacosane	e gate	MSS Res 919 %REC 115	sult 9.0 Limits 58-127	Spiked 2,500	Result 3,528	%REC 104	Limi 43-1	ts 21
Analyt Diesel C10-C24 Mexacosane	gate MSD	MSS Res 919 %REC 115	sult 9.0 Limits 58-127	Spiked 2,500 Cleanup Method:	Result 3,528 EPA 3630C	%REC 104	Limi 43-1	ts 21
Analyt Diesel C10-C24 Surro Hexacosane Type: Lab ID:	gate MSD QC462715	MSS Res 919 %REC 115	sult 9.0 Limits 58-127	Spiked 2,500 Cleanup Method:	Result 3,528 EPA 3630C	%REC 104	Limi 43-1	ts 21
Analyt Diesel C10-C24 Surro Hexacosane Type: Lab ID: Anal	e gate MSD QC462715 yte	MSS Res 919 %REC 115	Spiked	Spiked 2,500 Cleanup Method: Result	Result 3,528 EPA 3630C %REC	%REC 104	Limi 43-1	ts 21
Analyt Diesel C10-C24 Surro Hexacosane Type: Lab ID: Anal Diesel C10-C24	e gate MSD QC462715 yte	MSS Res 919 %REC 115	sult .0 Limits 58-127 Spiked 2,500	Spiked 2,500 Cleanup Method: Result 3,014	Result 3,528 EPA 3630C %REC 84	%REC 104 Limits 43-121	Limi 43-1 	ts 21 Lim 36
Analyt Diesel C10-C24 Surro Hexacosane Type: Lab ID: Anal Diesel C10-C24 Surro	e gate MSD QC462715 yte gate	MSS Res 919 %REC 115 %REC	sult .0 Limits 58-127 Spiked 2,500 Limits	Spiked 2,500 Cleanup Method: Result 3,014	Result 3,528 EPA 3630C %REC 84	%REC 104 Limits 43-121	Limi 43-1 	ts 21 Lim 36

	Total Dissolv	ved Solids	(TDS)
Lab #:	206385	Location:	801 Maritime
Client:	R&M Environmental	Prep:	METHOD
Project#:	4009	Analysis:	SM2540C
Analyte:	Total Dissolved Solids	Sampled:	09/25/08
Field ID:	MW-1	Received:	09/25/08
Matrix:	Water	Prepared:	09/29/08
Units:	mg/L	Analyzed:	09/30/08
Batch#:	143058		
Type Lab ID	Result	RL	Diln Fac

Type	Lab ID	Result	RL	Diln Fac	
SAMPLE	206385-001	1,730	33	3.333	
BLANK	QC462700	ND	10	1.000	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Total Diss	solved Solids (TD	S)
Lab #:	206385	Location:	801 Maritime
Client:	R&M Environmental	Prep:	METHOD
Project#:	4009	Analysis:	SM2540C
Analyte:	Total Dissolved Solids	Batch#:	143058
Field ID:	ZZZZZZZZZZ	Sampled:	09/26/08
MSS Lab ID:	206390-002	Received:	09/26/08
Matrix:	Water	Prepared:	09/29/08
Units:	mg/L	Analyzed:	09/30/08
Type Lab ID	MSS Result Spiked	Result RL	%REC Limits RPD Lim Diln Fac

Туре	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits RPD	Lim	Diln Fac
BS	QC462701		104.0	96.00		92	73-120		1.000
BSD	QC462702		104.0	100.0		96	73-120 4	22	1.000
SDUP	QC462703	893.3		906.7	11.11		1	20	1.111

R&M Environmental and Infrastructure Engineering, Inc.

Memo

Date: October 10, 2008

To: Masood Ghassemi

From: Rafael Carranza

Re: QA/QC Review of Analytical Data September 25, 2008 Sampling Event Project Number (4009 – 801 Maritime Street, Oakland, CA)

Five groundwater samples and 10 soil samples were collected on September 25, 2008 from Berth 24, 801 Maritime Street, Oakland, CA. Samples were analyzed by Curtis & Tompkins, Ltd (Berkeley, CA) for the following parameters:

Analysis Methods

- Total petroleum hydrocarbon as gasoline (TPH-g) via EPA Method 8015M
- Total petroleum hydrocarbon as diesel (TPH-d) via EPA Method 8015M with silica gel clean-up via EPA Method 3630C
- Benzene, toluene, ethylbenzene and xylenes (BTEX), methyl tert-butyl ether (MTBE), 1,2-Dibromoethane (EDB), 1,2-Dichloroethane (EDC), Methyl tert-Amyl Ether (TAME), Ethyl tert-Butyl Ether (ETBE), Isopropyl Ether (DIPE), Tert-Butyl Alcohol (TBA), and Ethanol (ETOH) via EPA Method 8020.

The following data set was reviewed in support of this investigation:

Data Set	Date Sampled	Matrix
206386	09/25/2008	Groundwater and soil

The quality assurance/quality control (QA/QC) analytical results in association with the analytical results for soil and groundwater samples were evaluated for achievement of any method-specific QA/QC criteria. The QA/QC review results are discussed below.

- 1. <u>Chain-of-Custody</u> No problems were noted with the chain-of-custody (COC) forms.
- <u>Requested Analyses Completed</u> All analyses were performed as requested on the COC. The following requests were noted on the COCs and performed by the laboratory as requested:

Masood Ghassemi October 10, 2008 Page 2

- Silica gel cleanup (SGCU) analysis was performed for all samples collected on September 25, 2008 with detections of TPH-d
- 3. <u>Holding Times</u> All samples were extracted and/or analyzed within the appropriate holding times.
- 4. <u>Sample Preservation</u> No problems were noted with sample preservation.
- 5. <u>Laboratory Method Blanks</u> Method blanks were reviewed to determine the potential for sample cross contamination due to handling within the laboratory. No detections of target compounds were noted in the method blanks.
- 6. <u>Surrogates</u> Surrogates are added for organic analyses. Surrogates are compounds not normally found in the environment that are added (spiked) into samples and analyzed for percent recovery (REC). Maximum and minimum limits on the REC are set by the laboratory for the method used.

Note: Low surrogate recoveries were observed for hexacosane in RM-13. The sample could not be re-extracted because there was no sample left. Low surrogate recoveries were observed for dibromofluoromethane in RM-14-7 due to matrix interference and the low surrogate recovery was confirmed by re-analysis.

7. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) – The LCS and LCSD are analyte-free, lab-created samples that are spiked with a known amount of target analyte(s) and analyzed to verify the extraction process. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine REC. The purpose of the LCS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference. The LCSD is a duplicate preparation and analysis of the LCS. Results of the LCS and LCSD are compared to each other to determine analytical precision using the relative percent difference (RPD). Curtis and Tompkins provided blind spike (BS) and Blind Spike Duplicate (BSD) samples in their analytical report (# 206386), which are also prepared and analyzed similarly to LCS/LCSD samples.

Note: Low recovery was observed for diesel c10-c24 in the LCS for batch 143144 and; the sample could not be re-extracted because there was no sample left. Low surrogate recoveries were observed for the LCS for batch 143144. The sample could not be re-extracted because there was no sample left.

8. <u>Matrix Spike and Matrix Spike Duplicate (MS/MSD)</u> – MS and MSDs are typically run for inorganic and/or organic analyses. A sample is split into three portions (original, MS, and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results are compared against the un-spiked portion of the sample for REC of the spike. Additionally, the results are compared against each other using a RPD to determine reproducibility.

Masood Ghassemi October 10, 2008 Page 3

Note: High recoveries were observed for 1,2-dichloroethane in the MS/MSD for batch 143122; the parent sample was not a project sample; the LCS was within limits, the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated sample.

- 9. <u>Field Duplicate Results</u> No duplicate samples were collected.
- 10. <u>Detection and Quantitation Limits</u> RM-13-7 and RM-14-7 were diluted due to the dark and viscous nature of the sample extracts.
- 11. <u>Conclusion</u> No data were rejected (R) as a result of this data review. The data are usable, as qualified, in reporting the results of this sampling event.
| Curtis
Analytic | & Tompkins, Ltd.
cal Laboratory Since 1878 | Cł | IAIN OF CUS | STODY | | Page of |
|--------------------|--|-----------------------|--|---|--|--------------------------------|
| E
(5 | 2323 Fifth Street
Berkeley, CA 94710
10) 486-0900 Phone
510) 486-0532 Fax | С&Т | OGIN #: 206386 | | MARE (8260) | Analysis |
| | | Sampl | r: Rafael Cawanza | | t ETOH, | |
| Project I | No.: 4009 | Repor | To: rcarranza@randmer | wironmented com | 19 Fee | |
| Project N | Name: Bol Maritim | د
Comp | nv: RAM Environment | / | DIFE | |
| Project F | 4009 | | (TID) 364 -14121 | | | |
| Turnarou | ind Time: Standard | Fax: | (510) 553 -2145 | | 1/5/1/2
2415, 8 | |
| | | | Matrix | Preservative | 32C, I | |
| Lab
No. | Sample ID. | Sampling Date
Time | HCL both Soil Soil Soil Soil Soil Soil Soil Soil | H ₂ SO ₄
HNO ₃
ICE
nonc | HPH-
HPH-
HPH-
HPH-
HPH-
HPH-
HPH-
HPH- | |
| | Rm-12-7 | 8:05 | X 6"Tube | | | |
| - 2 | RM-12-10.5 | 8:10 | X 6" Tube | | | |
| 34 | <u>Km-12</u> | 8:25 | YX YOM VOA | | | |
| 4 | Pho 11 7 | 8:25 | X IXIL amber | $+$ \times | | |
| 5 | $P_{11} = 10.0$ | 8:50 | S 6" Tube | \rightarrow | | |
| 1/ | Rm-11 | 9:10 | le inte | | | |
| 6 | RM-11 | 9:10 | I IVII and an | | | |
| 7 | Rm-13-7 | 10:15 | X all the | | | |
| 8 | RM-13-11 | 10:20 | X 6" Tube | X | | |
| 94- | <u>pm-13</u> | 11:00 | X YXYOMLVOA X | | | |
| 10 | 12W1-13 | 11:00 | X IXILoumber | | X | |
| lotes: | | SAMPLE RECEIRT | X 6" Tube | | | |
| | meetly invoice The | | RELINQUISHED BY: Refael | Chrranza | RECEIVED BY: | |
| Hart a | of Oakland, attn: | | PH 5 9/25/0 | (4:30
き DATE / TIME | gh | - 9/25/08 14:30
DATE / TIME |
| Sohn | yrall | Preservative Correct? | | DATE / TIME | 0 | DATE / TIME |
| | SIGNATURE | | | DATE / TIME | | DATE / TIME |

10

- 17

Page <u>2</u> of <u>2</u>

Analyt	ical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax	C & T	LOG	iIN #	t:	<u>20</u>)6326								NRE (8220)		A	naly	'sis				
Project Project Project Turnaro	No.: 4009 Name: 661 Maritime P.O.: 4009 Dund Time: Standard	Sampl Report Compa Teleph Fax: (er: <u>To:</u> any: one: 510	Ra Vai 12 :: (frae vrar \$M \$10) 553	12	Curranzen Evandmenu Invironment Rey-4431 2145	liver z I	***	tal.	· CUY	<u>vı</u>		wisility gel den up	THMG EDE DATE TRAJETOH, O								
ſ 	r			Ma	trix			F	Pres	erva	ative	•	64		Å								
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste		# of Containers	ЧСГ	H₂SO₄	ΰNΗ	B	Phan	Hat	Tot-	ACD (XAM								
11	Rm-14	11:20		X			4×40mLVOA	X				-	X		Ž		+	-			-	-	
	Rm-14	11:20		X			1×12 amber	· · · · ·				X		X									
12	RM-15-7.5	2:00	\bigotimes				6" Tube					X	\bowtie	X	젖			_				\perp	
	km - 1) - 11	12:03	Ð			_	6" Tube				-	ð.	\Rightarrow	ĸ	Å		_	—	$\left - \right $				_
	040-15	17:35	$ \rightarrow$			\neg	WX UN LYNA				-	Δ	\Diamond	\square	\Im		+	—	+			+	_
132	em-15	12:35	+	父			1× yun vor	\sim				\mathbf{X}		\checkmark	$ \rightarrow $		+		$\left \right $	\rightarrow			+
							ALL DEAL DEAL															+	
			$\left - \right $			\dashv											_	_			-+		
						_																	
	· · · · · · · · · · · · · · · · · · ·														+					+			
Notes:	Dertha Lawre the	SAMPLE RECEIPT	RE	LIN	QUIS	SHI	ED BY: Daf	hol	Cas	nur	14		RE	CEI	VED	BY:			II.	L			
	Direction provide the	Intact Cold						<u>~~</u>	<u> </u>) (1:3	0	-	1				1	-/.	0	14-	30	
Yort a	of Vakland, MMS	On Ice Ambient		1	>1	1	$\searrow 9$	125	æ	D	ATE /		Ξ		γ	~		12	102	3	<u></u>	ATE /	TIME
Joh	nh Prall	Preservative Correct?			· · ·	د 	\mathcal{O}	(D	ATE /	/ TIME	Ξ								D,	<u> </u>	TIME
										D,	ATE /	/ TIM	E								D,	ATE /	TIME

COOLER RECEIPT CHECKLIST

Login # 2063%6 Date Received 9/25/08 Number of coolers Client [2.3]M ENV Project 661 MARITME Date Opened 125/08 By (print) MNILLAGARA (sign) Date Logged in 9 - 26-08 By (print) ENICHOLS (sign) 1. Did cooler come with a shipping slip (airbill, etc)? YES Shipping info YES (circle) on cooler on samples YES 2A. Were custody seals present? YES (circle) on cooler on samples Were B. Were custody seals intact upon arrival? YES NO 3. Were custody seals intact upon arrival? YES NO 4. Were custody papers filled out properly (ink, signed, etc)? YES NO 5. Is the project identifiable from custody papers? (If so fill out top of form). YES 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Type of ice used: Wet Blue/Gel None Temp(°C) Samples Received on ice & cold without a temperature blank Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? YES	
Date Opened	
 Did cooler come with a shipping slip (airbill, etc)?	
 2A. Were custody seals present? YES (circle) on cooler on samples Date How many	Æ
 2.b. Wete clustody seals intact upon arrival?YESNO 3. Were clustody papers dry and intact when received?YESNO 4. Were clustody papers filled out properly (ink, signed, etc)?YES 5. Is the project identifiable from clustody papers? (If so fill out top of form)YES 6. Indicate the packing in cooler: (if other, describe) Bubble WrapFoam blocksBagsNone. Cloth materialCardboardStyrofoamPaper towels 7. Temperature documentation:Type of ice used:WetBlue/GetNone Temp(°C)Samples Received on ice & cold without a temperature blankSamples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?YES (If YES, what time were they transferred to freezer?) 	NO
□ Bubble Wrap □ Foam blocks □ Bags □ None □ Cloth material □ Cardboard □ Styrofoam □ Paper towels 7. Temperature documentation: Type of ice used: □ Wet □ Blue/Gel □ None Temp(°C) □ Samples Received on ice & cold without a temperature blank □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? YES (If YES, what time were they transferred to freezer?)	NC NC NC
Type of ice used: Wet Blue/Gel None Temp(°C) Samples Received on ice & cold without a temperature blank Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? YES (If YES, what time were they transferred to freezer?	
 Samples Received on ice & cold without a temperature blank Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?	
 Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?	
8. Were Method 5035 sampling containers present?	
9. Did all bottles arrive unbroken/unopened?	NO
10. Are samples in the appropriate containers for indicated tests?	NO NO NO
4. Are the samples appropriately processed?	NO
5. Are bubbles > 6mm absent in VOA samples?	N/A
6. Was the client contacted concerning this sample delivery?	N/A
If YES, Who was called?ByByBate:	NO
COMMENTS	
· · · · · · · · · · · · · · · · · · ·	· <u> </u>
P Volume: Client Services	

Section: 1.1.2 Page: loft

		Total	Volatil	e Hydrocarl	bons	
Lab #:	206386			Location:		801 Maritime
Client:	R&M Environme	ntal		Prep:		EPA 5030B
Project#:	4009			Analysis:		EPA 8015B
Matrix:	Water			Sampled:		09/25/08
Units:	ug/L			Received:		09/25/08
Diln Fac:	1.000			Analyzed:		09/27/08
Batch#:	143003					
Field ID: Type:	RM-12 SAMPLE			Lab ID:		206386-003
_						
Analy	rte		Result		RL	
Gasoline C7-C12		ND)		50	
		0				
Surrog	ate	%REC	Limits			
Trifluorotoluene	e (FID)	93	61-149			
Bromofluorobenze	ene (FID)	99	65-146			
Field ID: Type:	RM-11 SAMPLE			Lab ID:		206386-006
Analy	rte		Result		RL	
Gasoline C7-C12		ND)		50	
Surrog	ate	%REC	Limits			
Trifluorotoluene	e (FID)	92	61-149			
Bromofluorobenze	ene (FID)	98	65-146			
Field ID: Type:	RM-13 SAMPLE			Lab ID:		206386-009
Analy	rte		Result		RL	
Gasoline C7-C12		ND)		50	
Surrog	ate	%REC	Limits			
Trifluorotoluene	e (FID)	106	61-149			
Bromofluorobenze	ene (FID)	109	65-146			

