
ANANIA GEOLOGIC ENGINEERING

RESULTS OF THE OFF SITE INVESTIGATION AT THE CARNATION DAIRY FACILITY LOCATED AT 1310 14TH STREET IN OAKLAND, CALIFORNIA

AGE PROJECT NO. 004-88-059

JANUARY 17, 1990

TABLE OF CONTENTS

Exec	utive Summary	•	•	iii
1.0	Introduction	•	•	. 1
2.0	Drilling and Soil Sampling	•	•	. 1
3.0	Monitoring Well Installation and Groundwater Samplin	ng		. 3
4.0	Soil Analytical Results	•		. 5
5.0	Groundwater Analytical Results	•		. 5
6.0	Conclusions	•	•	. 9
7.0	Recommendations	•	•	11
8.0	Remarks and Signatures	_		1.2

FIGURE	
Figure 1	Off Site Monitoring Well Locations 2
TABLES	
Table 1	Off Site Soil Analytical Results 6
Table 2	September Off Site Groundwater Sampling Analytical Results
Table 3	October Off Site Groundwater Sampling Analytical Results 8
Table 4	November Off Site Groundwater Sampling Analytical Results
APPENDICES	
Appendix A	Boring Logs
Appendix B	Soil Analytical Reports and Chain of Custody Forms
Appendix C	September 1989 Groundwater Analytical Reports and Chain of Custody Forms
Appendix D	October 1989 Groundwater Analytical Reports and Chain of Custody Forms
Appendix E	November 1989 Groundwater Analytical Reports and Chain of Custody Forms

RESULTS OF THE OFF SITE INVESTIGATION AT THE CARNATION DAIRY FACILITY LOCATED AT 1310 14TH STREET IN OAKLAND, CALIFORNIA

JANUARY 17, 1990

AGE PROJECT NO. 004-88-059

EXECUTIVE SUMMARY

Anania Geologic Engineering installed five off-site monitoring wells north of the Carnation Oakland Dairy Facility in August 1989. Mr. Howard Shmuckler, Carnation's Corporate Counsel, authorized the investigation to determine if free floating product or dissolved contaminants had migrated off the Facility and to define the northern boundary of the on-site plume associated with the former underground fuel tanks. The wells were drilled on the City of Oakland's property in 16th Street after the appropriate permits had been obtained. City requirements restricted the wells to within the curblines of the street. Only five of the six proposed wells were installed due to underground utilities and obstacles.

Soil samples and three rounds of monthly groundwater samples were collected and analyzed for total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX), total lead, oil and grease, and polychlorinated biphenols (PCBs). The analyses were performed by laboratories certified by the California Department of Health Services for the respective analyses. The groundwater samples were collected monthly for the first quarter as approved by the lead agency, the Alameda County Health Department. Samples were collected in September, October and November 1989.

Results from the investigation indicate that the free floating product has not migrated off the Facility into 16th Street. Dissolved hydrocarbon constituents on the order of less than 13 parts per million were reported for samples from MW-OS-26, the well north of the largest bay in the former maintenance shop. Lower concentrations in the range of 30 parts per billion of BTEX were detected in samples from MW-OS-25, the well located on the south side of 16th Street near Cypress Street. Analytical results from the two wells on the north side of 16th Street did not have dissolved hydrocarbon constituents and indicate the contaminant

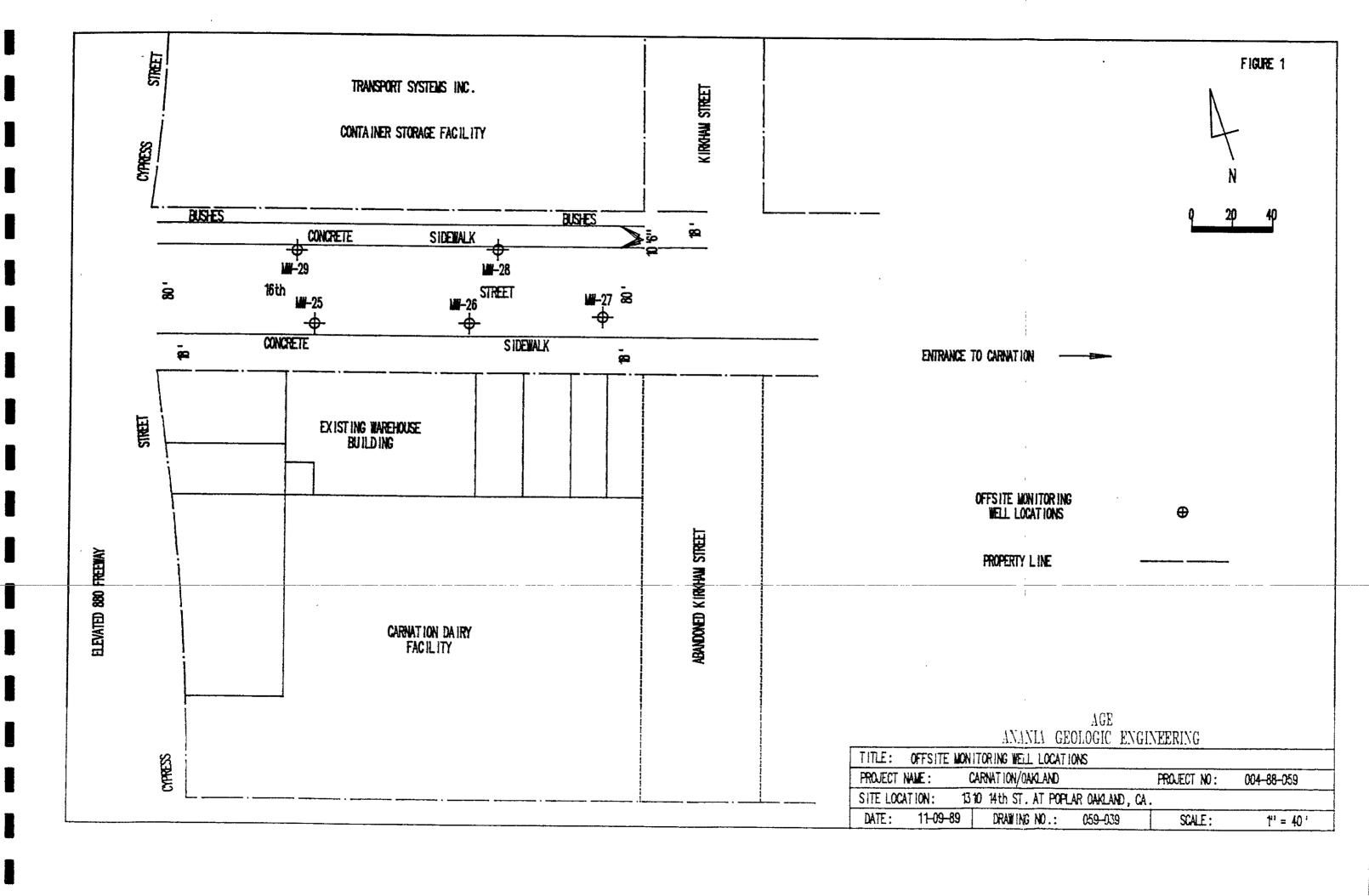
plume has not migrated across the street. Varying concentrations of BTEX were reported in all five of the wells in the October sampling event. However, PG&E was repairing a natural gas leak as close as 17 feet from the monitoring wells the day the samples were collected. Based on the lack of detection of BTEX in most of the groundwater samples from the September and November sampling rounds, the natural gas leak appears to have impacted the October samples. Soil contamination appears to be limited to the area around MW-OS-26.

The groundwater extraction wells operating on the Facility should capture the affected groundwater around MW-OS-26 and MW-OS-25. The water will be treated in the on-site carbon adsorption treatment system and discharged to the sanitary sewer under the East Bay Municipal Utilities District discharge permit. The off-site water levels will be monitored during pumping. Continued quarterly monitoring with analyses for TPH, BTEX and total lead should continue for the next three quarters as a minimum. In addition, soil samples obtained by hand auguring will be collected adjacent to MW-OS-26 and MW-OS-27. The samples will be analyzed for TPH as gasoline, BTEX, and PCBs since the holding times from the original samples were exceeded at the laboratory.

ANANIA GEOLOGIC ENGINEERING

RESULTS OF THE OFF SITE INVESTIGATION AT THE CARNATION DAIRY FACILITY LOCATED AT 1310 14TH STREET IN OAKLAND, CALIFORNIA

JANUARY 17, 1990


AGE PROJECT NO. 004-88-059

1.0 INTRODUCTION

Mr. Howard Shmuckler, Carnation's Corporate Counsel authorized Anania Geologic Engineering (AGE) to extend the site investigation associated with the former underground fuel tanks to the north of the Carnation property. The additional investigation was required to define the northern boundary of the groundwater contamination plume and to determine if the free floating product plume had migrated off site. The scope of work consisted of drilling and installing five monitoring wells, collecting soil and groundwater samples and analyzing the samples for hydrocarbon constituents. Field operations on this project were not initiated until AGE was issued an encroachment permit from the City of Oakland. Katherine Chesick of the Alameda County Health Department, the lead agency, approved the scope of work for the off site investigation. This report includes the results from the initial soil sampling and three rounds of groundwater sampling conducted in September, October and November 1989.

2.0 DRILLING AND SOIL SAMPLING

Five monitoring wells were installed north of the western half of the Carnation Dairy Oakland Facility in 16th Street. All of the wells were drilled in the street on City property after obtaining encroachment and street obstruction permits. The layout of the monitoring wells are shown on Figure 1. MW-OS-25 and MW-OS-26 are located along the southern curbline of 16th Street nearest to the Carnation property. MW-OS-27 is near the middle of the east bound lane and MW-OS-28 and MW-OS-29 are located on the north curbline of 16th Street.

Results of the Off Site Investigation Carnation Dairy Facility, Oakland, CA Page 3 of 12

The wells were drilled to define the northern border of the product plume present on the Facility. Until the off site investigation was performed, there was no clear definition of the northern edge of the plume. Due to underground utility obstructions, only five of the six proposed monitoring wells could be drilled. The first six feet of each monitoring well were hand augered to clear underground utilities, to take TLV readings, and to log the stratigraphy.

The monitoring wells were drilled using a Mobil B-53 continuous flight hollow stem auger drill rig. After cutting through the asphaltic concrete in the street, the pavement base course was examined for hydrocarbon staining to help determine the age and possible source and sequence of contamination. The base rock was clean in every case. Due to heaving sands, the borings were advanced to a depth of 10 feet and sampled at various intervals. The auger was then withdrawn from the hole and a plug was placed in the bit and drilling continued to a total depth of 25 feet. This procedure is standard accepted practice in heaving or saturated sands.

Soil samples were collected by advancing a Modified California Sampler lined with three brass sample tubes into the undisturbed soil. Blow counts for each six-inch interval were recorded on the boring logs. Soil samples were collected for chemical analyses and logging of the soils. At least two samples were collected from each boring above groundwater for chemical analyses. The deeper sample was collected as close to the groundwater surface as possible. The ends of the bottom tube were sealed with aluminum foil, tight plastic end caps and tape. The soil samples were immediately placed in the refrigerator on site. At the end of the day the samples were transported in a cooler with blue ice under Chain of Custody procedures to a California state certified analytical laboratory for analyses. Requested analyses for the soil samples were total petroleum hydrocarbons (TPH) as gasoline and diesel, benzene, toluene, ethylbenzene and xylene (BTEX), oil and grease and polychlorinated biphenols (PCBs) using methods modified 8015, 8020, 413.2, 503D and 8080. Curtis and Tompkins in Berkeley, Precision Analytical in Richmond and Chemwest Sacramento were the analyzing laboratories. The boring logs are in Appendix A. Copies of the Chain of Custody forms and analytical reports for the soil samples are located in Appendix B.

3.0 MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING

The five borings were converted to four-inch monitoring wells varying in depth from 22.5 to 27 feet. All of the wells were constructed with 15 feet of 0.020 slotted PVC screen and a bottom

Results of the Off Site Investigation Carnation Dairy Facility, Oakland, CA Page 4 of 12

cap. The top of the well was completed with blank casing from the top of the screen to the ground surface. The 2/16 sand filter pack was poured between the PVC casing and the auger to a height of at least 1 foot above the well screen. A one foot thick bentonite seal was placed above the sand. Distilled water was used to hydrate the bentonite to set the seal. The remainder of the annular space was filled with a bentonite-cement mix.