		Total	Volatil	e Hydrocar	bons	
Lab #:	206386			Location:		801 Maritime
Client:	R&M Environme	ntal		Prep:		EPA 5030B
Project#:	4009			Analysis:		EPA 8015B
Matrix:	Water			Sampled:		09/25/08
Units:	ug/L			Received:		09/25/08
Diln Fac:	1.000			Analyzed:		09/27/08
Batch#:	143003					
Field ID: Type:	RM-14 SAMPLE			Lab ID:		206386-011
Analy	rte		Result		RL	
Gasoline C7-C12			65		50	
Surrog	ate	%REC	Limits			
Trifluorotoluene	e (FID)	100	61-149			
Bromofluorobenze	ene (FID)	102	65-146			
Field ID: Type:	RM-15 SAMPLE			Lab ID:		206386-015
Analy	rte		Result		RL	
Gasoline C7-C12		ND	1		50	
Surrog	ate	%REC	Limits			
Trifluorotoluene	e (FID)	95	61-149			
Bromofluorobenze	ene (FID)	101	65-146			
Туре:	BLANK			Lab ID:		QC462449
Analy	rte		Result		RL	
Gasoline C7-C12		ND			50	
Surrog	ate	%REC	Limits			
Trifluorotoluene	e (FID)	100	61-149			
Bromofluorobenze	ene (FID)	100	65-146			

	Total Volatil	e Hydrocarbons	
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 5030B
Project#:	4009	Analysis:	EPA 8015B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC462450	Batch#:	143003
Matrix:	Water	Analyzed:	09/27/08
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,129	113	78-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	124	61-149	
Bromofluorobenzene (FID)	102	65-146	

	Total Volatil	e Hydrocarbons	
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 5030B
Project#:	4009	Analysis:	EPA 8015B
Field ID:	RM-12	Batch#:	143003
MSS Lab ID:	206386-003	Sampled:	09/25/08
Matrix:	Water	Received:	09/25/08
Units:	ug/L	Analyzed:	09/27/08
Diln Fac:	1.000		

Type:	MS			Lab ID:		QC462451			
	Analyte	MSS Re	sult	Spike	ed	Result	%REC	Lim	its
Gasolin	e C7-C12	1	8.68	2,000)	1,558	77	65-	120
	Surrogate	%REC	Limits						
Trifluo	protoluene (FID)	136	61-149						
Bromofl	uorobenzene (FID)	116	65-146						
Туре:	MSD			Lab ID:		QC462452			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasolin	le C7-C12		2,000		1,425	70	65-120	9	20
	Surrogate	%REC	Limits						
Trifluo	protoluene (FID)	144	61-149						

121

65-146

Bromofluorobenzene (FID)

		Total	Volatil	.e Hydrocark	oons	
Lab #: Client: Project#:	206386 R&M Environme 4009	ental		Location: Prep: Analysis:	801 Maritime EPA 5030B EPA 8015B	
Matrix: Units: Basis:	Soil mg/Kg as received			Diln [•] Fac: Sampled: <u>Received:</u>	1.000 09/25/08 09/25/08	
Field ID: Type: Lab ID:	RM-12-7 SAMPLE 206386-001			Batch#: Analyzed:	143005 09/27/08	
	Analyte		Pagult		PT.	
Gasoline C	7-C12	NE)		0.96	
	-	0				
Trifluoroto	Surrogate	101	<u>Limits</u> 55-151			
Bromofluoro	obenzene (FID)	94	55-153			
Field ID: Type: Lab ID:	RM-12-10.5 SAMPLE 206386-002			Batch#: Analyzed:	143005 09/27/08	
	Analyte		Result		RL	
Gasoline C'	7-C12	NI)		() 99	
	Surrogate	%REC	Limits			
Trifluoroto	oluene (FID)	104	55-151			
Field ID: Type:	RM-11-7 SAMPLE		<u></u>	Batch#: Analyzed:	143005 09/27/08	
Lab ID.	206386-004					
a 11	Analyte		Result		RI.	
Gasoline C	7-C12	NE)		() 94	
	Surrogate	%REC	Limits			
Trifluoroto	oluene (FID)	111	55-151			
	obenzene (F1D)	108	<u> </u>			
Fleia ID: Type:	KM-11-10.5 Samdif			Batcn#: Analyzed:	143005 09/27/08	
Lab ID:	206386-005			mary zea.	03/27/00	
	Analyte		Result		RT.	
Gasoline C	Analyte 7-C12	NI	Result		RL 1,0	
Gasoline C	Analyte 7-C12	NΓ	Result		RL 1_0	
Gasoline C	Analyte 7-C12 Surrogate	NT %REC 104	Result		RI. 1.0	

		Total	Volatil	e Hydrocarl	bons	
Lab #: Client: Project#:	206386 R&M Environme 4009	ental		Location: Prep: Analysis:	80 EF EF	01 Maritime 2A 5030B 2A 8015B
Matrix: Units: Basis:	Soil mg/Kg as received			Diln Fac: Sampled: Received:	1. 09 09	000 0/25/08 0/25/08
	DM 10 7			Detab#	1 4	2005
Type: Lab ID:	RM-13-7 SAMPLE 206386-007			Analyzed:	09	0/27/08
A	nalyte		Result		RL	
Gasoline C7-	-C12	ND)		1.0	
		0.570	T			
	uene (FID)	105	<u>Limits</u>			
Bromofluorok	penzene (FID)	103	55-153			
Field ID: Type: Lab ID:	RM-13-11 SAMPLE 206386-008			Batch#: Analyzed:	14 09	3091 0/30/08
A	nalyte		Result		RL	
Gasoline C7-	-C12	ND)		1.1	
Su	rrogate	%REC	Limits			
Su Trifluorotol	urrogate Luene (FID)	%REC 88	Limits 55-151			
Su Trifluorotol Bromofluorob	urrogate .uene (FID) benzene (FID)	%REC 88 91	Limits 55-151 55-153			
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID:	RM-14-7 SAMPLE 206386-010	%REC 88 91	Limits 55-151 55-153	Batch#: Analyzed:	14 09	3005 0/27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID:	Irrogate Juene (FID) Denzene (FID) RM-14-7 SAMPLE 206386-010	%REC 88 91	Limits 55-151 55-153 Result	Batch#: Analyzed:	14 09 RL	3005 /27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7-	uene (FID) benzene (FID) RM-14-7 SAMPLE 206386-010 malyte -C12	%REC 88 91	Limits 55-151 55-153 Result 0.98	Batch#: Analyzed:	14 09 RL 0.94	3005 /27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7-	RM-14-7 SAMPLE 206386-010	%REC	Limits 55-151 55-153 Result 0.98 Limits	Batch#: Analyzed:	14 09 RL 0.94	3005 /27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Su Trifluorotol Bromofluorob	RM-14-7 SAMPLE 206386-010 CC12 CC12 CC12 CC12 CC12 CC12 CC12 C	%REC 88 91	Limits 55-151 55-153 Result 0.98 Limits 55-151 55-153	Batch#: Analyzed:	14 09 RL 0.94	3005 9/27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Trifluorotol Bromofluorob Field ID: Type: Lab ID:	RM-14-7 SAMPLE 206386-010 C12 C12 RM-15-7.5 SAMPLE Luene (FID) Senzene (FID) RM-15-7.5 SAMPLE 206386-012	%REC 88 91 %REC 104 111	Limits 55-151 55-153 Result 0.98 Limits 55-151 55-153	Batch#: Analyzed: Batch#: Analyzed:	14 09 RL 0.94	3005 9/27/08 3005 9/27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Su Trifluorotol Bromofluorob Field ID: Type: Lab ID:	RM-14-7 SAMPLE 206386-010 C12 C12 RM-15-7.5 SAMPLE Luene (FID) Denzene (FID) RM-15-7.5 SAMPLE 206386-012	%REC 88 91 %REC 104 111	Limits 55-151 55-153 Result 0.98 Limits 55-151 55-153 Result	Batch#: Analyzed: Batch#: Analyzed:	14 09 RL 0.94	3005 9/27/08 3005 9/27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7-	RM-14-7 SAMPLE 206386-010 Conzene (FID) RM-14-7 SAMPLE 206386-010 Conzene (FID) Conzene (FID) RM-15-7.5 SAMPLE 206386-012 Conzene Conzene	%REC 88 91 %REC 104 111	Limits 55-151 55-153 Result 0.98 Limits 55-151 55-153 Result	Batch#: Analyzed: Batch#: Analyzed:	14 09 RL 0.94 14 09 RL 1.1	3005 9/27/08 3005 9/27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7-	RM-14-7 SAMPLE 206386-010 Conzene (FID) RM-14-7 SAMPLE 206386-010 Conzene (FID) Conzene (FID) RM-15-7.5 SAMPLE 206386-012 Conzene Conzene	%REC 88 91 %REC 104 111 ND %REC	Limits 55-151 55-153 Result 0.98 Limits 55-151 55-153 Result	Batch#: Analyzed: Batch#: Analyzed:	14 09 RL 0.94 14 09 RL 1.1	3005 9/27/08 3005 9/27/08
Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Su Trifluorotol Bromofluorob Field ID: Type: Lab ID: Gasoline C7- Su Trifluorotol	RM-14-7 SAMPLE 206386-010 Conzene (FID) RM-14-7 SAMPLE 206386-010 Conzene (FID) Conzene (FID) RM-15-7.5 SAMPLE 206386-012 Conzene Conzene (FID) RM-15-7.5 SAMPLE 206386-012 Conzene Co	%REC 88 91 %REC 104 111 ND %REC 106	Limits 55-151 55-153 Result 0.98 Limits 55-151 55-153 Result Limits 55-151	Batch#: Analyzed: Batch#: Analyzed:	14 09 RL 0.94 14 09 RL 1.1	3005 0/27/08 3005 0/27/08

		Total	Volatil	e Hydrocar	bons	
Lab #: Client: Project#:	206386 R&M Environme 4009	ental		Location: Prep: Analysis:	801 Maritime EPA 5030B EPA 8015B	
Matrix: Units: Basis:	Soil mg/Kg as received			Diln Fac: Sampled: Received:	1.000 09/25/08 09/25/08	
Field ID:	DM-15-11			Bat ab#.	143005	
Type: Lab ID:	SAMPLE 206386-013			Analyzed:	09/27/08	
A	nalyte		Result		RL	
Gasoline C7-	C12	NI)		0.93	
C111	rrogata	%DEC	Timita			
Trifluorotol Bromofluorob	uene (FID) enzene (FID)	101 100	55-151 55-153			
	· · ·					
Field ID:	RM-15-15			Batch#:	143005	
Lab ID:	206386-014			Analyzed.	09/27/08	
A	nalyte	14. mil	Result		RL	
(-agoline ('/-)		NI I)			
Gaborrile er	612	111			1.1	
Su:	rrogate	%REC	Limits		1.1	
Su: Trifluorotol Bromofluorob	rrogate uene (FID) enzene (FID)	%REC 105 106	Limits 55-151 55-153		1.1	
Su: Trifluorotol Bromofluorob	rrogate uene (FID) enzene (FID)	%REC 105 106	Limits 55-151 55-153		±.±	
Trifluorotol Bromofluorob Type: Lab ID:	rrogate uene (FID) enzene (FID) BLANK QC462458	%REC 105 106	Limits 55-151 55-153	Batch#: Analyzed:	143005 09/27/08	
Trifluorotol Bromofluorob Type: Lab ID:	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte	%REC 105 106	Limits 55-151 55-153 Result	Batch#: Analyzed:	143005 09/27/08 RL	
Trifluorotol Bromofluorob Type: Lab ID: Gasoline C7-0	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12	*REC 105 106	Limits 55-151 55-153 Result	Batch#: Analyzed:	143005 09/27/08 RL 1.0	
Su: Trifluorotol Bromofluorob Type: Lab ID: Gasoline C7-6	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12	*REC 105 106 NI	Limits 55-151 55-153 Result	Batch#: Analyzed:	143005 09/27/08 RL 1.0	
Su: Trifluorotol Bromofluorob Type: Lab ID: Gasoline C7-0 Su: Trifluorotol	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate wene (FID)	%REC 105 106	Limits 55-151 55-153 Result D Limits 55-151	Batch#: Analyzed:	143005 09/27/08 RL 1.0	
Su: Trifluorotol Bromofluorob Type: Lab ID: Gasoline C7-0 Su: Trifluorotol Bromofluorob	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte Cl2 rrogate uene (FID) enzene (FID)	%REC 105 106	Limits 55-151 55-153 Result D Limits 55-151 55-153	Batch#: Analyzed:	143005 09/27/08 RL 1.0	
Su: Trifluorotol Bromofluorob Type: Lab ID: A: Gasoline C7-0 Su: Trifluorotol Bromofluorob	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate uene (FID) enzene (FID)	%REC 105 106	Limits 55-151 55-153 Result D Limits 55-151 55-153	Batch#: Analyzed:	143005 09/27/08 RL 1.0	
Sut Trifluorotol Bromofluorob Type: Lab ID: Ar Gasoline C7- Sut Trifluorotol Bromofluorob Type: Lab ID:	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate uene (FID) enzene (FID) BLANK QC462855	%REC 105 106	Limits 55-151 55-153 Result D Limits 55-151 55-153	Batch#: Analyzed: Batch#: Analyzed:	143005 09/27/08 RL 1.0 143091 09/30/08	
Su: Trifluorotol Bromofluorob Type: Lab ID: A: Gasoline C7 Su: Trifluorotol Bromofluorob Type: Lab ID: Type: Lab ID:	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate uene (FID) enzene (FID) BLANK QC462855 nalyte	*REC 105 106 NI *REC 101 98	Limits 55-151 55-153 Result Limits 55-151 55-153 Result Result	Batch#: Analyzed: Batch#: Analyzed:	143005 09/27/08 RL 1.0 143091 09/30/08 RL	
Su: Trifluorotol: Bromofluorob Type: Lab ID: Type: Lab ID: Type: Lab ID: A: Gasoline C7 Su: Type: Lab ID: Gasoline C7	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate uene (FID) enzene (FID) BLANK QC462855 nalyte C12	*REC 105 106 NI *REC 101 98	Limits 55-151 55-153 Result Limits 55-151 55-153 Result	Batch#: Analyzed: Batch#: Analyzed:	143005 09/27/08 RL 1.0 143091 09/30/08 RL 1.0	
Su: Trifluorotol Bromofluorob Type: Lab ID: Type: Lab ID: Type: Lab ID: Gasoline C7-0 Gasoline C7-0 Gasoline C7-0	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate uene (FID) enzene (FID) BLANK QC462855 nalyte C12	*REC 105 106 NI *REC 101 98	Limits 55-151 55-153 Result 55-151 55-151 55-153 Result	Batch#: Analyzed: Batch#: Analyzed:	143005 09/27/08 RL 1.0 143091 09/30/08 RL 1.0	
Su: Trifluorotol Bromofluorob Type: Lab ID: Trifluorotol Bromofluorob Type: Lab ID: Type: Lab ID: Casoline C7-0 Su: Trifluorotol	rrogate uene (FID) enzene (FID) BLANK QC462458 nalyte C12 rrogate uene (FID) BLANK QC462855 nalyte C12 rrogate uene (FID)	%REC 105 106 NI %REC 101 98 NI %REC 97	Limits 55-151 55-153 Result 55-151 55-153 Result Limits 55-151 55-153	Batch#: Analyzed: Batch#: Analyzed:	143005 09/27/08 RL 1.0 143091 09/30/08 RL 1.0	

	Total Volatile	e Hydrocarbons	
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 5030B
Project#:	4009	Analysis:	EPA 8015B
Туре:	LCS	Basis:	as received
Lab ID:	QC462459	Diln Fac:	1.000
Matrix:	Soil	Batch#:	143005
Units:	mg/Kg	Analyzed:	09/27/08

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	5.575	112	78-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	115	55-151
Bromofluorobenzene (FID)	99	55-153

	Total Volatil	e Hydrocarbons	
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 5030B
Project#:	4009	Analysis:	EPA 8015B
Field ID:	RM-12-7	Diln Fac:	1.000
MSS Lab ID:	206386-001	Batch#:	143005
Matrix:	Soil	Sampled:	09/25/08
Units:	mg/Kg	Received:	09/25/08
Basis:	as received	Analyzed:	09/27/08

Type:	MS			Lab ID:	QC46	2460			
	Analyte	MSS Re	sult	Spike	d	Result	%REC	Limit	s
Gasoline C	C7-C12	<0	.06583	9.	804	9.824	100	29-12	0
	Surrogate	%REC	Limits						
Trifluorot	coluene (FID)	133	55-151						
Bromofluor	robenzene (FID)	103	55-153						
Туре:	MSD			Lab ID:	QC46	2461			
	Analyte		Spiked		Result	%REC	Limits	RPD Li	m
Gasoline C	C7-C12		10.53		9.842	94	29-120	7 34	
	Surrogate	%PFC	T.imite						

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	127	55-151	
Bromofluorobenzene (FID)	101	55-153	

	Total Volatile	e Hydrocarbons	
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 5030B
Project#:	4009	Analysis:	EPA 8015B
Туре:	LCS	Basis:	as received
Lab ID:	QC462857	Diln Fac:	1.000
Matrix:	Soil	Batch#:	143091
Units:	mg/Kg	Analyzed:	09/30/08

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	4.640	93	78-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	128	55-151
Bromofluorobenzene (FID)	113	55-153

	Total Volatil	e Hydrocarbons	
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 5030B
Project#:	4009	Analysis:	EPA 8015B
Field ID:	RM-13-11	Diln Fac:	1.000
MSS Lab ID:	206386-008	Batch#:	143091
Matrix:	Soil	Sampled:	09/25/08
Units:	mg/Kg	Received:	09/25/08
Basis:	as received	Analyzed:	09/30/08

Type:	MS			Lab ID:	QC	462858		
	Analyte	MSS Re	sult	Spike	ed	Result	%REC	Limits
Gasoline	C7-C12	0	.07300	10.	.00	6.949	69	29-120
	Surrogate	%REC	Limits					
Trifluor	otoluene (FID)	134	55-151					
Bromoflue	orobenzene (FID)	100	55-153					
Type:	MSD			Lab ID:	QC	462859		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline	C7-C12		10.31		8.435	81	29-120	16 34

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	142	55-151	
Bromofluorobenzene (FID)	111	55-153	

	Total Extracta	able Hydrocarbo	ns
Lab #: 206386 Client: R&M En Project#: 4009	6 nvironmental	Location: Prep: Analysis:	801 Maritime EPA 3520C EPA 8015B
Matrix:WaterUnits:ug/LDiln Fac:1.000		Sampled: Received:	09/25/08 09/25/08
Field ID: RM-12 Type: SAMPLE		Prepared: Analyzed:	10/03/08
Lab ID: 206386- Batch#: 143256	-003	Cleanup Method:	EPA 3630C
Analyte	Result	RL	
Diesel C10-C24	ND	63	
Surrogato	PPC Timita		
Hexacosane	65 58-127		
Field ID:RM-11Type:SAMPLELab ID:206386-Batch#:143256	-006	Prepared: Analyzed: Cleanup Method:	10/03/08 10/07/08 EPA 3630C
Analyte	Result	RL	
Diesel CIU-C24	ND	63	
Surrogate	%REC Limits		
Hexacosane Field ID: RM-13 Type: SAMPLE Lab ID: 206386- Batch#: 143256	62 58-127 -009	Prepared: Analyzed: Cleanup Method:	10/03/08 10/07/08 EPA 3630C
June liste	Dogult	DI	
Diesel C10-C24		<u>63</u>	
Surrogate	<u>%REC Limits</u>		
hexacosane	31 * 58-127		
Field ID: RM-14 Type: SAMPLE Lab ID: 206386- Batch#: 143256	-011	Prepared: Analyzed: Cleanup Method:	10/03/08 10/06/08 EPA 3630C
Analyte	Result	RL	
Diesel CIU-C24	59 Y	50	
Surrogate Hexacosane	%REC Limits 90 58-127		

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 2

		Total H	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	206386 R&M Environm 4009	nental		Location: Prep: Analysis:	801 Maritime EPA 3520C EPA 8015B
Matrix: Units: Diln Fac:	Water ug/L 1.000			Sampled: Received:	09/25/08 09/25/08
Field ID: Type: Lab ID:	RM-15 SAMPLE 206386-015			Prepared: Analyzed: Cleanup Method:	10/01/08 10/06/08 EPA 3630C
Batch#:	143144				
Anal Diesel C10-C24	yte	NE	Result	<u>RL</u> 50	
Gurro	ato	%DF0	Timita		
Hexacosane	gate	73	58-127		
Type: Lab ID: Batch#:	BLANK QC463074 143144			Prepared: Analyzed: Cleanup Method:	10/01/08 10/02/08 EPA 3630C
Anal	yte	NIT	Result	RL	
Diesei Ciù Cz4		INL.		50	
Surro Hexacosane	gate	<u>%REC</u> 82	<u>Limits</u> 58-127		
Type: Lab ID: Batch#:	BLANK QC463547 143256			Prepared: Analyzed: Cleanup Method:	10/03/08 10/06/08 EPA 3630C
Anal	yte	NT	Result	RL	
Diesel CIU-C24		NL		50	
Surro	gate	%REC	Limits		
ILEAGUSAILE		ופ	J0-IZ/		

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 2

	Total Extracta	ble Hydrocarbo	ns
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 3520C
Project#:	4009	Analysis:	EPA 8015B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC463075	Batch#:	143144
Matrix:	Water	Prepared:	10/01/08
Units:	ug/L	Analyzed:	10/02/08

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	857.8	34 *	52-120
Surrogate	%REC	Limits			
Hexacosane	57 *	58-127			

		Total Extract	able Hydro	carbons				
Lab #:	206386		Location:	80	1 Maritime			
Client:	R&M Environm	nental	Prep:	EF	PA 3520C			
Project#:	4009		Analysis:	EF	PA 8015B			
Field ID:	ZZZZZZZZZ		Batch#:	14	3144			
MSS Lab ID:	206415-001		Sampled:	09	0/24/08			
Matrix:	Water		Received:	09	/26/08			
Units:	ug/L		Prepared:	10	/01/08			
Diln Fac:	1.000		Analyzed:	10	0/03/08			
Type: Analy Diesel C10-C24	MS yte 4	MSS Result 95.26	Lab ID: Spiked 2,500	QC	2463076 Result 1,286	%REC	Limi 43-1	ts 21
Suri	rogate	%REC Limits						
Hexacosane		77 58-127						
Туре:	MSD		Lab ID:	QC	2463077			
Ana	alyte	Spiked		Result	%REC	Limits	RPD	Lim
Diesel C10-C24	4	2,500		1,303	48	43-121	1	36
Suri	rogate	%REC Limits						

Hexacosane 70 58-127

	Total Extracta	ble Hydrocarbo	ns
Lab #:	206386	Location:	801 Maritime
Client:	R&M Environmental	Prep:	EPA 3520C
Project#:	4009	Analysis:	EPA 8015B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC463548	Batch#:	143256
Matrix:	Water	Prepared:	10/03/08
Units:	ug/L	Analyzed:	10/06/08

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	2,020	81	52-120
Surrogate	%REC	Limits			
Hexacosane	87	58-127			

		Total 1	Extracta	able Hydro	ocarbor	ns			
Lab #:	206386			Location:		801 Maritime			
Client:	R&M Environ	mental		Prep:		EPA 3520C			
Project#:	4009			Analysis:		EPA 8015B			
Field ID:	ZZZZZZZZZZ			Batch#:		143256			
MSS Lab ID:	206415-009			Sampled:		09/24/08			
Matrix:	Water			Received:		09/26/08			
Units:	ug/L			Prepared:		10/03/08			
Diln Fac:	1.000			Analyzed:		10/06/08			
Туре:	MS			Lab ID:		QC463549	0.555		
Analy	te	MSS Res	sult	Spiked		Result	%REC	Limi	ts
Diesel Cl0-C24		104	. 7	2,500		2,522	97	43-1	.21
Surr	ogate	%REC	Limits						
Hexacosane		98	58-127						
Туре:	MSD			Lab ID:		QC463550			
Ana	lyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C10-C24			2,500		2,509	96	43-121	1	36

Surrogate	%REC	Limits
Hexacosane	99	58-127

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\280b038, B

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\280a027, A

-\Lims\gdrive\ezchrom\Projects\GC11A\Data\280a018, A

		Total H	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	206386 R&M Environme 4009	ental		Location: Prep: Analysis:	801 Maritime SHAKER TABLE EPA 8015B
Matrix: Units: Basis: Batch#:	Soil mg/Kg as received 143051			Sampled: Received: Prepared: Analyzed:	09/25/08 09/25/08 09/29/08 09/30/08
	DM 10 7				1 000
Field ID: Type: Lab ID:	RM-12-7 SAMPLE 206386-001			Cleanup Method:	EPA 3630C
Ana	lyte		Result	RL	
Diesel C10-C24		ND	1	1.	0
Surro	ogate	%REC	Limits		
Hexacosane	-	103	46-130		
Field ID: Type: Lab ID:	RM-12-10.5 SAMPLE 206386-002			Diln Fac: Cleanup Method:	1.000 EPA 3630C
Ana	lyte		Result	RL	
Ana Diesel C10-C24	lyte		Result 2.0 Y		0
Ana Diesel C10-C24 Surro	lyte	%REC	Result 2.0 Y	RI. 1.	0
Ana Diesel C10-C24 Surro Hexacosane	l <u>yte</u>	%REC 81	Result 2.0 Y Limits 46-130	<u>RI.</u> 1.	0
Ana Diesel C10-C24 Mexacosane Field ID: Type: Lab ID:	RM-11-7 SAMPLE 206386-004	%REC 81	Result 2.0 Y 1.imits 46-130	RI. 1. Diln Fac: Cleanup Method:	0 1.000 EPA 3630C
Ana Diesel C10-C24 Surro Hexacosane Field ID: Type: Lab ID: Ana	RM-11-7 SAMPLE 206386-004	%REC 81	Result 2.0 Y Limits 46-130 Result	RI. 1. Diln Fac: Cleanup Method: RI.	0 1.000 EPA 3630C
Ana Diesel C10-C24 Surro Hexacosane Field ID: Type: Lab ID: Diesel C10-C24	RM-11-7 SAMPLE 206386-004	%REC 81	Result 2.0 Y Limits 46-130 Result	RI. 1. Diln Fac: Cleanup Method: RI. 1.	0 1.000 EPA 3630C
Ana Diesel C10-C24 Surro Hexacosane Field ID: Type: Lab ID: Diesel C10-C24 Surro	RM-11-7 SAMPLE 206386-004	%REC 81 ND %REC	Result 2.0 Y I.imits 46-130 Result	RI. 1. Diln Fac: Cleanup Method: RI. 1.	0 1.000 EPA 3630C 0
Ana Diesel C10-C24 Surro Hexacosane Field ID: Type: Lab ID: Diesel C10-C24 Surro Hexacosane	RM-11-7 SAMPLE 206386-004 Lyte	*REC 81 ND *REC 105	Result 2.0 Y I.imits 46-130 Result 100 Here I.imits 46-130	RI. 1. Diln Fac: Cleanup Method: RI. 1.	0 1.000 EPA 3630C 0
Ana Diesel C10-C24 Surro Hexacosane Field ID: Type: Lab ID: Diesel C10-C24 Surro Hexacosane Field ID: Type: Lab ID:	RM-11-7 SAMPLE 206386-004 Lyte RM-11-10.5 SAMPLE 206386-005	%REC 81 ND %REC 105	Result 2.0 Y Limits 46-130 Result	RI. 1. Diln Fac: Cleanup Method: RI. 1. Diln Fac: Cleanup Method:	0 1.000 EPA 3630C 0 1.000 EPA 3630C
Ana Diesel C10-C24 Surre Hexacosane Field ID: Type: Lab ID: Diesel C10-C24 Surre Hexacosane Field ID: Type: Lab ID:	RM-11-7 SAMPLE 206386-004 Lyte RM-11-10.5 SAMPLE 206386-005	*REC 81 ND *REC 105	Result 2.0 Y 1.imits 46-130 Result 46-130 Result	RI. 1. Diln Fac: Cleanup Method: RI. 1. Diln Fac: Cleanup Method: RL.	0 1.000 EPA 3630C 0 1.000 EPA 3630C
Ana Diesel C10-C24 Surre Hexacosane Field ID: Type: Lab ID: Diesel C10-C24 Surre Hexacosane Field ID: Type: Lab ID: Diesel C10-C24	RM-11-7 SAMPLE 206386-004 Lyte RM-11-10.5 SAMPLE 206386-005 Lyte	*REC 81 ND *REC 105	Result 2.0 Y 1.imits 46-130 Result 46-130	RI. 1. Diln Fac: Cleanup Method: 1. Diln Fac: Cleanup Method: RI. 1.	0 1.000 EPA 3630C 0 1.000 EPA 3630C 0
Ana Diesel C10-C24 Surre Hexacosane Field ID: Type: Lab ID: Diesel C10-C24 Hexacosane Field ID: Type: Lab ID: Ana Diesel C10-C24	RM-11-7 SAMPLE 206386-004 Lyte RM-11-10.5 SAMPLE 206386-005 Lyte	*REC 81 ND *REC 105	Result 2.0 Y 1.imits 46-130 Result 46-130 Result	RI. 1. Diln Fac: Cleanup Method: RI. 1. Diln Fac: Cleanup Method: RI. 1.	0 1.000 EPA 3630C 0 1.000 EPA 3630C 0

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page \ 1 \ of \ 3}$

	Total Extra	ctable Hydrocarb	ons	
Lab #: 206386 Client: R&M Enviro Project#: 4009	nmental	Location: Prep: Analysis:	801 Maritime SHAKER TABLE EPA 8015B	
Matrix:SoilUnits:mg/KgBasis:as receiveBatch#:143051	d	Sampled: Received: Prepared: Analyzed:	09/25/08 09/25/08 09/29/08 09/30/08	
Field ID: RM-13-7 Type: SAMPLE		Diln Fac: Cleanup Method	5.000 EPA 3630C	
Lab 1D: 206386-007				
Analyte	Resul	t RL	5 0	
		-		
Surrogate Hexacosane	<u>%REC Limi</u> 49 46-1	ts 30		
Field ID: RM-13-11 Type: SAMPLE		Diln Fac: Cleanup Method	1.000 EPA 3630C	
Lab ID: 206386-008				
Lab ID: 206386-008 Analyte Discussion	Resul	t RL	0	
Lab ID: 206386-008 Analyte Diesel C10-C24	Resul 11	t <u>RL</u> Y	0	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate	Resul 11 %REC Limi	t RL Y	0	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane	Resul 11 %REC Limi 91 46-1	t RL Y 30	0	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010	Resul 11 %REC Limi 91 46-1	t RL Y 30 Diln Fac: Cleanup Method	5.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte	Resul 11 %REC Limi 91 46-1 Resul	t RL Y J Jiln Fac: Cleanup Method t RL	5.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte Diesel C10-C24	Resul 11 %REC Limi 91 46-1 Kesul 140	t RL Y 30 Diln Fac: Cleanup Method t RL Y	5.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte Diesel C10-C24	Resul 11 %REC Limi 91 46-1 Resul 140 %REC Limi	t RL Y	5.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte Diesel C10-C24 Hexacosane	Resul 11 %REC Limi 91 46-1 Resul 140 %REC Limi 68 46-1	t RL Y 30 Diln Fac: Cleanup Method: t RL Y 30	5.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte Diesel C10-C24 Diesel C10-C24 Surrogate Hexacosane Field ID: Surrogate Hexacosane Field ID: RM-15-7.5 Type: SAMPLE Lab ID: 206386-012	Resul 11 %REC Limi 91 46-1 Resul 140 %REC Limi 68 46-1	t RL Y Diln Fac: Cleanup Method t RL Y S ts 30 Diln Fac: Cleanup Method	5.000 EPA 3630C 5.0 1.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Surrogate Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte Diesel C10-C24 Diesel C10-C24 Surrogate Hexacosane Field ID: Surrogate Hexacosane Field ID: RM-15-7.5 Type: SAMPLE Lab ID: 206386-012 Diesel C10-C24 Diesel C12	Resul 11 %REC Limi 91 46-1 Resul 140 %REC Limi 68 46-1	t RL Y	0 5.000 EPA 3630C 5.0 1.000 EPA 3630C	
Lab ID: 206386-008 Analyte Diesel C10-C24 Diesel C10-C24 Hexacosane Field ID: RM-14-7 Type: SAMPLE Lab ID: 206386-010 Analyte Diesel C10-C24 Lab ID: Surrogate Hexacosane Hexacosane Field ID: RM-15-7.5 Type: SAMPLE Lab ID: 206386-012 Malyte Diesel C10-C24	Resul 11 %REC Limi 91 46-1 Resul 140 %REC Limi 68 46-1 68 46-1 7 88 8 46-1 68 46-1 7 88 8 46-1	t RL Y	5.000 EPA 3630C 0 1.000 EPA 3630C	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 2\ of\ 3}$

	I	otal I	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	206386 R&M Environme 4009	ntal		Location: Prep: Analysis:	801 Maritime SHAKER TABLE EPA 8015B
Matrix: Units: Basis: Batch#:	Soil mg/Kg as received 143051			Sampled: Received: Prepared: Analyzed:	09/25/08 09/25/08 09/29/08 09/30/08
Field ID: Type: Lab ID:	RM-15-11 SAMPLE 206386-013			Diln Fac: Cleanup Method:	1.000 EPA 3630C
A	nalyte		Result	RL	
Diesel C10-C	24		44 Y	1.	0
Su	rrogate	%REC	Limits		
Field ID: Type: Lab ID:	RM-15-15 SAMPLE 206386-014			Diln Fac: Cleanup Method:	1.000 EPA 3630C
Analyte			Result	RL	0
Diesel Ciu-C.	24		/./ ĭ	1.	0
Su	rrogate	%REC	Limits		
Hexacosane		101	46-130		
Type: Lab ID:	BLANK QC462656			Diln Fac: Cleanup Method:	1.000 EPA 3630C
Analyte		NTT-	Result	RL	0
Diesei CIU-C.	24	NL)	1.	U
Su	rrogate	%REC	Limits		
Hexacosane		96	46-130		