A flush mounted well box was installed at each well and finished to allow water to drain away from the well. A locking monitoring cap was placed on the top of the casing. The concrete seals were allowed to set for at least 48 hours prior to well development. The wells were developed by removing a minimum of ten well volumes with a bailer. Well construction details are shown on the logs in Appendix A. The well locations and elevations were later surveyed by a California licensed surveyor.

After development, the wells were allowed to equilibrate for a minimum of 24 hours prior to the initial sampling event. Groundwater samples were collected monthly for three months using the same sampling protocol for each round. The first sampling event was performed on September 13 through 15. Subsequent sampling rounds were conducted on October 13 and 16 and November 15 and 16, 1989. It was noted that during the second sampling event in October, a PG&E crew was working on the south side 16th Street to repair a natural gas leak. At the time some of the groundwater samples were collected, the PG&E work area was only 17 feet east of MW-OS-27 and 57 feet east of MW-OS-26. With respect to the October 17th earthquake, the first two rounds of groundwater samples were collected prior to the event and the most recent samples were collected a month after it.

For each sampling round, a dedicated disposable bailer was utilized to sample each well. The bailer was lowered into the well to collect a water sample from the groundwater interface to observe if there was floating product or a hydrocarbon sheen on the After checking the surface, the groundwater elevation was measured. The wells were then purged a minimum of three well volumes before the water samples were obtained. The samples were collected in appropriate containers provided by the analyzing laboratory. The sample containers were labelled with a sample tag indicating the sample number, project number, date, time, sample location and sampler. The water samples were placed in the refrigerator on site and later transported to the analytical laboratory in a cooler with blue ice under Chain of Custody. samples were analyzed for TPH as gasoline and diesel, BTEX, oil and grease, lead, pesticides and PCBs by methods modified 8015, 8020, 503A, 503E, 6010, and 8080 respectively.

Results of the Off Site Investigation Carnation Dairy Facility, Oakland, CA Page 5 of 12

4.0 SOIL ANALYTICAL RESULTS

The analytical results from the soil samples are compiled on Table 1. The soil samples were collected at various depths below ground surface. All soil samples were obtained from above the groundwater surface. TPH as gasoline and diesel were not detected in the soil samples from any of the monitoring wells except MW-OS-26. Benzene, ethylbenzene and xylene concentrations were reported below the detection limits for all of the samples collected from MW-OS-25 and MW-OS-27 through MW-OS-29. Toluene was detected in low concentrations in MW-OS-28 between three and six feet and in MW-OS-29 between 9.5 and 10 feet. The highest reported lead levels of 40 and 29 mg/kg were detected at three feet in MW-OS-28 and 9.5 feet in MW-OS-29 respectively.

Contamination in MW-OS-26 appears greatest between 7.5 to 10.5 feet below ground surface. TPH as gasoline was reported as 1110 to 1170 mg/kg and TPH as diesel ranged from 110 to 70 mg/kg. BTEX were detected in all of the samples at the above depths as well. Oil and grease concentrations ranging from 80 to 945 mg/kg were detected in samples collected from MW-OS-26 at depths between 7.5 and 11 feet. Copies of the analytical reports and Chain of Custody forms for the soil samples are located in Appendix B.

5.0 GROUNDWATER ANALYTICAL RESULTS

Clayton Environmental Consultants performed the analyses for the initial sampling conducted in September. The results are compiled The analytical results indicate that although there on Table 2. is no floating product, there are dissolved constituents in MW-OS-26 and trace amounts in MW-OS-25 and MW-OS-27. MW-OS-26 samples had reported concentrations of 590 and 6000 μ g/l (parts per billion, ppb) TPH as diesel and gasoline respectively, 1400 ppb benzene, 1300 ppb toluene, 110 ppb ethylbenzene, 1100 ppb xylenes and 1000 ppb oil and grease. MW-OS-25 and MW-OS-27 samples were reported with TPH as diesel concentrations of 80 and 100 μ g/l Benzene and toluene concentrations in the sample respectively. from MW-OS-25 were also reported as 14 and 0.4 μ g/l respectively. Results from MW-OS-28 and MW-OS-29 were reported as not detected for all analyzed constituents. Copies of the analytical reports and Chain of Custody forms for the September samples are in Appendix C.

Table 3 summarizes the analytical results and detection limits for the October groundwater sampling. Curtis and Tompkins in Berkeley performed the analyses. MW-OS-26 had reported concentrations of 1900 ppb of TPH as gasoline, 870 ppb benzene, 440 ppb toluene, 12 ppb ethylbenzene, and 120 ppb xylenes. TPH as diesel was

Table 1: Off Site Soil Analytical Results

Sample	Location	Depth	TPH Gasoline	TPH Diesel	Oil & Grease	Total Hydrocrabons	Benzene	Toluene	Ethyl- benzene	Xylenes	Total Lead	PCBs
Det	ection Limit	Feet	10 mg/kg	10 mg/kg	20 mg/kg	20 mg/kg	0.03 mg/kg	0.03 mg/kg	0.03 mg/kg	0.03 mg/kg	1.1 mg/kg	0.2 mg/kg
2089	MW-0S-25	2.5-3	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND
2090	MW-0S-25	3.5-4	ND	ND	25	25	ND	ND	ND	ND	NA	ND
2091	MW-0S-25	5-5.5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND
2092	MW-0S-25	7-7.5	ND	ND	55	55	ND	ND	ND	ND	NA	ND
	ection Limit				50 mg/kg	25 mg/kg	0.05 mg/kg	0.1 mg/kg	0.2 mg/kg	0.1 mg/kg	1.1 mg/kg	20 mg/kg
2093	MW-OS-25	7.5-8	BRL	BRL	240	29	BRL	BRL	BRL	BRL	NA	BRL
	ection Limit		10 mg/kg	10 mg/kg	20 mg/kg	20 mg/kg	0.03 mg/kg	0.03 mg/kg	0.03 mg/kg	0.03 mg/kg	1.1 mg/kg	0.2 mg/kg
2094	MW-OS-25	9-9.5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND
2095	MW-OS-25	11.5-12	ND	ИD	20	20	ND	ИД	ИD	ИD	NA	ИD
2096	MW-OS-25	13-13.5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND
2097	MW-0S-26	2-2.5	ND	ND	ND	NA	ND	ND	ND :	ND	3.2	ND
2098	MW-0S-26	3-3.5	ND	ND	ND	NA	ND	ND	ND	ND	4.7	ND
2099	MW-0S-26	4-4.5	ND	ND	ND	NA	ND	ND	ND	ND	6.6	ND
2100	MW-0S-26	5-5.5	ND	ND	ND	NA	ND	ND	ND	ND	8.0	ND
2101	MW-0S-26	6-6.5	ND	ND	ND	NA	ND	ND	ND	ND	10.0	ND
2103	MW-0S-26	7.5-8	1110	110	945	NA NA	5.8	39	13	70	9.3	ND
2104	MW-0S-26	10-10.5	1170	70	80	NA	7.8	25	6	30	8.9	ND
2109	MW-OS-26	10.5-11	19	ND	260	NA	1.7	1.8	0.6	4.8	NA	ND
1172	MW-0S-27	6-6.5	ND	ND	80	NA	ND	ND	ND	ND	8.2	ND
1173	MW-OS-27	8.5-9	ND	ND	65	NA	ND	ND	ND	ND	9.3	ND
	ection Limit		1 mg/kg	10 mg/kg	100 mg/kg		0.01 mg/kg	0.01 mg/kg	0.01 mg/kg	0.02 mg/kg	5 mg/kg	0.01 mg/kg
1176	MW-OS-28	3-3.5	ND	ND	ND	NA	ND	0.014	ND	ND	29	ND
11,77	MW-0S-28	4.5-5	ND	ND	ND	NA	ND	0.021	ND	ND	10	ND
1178	MW-OS-28	5.5-6	ND	ND	ND	NA	ND	0.017	ND	ND	9.6	NA
1179	MW-0S-28	7-7.5	ND	ND	ND	NA	ND	ND	ND	ND	16	NA
1180	MW-OS-28	9-9.5	ND	ND	ND	NA	ND	ND	ND	ND	6.6	NA
1277	MW-0S-29	9.5-10	ND	ND	ND	NA	ND	0.14	ND	ND	40	NA

ND - Not Detected

NA - Not Analyzed
TPH - Total Petroleum Hydrocarbons

BRL - Below Reporting Limit

Table 2: September Off Site Groundwater Sampling Analytical Results

	M	W-05-2	5	MW-0S-26			MW-OS-27			MS-OS-28			MW-0S-29		
	Sample #	Results #g/l	Detection Limit μg/l	Sample #	Results #g/l	Detection Limit µg/l	Sample #	Results #g/l	Detection Limit μg/l	Sample #	Results µg/l	Detection Limit #g/l	Sample #	Results #g/l	Detection Limit µg/l
TPH Diesel	1190	80	50	1196	590	50	1202	100	50	1208	ND	50	1214	ND	50
TPH Gasoline	1189	ND	50 ·	1195	6000	3000	1201	ND	50	1207	ND	50	1213	ND	50
Benzene	1189	14	0.4	1195	1400	20	1201	ND	0.4	1207	ND	0.4	1213	ND	0.4
Toluene	1189	0.4	0.3	1195	1300	20	1201	ND	0.3	1207	ND	0.3	1213	ND	0.3
Ethylbenzene	1189	ND	0.3	1195	110	6	1201	ND	0.3	1207	ND	0.3	1213	ND	0.3
Xylenes	1189	ND	0.7	1195	1100	20	1201	ND	0.7	1207	ND	0.7	1213	ND	0.7
Oil & Grease	1194	ND	1000	1200	1000	1000	1206	ND	1000	1212	ND	1000	1219	ND	1000
Lead		NA		1199	ND	50	1205	ND	50	1211	ND	50	1217	ND	50
Pesticides*	1192	ND	0.1	1198	ND	0.1	1204	ND	0.1	1210	ND	0.1	1216	ND	0.1
PCBs	1192	ND	1	1198	ND	1	1204	ND	1	1210	ND	1	1216	ND	1

ND - Not Detected

NA - Not Analyzed

^{*}Detection Limit for chlordane and toxaphene were 0.5 and 5 $\mu g/l$ respectively

Table 3: October Off Site Groundwater Sampling
Analytical Results

Sample Number:	MW-OS-25 3485		MW-OS-26 3481			-0S - 27 3482		-OS-28 3483	MW-OS-29 3484		
-	Results µg/l	Detection Limit μg/l	Results μg/l	Detection Limit μg/l	Results μg/l	Detection Limit μg/l	Results µg/l	Detection Limit μg/l	Results μg/l	Detection Limit μg/l	
TPH Diesel	ND	50	ND	50	51	50	ND	50	65	50	
TPH Gasoline	82	50	1900	50	ND	50	58	50	ND	50	
Benzene	29	1.0	870	1.0	12	1.0	8	1.0	2.3	1.0	
Toluene	4.7	1.0	440	1.0	14	1.0	14	1.0	4.7	1.0	
Ethylbenzene	ND	1.0	12	1.0	ND	1.0	1	1.0	ND	1.0	
Xylenes	1.2	1.0	120	1.0	6	1.0	8	1.0	1.2	1.0	
Oil & Grease	ND	2000	ND	2000	ND	2000	ND	2000	ND	2000	
Lead	ND	50	ND	50	ND	50	ND	50	ND	50	
PCBs	ND	0.05	ND	0.05	ND	0.05	ND	0.05	ND	0.05	

ND - Not Detected

NA - Not Analyzed

Results of the Off Site Investigation Carnation Dairy Facility, Oakland, CA Page 9 of 12

detected in MW-OS-27 at a level of 51 ppb. BTEX were also detected at relatively low levels in almost all of the samples from the remaining four wells. Benzene concentrations ranged from a high of 29 ppb in MW-OS-25 to a low of 2.3 ppb in MW-OS-29. This sample set was collected the day PG&E was repairing a natural gas leak as discussed previously in Section 3.0. A copy of the laboratory reports and Chain of Custody forms for the October samples are located in Appendix D.