Total Extractable Hydrocarbons					
Lab #:	206386	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	SHAKER TABLE		
Project#:	4009	Analysis:	EPA 8015B		
Туре:	LCS	Diln Fac:	1.000		
Lab ID:	QC462657	Batch#:	143051		
Matrix:	Soil	Prepared:	09/29/08		
Units:	mg/Kg	Analyzed:	09/30/08		
Basis:	as received				

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		50.23	46.99	94	51-123
Surrogate	%REC	Limits			
Hexacosane	96	46-130			

		Total I	Extracta	ble Hydrocarbo	ns		
Lab #:	206386	206386		Location:			
Client:	R&M Environm	R&M Environmental 4009		Prep:	SHAKER TABLE		
Project#:	4009			Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	ZZ		Batch#:	143051		
MSS Lab ID:	206325-001			Sampled:	09/25/08		
Matrix:	Soil			Received:	09/25/08		
Units:	mg/Kg			Prepared:	09/29/08		
Basis:	as received			Analyzed:	09/30/08		
Diln Fac:	3.000						
Type: Lab ID:	MS QC462658			Cleanup Method:	EPA 3630C		
Analy	te	MSS Result		Spiked	Result	%REC Limits	
Diesel C10-C24		270	0.1	50.48	229.0	-81 NM	38-140
Surrogate		%REC	Limits				
Hexacosane	MGD	102	46-130	Cleanup Method:	FDA 2620C		
Iype.				creanup mechou.	EFA JUJUC		
Lab ID.	QC462659						
Analyte			Spiked	Result	%REC	Limits	RPD Lim
Diesel C10-C24	-		50.07	299.	0 58 NM	38-140	27 49
Surrogate		%REC	Limits				
Hexacosane		118	46-130				

- \\Lims\gdrive\ezchrom\Projects\GC15B\Data\274b008, B

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\274a009, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\274a007, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\274a008, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\274a006, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\274a010, A

-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\274b006, B

\Lims\gdrive\ezchrom\Projects\GC11A\Data\274a004, A

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-12 143120 Batch#: Lab ID: 206386-003 Sampled: 09/25/08 Matrix: Water Received: 09/25/08 Units: Analyzed: ug/L 10/01/08 Diln Fac: 1.000

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-125	
1,2-Dichloroethane-d4	104	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	107	80-122	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-11 143122 Batch#: Lab ID: 206386-006 Sampled: 09/25/08 Matrix: Water Received: 09/25/08 Units: Analyzed: ug/L 10/01/08 Diln Fac: 1.000

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	106	80-125
1,2-Dichloroethane-d4	101	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	106	80-122

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-13 143125 Batch#: Lab ID: 206386-009 Sampled: 09/25/08 Matrix: Water Received: 09/25/08 Units: Analyzed: ug/L 10/01/08 Diln Fac: 1.000

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-125	
1,2-Dichloroethane-d4	108	80-137	
Toluene-d8	96	80-120	
Bromofluorobenzene	102	80-122	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-14 143125 Batch#: Lab ID: 206386-011 Sampled: 09/25/08 Matrix: Received: 09/25/08 Water Units: Analyzed: ug/L 10/01/08 Diln Fac: 1.000

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	3.3	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Ethanol	ND	1,000
Toluene	1.8	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	1.1	0.5
m,p-Xylenes	2.8	0.5
o-Xylene	1.7	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-125
1,2-Dichloroethane-d4	107	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	106	80-122

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-15 143125 Batch#: Lab ID: 206386-015 Sampled: 09/25/08 Matrix: Received: 09/25/08 Water Units: Analyzed: ug/L 10/01/08 Diln Fac: 1.000

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	3.1	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-125
1,2-Dichloroethane-d4	111	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	102	80-122

		BTXE & Oxygenates		
Lab #: Client:	206386 R&M Environmental	Location: Prep:	801 Maritime EPA 5030B	
Project#:	4009	Analysis:	EPA 8260B	
Matrix: Units:	Water ug/L	Batch#: Analyzed:	143120 10/01/08	
Diln Fac:	1.000	-		

Type: BS		Lab ID: QC	2462987	
Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	150.0	162.8	109	59-152
MTBE	30.00	32.97	110	70-125
Isopropyl Ether (DIPE)	30.00	29.33	98	67-126
Ethyl tert-Butyl Ether (ETBE)	30.00	33.10	110	69-127
1,2-Dichloroethane	30.00	34.47	115	78-132
Benzene	30.00	26.24	87	80-120
Methyl tert-Amyl Ether (TAME)	30.00	31.08	104	80-122
Toluene	30.00	28.44	95	80-120
1,2-Dibromoethane	30.00	29.40	98	80-120
Ethylbenzene	30.00	33.14	110	80-122
m,p-Xylenes	60.00	63.49	106	80-126
o-Xylene	30.00	30.96	103	80-120
Surrogate	%REC Limits			
Dibromofluoromethane	100 80-125			
1,2-Dichloroethane-d4	99 80-137			
Toluene-d8	99 80-120			
Bromofluorobenzene	102 80-122			

Type: BSD			Lab ID:	QC4	62988			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		150.0		169.7	113	59-152	4	20
MTBE		30.00		34.68	116	70-125	5	20
Isopropyl Ether (DIPE)		30.00		32.26	108	67-126	10	20
Ethyl tert-Butyl Ether (ETBE)	30.00		35.05	117	69-127	6	20
1,2-Dichloroethane		30.00		35.60	119	78-132	3	20
Benzene		30.00		29.09	97	80-120	10	20
Methyl tert-Amyl Ether (TAME)	30.00		30.74	102	80-122	1	20
Toluene		30.00		29.07	97	80-120	2	20
1,2-Dibromoethane		30.00		31.03	103	80-120	5	20
Ethylbenzene		30.00		32.04	107	80-122	3	20
m,p-Xylenes		60.00		66.17	110	80-126	4	20
o-Xylene		30.00		31.41	105	80-120	1	20
Surrogate	%REC	Limits						
Dibromofluoromethane	101	80-125						
1,2-Dichloroethane-d4	100	80-137						
Toluene-d8	98	80-120						
Bromofluorobenzene	96	80-122						

BTXE & Oxygenates						
Lab #:	206386	Location:	801 Maritime			
Client:	R&M Environmental	Prep:	EPA 5030B			
Project#:	4009	Analysis:	EPA 8260B			
Туре:	BLANK	Diln Fac:	1.000			
Lab ID:	QC462989	Batch#:	143120			
Matrix:	Water	Analyzed:	10/01/08			
Units:	ug/L					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-125
1,2-Dichloroethane-d4	98	80-137
Toluene-d8	107	80-120
Bromofluorobenzene	115	80-122

BTXE & Oxygenates						
Lab #:	206386	Location:	801 Maritime			
Client:	R&M Environmental	Prep:	EPA 5030B			
Project#:	4009	Analysis:	EPA 8260B			
Туре:	LCS	Diln Fac:	1.000			
Lab ID:	QC462994	Batch#:	143122			
Matrix:	Water	Analyzed:	10/01/08			
Units:	ug/L					

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	100.0	89.38	89	59-152
MTBE	20.00	20.61	103	70-125
Isopropyl Ether (DIPE)	20.00	17.48	87	67-126
Ethyl tert-Butyl Ether (ETBE)	20.00	18.91	95	69-127
1,2-Dichloroethane	20.00	22.53	113	78-132
Benzene	20.00	21.09	105	80-120
Methyl tert-Amyl Ether (TAME)	20.00	20.48	102	80-122
Toluene	20.00	21.27	106	80-120
1,2-Dibromoethane	20.00	21.58	108	80-120
Ethylbenzene	20.00	20.28	101	80-122
m,p-Xylenes	40.00	39.19	98	80-126
o-Xylene	20.00	19.20	96	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-125	
1,2-Dichloroethane-d4	85	80-137	
Toluene-d8	97	80-120	
Bromofluorobenzene	94	80-122	

BTXE & Oxygenates					
Lab #:	206386	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 5030B		
Project#:	4009	Analysis:	EPA 8260B		
Туре:	BLANK	Diln Fac:	1.000		
Lab ID:	QC462996	Batch#:	143122		
Matrix:	Water	Analyzed:	10/01/08		
Units:	ug/L				

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-125
1,2-Dichloroethane-d4	89	80-137
Toluene-d8	98	80-120
Bromofluorobenzene	99	80-122

BTXE & Oxygenates						
Lab #: Client:	206386 R&M Environmental	Location: Prep:	801 Maritime EPA 5030B			
Project#:	4009	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	143125			
Diln Fac:	1.000	Anaryzeu	10/01/08			

Type: BS			Lab ID:	QC4	163005		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		100.0		89.24	89	59-152	
MTBE		20.00		16.78	84	70-125	
Isopropyl Ether (DIPE)		20.00		18.92	95	67-126	
Ethyl tert-Butyl Ether (ETBE)		20.00		20.07	100	69-127	
1,2-Dichloroethane		20.00		20.52	103	78-132	
Benzene		20.00		20.74	104	80-120	
Methyl tert-Amyl Ether (TAME)		20.00		21.26	106	80-122	
Toluene		20.00		20.02	100	80-120	
1,2-Dibromoethane		20.00		19.71	99	80-120	
Ethylbenzene		20.00		21.33	107	80-122	
m,p-Xylenes		40.00		42.48	106	80-126	
o-Xylene		20.00		21.01	105	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	99	80-125					
1,2-Dichloroethane-d4	106	80-137					
Toluene-d8	98	80-120					
Bromofluorobenzene	99	80-122					

Type:	BSD			Lab ID:	QC46	53006			
1	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl A	Alcohol (TBA)		100.0		89.50	90	59-152	0	20
MTBE			20.00		16.37	82	70-125	2	20
Isopropyl E	ther (DIPE)		20.00		18.14	91	67-126	4	20
Ethyl tert-	Butyl Ether (ETBE)		20.00		20.50	102	69-127	2	20
1,2-Dichlor	oetĥane		20.00		19.97	100	78-132	3	20
Benzene			20.00		19.58	98	80-120	б	20
Methyl tert	-Amyl Ether (TAME)		20.00		20.73	104	80-122	3	20
Toluene	1		20.00		20.04	100	80-120	0	20
1,2-Dibromo	ethane		20.00		19.48	97	80-120	1	20
Ethylbenzen	e		20.00		21.13	106	80-122	1	20
m,p-Xylenes			40.00		43.23	108	80-126	2	20
o-Xylene			20.00		19.79	99	80-120	6	20
St	urrogate	%REC	Limits						
Dibromofluo	romethane	99	80-125						
1,2-Dichlor	oethane-d4	101	80-137						
Toluene-d8		98	80-120						
Bromofluorol	benzene	98	80-122						

BTXE & Oxygenates						
Lab #:	206386	Location:	801 Maritime			
Client:	R&M Environmental	Prep:	EPA 5030B			
Project#:	4009	Analysis:	EPA 8260B			
Туре:	BLANK	Diln Fac:	1.000			
Lab ID:	QC463007	Batch#:	143125			
Matrix:	Water	Analyzed:	10/01/08			
Units:	ug/L					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Ethanol	ND	1,000	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-125
1,2-Dichloroethane-d4	105	80-137
Toluene-d8	99	80-120
Bromofluorobenzene	99	80-122

BTXE & Oxygenates							
Lab #: Client:	206386 R&M Environmental	Location: Prep:	801 Maritime EPA 5030B				
Project#:	4009	Analysis:	EPA 8260B				
Field ID:	ZZZZZZZZZ	Batch#:	143125				
MSS Lab ID:	206379-015	Sampled:	09/24/08				
Matrix:	Water	Received:	09/25/08				
Units:	ug/L	Analyzed:	10/02/08				
Diln Fac:	1.000	-					

Type:

MS

Lab ID:

QC463107

Analyte	MSS	Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)		<2.015	125.0	97.08	78	65-150
MTBE		<0.1543	25.00	19.14	77	74-124
Isopropyl Ether (DIPE)		<0.1648	25.00	22.84	91	73-127
Ethyl tert-Butyl Ether (ETBE)		<0.1427	25.00	24.55	98	74-125
1,2-Dichloroethane		<0.1266	25.00	24.71	99	80-133
Benzene		<0.1121	25.00	25.92	104	80-121
Methyl tert-Amyl Ether (TAME)		<0.1000	25.00	26.94	108	80-120
Toluene		<0.1078	25.00	25.84	103	80-120
1,2-Dibromoethane		<0.1097	25.00	23.76	95	80-120
Ethylbenzene		<0.1000	25.00	28.38	114	80-120
m,p-Xylenes		<0.1257	50.00	57.85	116	80-121
o-Xylene		<0.1000	25.00	26.56	106	80-120
• • • • • • • • • • • • • • • • • • •						
Surrogate	%REC	Limits				
Dibromofluoromethane	98	80-125				
1,2-Dichloroethane-d4	110	80-137				
Toluene-d8	101	80-120				
Bromofluorobenzene	104	80-122				

Type: MSD			Lab ID:	QC	463108			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		111.7	89	65-150	14	20
MTBE		25.00		20.50	82	74-124	7	20
Isopropyl Ether (DIPE)		25.00		23.03	92	73-127	1	20
Ethyl tert-Butyl Ether (ETBE)		25.00		24.82	99	74-125	1	20
1,2-Dichloroethane		25.00		25.21	101	80-133	2	20
Benzene		25.00		25.39	102	80-121	2	20
Methyl tert-Amyl Ether (TAME)		25.00		25.91	104	80-120	4	20
Toluene		25.00		25.68	103	80-120	1	20
1,2-Dibromoethane		25.00		23.85	95	80-120	0	20
Ethylbenzene		25.00		26.50	106	80-120	7	20
m,p-Xylenes		50.00		54.01	108	80-121	7	20
o-Xylene		25.00		26.41	106	80-120	1	20
Surrogate	%REC	Limits						
Dibromofluoromethane	98	80-125						
1 2-Dichloroethane-d4	108	80-137						
Toluene-d8	97	80-120						
Bromofluorobenzene	100	80-122						

10/01/08

Batch QC Report

BTXE & Oxygenates							
Lab #:	206386	Location:	801 Maritime				
Client:	R&M Environmental	Prep:	EPA 5030B				
Project#:	4009	Analysis:	EPA 8260B				
Field ID:	ZZZZZZZZZ	Diln Fac:	3.333				
MSS Lab ID:	206318-005	Batch#:	143122				
Matrix:	Water	Sampled:	09/24/08				
Units:	ug/L	Received:	09/25/08				

Analyzed:

Type: Lab ID: MS QC463109

Analyte	אפפ	Pagult	Sniked	Pagult	% ወ ፑ ሮ	Limita
	Maa			ALL		
tert-Butyl Alconol (TBA)		13.15	416./	455.6	106	65-150
MTBE		<0.2000	83.33	98.74	118	74-124
Isopropyl Ether (DIPE)		<0.2000	83.33	90.87	109	73-127
Ethyl tert-Butyl Ether (ETBE)		<0.2000	83.33	94.91	114	74-125
1,2-Dichloroethane		<0.2000	83.33	123.0	148 *	80-133
Benzene		<0.2000	83.33	99.66	120	80-121
Methyl tert-Amyl Ether (TAME)		<0.2000	83.33	93.27	112	80-120
Toluene		<0.2000	83.33	98.55	118	80-120
1,2-Dibromoethane		<0.2000	83.33	96.84	116	80-120
Ethylbenzene		<0.2000	83.33	91.87	110	80-120
m,p-Xylenes		<0.2088	166.7	175.2	105	80-121
o-Xylene		<0.2000	83.33	85.17	102	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	109	80-125				

Darrogado	01(20	
Dibromofluoromethane	109	80-125
1,2-Dichloroethane-d4	107	80-137
Toluene-d8	105	80-120
Bromofluorobenzene	94	80-122

T	ι.,	m	\sim	٠		
т	y	Ρ	e	٠		
	-	-				
_				-	_	

Bromofluorobenzene

MSD

Analyzed: 10/02/08 QC463110 Lab ID: Spiked Analyte Result %REC Limits RPD Lim 415.4 65-150 74-124 tert-Butyl Alcohol (TBA) 416.7 83.33 97 9 20 94.20 113 20 MTBE 5 Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE) 83.33 86.05 103 73-127 5 20 5 90.22 108 74-125 20 83.33 1,2-Dichloroethane 83.33 113.7 136 * 80-133 8 20 80-121 20 Benzene 95.31 83.33 114 4 Methyl tert-Amyl Ether (TAME) 83.33 89.66 108 80-120 4 20 Toluene 83.33 94.46 113 80-120 4 20 93.57 80-120 20 1,2-Dibromoethane 3 83.33 112 Ethylbenzene 83.33 88.89 107 80-120 3 20 m,p-Xylenes 169.0 80-121 80-120 20 166.7 101 4 83.78 o-Xylene 83.33 101 2 20 %REC Limits Surrogate 80-125 80-137 Dibromofluoromethane 105 100 1,2-Dichloroethane-d4 Toluene-d8 102 80-120

*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

96

80-122

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-12-7 Diln Fac: 0.9940 Lab ID: 206386-001 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 09/25/08 Units: ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Ethanol	ND	990	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	86	75-129	
1,2-Dichloroethane-d4	100	74-133	
Toluene-d8	107	80-120	
Bromofluorobenzene	91	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-12-10.5 Diln Fac: 0.9560 Lab ID: 206386-002 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 Units: ug/Kg Received: 09/25/08 Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Ethanol	ND	960	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	87	75-129	
1,2-Dichloroethane-d4	100	74-133	
Toluene-d8	109	80-120	
Bromofluorobenzene	90	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-11-7 Diln Fac: 0.9276 Lab ID: 206386-004 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 09/25/08 Units: ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	93	
MTBE	ND	4.6	
Isopropyl Ether (DIPE)	ND	4.6	
Ethyl tert-Butyl Ether (ETBE)	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Methyl tert-Amyl Ether (TAME)	ND	4.6	
Ethanol	ND	930	
Toluene	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	88	75-129	
1,2-Dichloroethane-d4	102	74-133	
Toluene-d8	107	80-120	
Bromofluorobenzene	91	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-11-10.5 Diln Fac: 0.9363 Lab ID: 206386-005 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 Units: 09/25/08 ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	94	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Ethanol	ND	940	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	86	75-129	
1,2-Dichloroethane-d4	98	74-133	
Toluene-d8	107	80-120	
Bromofluorobenzene	90	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-13-7 Diln Fac: 0.9960 Lab ID: 206386-007 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 09/25/08 Units: ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Ethanol	ND	1,000	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	87	75-129	
1,2-Dichloroethane-d4	101	74-133	
Toluene-d8	108	80-120	
Bromofluorobenzene	94	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-13-11 Diln Fac: 1.000 Lab ID: 206386-008 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 Units: 09/25/08 ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Ethanol	ND	1,000	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	88	75-129	
1,2-Dichloroethane-d4	100	74-133	
Toluene-d8	109	80-120	
Bromofluorobenzene	92	79-127	

BTXE & Oxygenates 801 Maritime Lab #: 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-14-7 Diln Fac: 0.9766 Lab ID: 206386-010 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 Units: ug/Kg Received: 09/25/08 Basis: as received Analyzed: 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	98	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Ethanol	ND	980	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	42 *	75-129	
1,2-Dichloroethane-d4	100	74-133	
Toluene-d8	107	80-120	
Bromofluorobenzene	93	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B Field ID: RM-15-7.5 Diln Fac: 0.9901 Lab ID: 206386-012 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 09/25/08 Units: ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Ethanol	ND	990	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	88	75-129	
1,2-Dichloroethane-d4	98	74-133	
Toluene-d8	107	80-120	
Bromofluorobenzene	93	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B RM-15-11 Field ID: Diln Fac: 0.9804 Lab ID: 206386-013 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 Units: ug/Kg Received: 09/25/08 Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	98	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Ethanol	ND	980	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	87	75-129	
1,2-Dichloroethane-d4	100	74-133	
Toluene-d8	105	80-120	
Bromofluorobenzene	91	79-127	

BTXE & Oxygenates Lab #: 801 Maritime 206386 Location: Client: R&M Environmental Prep: EPA 5030B Project#: 4009 Analysis: EPA 8260B RM-15-15 Field ID: Diln Fac: 1.000 Lab ID: 206386-014 Batch#: 143025 Matrix: Soil Sampled: 09/25/08 Units: 09/25/08 ug/Kg Received: Basis: Analyzed: as received 09/29/08

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Ethanol	ND	1,000	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	87	75-129	
1,2-Dichloroethane-d4	99	74-133	
Toluene-d8	107	80-120	
Bromofluorobenzene	92	79-127	

BTXE & Oxygenates					
Lab #:	206386	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 5030B		
Project#:	4009	Analysis:	EPA 8260B		
Туре:	BLANK	Basis:	as received		
Lab ID:	QC462522	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	143025		
Units:	ug/Kg	Analyzed:	09/29/08		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Ethanol	ND	1,000	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	87	75-129
1,2-Dichloroethane-d4	95	74-133
Toluene-d8	108	80-120
Bromofluorobenzene	91	79-127

BTXE & Oxygenates					
Lab #:	206386	Location:	801 Maritime		
Client:	R&M Environmental	Prep:	EPA 5030B		
Project#:	4009	Analysis:	EPA 8260B		
Туре:	LCS	Basis:	as received		
Lab ID:	QC462523	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	143025		
Units:	ug/Kg	Analyzed:	09/29/08		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	119.9	96	58-141
MTBE	25.00	24.51	98	67-127
Isopropyl Ether (DIPE)	25.00	23.44	94	68-126
Ethyl tert-Butyl Ether (ETBE)	25.00	24.88	100	66-128
1,2-Dichloroethane	25.00	24.67	99	72-127
Benzene	25.00	28.50	114	80-123
Methyl tert-Amyl Ether (TAME)	25.00	27.22	109	73-130
Toluene	25.00	29.22	117	80-124
1,2-Dibromoethane	25.00	28.07	112	80-122
Ethylbenzene	25.00	26.17	105	80-127
m,p-Xylenes	50.00	52.87	106	80-125
o-Xylene	25.00	26.14	105	80-122

Surrogate	%REC	imits	
Dibromofluoromethane	91	5-129	
1,2-Dichloroethane-d4	87	4-133	
Toluene-d8	105	0-120	
Bromofluorobenzene	91	9-127	

BTXE & Oxygenates								
Lab #:	206386	Location:	801 Maritime					
Client:	R&M Environmental	Prep:	EPA 5030B					
Project#:	4009	Analysis:	EPA 8260B					
Field ID:	RM-12-7	Diln Fac:	0.9940					
MSS Lab ID:	206386-001	Batch#:	143025					
Matrix:	Soil	Sampled:	09/25/08					
Units:	ug/Kg	Received:	09/25/08					
Basis:	as received	Analyzed:	09/30/08					

Type: MS			Lab ID:	QC462669		
Analyte	MSS	Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)		<19.88	248.5	279.0	112	41-130
MTBE		<0.9940	49.70	45.70	92	51-121
Isopropyl Ether (DIPE)		<0.9940	49.70	42.37	85	48-120
Ethyl tert-Butyl Ether (E	FBE)	<0.9940	49.70	45.46	91	49-122
1,2-Dichloroethane		<0.9940	49.70	45.95	92	50-120
Benzene		<0.9940	49.70	50.98	103	54-120
Methyl tert-Amyl Ether (TA	AME)	<0.9940	49.70	47.46	95	52-124
Toluene		<0.9940	49.70	52.62	106	50-120
1,2-Dibromoethane		<0.9940	49.70	52.30	105	50-120
Ethylbenzene		<0.9940	49.70	46.28	93	46-120
m,p-Xylenes		<0.9940	99.40	92.87	93	44-120
o-Xylene		<0.9940	49.70	46.88	94	45-120
Surrogate	%REC	Limits				
Dibromofluoromethane	91	75-129				
1,2-Dichloroethane-d4	87	74-133				
Toluene-d8	103	80-120				
Bromofluorobenzene	90	79-127				

Type: MSD			Lab ID:	QC4	62670			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		248.5		282.4	114	41-130	1	37
MTBE		49.70		48.29	97	51-121	6	29
Isopropyl Ether (DIPE)		49.70		44.77	90	48-120	6	29
Ethyl tert-Butyl Ether (ETBE)		49.70		47.87	96	49-122	5	29
1,2-Dichloroethane		49.70		47.68	96	50-120	4	25
Benzene		49.70		52.71	106	54-120	3	25
Methyl tert-Amyl Ether (TAME)		49.70		50.81	102	52-124	7	27
Toluene		49.70		54.73	110	50-120	4	28
1,2-Dibromoethane		49.70		53.99	109	50-120	3	28
Ethylbenzene		49.70		47.84	96	46-120	3	29
m,p-Xylenes		99.40		97.20	98	44-120	5	30
o-Xylene		49.70		48.69	98	45-120	4	30
Surrogate	%REC	Limits						
Dibromofluoromethane	90	75-129						
1.2-Dichloroethane-d4	86	74-133						
Toluene-d8	103	80-120						
Bromofluorobenzene	91	79-127						

APPENDIX C

DRILLING PERMIT DOCUMENTATION

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	l on: 09/16/2008 By jamesy	Permit N Permits Valid from 09	Numbers: W2008-0672 /25/2008 to 09/25/2008
Application Id: Site Location:	1221596272496 801 Maritime Street,	City of Project Site:	Dakland
Project Start Date: Requested Inspection Scheduled Inspection	Oakland, CA 09/25/2008 1:09/25/2008 1:09/25/2008 at 11:30 AM (Contact your inspecto	Completion Date: 0 or, Ron Smalley at (510) 670	9/25/2008 0-5407, to confirm.)
Applicant:	R&M Environmental - Rafael Carranza	Phone: 5	10-553-2144
Property Owner:	7994 Capwell Drive, Oakland, CA 94621 Port of Oakland Port of Oakland 530 Water Street, Oakland, CA 94607	Phone: 5	10-627-1373
Client: Contact:	** same as Property Owner ** Rafael Carranza	Phone: 5 Cell: 5	10-553-2149 10-364-4431
	Receipt Number: WR2008-0329 Payer Name : Dr Masood Ghassemi	Total Due: Total Amount Paid: _ Paid Bv: VISA	\$230.00 \$230.00 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 5 Boreholes Driller: Gregg Drilling - Lic #: 485165 - Method: DP

Work Total: \$230.00

Specifications										
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth					
Number			Boreholes							
W2008-	09/16/2008	12/24/2008	5	2.00 in.	15.00 ft					
0672										

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled,

Alameda County Public Works Agency - Water Resources Well Permit

properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX D

BORING LOGS

R&M EIE, Inc.

Borehole No: <u>RM-11</u>

Date: <u>9/25/08</u>

SITE INFORMATION	SUBCONTRACTOR INFORMATION
Name: Additional Site Investigation	Drilling Company: Gregg Drilling
Location: 801 Maritime Street, Oakland, CA	Driller(s): Brandon Moses
Project No: 4009	Coring Equipment: DP-12
Logged By: Jim Gribi, PG	Sampler (Type/Diameter): 2" dual-tube linners
Reviewed By:	Borehole Diameter:

				(.х.)			
Sample ID	Time of Sampling	Depth (ft-bgs)	PID (ppm)	Water Level (apprc	Group Symbol	SOIL DESCRIPTION	Backfill Material ²
		-1					
		-2					
		-3				0-6.5' Grey-brown sandy gravel, loose, some asphalt pieces, no odor, no staining	
		-4			GP		
		-5					
		-6					
RM-11-7	8:50	-7	0				
RM-11 (water)	9:10	-8		8'			С
		-9			SP	6.5-10.5' Tan-light brown sand, fine-medium sized, loose, wet @ 8', no odor, no staining	
RM-11-10.5	8:55	-10	0				
		-11					
		-12					
		-13			SM	10.5-15' Olive grey silty sand, very fine-medium sized, wet, no odor, no staining	
		-14					
		-15	0			Stopped at 15 ft	

1. Referencing USCS Chart

2. Bentonite (B); Cement (C); Sand (S); Asphalt (A)

R&M EIE, Inc.

Borehole No: <u>RM-12</u>

Date: <u>9/25/08</u>

SITE INFORMATION	SUBCONTRACTOR INFORMATION
Name: Additional Site Investigation	Drilling Company: Gregg Drilling
Location: 801 Maritime Street, Oakland, CA	Driller(s): Brandon Moses
Project No: 4009	Coring Equipment: DP-12
Logged By: Jim Gribi, PG	Sampler (Type/Diameter): 2" dual-tube linners
Reviewed By:	Borehole Diameter:

				ух.)	UNIFIED SOIL CLASSIFICATION SYSTEM 1		
Sample ID	Time of Sampling	Depth (ft-bgs)	PID (ppm)	Water Level (appro	Group Symbol	SOIL DESCRIPTION	Backfill Material ²
		-1					
		-2					
		-3				, 0-6.5' brown-grey brown sandy gravel, loose, moist, some large clasts, some asphalt pieces, no odor	
		-4			GP		
		-5					
		-6					
RM-12-7	8:05	-7	0				
RM-12 (water)	8:25	-8		8'			С
		-9			SP	6.5-10.5' brown-grey brown sand, fine-medium sized, loose, wet @ ~8', no odor, no staining	
RM-12-10.5	8:10	-10	0				
		-11					
		-12			ML	10.5-11.5° dark grey sandy clay, soft, wet, no odor, no staining	
		-13					
		-14			SP	11.5-15 grey sand, fine-medium sized, loose, wet, no odor, no staining	
		-15	0			Stopped at 15 ft	

1. Referencing USCS Chart

2. Bentonite (B); Cement (C); Sand (S); Asphalt (A)

R&M EIE, Inc.

Borehole No: <u>RM-13</u>

Date: <u>9/25/08</u>

SITE INFORMATION	SUBCONTRACTOR INFORMATION
Name: Additional Site Investigation	Drilling Company: Gregg Drilling
Location: 801 Maritime Street, Oakland, CA	Driller(s): Brandon Moses
Project No: 4009	Coring Equipment: DP-12
Logged By: Jim Gribi, PG	Sampler (Type/Diameter): 2" dual-tube linners
Reviewed By:	Borehole Diameter:

				(.X	UNIFIED SOIL CLASSIFICATION SYSTEM 1		
Sample ID	Time of Sampling	Depth (ft-bgs)	PID (ppm)	Water Level (appro	Group Symbol	SOIL DESCRIPTION	Backfill Material ²
		-1					
		-2					
		-3				P 0-7.5' brown-grey brown sandy gravel, loose-firm, some concrete clasts, no odor, no staining	
		-4			GP		
		-5					
		-6					
RM-13-7	10:15	-7	0				
RM-13 (water)	11:00	-8		7.5'			С
		-9					
		-10				7.5.15 alive grow and fine medium sized lesse firm wat @ 7.5' no adar	
RM-13-11.5	10:20	-11	0			no staining	
		-12			SP	to refusal @ 3.5'; 9:50 - had to move boring location 9' south of original boring due to refusal @ 3.5'; 9:50 - had to move boring once again 6' east of original	
		-13	boring due to refusal @ 6.5')	boring due to relusar @ 6.5)			
		-14					
		-15	0			Stopped at 15 ft	

1. Referencing USCS Chart

2. Bentonite (B); Cement (C); Sand (S); Asphalt (A)

R&M EIE, Inc.

Borehole No: <u>RM-14</u>

Date: <u>9/25/08</u>

SITE INFORMATION	SUBCONTRACTOR INFORMATION
Name: Additional Site Investigation	Drilling Company: Gregg Drilling
Location: 801 Maritime Street, Oakland, CA	Driller(s): Brandon Moses
Project No: 4009	Coring Equipment: DP-12
Logged By: Jim Gribi, PG	Sampler (Type/Diameter): 2" dual-tube linners
Reviewed By:	Borehole Diameter:

				(.X	UNIFIED SOIL CLASSIFICATION SYSTEM 1		
Sample ID	Time of Sampling	Depth (ft-bgs)	PID (ppm)	Water Level (appro	Group Symbol	SOIL DESCRIPTION	Backfill Material ²
		-1			- GW	0-6' asphalt and grey brown gravel, loose, some asphalt and concrete pieces, no odor, no staining	
		-2					
		-3					
		-4					
		-5					
		-6					C
RM-14-7	11:00	-7	0		concrete fill	6-8' light grey concrete rubble, dry, no odor, no staining	-
RM-14 (water)	11:20	-8					
		-9			no recovery	8-12' no recovery	
		-10					
		-11					
		-12				Stopped at 12 ft	
BORING LOG

R&M EIE, Inc.

Borehole No: <u>RM-15</u>

Date: <u>9/25/08</u>

SITE INFORMATION	SUBCONTRACTOR INFORMATION
Name: Additional Site Investigation	Drilling Company: Gregg Drilling
Location: 801 Maritime Street, Oakland, CA	Driller(s): Brandon Moses
Project No: 4009	Coring Equipment: DP-12
Logged By: Jim Gribi, PG	Sampler (Type/Diameter): 2" dual-tube linners
Reviewed By:	Borehole Diameter:

				іх.)		UNIFIED SOIL CLASSIFICATION SYSTEM ¹	
Sample ID	Time of Sampling	Depth (ft-bgs)	PID (ppm)	Water Level (appro	Group Symbol	SOIL DESCRIPTION	Backfill Material ²
		-1					
		-2					
		-3					
		-4			GM	0-7.5' asphalt and light reddish brown gravel, sandy, silty, dry-moist, no	
		-5				odor, no staining	
		-6					
RM-15-7.5	12:00	-7	0				
RM-15 (water)	12:35	-8		8'			
		-9					U
		-10					
RM-15-11	12:05	-11	0				
		-12			SC	7.5-16' olive grey clayey sand, silty, very fine-fine sized, wet @ 8', loose, no odor, no staining	
		-13					
		-14					
RM-15-15	12:10	-15	0				
		-16				Stopped at 16 ft	

1. Referencing USCS Chart

2. Bentonite (B); Cement (C); Sand (S); Asphalt (A)

APPENDIX E

LETTER FROM ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY TO PORT OF OAKLAND (DECEMBER 20, 2006)

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

December 20, 2006

Mr. John Prall Port of Oakland 530 Water St. Oakland, CA 94604-2064 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Dear Mr. Prall:

Subject: Fuel Leak Case RO0000019, Port of Oakland, 801 Maritime Street, Oakland, CA 94607

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the referenced site and your May 31, 2006 response letter to the County's March 24, 2006 technical request letter. We have determined that additional information is needed to progress this site to closure. We request that you address the following technical comments and submit the technical report requested below.