The third monthly groundwater samples from the off site wells were collected in the middle of November and were analyzed by Curtis and Tompkins in Berkeley. The results are summarized on Table 4. Concentrations in MW-OS-26 were the highest reported among the five wells. Analyses indicated 12 ppm of TPH as gasoline, 4.2 ppm benzene, 3 ppm toluene, 840 ppb xylenes and 230 ppb oil and grease. Benzene was detected in only MW-OS-25 at a level of 30 ppb. Toluene was detected in very low concentrations in MW-OS-25 and MW-OS-27. Oil and grease were the only analyzed constituents detected in both MW-OS-28 and MW-OS-29. Appendix E contains copies of the analytical reports and Chain of Custody forms for the November sampling.

6.0 CONCLUSIONS

The installation of the five off-site monitoring wells has clearly shown that the free floating product plume does not extend to 16th Street. Analytical results do show that dissolved hydrocarbon constituents in the groundwater extend beyond the northern property boundary of the Facility. Therefore, it will be necessary to capture off-site groundwater during on-site groundwater remediation at the Facility.

The greatest impact associated with the underground fuel leak appears to be the impact to the groundwater in the form of dissolved constituents in the area of MW-OS-26. Hydrocarbon constituents are present in the groundwater at MW-OS-26 in the range of less than 13 parts per million. Benzene concentrations detected on the order of 30 parts per billion or less in the groundwater at MW-OS-25 indicates a much smaller degree of contamination in this area. Excluding the October sampling, results from MW-OS-27 were non-detect for hydrocarbon constituents except for 100 ppb of TPH as diesel and 3.1 ppb of toluene. results from groundwater samples from MW-OS-28 and MW-OS-29 indicate that groundwater contamination from the underground fuel tank release at the Facility has not migrated across 16th Street and adversely impacted the groundwater. The presence of hydrocarbon constituents in all five of the wells in only the October sampling event suggests that the natural gas leak

Table 4: November Off Site Groundwater Sampling
Analytical Results

Sample Number:	MW-OS-25 12101 Results Detection Limit		MW-OS-26 12102 Results Detection Limit			OS-27 .2103 Detection Limit		OS-28 .2104 Detection Limit	MW-OS-29 12105 Results Detection Limit		
	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	
TPH Diesel	ND	500	ND	500	ND	500	ND	500	ND	500	
TPH Gasoline	ND	50	12,000	5,000	ND	50	ND	50	ND	50	
Benzene	30	1	4,200	100	ND	1	ND	1	ND	1	
Toluene	2.1	1	3,000	100	3.1	1	ND		ND	1	
Ethylbenzene	ND	1	ND	100	ND	1	ND	1	ND	1	
Xylenes	ND	1	840	100	ND	1	ND		ND	1	
Oil & Grease	ND	20	230	20	100	20	50	20	150	20	
Lead	ND	50	ND	50	ND	50	ND	50	ND	50	
PCBs	ND	500	ND	500	ND	500	ND	500	ND	500	

ND - Not Detected

Results of the Off Site Investigation Carnation Dairy Facility, Oakland, CA Page 11 of 12

influenced the sampling event and are not necessarily representative of the groundwater.

Contamination in the soil appears to be limited to the area around MW-OS-26 based on elevated concentrations of TPH as diesel and gasoline, oil and grease, BTEX and lead. All of these constituents are consistent with detected contaminant constituents from the onsite plume. Since the contaminated soil samples are at depths below 7.0 feet, it is likely that the contaminants may have been transported by the migration of contaminated groundwater from an on-site source. Seasonal groundwater fluctuations can reach to within 7.0 feet of the ground surface during wet seasons.

Soil samples from MW-OS-25 and MW-OS-27 through MW-OS-29 indicate some contamination from oil and grease, toluene and lead. However, the concentrations are low and do not appear to be associated with the on-site contamination. Sixteenth Street has been used as a main thoroughfare for over 50 years and has been exposed to numerous hydrocarbon contaminants before it was paved. In all likelihood, the contamination is the result of long term, continuous exposure to truck and automobile traffic.

7.0 RECOMMENDATIONS

The groundwater in the vicinity immediately north of the Facility will be captured by extraction wells located in the maintenance shop building. The water will be treated during the operation of the carbon adsorption treatment system and discharged to the sanitary sewer under the discharge permit issued by the East Bay Municipal Utilities District. AGE recommends periodically monitoring the groundwater levels in the off-site wells when the on-site extraction pumps are operating to determine the influence in the offsite wells. The groundwater in the off-site wells should be continued to be sampled quarterly and analyzed for TPH and BTEX for the next three quarters as a minimum. Analytical results should be reviewed and evaluated to determine the effects of the groundwater extraction system and to monitor migration of the dissolved contaminant plume, should it occur.

Additional soil samples will be collected at MW-OS-26 and MW-OS-27 by hand augering adjacent to the monitoring wells. The samples will be analyzed for TPH as gasoline and diesel and PCBs at both locations. Samples from MW-OS-27 will also be analyzed for BTEX since the holding times for the original samples were exceeded. The results will be reviewed to evaluate the extent and degree of contamination in the soil. The samples will be collected following proper protocol, under Chain of Custody, and submitted to a certified laboratory for analyses. The results will be transmitted

Results of the Off Site Investigation Carnation Dairy Facility, Oakland, CA Page 12 of 12

to the Alameda County Health Department and the San Francisco Bay Regional Water Quality Control Board.

8.0 REMARKS AND SIGNATURES

This report was prepared in accordance with current industry standards and practice. The work described herein has been and will be performed under the supervision of a California Registered Geologist and California licensed Civil Engineer.

Prepared by:

 \mathcal{A}

//ww/	(7) ()CM	1 / -
Marv /I.	Scruggs	\cup I

Mary/L. Scruggs General Partner 1/17/90 Date

Approved by

Karl J. Anamia

Managing Partine California Revi

denst No. 4306

APPENDIX A
BORING LOGS

DATE STARTED: 8/23/89

DATE COMPLETED: 8/23/89

CASING DIAMETER: 4 inches

TIME STARTED: 10:25

TIME COMPLETED:

DRILLING EQUIPMENT: Hollow Stem Auger

SURFACE CONDITIONS: Asphaltic

Concrete

SURFACE ELEVATION: 13.25

CASING DEPTH: 22.5 feet

COORDINATES: N 2,694.8 E 3,150.6

GROUNDWATER CONDITIONS:

Groundwater Encountered at 14 feet during

drilling

DRILLING CONTRACTOR: Accubore SLOT SIZE: 0.020 inch

BORING DIAMETER: 10 inches BORING DEPTH: 22.5 feet

LOCCED DV. Lim Wallaca FILTED DACK: #2/16 sand

LOGGED BY: Jim V	/allace						LTER I	PACK: #2/16 sand
REMARKS	SAMP.	TLV READ	BLOWS		WELL CONST	DEPTH (FT.)	USCS CLASS.	SOIL DESCRIPTION
				\ <u>\'</u>				Asphaltic Concrete
					-	_		Portland Cement Concrete
	2089	400 750		74		2		Aggregate Baserock
Hydrocarbon Odor	2090	80 220 240		[7]		4 —	SM	SILTY SAND(SM) Dark Gray, dry to moist, medium dense,
nyurocarbon odor	2091	100 45		75		6	SO	CLAYEY SAND(SC) Dark Gray to Black,
No Hydrocarbon Odor	2092	95 95	4 .	77				SILTY SAND(SM) Dark Gray, dry to moist, medium dense
	2093		7			8 –		color change to Light Gray
	2094	180	5 7 13	广 广 广 广 一		10 —		color change to Mottled Red Brown
No Hydrocarbon Odor	2095	160	5 5 8 5			12 —		grades moist, with trace clay
	2096	48	5 9	r' ⁺ 1 r' ⁺ 1 - 		<u>¥</u> 14 −		Free Groundwater Encountered at 14 feet during drilling
						16 —		
AC	ìΕ							Dairy Facility
ANANIA GEOLOG		GINE	ERIN	G	G 1310 14th St., Oakland, Ca. Sheet 1			
PROJECT NO. 004-	88-05	9		LOG OF MW-OS25				MW-OS25

REMARKS	SAMP.	TLV READ	BLOWS	SAMP TYPE	WELL CONST	DEPTH (FT.)	USCS CLASS.	SOIL DESCRIPTION	
						- 20 — -			
						22 —		Boring Terminated at 22.5 feet on 8-23-8	9
						24 —			
						26 —			
						- 28		,	
						-			
						30			
						32 —			
						34 —			
						- 36 —			
4						-			
						38 -			
						40			
						42 —			
							arnation	Dairy Facility	
ANANIA GEOLOGI	AGE ANANIA GEOLOGIC ENGINEERING ROJECT NO. 004-88-059							St., Oakland, Ca. Sheet 2	of 2

SURFACE CONDITIONS: Asphaltic DATE STARTED: 8/24/89 Concrete DATE COMPLETED: 8/24/89 **SURFACE ELEVATION: 13.55** TIME STARTED: **COORDINATES:** N 2,676.8 E 3,206.4 TIME COMPLETED: **GROUNDWATER CONDITIONS:** DRILLING EQUIPMENT: Hollow Stem Auger Free Groundwater Encountered at 17 feet during drilling SLOT SIZE: 0.02 inch DRILLING CONTRACTOR: Accubore **BORING DEPTH: 25.0 feet BORING DIAMETER: 10 inches** CASING DEPTH: 25 feet CASING DIAMETER: 4 inches FILTER PACK: #2/16 sand LOGGED BY: Robyn McKinney SAMP. TLV BLOWS 是 WELL DEPTH NO. READ / 6" 员 CONST (FT.) USCS SOIL DESCRIPTION REMARKS CLASS. Asphaltic Concrete SM Portland Cement Concrete 75 2097 100 110 Aggregate Baserock, does not appear to be 2098 110 stained 110 130 Silty SAND(SM) Dark Gray to Black, dry to 2099 230 moist, medium dense, color change to Black Hydrocarbon Odor 2100 | 150 color change to Light Gray Slight Hydrocarbon Odor 200 grades moist color change to Green Gray, grades with some 2101 | 180 Hydrocarbon Odor color change to Green Gray, slightly moist 7 2103 | 5500 12 Hydrocarbon Odor Hydrocarbon Odor 2109 12 color change to Red, grades moist 2104 | 500 10 10 Pulled auger to ream with plug 12 600 14 grades with increasing clay content 16 600 Free Water Encountered at 17 feet during drilling Carnation Dairy Facility AGE 1310 14th St., Oakland, Ca. Sheet 1 of 2 ANANIA GEOLOGIC ENGINEERING LOG OF MW-OS26 PROJECT NO. 004-88-059

REMARKS	SAMP.	TLV	Smo-	구 의 의 의	WELL	DEPTH	USCS CLASS.	SOIL DESCRIPTION
REMARKS	SAMP.	TLV	"9 / SMOTE	SAMP TYPE	WELL CONST	20 - 22 - 24 - 30 - 32 - 34 - 36 - 38 - 40 - 38 - 38 - 38 - 38 - 38 - 38 - 38 - 3	USCS CLASS.	Boring Terminated at 25 feet on 8-24-89
ANANIA GEOLOGI PROJECT NO. 004-			ERINO	G		1310	0 14th S	Dairy Facility St., Oakland, Ca. Sheet 2 of 2 MW-OS26

SURFACE CONDITIONS: Asphaltic DATE STARTED: 8/28/89 Concrete DATE COMPLETED: 8/28/89 TIME STARTED: **SURFACE ELEVATION: 14.33 COORDINATES:** N 2,666.4 E 3,271.2 TIME COMPLETED: **GROUNDWATER CONDITIONS:** DRILLING EQUIPMENT: Hollow Stem Auger Free Groundwater Encountered at 14 feet during drilling SLOT SIZE: .020 inch DRILLING CONTRACTOR: Accubore **BORING DIAMETER: 10 inches** BORING DEPTH: 24.5 feet CASING DEPTH: 24 feet CASING DIAMETER: 4 inch FILTER PACK: #2/16 sand LOGGED BY: Robyn McKinney SAMP. TLV BLOWS 是 WELL DEPTH NO. READ / 6" 景 CONST (FT.) uscs SOIL DESCRIPTION REMARKS CLASS. Asphaltic Concrete SM SILTY SAND(SM) Gray, dry-to-moist, medium dense with some clay 10 1172 400 15 9 grades with increasing sand, color change to 1173 200 20 Gray-Brown 10 color change to Red-Brown, grades wet, grades with increasing clay content TLV reading 70ppm at well head 16 Carnation Dairy Facility AGE. 1310 14th St., Oakland, Ca. Sheet 1 of 2 ANANIA GEOLOGIC ENGINEERING LOG OF MW-OS27 PROJECT NO. 004-88-059

REMARKS	SAMP. TLV NO. READ	SAMP	WELL CONST	DEPTH	USCS CLASS.	SOIL DESCRIPTION
No Hydrocarbon Odor			WELL CONST C	20		SOIL DESCRIPTION color change to brown Boring Terminated at 24 1/2 feet on 8-28-89
				42 -		
ANANIA GEOLOG	GE IC ENGINE -88-059	ERING	-	1310) 14th S	Dairy Facility St., Oakland, Ca. Sheet 2 of 2

SURFACE CONDITIONS: Asphaltic **DATE STARTED:** 8/29/89 Concrete DATE COMPLETED: 8/29/89 TIME STARTED: **SURFACE ELEVATION: 13.90 COORDINATES:** N 2,704.7 E 3,220.1 TIME COMPLETED: **GROUNDWATER CONDITIONS:** DRILLING EQUIPMENT: Hollow Stem Auger Free Groundwater Encountered at 14 feet during drilling DRILLING CONTRACTOR: Accubore SLOT SIZE: 0.02 inch BORING DEPTH: 27.0 feet **BORING DIAMETER:** 10 inches CASING DIAMETER: 4 inch CASING DEPTH: 27 feet FILTER PACK: #2/16 Sand LOGGED BY: Robyn McKinney SAMP. TLV BLOWS EN WELL DEPTH USCS SOIL DESCRIPTION REMARKS CLASS. Asphaltic Concrete SM Aggregate Baserock SILTY SAND(SM) Dark Gray to Black, Hydrocarbon Odor dry-to-moist, medium dense 1176 grades moist 1177 CLAYEY SAND(SC) Blue Gray, moist-to-wet, 1178 medium dense SILTY SAND(SM) Brown, dry-to-moist, 1179 | 100 medium dense Hydrocarbon Odor color change to Mottled Gray Brown 10 Hydrocarbon Odor 1180 70 12 No Hydrocarbon Odor 70 grades moist to wet $abla_{14}$ Free Groundwater Encountered at 14 feet during drilling 16 . 80 No Hydrocarbon Odor Carnation Dairy Facility AGE. 1310 14th St., Oakland, Ca. Sheet 1 of 2 ANANIA GEOLOGIC ENGINEERING LOG OF MW-OS28 PROJECT NO. 004-88-059

REMARKS	SAMP.	TLV READ	BLOWS	5AM P TYPE	WELL CONST	DEPTH (FT.)	USCS CLASS.	SOIL DESCRIPTION
No Hydrocarbon Odor				<u>, , , , , , , , , , , , , , , , , , , </u>		20 — 22 — 24 — 26 —		Boring Terminated at 27 feet on 8-29-89
						28 — - 30 — - 32 — -		
						- 36 —		
						38 — - 40 —		
ANANIA GEOLOGI PROJECT NO. 004-			ERIN	G		131	0 14th S	Dairy Facility St., Oakland, Ca. MW-OS28 Sheet 2 of 2

DATE STARTED: 8/29/89 **SURFACE CONDITIONS:** Asphaltic Concrete DATE COMPLETED: 8/30/89 TIME STARTED: **SURFACE ELEVATION: 13.38 COORDINATES:** N 2,729.2 E 3,146.2 TIME COMPLETED: **GROUNDWATER CONDITIONS:** DRILLING EQUIPMENT: Hollow Stem Auger Free Groundwater Encountered at 12 feet during drilling SLOT SIZE: 0.02 inch DRILLING CONTRACTOR: Accubore **BORING DIAMETER: 10 inches** BORING DEPTH: 25.0 feet CASING DIAMETER: 4 inches CASING DEPTH: 25 feet LOGGED BY: J R and R Mc FILTER PACK: #2/16 Sand SAMP. TLV BLOWS L WELL DEPTH USCS SOIL DESCRIPTION REMARKS CLASS. Asphaltic Concrete SM Aggregate Baserock SILTY SAND(SM) Dark Brown, dry-to-moist, medium dense Abandoned 4" clay pipe SC clayey SAND(SM) lense between 6.1/2 and 7SM 60 10 1277 12 Free Groundwater Encountered at 12 feet ∇_{12} No Hydrocarbon Odor during drilling grades moist, medium dense with trace clay 14 grades wet 16 **Carnation Dairy Facility** AGE 1310 14th St., Oakland, Ca. Sheet 1 of 2 ANANIA GEOLOGIC ENGINEERING LOG OF MW-OS29 PROJECT NO. 004-88-059

REMARKS	SAMP.	TLV READ	SLOWS	SAMP TYPE	WELL CONST	DEPTH (FT.)	USCS CLASS.	SOIL DESCRIPTION
REMARKS				HAT THE PARTY OF T	WELL TO THE TOTAL THE TOTA	20 - 22 - 34 - 36 - 38 - 40 - 36 - 38 - 40 - 38 - 38 - 38 - 38 - 38 - 38 - 38 - 3	USCS CLASS.	Boring Terminated at 25 feet on 8-30-89
						42 -		Dainy Facility
ANANIA GEOLOGI PROJECT NO. 004-			ERING	<u></u>	-	131	0 14th S	Dairy Facility St., Oakland, Ca. Sheet 2 of 2 MW-OS29

APPENDIX B

SOIL ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

Precision Analytical Laboratory, Inc.

RECEIVED AUG 3 0 1989

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/24/89 Analyzed: 08/24/89 Reported: 08/25/89 Job No. #: 71029

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 08/24/89

Total Petroleum Hydrocarbon Analysis By Modified Method 8015 mg/kg

Lab ID	Client ID	Diesel	Gasoline	MDL
71029-1	#2089	ND<10	ND<10	10
71029-2	#2090	ND<10	ND<10	10
71029-3	#2091	ND<10	ND<10	10
71029-4	#2092	ND<10	ND<10	10
71029-5	#2094	ND<10	ND<10	10
71029-6	#2095	ND<10	ND<10	10
71029-7	#2096	ND<10	ND<10	10

QA/QC: Spike Recovery for Diesel: 113%

Spike Recovery for Gasoline: 92%

MDL: Method detection limit: Compound below this level would not be detected.

Jaime-Chow

Laberatory Director

and the same of th

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

State License No. 211

Received: 08/24/89 Analyzed: 08/24/89 Reported: 08/28/89 Job No #: 71029

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 08/24/89

Aromatic Volatile Hydrocarbon Analysis: EPA Method 8020 mg/kg

Lab ID	Client ID	Benzene	Toluene	MDL
71029-1	#2089	ND<0.03	ND<0.03	0.03
71029-2	#2090	ND<0.03	ND<0.03	0.03
71029-3	#2091	ND<0.03	ND<0.03	0.03
71029-4	#2092	ND<0.03	ND<0.03	0.03
71029-5	#2094	ND<0.03	ND<0.03	0.03
71029-6	#2095	ND<0.03	ND<0.03	0.03
71029-7	#2096	ND<0.03	ND<0.03	0.03
Lab ID	Client ID	Ethylbenzene	Xylene	MDL
Lab ID 71029-1	Client ID #2089	Ethylbenzene	Xylene	MDL 0.03
		-	-	
71029-1	#2089	ND<0.03	ND<0.03	0.03
71029-1 71029-2	#2089 #2090	ND<0.03 ND<0.03	ND<0.03 ND<0.03	0.03 0.03
71029-1 71029-2 71029-3	#2089 #2090 #2091	ND<0.03 ND<0.03 ND<0.03	ND<0.03 ND<0.03 ND<0.03	0.03 0.03 0.03
71029-1 71029-2 71029-3 71029-4	#2089 #2090 #2091 #2092	ND<0.03 ND<0.03 ND<0.03 ND<0.03	ND<0.03 ND<0.03 ND<0.03 ND<0.03	0.03 0.03 0.03 0.03

QA/QC: Spike Recovery for Benzene: 94%

Spike Recovery for Ethylbenzene: 103%

Spike Recovery for O-Xylene: 103%

Jaime Chow

Laboratory Director

Precision Analytical Laboratory, Inc.

4136 LAKESIDE DRIVE, RICHMOND, CA 94806 PHONE (415) 222-3002 FAX (415) 222-125

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

State License No. 211

Received: 08/24/89 Analyzed: 08/24/89 Reported: 08/28/89 Job No #: 71029

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Hydrocarbons Analysis: Standard Methods 16th Edition 503E Oil & Grease Analysis: By Standard Method 16th Edition 503D

mg/kg

Lab ID	Client ID	Oil & Grease	Total Hydrocarbons
71029-1	#2089	ND<20	ND<20
71029-2	#2090	25	25
71029-3	#2091	ND<20	ND<20
71029-4	#2092	55	55
71029-5	#2094	ND<20	ND<20
71029-6	#2095	20	20
71029-7	# 20 96	ND<20	ND<20

Spike Recovery for Oil & Grease: 86% QA/QC:

MDL: Method detection limit; Compound below this level would not be detected.

Detection Limit for Oil & Grease: 20

Jaime Show

Laboratory Director

Precision Analytical Laboratory, Inc.

RECEIVED AUG 3 0 1989

🗽 4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/24/89 Analyzed: 08/24/89 Reported: 08/27/89 Job No. #: 71029

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-093

Matrix: Soil

Extracted: 08/24/89

Polychlorinated Biphenyls EPA Method 8080 mg/kg

Lab ID	Client ID	Results	MDL
71029-1	#2089	ND<0.2	0.2
71029-2	#2090	ND<0.2	0.2
71029-3	#2091	ND<0.2	0.2
71029-4	#2092	ND<0.2	0.2
71029-5	#2094	ND<0.2	0.2
71029-6	#2095	ND<0.2	0.2
71029-7	#2096	ND<0.2	0.2

QA/QC: Spike Recovery 100 %

MDL: Method detection limit: Compound below this level would not be detected.

Jaime Chow

Laboratory Director

	A GROLOGI	IC ENGI									L	2 ¥ 1	%	ا مر	N. N	<u>A</u> G	JE Nº	_ 1 5 8 1
004-	OJECT NO. -88-055	9	LAB REPORT NO.	NO.	W			- Jos	1 3 M	7	NWT YS	2 4/5 25 1/W	5 3 3 S		2			
P.O. NO.		ERS: (sign	nature)	OF	 3	WPLE TYPE		1/8	-i/c	**	<u> </u>							
LAB LOG NO.	DATE	TIME	SAMPLE I.D.	CON- TAINERS	SO COMP	OIL GRAB_	WATER	1700, FIED 1	\$ 20 %		/#	55.46				REMARKS		
	8-23-69	1250	2089			X		×	X			×		×	CHARG	GE PCB	S WORK TO	3
	8.23.89	1300	2090			×		Х	Х			Х		×		(r		
	g. 23.89	1310	209/		ļ	×	<u> </u>	×	×			Х		X		14]
	8.23.89	/337	Z092	1		×	<u> </u>	Х	X			Х		!	<u> </u>			
	8.23.89	1349	2094			×	<u> </u>	Х	Х		!	Х		!				
	8.23.89	1400	2095		<u> </u>	×	<u></u>	X	×			X						
·	8.23.89	412	2096	1		K	<u></u>	X	X			X	_		ļ			
													-					
			 		<u> </u>	ļ]
Jm	ED BY: (signa	loce	DATE/THE 8-23-8-1 16-32	Jan	DBY: (3	Erry	/	RELIARKS SAM	: 24 h	HR. 2	TAT	<u></u>			ELTS TO: J		E ENERGY M	
Jan	ED BY: (signa es Res ED BY: (signa	ry	DATE/TIME 8·24·89 0825 DATE/TIME	Raj P	Pand Pand BB: (s)	her								Al 1	NANIA GE 11330 Suni Rancho (EOLOGIC I Irise Park Cordova,	ENGINEERING k Dr., Suite C	
L	CHAIN OF CUSTODY Out - C 2 1 0 51																	

916-631-0154

September 11, 1989

Anania Geologic Engineering 11330 Sunrise Park Dr. #C Rancho Coardova, CA 95742

Attention: Mr. Jim Wallace

Subject: Report of Data - Case Number 4490

Dear Mr. Wallace:

The technical staff at CHEMWEST is pleased to provide our report for the analyses you requested: PCB's - EPA Method 8080; BTEX - EPA Method 602; TPH EXTN/GC-FID - LUFT Field Manual; TPH by IR - EPA Method 418.1; and Oil and Grease by Gravimetric - EPA Method 413.1.