TECHNICAL COMMENTS

- 1. Installation of Monitoring Wells- Although one monitoring well was installed down-gradient of the former underground tanks, we believe that the lone well is insufficient to assess potential releases from the three former underground tanks. Therefore, we request that a minimum of two additional wells be installed to determine site-specific gradient and start quarterly monitoring.
- 2. The limits of soil contamination were unable to be determined during the tank removal. Soil boring contamination in B-2 and C-2 were reported as 3600 ppm and 1600 ppm TPHd, respectively. Because of the absence of any additional data, we request that borings be advanced to define the extent of petroleum contamination in these areas.

TECHNICAL REPORT REQUEST

Please submit the requested report according to the following schedule:

- January 30, 2007- Work plan for delineation of soil contamination and monitoring well installations.
- April 30, 2007- Monitoring well installation and sampling report

ELECTRONIC SUBMITTAL OF REPORTS

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) required submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the

Mr. John Prall December 20, 2006 Page 2 of 2

SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground

storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting</u>).

In order to facilitate electronic correspondence, we request that you provide up to date electronic mail addresses for all responsible and interested parties. Please provide current electronic mail addresses and notify us of future changes to electronic mail addresses by sending an electronic mail message to me at barney.chan@acgov.org.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification.

Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

If you have any questions, please call me at (510) 567-6765.

Sincerely,

Barneý-M. Chan Hazardous Materials Specialist

cc: files, D. Drogos 12_19_06 801 Maritime

APPENDIX F

LETTER FROM ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY TO PORT OF OAKLAND (JULY 28, 2008)

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

July 28, 2008

Port of Oakland Mr. John Prall 530 Water Street, 4th floor Oakland, CA 94607-3524

Subject: Fuel Leak Case No. RO000019 (Global ID # T0600101102), Port of Oakland, 801 Maritime Street, Oakland CA

Dear Mr. Prall:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site and the document entitled, "Response to Comments," received February 11, 2008. As stated previously in a correspondence from ACEH dated March 2006, the limits of soil contamination were unable to be determined after the UST removal. Residual contamination in soil boring B-2 and C-2 detected TPHd at concentrations up to 3,600 ppm and 1,600 ppm, at 9.5 feet bgs. Therefore, ACEH requests that additional soil samples be collected in the source area to define the vertical extent of contamination in the source area.

We request that you perform the proposed work, and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to <u>steven.plunkett@acgov.org</u>) prior to the start of field activities.

TECHNICAL COMMENTS

- 1. Source Area Characterization. Currently, the vertical extent of contamination in the source area is undefined. Residual contamination beneath the former USTs was detected at 9.5 feet bgs, which was the maximum depth of the excavation. The purpose of contaminant source characterization is to determine the nature and extent of petroleum impacted soils (residual phase), and hydrocarbons dissolved in groundwater (aqueous phase). We request that one soil boring be installed between B-2 and C-2 to a depth of 15 feet bgs and soil and samples must be collected at five foot intervals until the total depth of 15 feet.
- 2. Soil and Groundwater Plume Definition. ACEH agrees that supplemental soil and groundwater data downgradient of RM-5 will be useful to help define the downgradient extent of the dissolved phase contamination plume. We concur with the Port's recommendation to install four soil borings downgradient of RM-5. Report the results of your work in the Soil and Water Investigation Report requested below.
- 3. Soil Sampling and Analysis. ACEH requests soil samples be collected from all soil borings at changes in lithology, areas of obvious hydrocarbon contamination or when elevated PID readings occurs. If no changes in lithology, obvious contamination or elevated PID reading

John Prall July 26, 2008 Page 2

> occurs, soil samples shall be collected at 5 feet interval until the total depth of 15 feet bgs has been reached. All soil samples are to be submitted for the following laboratory analysis; TPHg, TPHd, BTEX and MtBE. Please present results from soil sampling in the Soil and Groundwater Investigation Report requested below.

- 4. Groundwater Sampling and Analysis. The water samples are to be analyzed for TPHg and TPHd by EPA Method 8015M or 8260, BTEX, EDB, EDC, MtBE, TAME, ETBE, DIPE, TBA and EtOH by EPA Method 8260. Please present the results from groundwater sampling in the Soil and Groundwater Investigation Report requested below.
- 5. **Hydrogeologic Cross Sections.** Please incorporate historical soil boring and monitoring well data including soil and groundwater analytical data, static water level and first water encountered, well screen interval, distinct geologic contacts and the location of former UST tank pit and appurtenance into a minimum of two cross sections that are parallel and perpendicular to groundwater flow. Please present the cross sections in the Soil and Groundwater Investigation Report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Steve Plunkett), according to the following schedule:

• September 28, 2008 – Soil and Groundwater Investigation Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml).

John Prall July 26, 2008 Page 3

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please feel free to call me at (510) 383-1767.

Sincerely,

Steven Plunkett Hazardous Materials Specialist

Donna Drogos, PE

Supervising Hazardous Materials Specialist

Masood Ghassemi
R & M Environmental and Infrastructure Engineering, Inc.
7996 Capwell Drive
Oakland, Ca 94612-2015

John Prall July 26, 2008 Page 4

Donna Drogos, ACEH, Steven Plunkett, ACEH, File

1월 12 전 12 - 17 명우

און המכירה היה המשמעות שקורא שאר המצועה של האינטיים או האינטיים או האינטיים היה היה היה האונים הישעות זיק עלול את הרואלים להשעת המשנה האינטי לאשר מאוריות היה אשל מדיסלים באורים אוניים אוניים לאשר אינטי אוניים לאלי יהיה ללאשר או לאלגלה שרחוריה השעת אינטי אלור היה לא היה אינטי ליק דלאשר היה לאורים או אינטי האוניים לאליאי אינט היה אדר לאמור היה ללגליט הלא היה היא היה אינטי היא לא היה היה היל הילאשר היה היה אינטי היא האורים אוניים לא הי

그렇게 물건을 하는 것 같아. 한 동안을 줄을 수 있는 것 같아. 가지 말했다. 아는 물

12

ski sema erieta, tu tenjak ransula, an europeo kori sueta salere esel la Augli rejurt

Shiruf?

APPENDIX G

LETTER FROM PORT OF OAKLAND TO ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY (MAY 31, 2006)

May 31, 2006

Mr. Barney Chan Hazardous Materials Specialist Alameda County Health Care Services Agency, Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: UST Site, 801 Maritime Street Port of Oakland, Oakland, CA Fuel Leak Case RO0000019

Dear Mr. Chan:

The Port of Oakland (Port) is in receipt of your March 27th letter regarding the former underground storage tank (UST) site, known as 801 Maritime Street ("Site"). We appreciate your effort in naming this site as a candidate for regulatory closure and the time extension for completing this letter report.

Before responding to the information requested by the County, we briefly recapitulate the site history. 801 Maritime Street was the site of a warehouse and a fueling dispenser. Three underground storage tanks that supplied the dispenser were installed circa 1959 and were designated by the Port as CF-06, CF-07, and CF-35. All three tanks were of single wall steel construction and each tank was strapped to a concrete slab (due to shallow groundwater conditions). CF-06 had a capacity of 10,000 gallons and was used to store diesel fuel. Tanks CF-07 and CF-35 had capacities of 20, 000 and 10,000 gallons respectively and both were also used to store diesel fuel although both tanks were configured for the storage of gasoline. The three tanks were removed from the ground on February 16, 1989 and no evidence of corrosion, punctures or leaks was noted.

During the tank removal, discolored soils and petroleum odors were noted. Groundwater accumulated in the excavation contained oil and exhibited sheen. Floating product was not present. The impacted groundwater was pumped out of the pit and hauled away for proper disposal. Soil excavation then continued until a final pit dimension of approximately 52 by 64 by 12 feet deep was achieved. The impacted soils were stockpiled near to the excavation (approximately 1,500 cubic yards) and bioremediated on site. All of the tank removal and bioremediation activities at the time were conducted under the lead of Alameda County Health Care Services Agency. Originally this site was assigned a site identification number STID #3780 and is now assigned a new identification as #RO0000019.

Barney Chan May 31, 2006 Page 2

The information requested is presented below following the County's question noted in italics:

1. Please clarify the address and APN (Assessor Parcel Number) for this site. Please provide a copy of the Assessor map indicating both the parcel number and the address of this site as requested below.

The Site is identified as 801 Maritime Street; an address that no longer exists. Prior to 1989, the underground storage tanks at this site lay adjacent to a large warehouse used by a tenant for the temporary storage of bailed cotton. The warehouse and yard were separate from the nearby Berth 24 maritime shipping terminal, see Figure 1. Since 1989, the warehouse has been demolished, fences have been removed, and the local streets have been abandoned or reconfigured until the earlier land usage has been completely obliterated. Today, the 801 Maritime site is now part of an expanded Berth 24 container terminal and the only trace of the former land use is in reports and old aerial photographs. The current street address of the Berth 24 terminal is 909 Maritime Street.

The Assessors Parcel Number (APN) for the 801 Maritime Site: the Site does not have a unique APN. The 801 Maritime Site is part of a much larger tax assessor parcel that includes approximately 445 acres of land about evenly split between dry land and submerged land. The APN is 000-0320-001-00, see Figure 2.

2. It appears that only one monitoring well was required for this investigation. This was based upon the abundance of wells and information at the neighboring Berth 24 (Mobil/Ashland) site. Please provide a gradient rose diagram for this site, a site map showing well locations, and a summary of the groundwater data for this site as requested below. We are aware that the SFRWQCB is now the lead on this site.

In 1996, the Port installed a solitary monitoring well, MW-1, located downgradient of the former under ground storage tanks at the Site. This well is one of approximately 54 wells located in Berths 23 and 24 area; the 53 other wells are the groundwater monitoring network for the former Mobil Oil and Ashland Oil Bulk Fuel Facilities (i.e., tank farms). Both Facilities are petroleum release sites that have a large and combined dissolved phase plume located in the shallow water-bearing unit (the same unit MW-1 is constructed in). The attached Map (Figure 3) and Table (Table 5) contain the information requested.

The determination of ground water flow directions normally are not possible using a single well. In this situation, the numerous down gradient wells can be used in conjunction with MW-1 to determine the local flow direction at the 801 Maritime Site. The local hydraulic gradients, however, could not be determined because the past

Barney Chan May 31, 2006 Page 3

groundwater monitoring activities at the tank farm and at 801 Maritime have been conducted at significantly different calendar dates. The attached Figure 4 depicts the groundwater flow directions for seven time periods. It is noted that the local flow direction is uniformly toward the west and that the 801 Maritime Site well was placed down gradient of the former USTs.

3. We understand that approximately 1,500 cy of spoils was generated during the tank removal activities. The soil was bio-remediated and approximately 400 cy reused as fill on this site. Was the remaining remediated soil reused elsewhere on Port properties? We understand that groundwater from the tank pit was removed by H&H Ship Services. How much groundwater was disposed?

Some additional information was found on the disposition of soil and groundwater generated during the removal of the underground storage tanks. Baseline Environmental Consulting prepared a brief report in March 1990 that indicated the petroleum impacted soils were subjected to on site bioremediation. After the remediation work was completed, the soil was transported by truck to the Oakland Airport, North Field to the site of former building, L-615. At this location, the soils were used as fill material at the ground surface.

The amount of water that was removed by H&H Ship Services from the UST excavation and hauled away for disposal is unknown. Both the Port and Baseline have searched their files for a record of the removal and/or disposal but nothing was found.

4. The limits of soil contamination were unable to be determined during the tank removal. Soil boring contamination in B-2 reported 3,600 ppm and C-2 reported 1,600 ppm TPHd. Is there additional data, which defines the limit of TPH-d in these areas?

There are no additional data.

I declare under penalty of perjury, that the information and/or recommendations contained in this letter report and attachments are true and correct to the best of my knowledge. Please contact me at 627-1176 or the Port Project Manager, Mr. John Prall at 6271373 or at jprall@portoakland.com regarding any questions or clarifications.

Sincerely, Roberter Remartan

Roberta Reinstein Manager, Port Environment and Safety Department

Barney Chan May 31, 2006 Page 4

Cc: Jeffrey Jones John Prall Bcc: Michele Heffes Deborah Ballati

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-13	4/16/2003	64	810	330 J	<0.5	<0.5	0.95	0.5	<2.5	<100
	7/31/2003	63	1400 j	800 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/20/2003	<50	190	110 Јј	<0.5	<0.5	<0.5	<0.5	< 0.081	<8 uj
	2/18/2004	<50	290	200 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/22/2004	<50	36 J	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21 uj
	8/17/2004	<50	<34	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/14/2004	<50	94	95 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/14/2004(Duplicate)	<50	110	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/23/2005	<50	31 J	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-14	4/15/2003	<50	91	<490	<0.5	<0.5	<0.5	<0.5	<2.5	17 J
	7/31/2003	<50	110 ј	<480 uj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/21/2003	<50	340	300 J	<0.5	<0.5 uj	<0.5	<0.5	< 0.081	<8 uj
	2/17/2004	<50	94 u	<76	<0.5	<0.5	<0.5	<0.5	<0.5	11 J
	4/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/16/2004	<50	170	<53	<0.5	<0.5	<0.5	<0.5	<0.5	24 J
	8/16/2004 (Duplicate)	58	190	62 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/17/2004	<50	220	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/21/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California

(Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH CASOLINE	TPH DIESEL	TPH MOTOR OU	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-15	4/16/2003	100	490	170 J	< 0.5	0.81	0.91	< 0.5	<2.5	<100
	6/23/2003	79	390	160 Jj	2.4 j	<0.5	<0.5	0.53	<0.5	NA
	6/24/2003	72	370	170 Jj	1 j	<0.5	<0.5	<0.5	<0.5	NA
	8/1/2003	<50	440 j	400 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	<50	310	200 J	<0.5	<0.5	<0.5	<0.5	<0.081	<8 uj
	2/18/2004	<50	200	250 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/20/2004	<50	140	95 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/18/2004	<50	37 J	<53	<0.5	<0.5	<0.5	<0.5	<0.5	21 J
	12/16/2004	<50	40 J	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/21/2005	82	1600	470 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15
	3/21/2005 (Duplicate)	76	1600	460 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-16	4/15/2003	<50	88	87 J	<0.5	<0.5	<0.5	<0.5	<2.5	16 J
	4/15/2003 (Duplicate)	<50	64	<490	<0.5	<0.5	<0.5	<0.5	<2.5	9.8 J
	7/30/2003	<50	83 u	<480	<0.5	<0.5	<0.5	<0.5	0.62	NA
	11/24/2003	<50	83	<74	<0.5 uj	0.8 j	<0.5	<0.5	<0.081	<8
	2/18/2004	<50	140	120 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/22/2004	<50	41 J	<53	<0.5	<0.5	<0.5	0.81	<0.5	<21 uj
	8/18/2004	<50	45 J	<56	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/17/2004	<50	44 J	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/21/2005	<50	120	100 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

	-	ТРН	TPH	TPH			ETHYL			
WELL	SAMPLE DATE	GASOLINE	DIESEL	MOTOR OIL	BENZENE	TOLUENE	BENZENE	XYLENES	MTBE	LEAD
MW-17	4/15/2003	<50	120	110 J	<0.5	<0.5	<0.5	<0.5	<2.5	9.1 J
	7/30/2003	<50	210	210 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/18/2004	<50	79	<75	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	4/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/16/2004	<50	95	93 J	<0.5	<0.5	<0.5	<0.5	<0.5	21 J
	12/13/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/21/2005	<50	310	270 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-18	4/15/2003	<50	170	300 J	<0.5	<0.5	<0.5	<0.5	<2.5	<100
	8/1/2003	<50	110 uj	140 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	<50	270	290 J	<0.5	<0.5	<0.5	<0.5	< 0.081	<8 uj
	2/17/2004	<50	52 u	<77	<0.5	<0.5	<0.5	<0.5	<0.5	8.8 Jj
	4/21/2004	<50	130	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	11 Ju
	8/18/2004	<50	44 J	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/15/2004	<50	47	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	140	120 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-24	4/15/2003	<50	88	82 J	<0.5	<0.5	<0.5	<0.5	<2.5	<100
	7/30/2003	<50	100	89 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/20/2003	<50	71	<73 uj	<0.5	<0.5	<0.5	<0.5	<0.081	15 Jj
	2/17/2004	<50	30 Ju	<75	<0.5	<0.5	<0.5	<0.5	<0.5	39 J
	4/22/2004	<50	<33	<53	<0.5	<0.5	<0.5	0.72	<0.5	<21 uj
	8/17/2004	<50	42 J	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/14/2004	<50	110	96 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/21/2005	<50	43 J	<91	<0.5	<0.5	<0.5	<0.5	<0.5	15 J