One soil sample for Project Number 004-88-059 was received August 25, 1989 in good condition. Results of the analyses along with the analytical methodology and appropriate reporting limits are presented on the following page(s).

Thank you for choosing CHEMWEST Laboratories. Should you have questions concerning this data report or the analytical methods employed, please do not hesitate to contact your project manager. We hope that you will consider CHEMWEST Laboratories for your future analytical support and service requirements.

Sincerely,

Robert T. Hart

Data Control Manager

and

Kirk Pocan

Project Manager

KP:ds

cc: Joel Bird, President

File

ANALYTICAL METHODOLOGY

BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes) by Purge & Trap and GC-PID

WATER - Method 602 or 8020

A 5 ml sample volume, or 5 ml of a suitable dilution, is purged on a suitable purge and trap system with helium. The purged sample is analyzed on a Gas Chromatograph equipped with a Photoionization Detector (PID). A packed column is used to separate the compounds.

SOIL - Method 8020

A 10 gram, or other appropriate aliquot of soil, is weighed into a clean VOA vial. Soils received in brass core tubes are sampled by discarding 2-5 centimeters of soil from each end of the tubes (this is done to reduce the possibility of analyzing a portion of soil that has been exposed to sampling technique contamination). Equal aliquots of soil are then removed from each end of the tube and combined in the VOA vial. Soil in jars or bags is aliquoted using a similar technique, which discards exposed sample surfaces. A 10 ml, or other appropriate volume of methanol, is added to the soil and the soil is shaken with the solvent. 100 ul of the extract, or a reduced aliquot or volume of a suitable dilution, is injected into 5 ml of laboratory blank water and analyzed by the same technique used for water samples.

ANALYTICAL METHODOLOGY

Total Petroleum Hydrocarbons (TPH) Extractables by GC-FID

Extraction Procedure:

WATER - Luft Field Manual

A 1 liter sample is poured into a 2 liter separatory funnel. 3x100 ml extractions with methylene chloride (2 minute shake outs) are completed. The methylene chloride is decanted off and concentrated to a 5 ml final volume.

SOIL - Luft Field Manual

A 30 gram, or other appropriate aliquot of soil, is mixed with 10 grams of washed sodium sulfate. 100 mls of methylene chloride is added to the soil and placed on a mechanical shaker for 1 hour. The liquid is decanted off and the process is repeated with an additional 50 ml of methylene chloride. The combined solvent extracts are filtered through sodium sulfate and the extract is concentrated to a 5 ml final volume.

GC ANALYSIS -

An appropriate volume of the sample extract is injected into a Gas Chromatograph equipped with a Flame Ionization Detector (FID), a split/splitless capillary injector (operated in the splitless mode), and a fused silica capillary column. The TPH fraction is quantitated as gasoline and/or #2 diesel fuel (and/or different petroleum hydrocarbon fuel types if requested, such as JP-4 jet fuel) based on relative retention times and examination of the elution profile. The TPH fraction quantitation is based on chromatographic peak areas against a multipoint standard curve.

CHEMWEST ANALYTICAL LABORATORIES ORGANOCHLORINE PESTICIDES & PCBs

Client I.D.: 2093

CHEMWEST I.D.: 4490

Date Extracted : 08/28/89

Matrix : Soil

Date(s) Analyzed: 08/31/89

Compound	Amount Detected (ug/Kg)	RL (ug/Kg)
Arochlor 1016	BRL	10
Arochlor 1221	BRL	10
Arochlor 1232	\mathtt{BRL}	10
Arochlor 1242	BRL	10
Arochlor 1248	BRL	10
Arochlor 1254	BRL	20
Arochlor 1260	BRL	20

Surrogate	% Recovery	Acceptance Window
Dibutylchlorendate	498	24-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

Approved by: ___________

REV4:1.89

CHEMWEST ANALYTICAL LABORATORIES BENZENE, TOLUENE, ETHYL BENZENE, XYLENES

Client I.D.: 2093

CHEMWEST I.D.: 4490-1

Date Extracted : 08/28/89

Matrix : Soil

Date(s) Analyzed: 08/29/89

Compound	Amount Detected (mg/Kg)	RL (mg/Kg)
Benzene	BRL	0.05
Toluene	BRL	0.1
Ethyl Benzene	BRL	Ø.2
Total-Xylenes (1)	BRL	0.1
\		

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	76%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: \mathcal{Y}

CHEMWEST ANALYTICAL LABORATORIES TOTAL PETROLEUM HYDROCARBONS - EXTRACTABLE

Date Extracted : 08/28/89 Date(s) Analyzed: 08/31/89

Case : 4490 Matrix: Soil

Reporting Units: mg/Kg

Client	CHEMWEST	Gasol:	ine	Diese	l	Other Hydro Mixtu	
ID	ID	Result	RL	Result	RL	Result	RL
2093	4490-1	BRL	10	BRL	10	BRL	10

BRL: Below Reporting Limit.

RL: Reporting Limit.

Approved by: 1

CHEMWEST ANALYTICAL LABORATORIES OIL & GREASE - GRAVIMETRIC

Date Extracted: 08/28/89
Date(s) Analyzed: 08/29/89

Case : 4490

Matrix: Soil

		Amount
Client	CHEMWEST	Detected
ID	ID	(mg/Kg)
2093	4490-1	240

The reporting limit for Oil & Grease - Gravimetric is 50 mg/Kg.

BRL: Below Reporting Limit.

Approved by: ____

CHEMWEST ANALYTICAL LABORATORIES TPH by IR

Date Extracted: 08/28/89 Date(s) Analyzed: 08/29/89 Case : 4490 Matrix: Soil

Client ID	CHEMWEST ID	Amount Detected (mg/Kg)
2093	4490-1	29

The reporting limit for TPH by IR is 25 mg/Kg.

BRL: Below Reporting Limit.

Approved by: ____

	1	
CHEM WEST ANALYTICAL LABORATORIES, INC.	Order No. 44	90
600 West North Market Blvd.	Date Rec'd. 8.25.8	
Sacramento, California 95834	Compl. Date	
(916) 923-0840 FAX (916) 923-1938	Section K POCON	
(10) 225-1730	Section D. 1 - O.	
CLIENT: Anahla Geologic Engineering Project		
CLIENT: HISTIA, GEOLOGIC ETIGINEEVING Project 1	Name:	-a
11330 SUNVISE POUR Dr. #C Project	No. 004-88-05	
Rancho cordova ca 95742 PO. NO.		
Contact	Jim Wallace	
Phone	(916) 631-01	54
. ANALYSIS: One Soil Sample recd under	chain of c	1000
In a lanch Metal Core Tube (1) to he	2 SNOTUZED	DOK 1
TPH GOS and Diesel; BTEX (EPA Metho		707
	10 8020), OII	<u> </u>
Grease 503 DEE Soil; and PCBs.	·····	<u> </u>
5day T/A		
Sample Id Date Time Analysis	Matrix con	Lainer
		, , , , , , , , , , , , , , , , , , , ,
4490 2093 8:23.89 1337 TPH: 1316K;	3011 1-4	oin. Heta Tube
DR65		
TPH IR		

200 100 1001200 00 0100 00 00 10 10		
1010 Willace (1) 8129184 (a) 1/19	1 albly 50	0
DIDLUID DE TRAEXTABO FILD UNSTEAC	d of tPH GE	308
DUCCEI		•
M.T	· · · · · · · · · · · · · · · · · · ·	

		<u> </u>
The second secon		· ·
		
	· · · · · · · · · · · · · · · · · · ·	
	······	
		
2		
22 CCKERRI CHAPPA	OTC]

ANANIA GEOLOGIC ENGINEERING AGR 👉 1585 PROJECT NO. LAB REPORT NO. NO. 004-88-059 SAMPLERS: (signature) Œ P.O. NO. SAMPLE TYPE JIM WALLACE 00N-TAINERS SOIL LAB LOG SAMPLE I.D. DATE TIME OMP. GRAB REVARKS CHARGE PCB WORK TO 8.23.89 1337 2093 X FRQUECT 004-88-093 RELINQUISHED BY: (signature) DATE/TIME FDAY TAT SO SEND RESILTS TO: JIM WALLACE REDE IVED BY: (signature) RELINQUISHED BY: (Signature) James Herry 8-23-27 1633 ENVINORMENTAL AGE ENERGY MINERALS RECEIVED BY: (signature) DATE/TIME Stances Kerry BECHOUISHED BY: (signostire) ANANIA GEOLOGIC ENGINEERING HOW Chow KERRICHAPIT 8.25.89 11330 Sunrise Park Dr., Suite C REDEIVED BY: (signature) DATE/TIME Rancho Cordova, CA 96742 PHONE-NO. (916) 451-0921-

CHAIN OF CUSTODY

916-631-0154

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/25/89 Analyzed: 09/18/89 Reported: 09/21/89 Job No. #: 71033

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 08/25/89

Total Petroleum Hydrocarbons Analysis
DHS Extraction Method (LUFT)
mg/kg

Lab ID	Client ID	Diesel	Gasoline	MDL
71033-1	#2097	ND<10	ND<10	10
71033-2	#2098	ND<10	ND<10	10
71033-3	#2099	ND<10	ND<10	10
71033-4	#2100	ND<10	ND<10	10
71033-5	#2101	ND<10	ND<10	10
71033-6	#2103	110	1110	100
71033-7	#2104	70	1170	*
71033-8	#2102	ND<10	ND<10	10

QA/QC: Spike Recovery for Diesel: 115% Spike Recovery for Gasoline: 110%

MDL: Method detection limit: Compound below this level would not be detected.

* Detection limit for Diesel = 10, Gasoline = 100

Jaime\/Chow

Laboratory Director

Michael O'Brien QA/QC Officer

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

State License No. 211

Received: 08/25/89 08/28/89 Analyzed: Reported: 09/21/89 Job No #: 71033

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 08/28/89

Aromatic Volatile Hydrocarbon Analysis: EPA Method 8020 mg/kg

MDL
0.03
0.03
0.03
0.03
MDL
0.03
0.03 0.03

QA/QC: Spike Recovery for Toluene: 88%

Spike Recovery for Ethylbenzene: 92% Spike Recovery for O-Xylene: 94%

MDL: Method detection limit; Compound below this level would not

be detected.

Dahoratory Director

Michael 0' QA/QC Officer

Precision Analytical Laboratory, Inc.

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002 FAX (415) 222-1251

Anania Geological Engineering

Job No: 71033

Page 2 of 2

Project: #004-88-059

Matrix: Soil

Extracted: 08/28/89

Aromatic Volatile Hydrocarbon Analysis: EPA Method 8020 mg/kg

Lab ID	Client ID	Benzene	Toluene	MDL
71033-5	#2101	ND<0.03	ND<0.030	0.03
71033-6	#2103	5.8	39	0.80
71033-7	#2104	7.8	25	0.80
71033-8	#2102	ND<0.03	0.04	0.03
Lab ID	Client ID	Ethylbenzene	Xylenes	MDL
71033-5	#2101	ND<0.03	ND<0.03	0.03
71033-6	#2103	13	70	0.80
71033-7	#2104	6	30	0.80
71033-8	#2102	ND<0.03	ND<0.09	0.03

(1) 以来,"中心也以为一种企业,也是有关的,但是们是种类型,是这种种类型,是这种种类型,是是是一种的工程,是是是一种的工程,也是是是一种的工程,也是是是一种的工程, 第一个 4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

State License No. 211

Received: 08/25/89 Analyzed: 09/20/89 Reported: 09/21/89

Job No #: 71033

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Digested: 08/29/89

> Total Lead Analysis; By EPA 6010: Prep Method 3050 mg/kg

Lab ID	Client ID	Total Lead	MDL
71033-1 71033-2 71033-3 71033-4 71033-5 71033-6 71033-7 71033-8	#2097 #2098 #2099 #2100 #2101 #2103 #2104 #2102	3.20 4.70 6.60 8.00 10.00 9.30 8.90 6.80	1.1 1.1 1.1 1.1 1.1

QA/QC: Spike Recovery for Lead: 80%

MDL: Method detection limit; Compound below this level would not

Laboratory Director

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/25/89 Analyzed: 08/25/89 Reported: 09/21/89 Job No. #: 71033

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 08/25/89

Oil & Grease Analysis EPA Method 9071 mg/kg

Lab ID	Client ID	Oil & Grease	MDL
71033-1	#2097	ND<20	20
71033-2	#2098	ND<20	20
71033-3	#2099	ND<20	20
71033-4	#2100	ND<20	20
71033-5	#2101	ND<20	20
71033-6	#2103	945	20
71033-7	#2104	80	20
71033-8	#2102	185	20

QA/QC: Spike Recovery: 93%

Spike Recovery: 91%

MDL: Method detection limit: Compound below this level would not be detected.