February 22, 2006

QMR_T5 GW COPCs

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-25	4/15/2003	<500	590	320 J	<5	<5	<5	<5	<25	33 J
	7/31/2003	<50	550 j	340 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/17/2004	<50	110 u	<77	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	2/17/2004 (Duplicate)	<50	97 u	<74	<0.5	<0.5	<0.5	<0.5	<0.5	9.1 J
	4/21/2004	<50	1000	680	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/17/2004	<50	230	130 J	<0.5	<0.5	<0.5	<0.5	<0.5	22 J
	12/14/2004	<50	770	500	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/21/2005	<50	410	310 J	<0.5	<0.5	<0.5	<0.5	0.7	20 J
MW-26	4/15/2003	<50	100 u	96 J	<0.5	<0.5	<0.5	<0.5	<2.5	21 J
	7/31/2003	<50 uj	110 ј	140 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	<50	140	130 J	<0.5	<0.5	<0.5	<0.5	< 0.081	<8 uj
	2/17/2004	<50	46 Ju	<77	<0.5	<0.5	<0.5	<0.5	<0.5	8.1 Jj
	4/20/2004	<50	49	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/18/2004	<50	63	<470	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	12/15/2004	<50	150	130 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/21/2005	<50	63	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	МТВЕ	LEAD
MW-2B	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/24/2003	<50	110	200 J	<0.5 uj	1.5 j	<0.5	<0.5	<0.081	<48
	2/19/2004	<50	140	390 J	<0.5	0.78	<0.5	<0.5	<0.5	14 J
	4/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/17/2004	<50	38 J	84 J	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	12/16/2004	<50	97	280 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/23/2005	<50	180	490	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-34	6/25/2003	140	42 Juj	<470	13 j	<10 uj	<10	<10	<10	18 Juj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	<50	76	95 J	3.2	<0.5	<0.5	<0.5	<0.081	<8 uj
	2/20/2004	60	76 u	<74	<2.5	<2.5	<2.5	<2.5	<2.5	22 J
	4/20/2004	<50	84	59 J	3.3	<2.5	<2.5	<2.5	<2.5	<8
	8/16/2004	57	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	8/16/2004 (Duplicate)	<50	<33	<54	<0.5	<0.5	<0.5	<0.5	<0.5	21 J
	12/13/2004	55	61	<91	3.8	<0.5	<0.5	<0.5	<0.5	<21
	3/21/2005	80	92	<92	2.2 ј	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-35	6/25/2003	87	57 u	<480	13 j	1.2 j	2.8	12	<0.5	<2000
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	100	240	170 J	3.3	<0.5	<0.5	<0.5	<0.081	<8 uj
	2/19/2004	58	360	210 J	0.92	<0.5	<0.5	0.59	<0.5	<8
	4/20/2004	69	270	170 J	1.8	<0.5	<0.5	<0.5	<0.5	8.5 J
	8/16/2004	96	96	<53	3.6	<0.5	<0.5	<0.5	<0.5	<21
	12/13/2004	120	410	250 J	2.7	<0.5	<0.5	<0.5	<0.5	<21
	3/21/2005	300	320	220 J	2.7	<0.5	<0.5	<0.5	<0.5	<15
MW-36	6/25/2003	380	210 ј	<480	26 j	2 ј	4.8	18	<0.5	40 Juj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	600	210	120 J	100	0.65	1.8	<0.5	<0.081	<8 uj
	2/19/2004	190	370	170 J	4.8	<0.5	<0.5	0.51	<0.5	<8
	4/20/2004	430	410	190 J	30	<0.5	1.2	<0.5	<0.5	<8
	8/16/2004	610	170	<53	23	<0.5	1.2	<0.5	<0.5	<21
	12/13/2004	480	640	320 J	15	<0.5	0.76	<0.5	<0.5	<21
	3/22/2005	620	370	210 J	30	<0.5	1.2	<0.5	<0.5	17 J

.

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-37A	6/23/2003	4000	680	330 J	1100	<25	<25	66	<25	41 J
	6/23/2003 (Duplicate)	4700	920	420 j	1100	<25	<25	68	<25	26 Jj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	6700	1300	970	1100 ј	34	84	100	<0.81	16 Jj
	2/20/2004	3800	860 j	1400 ј	81	3.6	5.2	14	<2.5	14 J
	4/20/2004	2400	2700 ј	3500 j	470	9.5	12	20	<2.5	<8
	8/16/2004	5100	470	550	900	<50	<50	<50	<50	37000
	12/13/2004	130	650	1500	4.5	<0.5	<0.5	0.55	<0.5	<21
	3/24/2005	1800	430 j	1000 ј	57	1.9	8.3	14	<0.5	<15
MW-37B	6/23/2003	89	140	210	28	0.75	<0.5	2.2	<0.5	240 ј
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	<50	79	<74	<0.5 uj	<0.5	<0.5	<0.5	<0.081	46 Jj
	2/20/2004	<50	99	250 J	<0.5	<0.5	<0.5	<0.5	<0.5	26 J
	4/22/2004	<50	42 J	<53	<0.5	0.58	<0.5	0.57	<0.5	<130
	4/22/2004 (Duplicate)	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<130
	8/16/2004	<50	<33	<54	<0.5 uj	<0.5 uj	<0.5 uj	<0.5 uj	<0.5 uj	<100
	12/13/2004	<50	100	150 J	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	3/24/2005	<50	450 j	1300 j	<0.5	<0.5	<0.5	<0.5	<0.5	<15
	3/24/2005 (Duplicate)	<50	330	900	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-37C	6/23/2003	<50	18 Ju	<470	5.5	<0.5	<0.5	<0.5	0.5	110 ј
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	<50	19 J	<73	<0.5 uj	<0.5	<0.5	<0.5	<0.081	73 Jj
	2/19/2004	<50	46 Ju	<74	<0.5	<0.5	<0.5	0.5	<0.5	53 J
	4/22/2004	<50	<33	<53	<u><</u> 0.5	<0.5	<0.5	<0.5	<0.5	190 J
	8/16/2004	<50	68	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/13/2004	<50	31 J	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	3/24/2005	<50	38 J	<96	<0.5	<0.5	<0.5	<0.5	<0.5	160 J
MW-38	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/19/2004	1300	1100	280 J	310	5.3	<5	5.2	<5	<8
	4/20/2004	1600	1100	290 J	560	<10	<10	<10	<10	<8
	8/17/2004	1200	790	170 J	440	<5	<5	<5	<5	<21
	8/17/2004 (Duplicate)	1200	830	180 J	370	<5	<5	<5	<5	<42
	12/14/2004	310	760	240 J	62	0.63	<0.5	<0.5	<0.5	<21
	3/22/2005	280	700	240 J	60 j	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

		TPH	TPH	ТРН		an de grant i	ETHYL			
WELL	SAMPLE DATE	GASOLINE	DIESEL	MOTOR OIL	BENZENE	TOLUENE	BENZENE	XYLENES	MTBE	LEAD
MW-39	6/25/2003	5200	1100 j	290 J	2000 j	<50 uj	<50	<50	<8.1	25 J
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/14/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/20/2004	1500	850	310 J	330	13	<5	12	<5	<8
	8/17/2004	540	350	97 J	390	13	<5	15	<5	22 J
	12/14/2004	89	490	370 J	3.9	<0.5	<0.5	<0.5	<0.5	<21
	3/22/2005	870	750	350 J	130 j	1.2	1.7	2.4	<0.5	16 J
MW-40	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/30/2003	NS	NS	NS	NS	NS	NŠ	NS	NS	NS
	11/18/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/14/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/20/2004	9900	5100 j	1800 Jj	3900	<50	140	68	<50	16 J
	8/17/2004	4700	2300	960	1900	11	47	24	<10	<21
	12/14/2004	1100	6000	4500 J	410	<5	6.8	5	<5	<21
	3/23/2005	3100	17000 j	11000 Jj	17	0.81	12	60	< 0.5	28 J
MW-41	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/18/2004	3800	3800	2000	490	27	11	300	<5	22 Jj
	4/21/2004	5500	6100 j	3600 j	1900	25	<25	38	<25	15 Ju
	8/17/2004	2000	2000	740 J	280	15	<5	27	<5	<21
	12/14/2004	2500	2000	830 J	510	12	<5	28	<0.5	<21
	3/23/2005	230	520	420 J	14	1.2	<0.5	4.3 j	<0.5	<15

February 22, 2006

QMR_T5 GW COPCs

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-42A	6/25/2003	11000	830 j	230 J	2800 j	140 j	220	1200	<50	14 J
	6/25/2003 (Duplicate)	8200	2100 j	280 J	2200	100	170	890	<50	17 J
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/21/2003	6800	2300	690 J	2000	90	92	580	5.5 J	<8 uj
	2/18/2004	11000	2800	830 J	2400	65	220	1300	<50	<8 uj
	4/22/2004	2700	1100	130 J	550	13	18	88	<10	<21 uj
	8/17/2004	2400	840	170 J	360	6.4	<5	52	<5	<21
	12/14/2004	2100	1000	410 J	520	<10	11	58	<2.5	<21
	3/22/2005	310	630	440 J	6.7	1	1.6	31	<0.5	56 J
MW-42B	6/25/2003	310	1500 j	170 J	50 j	4.3 j	6.6	32	<0.5	38 J
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/21/2003	160	590	360 J	0.58 j	<0.5 uj	1.6	<0.5	<0.081	<8 uj
	11/21/2003(Duplicate)	160	670	420 J	0.51	<0.5	1.5	0.58	<0.081	<8 uj
	2/18/2004	55	270	140 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	2/18/2004 (Duplicate)	100	240	130 J	<0.5	<0.5	<0.5	<0.5	<0.5	11 Jj
	4/22/2004	110	110	<53	<0.5	<0.5	<0.5	0.66	<0.5	<21 uj
	8/17/2004	220	480	220 J	<1	<1	<1	<1	<1	<21
	12/14/2004	130	570	300 J	<0.5	<0.5	0.83	0.66	<0.5	<21
	3/22/2005	140	470	280 J	<0.5	<0.5	1	0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-42C	6/25/2003	88 u	50 u	<470	19 j	1.8 j	3.1	14	<0.5	420 J
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/21/2003	<50	140	<75	0.52 j	<0.5 uj	<0.5	<0.5	< 0.081	<48 uj
	2/18/2004	<50	54	89 J	<0.5	<0.5	<0.5	<0.5	<0.5	31 Jj
	4/22/2004	<50	35 Jj	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<130
	4/22/2004 (Duplicate)	<50	140 ј	310 J	<0.5	<0.5	<0.5	<0.5	<0.5	<130
	8/17/2004	<50	<33	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	12/14/2004	<50	60	96 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	69	120 J	<0.5	<0.5	<0.5	<0.5	<0.5	<45
	3/22/2005 (Duplicate)	<50	48 J	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<45
MW-43	6/25/2003	920	1200 j	350 J	160 j	6.9 j	<2.5	13	<2.5	25 J
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/2003	680	1000	470 J	70	4.6	<0.5	8.9	< 0.081	<8 uj
	2/19/2004	1100	1400	700 J	280	13	<5	15	<5	<8
	4/21/2004	1900	1000	260 J	300	16	<5	23	<5	<8
	8/17/2004	1600	1300	300 J	48	17	1.4	38	<0.5	<21
	12/15/2004	2200	1400	440 J	140	15	2.1	29	<0.5	<210
	3/22/2005	<50	480	400 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-44	6/24/2003	<50	67 u	<490	3.6 j	<0.5	<0.5 uj	<0.5 uj	<0.5	30 Ju
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	<50	48	<73	<0.5 uj	<0.5	<0.5	<0.5	< 0.081	<8 uj
	2/19/2004	<50	58 u	<74	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/20/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	11 Ju
	8/16/2004	<50	<35	<56	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/13/2004	<50	59	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/13/2004(Duplicate)	<50	120	92 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/22/2005	<50	42 J	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-45	6/24/2003	4300	1100 j	220 J	2200 j	<50	<50 uj	<50 uj	<50	<100 uj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/2003	3200	1900	360 J	1200	<25	34	82	<4	<8 uj
	2/19/2004	150	770	180 J	33	0.51	1.3	1.6	<0.5	<16
	4/22/2004	3100	1800	290 J	1600	<25	32	<25	<25	<21 uj
	8/17/2004	630	1000	300 J	220	<5	<5	<5	<5	<21
	12/16/2004	250	390	180 J	52	<0.5	0.8	0.65	<0.5	<210
	3/22/2005	3200	2600	500 J	1600 j	12 j	29	19	<0.5	22 J

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-46A	6/24/2003	9900	1300 j	370 J	4100 j	57	270 ј	340 j	<50	<100 u
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	17000	2200	930 J	6500	<50	310	330	<8.1	<8
	2/19/2004	20000	3000	1200 J	6300	<50	370	400	<50	14 J
	4/21/2004	4100	1700	350 J	1500	<50	<50	72	<50	<21
	8/17/2004	730	810	160 J	190	<5	8.3	9.1	<5	<21
	12/15/2004	3300	860	180 J	970	9.1	30	60	<0.5 uj	<210
	3/23/2005	450	290	140 J	95	1.3	2.3	14 j	<0.5	<15
MW-46B	6/24/2003	110	100	<480	46 j	0.66	3.6 j	4.1 j	<0.5	<100
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	<50	49	<73	<0.5	<0.5	<0.5	<0.5	<0.081	<16 uj
	2/19/2004	<50	95 u	75 J	<0.5	<0.5	<0.5	<0.5	<0.5	16 J
	4/21/2004	<50	41 J	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	4/21/2004 (Duplicate)	<50	43 J	<53	<0.5	<0.5	<0.5	<0.5	<0.5	25 J
	8/17/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/15/2004	<50	39 J	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	12/15/2004(Duplicate)	<50	51	<93	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/23/2005	<50	40 J	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<90

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-46C	6/24/2003	53	63 u	<470	24 j	<0.5	2.2 ј	2.4 j	<0.5	<200 u
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	<50	22 J	<73	<0.5	<0.5	<0.5	<0.5	<0.081	38 Juj
	2/19/2004	<50	46 Ju	<74	6.5	<0.5	<0.5	<0.5	<0.5	76 J
	4/21/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<130
	8/17/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	8/17/2004 (Duplicate)	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	12/15/2004	<50	<20	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/23/2005	<50	24 J	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<90
MW-47	6/24/2003	350	290 ј	120 J	26 j	1.8	<0.5 uj	1.1 j	<0.5	<100 u
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/2003	460	400	150 J	26 ј	2.3	<0.5	1.6	0.1 J	21 Jj
	2/18/2004	51	310	210 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	4/21/2004	110	380	250 J	<0.5	<0.5	<0.5	<0.5	<0.5	13 Ju
	8/17/2004	260	360	150 J	1	1.2	<0.5	0.72	<0.5	<21
	12/16/2004	69	170	120 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	110	740	490	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-48A	6/24/2003	4600	1500 j	220 J	470 j	26	<5 uj	28 j	<5	<100
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/2003	250	2000	750 J	1000	30	<25	26	<4	<8 uj
	2/19/2004	3100	1600	640 J	92	14	<5	17	<5	<8
	4/22/2004	5400	1300	94 J	220	32	11	36	<10	<21 uj
	8/18/2004	4100	1200	140 J	310	23	6.59	27	<2.5	<21
	12/15/2004	3600	1100	150 J	92	15	2.4	18	<1	<210
	3/21/2005	4900	2100	820 J	240	31	6.8	42	<0.5	<15
MW-48B	6/24/2003	150	100 u	<490	8.5 j	0.57	0.52 j	0.52 j	<0.5	<100 u
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/2003	130	130	<74	<0.5	<0.5	1.2	<0.5	0.17 J	<8 uj
	11/20/2003(Duplicate)	130	150	<75	<0.5	<0.5	1	<0.5	0.18 J	<8 uj
	2/19/2004	140	290	120 J	<0.5	<0.5	1	0.66	<0.5	<8
	2/19/2004 (Duplicate)	150	300	130 J	<0.5	<0.5	<0.5	0.6	<0.5	<16
	4/22/2004	52	69	<53	<0.5	<0.5	<0.5	0.59	<0.5	<21
	8/18/2004	190	97	<54	<0.5	<0.5	<0.5	0.57	<0.5	<21
	12/15/2004	120	91	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/21/2005	110	300	150 J	<0.5	<0.5	0.96	<0.5	<0.5	22 J

~

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-48C	6/24/2003	<50	63 u	<480	4.6 j	<0.5	<0.5 uj	<0.5 uj	<0.5	<200 uj
	6/24/2003 (Duplicate)	<50	<48	<480	2.1	<0.5	<0.5	<0.5	<0.5	<1000 uj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/2003	<50	24 J	<74	<0.5	<0.5	<0.5	<0.5	<0.081	<24 uj
	2/19/2004	<50	25 Ju	<74	0.59	<0.5	<0.5	0.6	<0.5	<24
	4/22/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<130
	8/18/2004	<50	<33	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	12/15/2004	<50	36 J	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	12/15/2004(Duplicate)	<50	43 J	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/21/2005	<50	25 J	<93	<0.5	<0.5	<0.5	<0.5	<0.5	200 J
MW-49	6/25/2003	2200	760 j	190 J	430 j	15 j	31	40	<10	20 Juj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/24/2003	3900 j	1800 j	660 Jj	410 j	27 ј	31	29 j	<1.6	<8 uj
	2/18/2004	1500	540	720	60	3.4	<2.5	<2.5	<2.5	<8 uj
	4/21/2004	4800 j	1100	190 J	1800	81	79	95	<50	<21
	8/17/2004	2600	540	170 J	250	16	12	27	<5	<21
	12/15/2004	3800	710	210 J	770	44	44	46	<0.5	<210
	3/21/2005	2100	1200	280 J	100	2.3	6.8	3.1	<1	25 J

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California

(Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-50	4/16/2003	<50	270	170 J	<0.5	<0.5	<0.5	<0.5	<2.5	<100
	8/1/2003	<50	200 j	190 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	<50	210	170 J	<0.5	<0.5	<0.5	<0.5	<0.081	15 Jj
	2/18/2004	<50	130	89 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	4/20/2004	<50	130	80 J	<0.5	<0.5	<0.5	<0.5	<0.5	12 Ju
	8/18/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/15/2004	<50	93	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	170	140 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-51	4/16/2003	260	2200	710 J	8	1.6	0.56	<0.5	<2.5	<100
4	8/1/2003	300	3000 j	1900 j	6 j	<0.5	<0.5	0.66	<0.5	NA
	11/18/2003	63	900	480	1.4	<0.5	<0.5	<0.5	<0.081	<8 uj
	2/18/2004	<50	220	160 J	<0.5	<0.5	<0.5	<0.5	<0.5	22 J
	4/21/2004	120 ј	440	86 J	1.4	<0.5	<0.5	0.57	<0.5	<21
	8/18/2004	<50	53	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/15/2004	<50	63	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	140	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15

February 22, 2006

QMR_T5 GW COPCs

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-52	4/16/2003	160	800	330 J	0.98	1.1	1.3	<0.5	<2.5	<100
	6/23/2003	120	670	300 Jj	1.5 j	<0.5	<0.5	0.61	<0.5	NA
	6/24/2003	86	290	87 Jj	0.89 j	<0.5	<0.5	<0.5	<0.5	NA
	8/1/2003	53	480 j	350 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/18/2003	<50	730	450 J	<0.5	<0.5	<0.5	<0.5	< 0.081	23 Jj
	2/18/2004	<50	630	300 J	<0.5	<0.5	<0.5	<0.5	<0.5	18 J
	4/20/2004	<50	190	71 J	<0.5	0.5	<0.5	0.66	<0.5	<8
	8/18/2004	<50	<33	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/15/2004	<50	59	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	160	130 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-53	4/16/2003	<50	470	290 J	<0.5	<0.5	<0.5	<0.5	<2.5	<100
	7/31/2003	<50	190 j	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/20/2003	<50	380	220 Jj	<0.5	<0.5	<0.5	<0.5	< 0.081	18 Jj
	11/20/2003(Duplicate)	<50	300	160 J	<0.5	<0.5	<0.5	<0.5	<0.081	<8 uj
	2/18/2004	<50	430	320 J	<0.5	<0.5	<0.5	<0.5	<0.5	15 J
	4/20/2004	<50	270	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/18/2004	<50	64	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/15/2004	<50	63	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	160	130 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-54	4/16/2003	63	750	300 J	1.6	<0.5	0.56	<0.5	<2.5	<100
	4/16/2003 (Duplicate)	<50	570	260 J	<0.5	<0.5	<0.5	<0.5	<2.5	<100
	7/31/2003	<50	420 j	210 Jj	0.62 j	<0.5	<0.5	<0.5	<0.5	NA
	7/31/2003 (Duplicate)	<50 uj	620	470 Jj	0.52 j	<0.5	<0.5	<0.5	<0.5	NA
	11/20/2003	<50	1500 j	1500 ј	0.52	<0.5 uj	<0.5	<0.5	< 0.081	<8 uj
	2/18/2004	<50	340	310 J	<0.5	<0.5	<0.5	<0.5	<0.5	10 J
	4/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/18/2004	<50	220	220 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/13/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/21/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-55	4/15/2003	<50	380	270 J	<0.5	<0.5	<0.5	<0.5	<2.5	<100
	7/31/2003	<50	330 ј	140 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/20/2003	<50	170	<74 uj	<0.5	<0.5	<0.5	<0.5	0.09 J	12 Jj
	2/18/2004	<50	240	170 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/20/2004	<50	210	91 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/20/2004 (Duplicate)	<50	210	88 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/17/2004	<50	<33	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/14/2004	<50	140	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/23/2005	<50	40 J	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-56	4/16/2003	93	490	210 J	<0.5	<0.5	1.4	<0.5	<2.5	32 J
	7/31/2003	<50 uj	320 ј	250 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/20/2003	<50	320	200 Jj	<0.5	<0.5	<0.5	<0.5	<0.081	13 Jj
	2/18/2004	<50	100	84 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	4/20/2004	<50	700	370 J	<0.5	<0.5	<0.5	<0.5	<0.5	9.1 Ju
	8/17/2004	<50	48	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/14/2004	<50	230	150 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/23/2005	<50	79	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<90
MW-57	4/16/2003	94	170	110 J	1.6	<0.5	<0.5	<0.5	<2.5	<100
	7/30/2003	<50	360	310 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	7/30/2003 (Duplicate)	<50	350	300 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	11/24/2003	<50	180	150 J	<0.5 uj	<0.5 uj	<0.5	<0.5	0.09 J	36 J
	2/19/2004	<50	150	110 J	<0.5	<0.5	<0.5	<0.5	<0.5	27 J
	2/19/2004 (Duplicate)	<50	160	120 J	<0.5	<0.5	<0.5	<0.5	<0.5	24 J
	4/20/2004	<50	250	200 J	<0.5	<0.5	<0.5	<0.5	<0.5	8.3 Ju
	8/17/2004	<50	50	<54	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/14/2004	<50	260	180 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/23/2005	<50	77	<94	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland,

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-58	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/7/2003	<50	87 j	<470	<0.5	<0.5	<0.5	<0.5	0.62 j	<100
	11/21/2003	<50	120	95 J	<0.5	<0.5 uj	<0.5	<0.5	0.45	<8 uj
	2/18/2004	<50	150	<73	<0.5	<0.5	<0.5	<0.5	<0.5	17 J
	4/21/2004	<50	39 J	<53	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	4/21/2004 (Duplicate)	<50	57	77 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/18/2004	<50	<33	<53	<0.5 uj	<0.5 uj	<0.5 uj	<0.5 uj	<0.5 uj	<21
	12/15/2004	<50	36 J	<92	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	62	<91	<0.5	<0.5	<0.5	<0.5	<0.5	<15
MW-59	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/7/2003	<50	210 uj	200 Juj	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	8/7/2003 (Duplicate)	<50	250 ј	200 Juj	<0.5	<0.5	<0.5	<0.5	<0.5	<100
	11/21/2003	<50	380	360 J	<0.5	<0.5 uj	<0.5	<0.5	<0.081	<8 uj
	2/17/2004	<50	83 u	<74	<0.5	<0.5	<0.5	<0.5	<0.5	17 J
	4/21/2004	<50	140	76 J	<0.5	0.54	<0.5	0.61	<0.5	<8
	8/18/2004	<50	150	99 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/16/2004	<50	180	98 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	<50	180	150 J	2 ј	<0.5	<0.5	<0.5	<0.5	<15
GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-60	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/7/2003	58	1700 j	1000	1.4 j	<0.5	<0.5	<0.5	<0.5	<100
	11/24/2003	290 j	2300 j	1600 ј	12 j	11 j	<0.5	0.97 j	<0.081	<8 uj
	2/17/2004	62	200	110 J	<0.5	3.5	0.57	<0.5	<0.5	8.6 J
	4/21/2004	85	960	650	<0.5	0.69	<0.5	<0.5	<0.5	17 Ju
	8/17/2004	60	590	290 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	8/17/2004 (Duplicate)	54	610	310 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	12/16/2004	77	540	280 J	<0.5	<0.5	<0.5	<0.5	<0.5	<21
	3/23/2005	<50	83	<91	<0.5	<0.5	<0.5	<0.5	<0.5	17 J
MW-61	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/7/2003	230	990 j	570	29 ј	<0.5	2.2	7	<0.5	<100
	11/24/2003	64	1200	930	<0.5 uj	<0.5 uj	<0.5	<0.5	< 0.081	<8
	2/17/2004	160	600	250 J	<0.5	<0.5	<0.5	<0.5	<0.5	<8 uj
	4/21/2004	270 j	2500 j	1300 Jj	<0.5	<0.5	<0.5	<0.5	<0.5	<8
	8/18/2004	<50	270	140 J	<0.5 uj	<0.5 uj	<0.5 uj	<0.5 uj	<0.5 uj	<21
	12/16/2004	<50	240	120 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/22/2005	110	1400	370 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-62	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/7/2003	9400	2000 j	700 Jj	2400 j	<50	86	680	<50	<100
	11/24/2003	10000 j	2500 j	1100 ј	4200 j	<50 uj	540	700 j	<8.1	<8 uj
	2/17/2004	15000	1400	150 J	2800	<50	370	690	<50	74 Jj
	4/21/2004	15000	3100	830 J	7000	<50	750	240	<50	17 Ju
	8/17/2004	7200	1200	360 J	3500	<50	350	<50	<50	<21
	12/16/2004	2800	620	220 J	520	6.5	180	18	<0.5	<210
	3/23/2005	9600	7600	<1800	1100	<25	520	1300 j	<25	<15
	3/23/2005 (Duplicate)	9500	7800	<1800	1100	30 .	550	1300	<25	24 J
MW-A1	6/25/2003	570	1900 j	690 J	7.6	2.6 j	2	10	<0.5	34 Juj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/24/2003	690	2200	890 J	2.8 j	4 j	<0.5	6.3	<0.081	<8
	2/17/2004	810	880	120 J	3	2.9	<0.5	6	<0.5	<8 uj
	4/21/2004	1500 j	1300	240 J	19	5.9	0.74	9.1	<0.5	<8
	8/18/2004	1400	1300	330 J	16	2.7	0.51	5.1	<0.5	<21
	12/16/2004	820	920 j	280 J	<0.5	0.69	<0.5	1.6	<0.5	<210
	12/16/2004(Duplicate)	780	510 j	120 J	<0.5	0.65	<0.5	1.7	<0.5	<210
	3/23/2005	65	110	96 J	<0.5	<0.5	<0.5	<0.5	<0.5	<15

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
MW-A2	6/25/2003	1100	1500 j	460 J	78	15 j	5.2	22	<5	21 Juj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/24/2003	490	960	490 J	16 j	15 j	0.96	5.3	< 0.081	<8
	2/17/2004	<50	90 u	130 J	0.75	2	<0.5	<0.5	<0.5	<8 uj
	4/21/2004	150	320 j	310 Jj	7.5	1.6	0.76	1.2	<0.5	<8
	8/18/2004	490	1000	1200	67	12	6.6	7.5	<0.5	<21
	12/16/2004	51	280	290 J	<0.5	<0.5	<0.5	<0.5	<0.5	<210
	3/24/2005	150	520	180 J	<0.5	<0.5	<0.5	0.57	<0.5	<15
	3/24/2005 (Duplicate)	140	470	150 J	<0.5	<0.5	<0.5	0.58	<0.5	<15
MW-A3	6/25/2003	210	1300 j	560 J	13	0.98 j	1.3	5.8	<0.5	47 Juj
	7/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/24/2003	91 j	1200 j	320 Jj	0.97 j	<0.5 uj	<0.5	<0.5 uj	0.1 J	9.4 Jj
	11/24/2003(Duplicate)	280 j	1200 j	520 ј	11 j	3.2 j	<0.5	1.5 j	<0.081	<8 uj
	2/17/2004	130	290	<73	3.9	0.93	<0.5	1.1	<0.5	<8 uj
	2/17/2004 (Duplicate)	120	310	84 J	3.8	1.1	<0.5	0.91	<0.5	<8 uj
	4/21/2004	210	550	160 J	3.1	0.79	<0.5	1.1	<0.5	13 J
	8/18/2004	220	500	240 J	2.1	<0.5	<0.5	1	<0.5	<21
	12/16/2004	170	460	200 J	1.2	<0.5	<0.5	0.73	<0.5	<210
	3/23/2005	<50	150	<91	<0.5	<0.5	<0.5	<0.5	<0.5	48 J

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California (Concentrations in micrograms per liter)

WELL	SAMPLE DATE	TPH GASOLINE	TPH DIESEL	TPH MOTOR OIL	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	MTBE	LEAD
TW-1BB	4/4/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/30/2003	NS	NS	NS	NS	NS	. NS	NS	NS	NS
	11/19/2003	400	450	87 J	12 j	0.67	1.7	0.88	0.12 J	23 Jj
	2/18/2004	350	490	120 J	25	1.1	2.7	1.8	<0.5	<24 uj
	4/20/2004	380 j	510	160 J	0.8	<0.5	<0.5	<0.5	<0.5	<8
	8/16/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/2004	2600	3800	<910	13	3.1	60	26	<0.5	24 J
	3/22/2005	1600 ј	1800	810 J	15 j	0.85	16	8.6	<0.5	<15

February 22, 2006

GROUND WATER ANALYTICAL DATA CHEMICALS OF POTENTIAL CONCERN

Former Mobil and Ashland Bulk Fuel Terminals, Port of Oakland, Berths 23 and 24, Oakland, California

(Concentrations in micrograms per liter)

TPH	ТРН ТРН	ETHYL	
WELL SAMPLE DATE GASOLI	TE DIESEL MOTOR OIL BENZ	LENE TOLUENE BENZENE	XYLENES MTBE LEAD

Excludes samples collected after air sparging tests from a series of samples collected from monitoring wells MW-15 and MW-52 on June 24 and 25, 2003. Analyte abbreviations:

TPH = Total petroleum hydrocarbons.

MTBE = *Methyl tertiary butyl ether.*

< = Concentration as reported by the analytical laboratory is less than the Method Detection Limit (MDL) or the Practical Quantitation Limit (PQL). MDL or PQL listed in micrograms per liter.

NA = Not analyzed.

NS = Not sampled.

Data qualifiers, beginning with 2003 data (analytical laboratory data qualifiers in upper case, data validation qualifiers in lower case):

J or j = Estimated value. The analyte was positively identified, but the associated numerical result is an estimate.

u = Not detected (data validation qualifier only).

 $u_j = Not$ detected. The associated numerical value is an estimate of the PQL or the MDL (data validation qualifier only).

r = Data rejected. The presence or absence of the analyte cannot be verified (data validation qualifier only).

Analysis Methods:

TPHg analyzed by EPA Method 8015V. Quantified over carbon range C6-C12 before April 2004, C4-C12 beginning with April 2004 samples. TPHd and TPHo analyzed by EPA Method 8015D with silica gel cleanup by EPA Method 3630.

Benzene, toluene, ethylbenzene, xylenes, and MTBE analyzed by EPA Method 8021B during the April 2003 sampling event.

Benzene, toluene, ethylbenzene, xylenes, and MTBE analyzed by EPA Method 8260B after April 2003.

Lead analyzed by EPA Method 6010A or 6010B.

Figure 4 Groundwater Flow Directions 801 Maritime Street UST Site

APPENDIX H

WELL MW-1 SAMPLING SHEET

R&M ENVIRONMENTAL and INFRASTRUCTURE ENGINEERING, INC. MONITORING WELL SAMPLING SHEET

SITE INFORMATION												
Project Name: 801 Maritime St		Project Number: 4009										
Project Location: 801 Ma		Date: 9/25/2008										
Personnel: Masood Ghassemi, Rafael Carranza, Jim Gribi												
FIELD MEASUREMENT							USED					
Depth to Bottom (DTB): 15.20	ft. Well	ID:	MW-1			Purging	Sampling					
Depth to Water (DTW): 7.82	ft. Casing	g Diameter:	2"	in.	Submersible Pump							
Water Column Height: 7.38	ft. OVC	1:	0	ppm	Peristaltic Pump							
Purged Volume (PV)*: 3.6	gal. Pum	o Setting:	15	ft.	Disposable Bailer							
1: Organic Vapor Concentration at Top-of-Casing												

GROUN	GROUNDATER PARAMETERS											
Time	CPV ²	FR ³	DTW	Т	E.C.	D.O.	рΗ	ORP	REMARKS			
	(gal)	(gal/min)	(ft)	(°C)	(mS/cm)	(mg/L)		(mV)				
8:03	0		7.82						clear, steady flow			
8:08	1		7.86	23.53	4.714	1.38	11.84	-80.2				
8:11	2		7.88	23.72	4.736	1.12	11.86	-116.1				
8:15	3		7.88	23.82	4.758	0.57	11.83	-142.4				
8:19	4		7.88	23.83	4.777	0.36	11.81	-156.3				
2: Cumulative	e Purged Volu	me	3: Flow Rate									

SAMPLE OBSERVA	TION AND REMARKS	SAMPLE INFORMATION
Color:	Yes □ No ■	Sample ID: MW-1
Odor:	Yes 🗖 No ∎	Sampling Time: 8:21
Sheen:	Yes □ No ■	Field Duplicate ID:
Precipitate:	Yes 🗖 No ∎	MS/MSD ID:
Floating Particles:	Yes □ No ■	Trip Blank ID:
Immiscible Phase:	Yes □ No ■	Equipment Rinsate ID:

SAMPLE ANALYSIS											
Requested Analysis	No. of Containers	Container Type									
Method 8260 for TPH-g, BTEX, MTBE,	6	40-mL w/HCI									
Method 8015B for Diesel	1	1-L amber w/ no preservative									
Total Dissolved Solids (TDS)	1	250 mL poly w/no preservative									

*Purged Water from 0.75-inch Well (gal) = (number of casing volume)(0.023 gal/ft)(water column height, ft) *Purged Water from 2-inch Well (gal) = (number of casing volume)(0.163 gal/ft)(water column height, ft) *Purged Water from 4-inch Well (gal) = (number of casing volume)(0.652 gal/ft)(water column height, ft)