Jaime Chow

Laboratory Director

Michael O'Brien QA/QC Officer

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/25/89 Analyzed: 09/19/89 Reported: 09/21/89 Job No. #: 71033

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-093

Matrix: Soil

Extracted: 09/19/89

Polychlorinated Biphenyls EPA Method 8080 mg/kg

Lab ID	Client ID	Results	MDL
71033-1	#2097	ND<0.2	0.2
71033-2	#2098	ND<0.2	0.2
71033-3	#2099	ND<0.2	0.2
71033-4	#2100	ND<0.2	0.2
71033-5	#2101	ND<0.2	0.2
71033-6	#2103	ND<0.2	0.2
71033-7	#2104	ND<0.2	0.2
71033-8	#2102	ND<0.2	0.2

QA/QC: Spike Recovery: 91.7%

MDL: Method detection limit: Compound below this level would not be detected.

Jaime Chow

Naboratory Director

Michael O'Brien QA/QC Officer

White_AGE

Yellow LAB opy

File 016 631-0154

September 12, 1989

Anania Geologic Engineering 11330 Sunrise Park Dr. #C Rancho Coardova, CA 95742

Attention: Mr. Jim Wallace

Subject: Report of Data - Case Number 4489

Dear Mr. Wallace:

The technical staff at CHEMWEST is pleased to provide our report for the analyses you requested: PCB's - EPA Method 8080; BTEX - EPA Method 602; TPH EXTN/GC-FID - LUFT Field Manual; TPH by IR - EPA Method 418.1; and Oil and Grease by Gravimetric - EPA Method 413.1.

One soil sample for Project Number 004-88-059 was received August 25, 1989 in good condition. Results of the analyses along with the analytical methodology and appropriate reporting limits are presented on the following page(s).

Thank you for choosing CHEMWEST Laboratories. Should you have questions concerning this data report or the analytical methods employed, please do not hesitate to contact your project manager. We hope that you will consider CHEMWEST Laboratories for your future analytical support and service requirements.

Sincerely,

Robert T. Hart

Data Control Manager

and

KIK Pocan

Project Manager

KP:ds

cc: Joel Bird, President

File

ANALYTICAL METHODOLOGY

wall to be to be the best of t

BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes) by Purge & Trap and GC-PID

WATER - Method 602 or 8020

A 5 ml sample volume, or 5 ml of a suitable dilution, is purged on a suitable purge and trap system with helium. The purged sample is analyzed on a Gas Chromatograph equipped with a Photoionization Detector (PID). A packed column is used to separate the compounds.

SOIL - Method 8020

A 10 gram, or other appropriate aliquot of soil, is weighed into a clean VOA vial. Soils received in brass core tubes are sampled by discarding 2-5 centimeters of soil from each end of the tubes (this is done to reduce the possibility of analyzing a portion of soil that has been exposed to sampling technique contamination). Equal aliquots of soil are then removed from each end of the tube and combined in the VOA vial. Soil in jars or bags is aliquoted using a similar technique, which discards exposed sample surfaces. A 10 ml, or other appropriate volume of methanol, is added to the soil and the soil is shaken with the solvent. 100 ul of the extract, or a reduced aliquot or volume of a suitable dilution, is injected into 5 ml of laboratory blank water and analyzed by the same technique used for water samples.

ANALYTICAL METHODOLOGY

Total Petroleum Hydrocarbons (TPH) Extractables by GC-FID

Extraction Procedure:

WATER - Luft Field Manual

A 1 liter sample is poured into a 2 liter separatory funnel. 3x100 ml extractions with methylene chloride (2 minute shake outs) are completed. The methylene chloride is decanted off and concentrated to a 5 ml final volume.

SOIL - Luft Field Manual

A 30 gram, or other appropriate aliquot of soil, is mixed with 10 grams of washed sodium sulfate. 100 mls of methylene chloride is added to the soil and placed on a mechanical shaker for 1 hour. The liquid is decanted off and the process is repeated with an additional 50 ml of methylene chloride. The combined solvent extracts are filtered through sodium sulfate and the extract is concentrated to a 5 ml final volume.

GC ANALYSIS -

An appropriate volume of the sample extract is injected into a Gas Chromatograph equipped with a Flame Ionization Detector (FID), a split/splitless capillary injector (operated in the splitless mode), and a fused silica capillary column. The TPH fraction is quantitated as gasoline and/or #2 diesel fuel (and/or different petroleum hydrocarbon fuel types if requested, such as JP-4 jet fuel) based on relative retention times and examination of the elution profile. The TPH fraction quantitation is based on chromatographic peak areas against a multipoint standard curve.

CHEMWEST ANALYTICAL LABORATORIES BENZENE, TOLUENE, ETHYL BENZENE, XYLENES

Client I.D.: 2109

CHEMWEST I.D.: 4489-1

Date Extracted : 08/28/89

Matrix : Soil

Date(s) Analyzed: 08/29/89

Compound	Amount Detected (mg/Kg)	RL (mg/Kg)
Benzene	1.7	0.05
Toluene	1.8	Ø.1
Ethyl Benzene	Ø.6	Ø.2
Total-Xylenes (1)	4.8	0.1

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	908	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

CHEMWEST ANALYTICAL LABORATORIES TOTAL PETROLEUM HYDROCARBONS - EXTRACTABLE

Date Extracted : 08/28/89 Date(s) Analyzed: 08/31/89

Case : 4489 Matrix: Soil

Reporting Units: mg/Kg

Client ID	CHEMWEST ID	Gasol Result	ine RL	Diesel Result	l RL	Other Hydro Mixtu Result	
2109	4489-1	19	10	BRL	10	BRL	10

BRL: Below Reporting Limit.

RL: Reporting Limit.

CHEMWEST ANALYTICAL LABORATORIES RECEIVED SEP 1 4 1989 OIL & GREASE - GRAVIMETRIC

Date Extracted: 08/28/89 Date(s) Analyzed: 08/29/89

Case : 4489 Matrix: Soil

Client ID	CHEMWEST ID	Amount Detected (mg/Kg)
2109	4489-1	260

The reporting limit for Oil & Grease - Gravimetric is 50 mg/Kg.

BRL: Below Reporting Limit.

CHEMWEST ANALYTICAL LABORATORIES ORGANOCHLORINE PESTICIDES & PCBs

Client I.D.: 2109

CHEMWEST I.D.: 4489

Date Extracted: 08/28/89

Matrix : Soil

Date(s) Analyzed: 08/31/89

Compound	Amount Detected (ug/Kg)	RL (ug/Kg)
Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260	BRL BRL BRL BRL BRL BRL BRL	10 10 10 10 10 20 20
Surrogate	% Recovery	Acceptance Window
Dibutylchlorendate	638	24-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

Approved by: _\

REV4:1.89

10	CKERRI CHAPIN		ОТО	
	- >			
				
_		<u> </u>		
_		1.,		
7	phould be TPH both 18C-FI	.D instea	ed G'TH	7 0
7	er Jury Wallace on, 8/28	89 a 12	19 and	Exple
-				
- -				
[-				
-				
ت		Analysis L TPH: BTEL PCBs		taner in ah Hetaltu
- -		10 - 1 - 1		•
Į	25 Day Turn around		RUSI	
-	PCBs by EPA Method 8080	. Total oil a		
-	CUSTODY IN a binch Metal FOR TPH Gas and Diesel : E	STEX LEPA H	16thod 8050	nalyzed
	ANALYSIS: One Soil Sample re	ech unde	er Chain I	0 F
		Contact	Jim Wallace 916) USI-09	21
	11330 SUNVISE PAVIL DV. H Nancho Cordova, CA 9574		10. 004-88-C	159
	CLIENT: Anahia Geologic Enginee	ring Project N	iame:	50
	(916) 923-0840 FAX (916) 923-1938		Section K. POG	ori
	600 West North Market Blvd. Sacramento, California 95834		Date Rec'd 25.69	@16:06
ļ	CHEM WEST ANALYTICAL LABORATORIES, INC.	RECEIVED SEP	1 4 1909 Order No. 4	489

SAMPLE WILL BE HELD 30 DAYS UNLESS LONGER TIME IS ARRANGED

AGE № 1062 PROJECT NO. LAB REPORT NO. ANNLYSES NO. 004-88-059 SAMPLERS: (signature) P.O. NO. Œ SAMPLE TYPE Robin Mckenning CON-TA INERS SOIL LAB LOG WATER DATE TIVE SAMPLE I.D. NO. COMP GRAB REMARKS 8/24/87 1453 X 2109 Χ X reference 2104 CHARGE PCB WORK TO PROJECT 004-88-013 TRANSPORTED IN CHEST W BLUE ICE. RELINGUISHED BY: (signature) DATE/TIME RECEIVED BY: (signature) REWARKS: SEND RESULTS TO: JIM WALLACE RELINGUISTED BY: (signature) Panes Perry RECEIVED BY: (signaphre) 8124189 1817 tweek TAT
5 DAY ATTN: ANAMIA GEOLOGIC DATE/TIME ENGINEERING Same Perry BEZINOUISED BY: (signoture) 8.25.89 1606 Bour Charkerri CHAPIN 11330 Sunvise Park Dr. Suite K RANCHO CORDOVA, CA 95742 DATE/TIME RECEIVED BY: (signature) PHONE NO. (916) 451-0921 CHAIN OF CLISTODY

Yellow LA Dan py

ANANIA GEOLOGIC ENGINEERING

White-AGE

Precision Analytical Laboratory, Inc.

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/28/89 Analyzed: 09/12/89 Reported: 09/13/89 Job No. #: 71044

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 09/11/89

Total Petroleum Hydrocarbons Analysis
DHS Extraction Method (LUFT)
mg/kg

Lab ID	Client ID	Diesel	Gasoline	MDL
71044-1	#1172	ND<10	ND<10	10
71044-2	#1173	ND<10	ND<10	10

QA/QC: Spike Recovery for Diesel: 92%

Spike Recovery for Gasoline: 98%

MDL: Method detection limit: Compound below this level would not be detected.

Jaime Chow

Laboratory Director

Michael O'Brien

Precision Analytical Laboratory, Inc.

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

State License No. 211

Received: 08/28/89 Analyzed: 09/18/89 Reported: 09/21/89 Job No #: 71044

Attn: Jim Wallace Anania Geological

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix:

Soil

Extracted: 08/28/89

Aromatic Volatile Hydrocarbon Analysis:

EPA Method 8020 mg/kg

Lab ID: 71044-1 71044-2 Client ID: #1172 #1173

ANALYSIS:

			\mathtt{MDL}
Benzene	ND<0.03	ND<0.03	0.03
Chlorobenzene	ND<0.03	ND<0.03	0.03
1,2-Dichlorobenzene	ND<0.03	ND<0.03	0.03
1,3-Dichlorobenzene	ND<0.03	ND<0.03	0.03
1,4-Dichlorobenzene	ND<0.03	ND<0.03	0.03
Ethylbenzene	ND<0.03	ND<0.03	0.03
Toluene (ND<0.03	ND<0.03	0.03
Xylenes	ND<0.03	ND<0.03	0.03

QA/QC: Spike Recovery for Benzene: 85%

Spike Recovery for Chlorobenzene: 88% Spike Recovery for Ethylbenzene: 101%

MDL: Method detection limit; Compound below this level would not be detected.

Jaime Chow

Laboratory Director

Michael O'Brien

OUTSTANDING QUALITY AND SERVICE CALIFORNIA STATE CERTIFIED LABORATORY

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

State License No. 211

08/28/89 Received: 09/20/89 Analyzed: 09/21/89 Reported: 71044 Job No #:

Attn: Jim Wallace Anania Geological Engineering 11330 Sunrise Park Drive, Suite C Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Digested: 09/12/89

Total Lead Analysis; By EPA 6010: Prep Method 3050

mg/kg

Lab ID	Client ID	Total Lead	MDL
71044-1	#1172	8.2	1.1
71044-2	#1173	9.3	

QA/QC: Spike Recovery for Lead: 72%

MDL: Method detection limit; Compound below this level would not

be detected.

Laboratory Director

Officer

Precision Analytical Laboratory, Inc.

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/28/89 Analyzed: 09/11/89 Reported: 09/21/89 Job No. #: 71044

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 09/08/89

Oil & Grease Analysis EPA Method 9071 mg/kg

Lab ID	Client ID	Oil & Grease	MDL
71044-1	#1172	80	20
71044-2	#1173	65	20

QA/QC: Spike Recovery: 75%

MDL: Method detection limit: Compound below this level would not be detected.

Jaime Chow

Laboratory Director

Michael O'Brien

Precision Analytical Laboratory, Inc.

4136 LAKESIDE DRIVE, RICHMOND, CA 94806

PHONE (415) 222-3002

FAX (415) 222-1251

CERTIFICATE OF ANALYSIS

STATE LICENSE NO. 211

Received: 08/28/89 Analyzed: 09/19/89 Reported: 09/21/89 Job No. #: 71044

Attn: Jim Wallace

Anania Geological Engineering 11330 Sunrise Park Drive, Suite C

Rancho Cordova, CA. 95742

Project: #004-88-059

Matrix: Soil

Extracted: 09/19/89

Polychlorinated Biphenyls

EPA Method 8080 mg/kg

Lab ID	Client ID	Results	MDL
71044-1	#1172	ND<0.2	0.2
71044-2	#1173	ND<0.2	0.2

QA/QC: Spike Recovery: 92%

MDL: Method detection limit: Compound below this level would not be detected.

Jaime Chow

Laboratory Director

Michael O'Brien

oa/odlofficer

ANANIA	<u> </u>	untun u	aring		_											AU.	<u> </u>	ુ I ૧ ૧
PR0.	JECT NO.		LAB REPORT NO.	NO.				Г	5 77	1,	ANALYS	ES ,	1.8					
P.O. NO.	SAMPLE	RS: (signat	ure)	OF	<u> </u>	VPLE TYPE		1 /3		BOOM STATES	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	200	3					
	Pok	yn M	ckuney	CON- TAINERS	50			1/3			<u> </u>							
LAB LOG NO.	DATE	THE	SAMPLE 1.D.	iniido	COMP	GRAB	WATER	1 8	8	\$	\$ t	1	<u> </u>			REMARKS		
	812889	1027	1172	,		X			V								• • •	
	8/28/89	1044	1173	1		×		V	V	V	ν	V	٢					1
	DIZCIO	<u></u>	1135			 '								 				1
														 		···		1
																		-
					<u> </u>	<u> </u>	 							<u> </u>			···	-
						<u> </u>	-							<u> </u>		- ····]
	į		,															
						1										· · · · · · · · · · · · · · · · · · ·		1
						 								 				1
					 	 							-			 	······································	-
			·	<u> </u>	<u> </u>	<u> </u>								 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
					<u> </u>	<u> </u>	L,						<u> </u>	<u> </u>		·		
RELINQUISH	ED BY: (sign	noture). Kamaa	DATE/TIME BY 8128 1600	RECEN	ED BY: (signature) #W		REMARKS						ATDI.	SULTS TO: Milu	ublla	ce	
BET INDIVISH	EDBY: (sīgr	noture)	/ DATE/TIME	T RECEIV	ED BY: (9	signature)		Re	g	TA7	-			ANAN	IA GEO		GINEERING	
	Belle ED BY: (sign		8-28/14 <i>35</i> Date/time		FD BY ! (s	2 moture			,								DR. SUIT 95742-65	
NE INCOLUT	(31 9		unity) int	I I I														
					C	AIN OF	CUSTO	Y								(916) 63		-

CHAIN OF CLSTODY

(916) 631-0154

ANALYTICAL SERVICES

Anania Geological Eng. 11330 Sunrise Park Dr. Ste. C Rancho Cordova, CA 95742

09/15/89

Attn: K. Anania

Job No.: 793708

Re: Project: Anania Geological Eng.
AEMC Lab Reference No.: L3708
Date Samples Received: 08/30/89
No. Samples Received: 10 Water samples
6 Soil samples

These samples were received by AEMC in a chilled state, intact, and accompanied by chain-of-custody documentation.

The above referenced samples were analyzed as follows:

No. of Samples	Analysis				
16	TPH gas & diesel				
11	BTXE				
12	PCBs				
16	Lead				
5	Volatile Organics				
5	Semi-volatile Organics				
11	Oil & Grease				

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

George Hampton Laboratory Director

for GH

ANALYTICAL SERVICES

ANALYSIS REPORT: Total Petroleum Hydrocarbons/BTXE

CLIENT: Anania Geological Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-59
Date Samples Received: 8/30/89
Date Analysis Completed: 9/13/89

Matrix: Soil Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

						
Sample I Client		TPH as Diesel Lecovery	TPH as Gasoline)(Recovery)			
Batch 4387 M Spike	L3708-MS	83%				
Batch 4387 M Spike D	L3708-MSD	85%				
Batch 4386 M Spike	L3708-MS		104%			
Batch 4386 M Spike D	L3708-MSD		71%			
REPORTING LIMIT*		10	10			
*Unless otherwise	e indicated	in pare	entheses			
ND - Not Detected	d at or abo	ve indic	cated Reportin	g Limit.		

ENVIRONMENTAL MANAGEMENT CORP.

ANALYTICAL SERVICES

ANALYSIS REPORT: Total Petroleum Hydrocarbons/BTXE

CLIENT: Anania Geological Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-59
Date Samples Received: 8/30/89
Date Analysis Completed: 9/13/89

Matrix: Soil Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

Sample Client	I.D. AEMC	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes, total (ug/kg)	TPH as Gasoline (mg/kg)	TPH as Diesel (mg/kg)
1176	L3708-11	ND	14	ND	ND	ND	ND
1177	L3708-12	ND	21	ND	ND	ND	ND
1178	L3708-13	ND	17	ND	ND	ND	ND
1179	L3708-14	ND	ND	ND	ND	ND	ND
1180	L3708-15	ND	ND	ND	ND	ND	ND
1277	L3708-16	ND	140	ND	ND	ND	ND
REPORTING LIMI	T*	10	10	10	20	1	10
*linless othors	iaa imdiaaba						

^{*}Unless otherwise indicated in parentheses

ND - Not Detected at or above indicated Reporting Limit.

ANALYTICAL BERVICES

ANALYSIS REPORT: PCBs

CLIENT: Anania Geological Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-059
Date Samples Received: 8/30/89
Date Analysis Completed: 9/14/89

Matrix: Soil Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

AEMC I.D.	Sample I.D.	PCB Content Recovery	Aroclor
L3708-MS	Batch 4427	86%	1260
	M Spike	86%	1242
L3708-MSD	Batch 4427	89%	1260
	M Spike D	86%	1242

ANALYTICAL SERVICES

ANALYSIS REPORT: PCBs

CLIENT: Anania Geological Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-059

Date Samples Received: 8/30/89 Date Analysis Completed: 9/14/89

Matrix: Soil Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

AEMC I.D.: L3708

AEMC I.D.	Sample I.D.	PCB Content ug/kg	Reporting Limit ug/kg	Aroclor
L3708-11	1176	ND	10	NA
L3708-12	1177	ND	10	NA

 \mbox{ND} = Not Detected at or above indicated Reporting Limit. \mbox{NA} = Not Applicable

ANALYTICAL SERVICES

ANALYSIS REPORT: Lead, TTLC, EPA Method 7420

CLIENT:

Anania Geological Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-059
Date Samples Received: 8/30/89
Date Analysis Completed: 9/07/89

Matrix: Soil Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

AEMC I.D.	Client I.D.	Results (mg/kg)	Reporting Limit (mg/kg)	
L3708-11	1176	29	5.0	······································
L3708-12	·· 1177	10	5.0	
L3708-13	1178	9.6	5.0	
L3708-14	1179	16	5.0	
L3708-15	1180	6.6	5.0	
L3708-16	1277	40	5.0	

ANALYTICAL SERVICES

ANALYSIS REPORT: Lead, TTLC, EPA Method 7420

CLIENT: Anania Geological Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-059
Date Samples Received: 8/30/89
Date Analysis Completed: 9/07/89

Client Sample I.D.: Batch 4415 Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

110%

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

AEMC I.D.: L3708 Matrix: Soil

COMPOUND	% Recovery M Spike	% Recovery M Spike D
Pb (Lead)	108*	1109

ANALYTICAL BERVICES

ANALYSIS REPORT: Oil & Grease, EPA Method 9071

CLIENT: Anania Geologic Eng. 11330 Sunrise Park Dr., Ste. C Rancho Cordova, CA 95742

Project: 004-88-059
Date Samples Received: 8/30/89
Date Analysis Completed: 9/07/89

Matrix: Soil Sample Location:

P.O/Contract No.: Contact: K. Anania

Phone:

AEMC Contact: M. Jaeger Job No.: 793708 SMR Log No.: 1138

AEMC I.D.: L3708

AEMC I.D.	Client I.D.	Results (mg/kg)	Reporting Limit (mg/kg)	
L3708-11	1176	ND	100	
L3708-12	1177	ND	100	
L3708-13	1178	ND	100	
L3708-14	1179	ND	100	
L3708-15	1180	ND	100	
L3708-16	1277	ND	100	

ND = Not Detected at or above indicated Reporting Limit.

CHAIN OF CUSTODY

ello LAB Copy

##ite-

(916)621-0154

PHONE NO. (OIE) XICIX 8821

APPENDIX C

SEPTEMBER 1989 GROUNDWATER ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

Clayton Environmental Consultants, Inc.

P.O. Box 9019 • 1252 Quarry Lane • Pleasanton, CA 94566 • (415) 426-2600

September 22, 1989

Ms. Mary Scruggs ANANIA GEOLOGIC ENGINEERING 11330 Sunrise Park Drive Rancho Cordova, CA 95742

> Client Ref. No. 004-88-059 Work Order No. 8909125 Client Code No. 77665

Dear Ms. Scruggs:

Attached is our analytical laboratory report for the samples received on September 15, 1989. A copy of the Chain of Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be retained at our facility for approximately 30 days after the date of this report, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please call Maryann Gambino, Client Services Representative, at (415) 426-2657.

Sincerely,

Rónald H. Peters, CIH

Manager, Laboratory Services

RHP/tb Attachment

EXTRACTABLE PETROLEUM HYDROCARBONS EPA METHOD 8015/3510

Sample I.D.:

See below

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125

Lab No.	Sample I.D.	Diesel µg/L	Limit of Detection µg/L
-01C	1190	80	50
-02C	1196	590	50
-03C	1202	100	50
-04C	1208	ND	50
-05B	1214	ND	50
-MB	Method Blank	ND	50

Sample I.D.: 1192 Client: ANANIA

Sample Received: 09/15/89 Client Ref. No.: 004-88-059

Sample Analyzed: 09/21/89 Lab Client Code: 77665

Sample Matrix: Water Lab No.: 8909125-01F

	Concentration	Timit of Detection
C = 8	Concentration	Limit of Detection
Compound	μg/L	<u>πα/Γ</u>
alpha-BHC	ND	0.1
gamma-BHC (Lindane)	ND	0.1
beta-BHC	ND	0.1
heptachlor	ND	0.1
delta-BHC	ND	0.1
aldrin	ND	0.1
heptachlor epoxide	ND	0.1
endosulfan I	ND	0.1
4,4'-DDE	ND	0.1
dieldrin	ND	0.1
endrin	ND	0.1
4,4'-DDD	ND	0.1
endosulfan II	ND	0.1
4,4'-DDT	ND	0.1
endrin aldehyde	ND	0.1
endosulfan sulfate	ND	0.1
chlordane	ND	0.5
toxaphene	ND	5
PCB-1016	ND	1
PCB-1221	ND	1
PCB-1232	ND	1
PCB-1242	ND	1
PCB-1248	ND	1
PCB-1254	ND	1
PCB-1260	ND	1

Sample I.D.: 1198

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-02F

Concentration	Limit of Detection
	μg/L
	
ND	0.1
ND	0, 1
ND	0.1
ND	0.1
. ND	0.1
ND	0.1
ND	0.1
ND	0.1
ND	0.1
ND	0.1
ND	0.1
ND	0.5
ND	5
ND	1
ND ND	1
ND	1
	ND

Sample I.D.:

1204

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89 Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-03F

	Concentration	Limit of Detection
Compound	μg/L	μα/Ι
. 1 . 1	3173	
alpha-BHC	ND	0.1
gamma-BHC (Lindane)	ND	0.1
beta-BHC	ND	0.1
heptachlor	ND	0.1
delta-BHC	ND	0.1
aldrin	ND	0.1
heptachlor epoxide	ND	0,1
endosulfan I	ND	0.1
4,4'-DDE	ND	0.1
dieldrin	ND	0.1
endrin	ND	0.1
4,4'-DDD	ND	0.1
endosulfan II	ND	0.1
4,4'-DDT	ND	0.1
endrin aldehyde	ND	0.1
endosulfan sulfate	ND	0.1
chlordane	ND	0.5
toxaphene	ND	5
PCB-1016	ND	1
PCB-1221	ND	1
PCB-1232	ND	1
PCB-1242	ND	1
PCB-1248	ND	1
PCB-1254	ND	1
PCB-1260	ND	1

Sample I.D.:

1210

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-04F

_	Concentration	Limit of Detection
Compound	_μg/L	<u>μg/</u> L
alpha-BHC	ND	0.1
gamma-BHC (Lindane)	ND	0.1
beta-BHC	ND ND	0.1
heptachlor	ND	0.1
delta-BHC	ND	0.1
aldrin	ND	0.1
heptachlor epoxide	ND	0.1
endosulfan I	ND	0.1
4,4'-DDE	ND	0.1
dieldrin	ND	0.1
endrin	ND	0.1
4,4'-DDD	ND	0.1
endosulfan II	ND	0.1
4,4'-DDT	ND	0.1
endrin aldehyde	ND	0.1
endosulfan sulfate	ND	0.1
chlordane	ND	0.5
toxaphene	ND	5
PCB-1016	ND	1
PCB-1221	ND	1
PCB-1232	ND	1
PCB-1242	ND	1
PCB-1248	ND	1
PCB-1254	_ND	1
PCB-1260	ND	1

Sample I.D.:

1216

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-05E

Concentration	Limit of Detection
μg/L	_μ g/ Ι <u>.</u>
	
ND	0 1
ND	0 1
ND	0 . 1
ND	0 1
ND	0 1
ND	0 1
ND	0 . 1
ND	0 1
ND	0 1
ND	0.1
ND	0 1
ND	0 1
ND	0 1
ND	0.1
ND	0.1
ND	0 . 1
ND	0.5
ND	5
ND	1
	ND

Sample I.D.:

Method Blank Client:

ANANIA

Sample Received:

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-MB

	Concentration	Limit of Detection
Compound	<u>μα/Γ</u>	<u>μα/</u> Ε
alpha-BHC	ND	0.1
gamma-BHC (Lindane)	ND	0.1
beta-BHC	ND	0.1
heptachlor	ND	0.1
delta-BHC	ND	0 . 1
aldrin	ND	0.1
heptachlor epoxide	ND	0.1
endosulfan I	ND	0.1
4,4'-DDE	ND	0.1
dieldrin	ND	0.1
endrin	ND	0.1
4,4'-DDD	ND	0.1
endosulfan II	ND	0.1
4,4'-DDT	ND	0.1
endrin aldehyde	ND	0.1
endosulfan sulfate	ND	0.1
chlordane	ND	0.5
toxaphene	ND	5
PCB-1016	ND	1
PCB-1221	ND	1
PCB-1232	ND	1
PCB-1242	ND	1
PCB-1248	ND	1
PCB-1254	ND	1
PCB-1260	ND	1

Sample I.D.:

1189, ' Client:

ANANIA

Sample Received:

09/15/89 Client Ref. No.: 004-88-059

Sample Analyzed: 09/21/89 Lab Client Code: 77665

Sample Matrix: Water

Lab No.:

8909125-01A

Compound	Concentration	Limit of Detection $\mu g/L$ (ppb)
Benzene	14	0.4
Toluene	0.4	0.3
Ethylbenzene	ND	0.3
Xylenes	ND	0.7
Gasoline	ND	50

Sample I.D.:

1195

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-02A

Compound	Concentration µg/L (ppb)	Limit of Detection $\mu g/L$ (ppb)
Benzene	1400	20
Toluene	1300	20
Ethylbenzene	110	6
Xylenes	1100	20
Gasoline	6000	3000

Sample I.D.:

1201

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-03A

Compound	Concentration ug/L (ppb)	Limit of Detection $\mu g/L$ (ppb)
Benzene	ND	0.4
Toluene	ND	0.3
Ethylbenzene	ND	0.3
Xylenes	ND	0.7
Gasoline	ND	50

Sample I.D.:

1207

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-04A

Compound	Concentration	Limit of Detection
Benzene	ND	0.4
Toluene	ND	0.3
Ethylbenzene	ND	0.3
Xylenes	ND	0.7
Gasoline	ND	50

Sample I.D.:

1213

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-05A

	Concentration	Limit of Detection
Compound	μg/L (ppb)	μg/L(ppb)
Benzene	ND	0.4
Toluene	ND	0.3
Ethylbenzene	ND	0.3
Xylenes	ND	0.7
Gasoline	ND	50

Page 14 of 18

EPA METHOD 8015/8020 GASOLINE/BTEX

Sample I.D.:

Trip Blank

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-06A

Compound	Concentration µg/L (ppb)	Limit of Detection $\mu g/L$ (ppb)
Benzene	ND	0.4
Toluene	ND	0.3
Ethylbenzene	ND	0.3
Xylenes	ND	0.7
Gasoline	ND	50

Sample I.D.:

Method Blank

Client:

ANANIA

Sample Received:

Client Ref. No.:

004-88-059

Sample Analyzed:

09/21/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125-MB

Compound	Concentration µg/L (ppb)	Limit of Detection <u>µg/L</u> (ppb)
Benzene	ND	0.4
Toluene	ND	0.3
Ethylbenzene	ND	0.3
Xylenes	ND	0.7
Gasoline	ND	50

EXTRACTION LABORATORY ANALYSES

Sample I.D.: See below Client: ANANIA

Sample Received: 09/15/89 Client Ref. No.: 004-88-059

Sample Analyzed: 09/20/89 Lab Client Code: 77665

Sample Matrix: Water Lab No.: 8909125

Batch Sub. No.	Sample Identification	Oil & Grease (mg/L)
-01G	1194	<1
-02Н	1200	1
-03Н	1206	<1
-04Н	1212	<1
-05Н	1219	<1
-MB	Method Blank	<1

Limit of detection:

1

Method Reference:

Std. Method 503A

< = less than, below limit of detection</pre>

EXTRACTION LABORATORY ANALYSES

Sample I.D.:

See below

Client:

ANANIA

Sample Received:

09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed:

09/20/89

Lab Client Code:

77665

Sample Matrix:

Water

Lab No.:

8909125

Batch Sub. No.	Sample Identification	Hydrocarbons (mg/L)
-02Н	1200	<1
-мв	Method Blank	<1
		

Limit of detection:

1

Method Reference:

Std. Method 503E

< = less than, below limit of detection

INORGANIC LABORATORY ANALYSES

Sample I.D.:

See below

Client:

ANANIA

Sample Received: 09/15/89

Client Ref. No.:

004-88-059

Sample Analyzed: 09/19/89

Lab Client Code:

77665

Sample Matrix:

Soil

Lab No.:

8909125

Batch Sub. No.	Sample Identification	Lead (mg/kg)	
-02G	1199	<0.05	
-03G	1205	<0.05	
-04G	1211	<0.05	
-05F	1217	<0.05	
-MB	Method Blank	<0.05	
		i	
			• •
			··

Limit of detection:

0.05

Method Reference:

EPA 6010

< = less than, below limit of detection</pre>

White- AGE

Yellow-LAB Copy

Pink-File

ELINOUISED BY: (signature)	9/15/89 Pr	File of the state	REMARKS:
ELINDUISTED(87: (signature)	DATE/TIME	RECEIVED BY: (signature)	ONE WEEK
RELINQUISHED BY: (signature)	DATE/T INE	RECEIVED BY: (signature)	

ATTN:
MS. MARY SCRUGGS ANANIA GEOLOGIC ENGINEERING 11330 SUNRISE PARK DR. SUITE C RANCHO CORDOVA, CA 95742-6542 PHONE NO. 1946 ×450×0821

CHAIN OF CUSTODY

	LUCT IN	C DUCTUD													AGE INE	
004 P.O. NO.	JECT NO. -28 - O. Sample	_ /	LAB REPORT NO.	NO. OF				/:	N.	251	ANALYS	ES /S	<u></u>	¥.7	~7	
J. NO.	FON	etter-/	Theres	1	Sł	WPLE TYPE] 🖇	SA	6)×	3/8	03	_ \{\g		<u> </u>	\bot
8 LOG NO.	DATE	TIME	SAMPLE I.D.	TA INERS	COMP	GRAB	WATER						ST C	5/3	REMARKS	
	9/15/89	1215	12.13	12			X	X							Mw-0s 29	
	1/5/89	1218	1214	1			X	ļ	X			,				
	f (1220	1215	2			X			X					1	
	11	1225	1216	1			X	ļ			X					
· · · · ·	1/	1235	1217	1			X	<u> </u>				X				
	ti	1237	1218	1			X	<u> </u>					X			
	1.1	1240	1219	1			_<	ļ						X		╛
				_		ļ		-								_
					ļ	<u> </u>		-					ļ			4
						ļ 		<u> </u>			-					_
								<u> </u>			-					4
HOUISH	ED) BY: (sign	nsture)	DATE/TIME	REDEIV	ED BY: (:	signature)		ATWRS.	<u> </u>					SEND RE	SSUTS TO:	4
NOUISH	ED BY: (sign	Shorts nature)				signature)		0	NE	7	ZK A.	7.		ATTN: ANAN 1133	MS. MARY SCRUGGS TA GEOLOGIC ENGINEERING O SUNRISE PARK DR. SUN HO CORDOVA, CA 95742-6	CTK
НСІЧИП	EDBY: (sign	uture)	DATE/T IME	RELE IVI		signature)		PA 2							B NO. (818)×451×6921×	
					(2)	AIN OF	131510	П							(916)631-0154	

CHAIN OF CUSTODY

(916)631-0154

APPENDIX D

OCTOBER 1989 GROUNDWATER ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

RECEIVED OCT 2 8 1989

DATE RECEIVED: 10/13/89 DATE REPORTED: 10/24/89

PAGE 1 OF 6

LAB NUMBER: 18503

CLIENT: ANANIA GEOLOGIC ENGINEERING

REPORT ON: 3 WATER SAMPLES

JOB #: 004-88-059

RESULTS: SEE ATTACHED

OA/OC Officer

Laboratory Director

Berkeley

Wilmington

Los Angeles

LABORATORY NUMBER: 18503

CLIENT: ANANIA GEOLOGIC ENGINEERING

JOB NUMBER: 004-88-059

DATE RECEIVED: 10/13/89 DATE ANALYZED: 10/23/89

DATE REPORTED: 10/24/89

PAGE 2 OF 6

Total Volatile Hydrocarbons (TVH) by EPA 8015
Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020
Extraction by EPA 5030 Purge and Trap

CLIENT ID	TVH AS GASOLINE	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
3481	1,900	870	440	12	120
3482	51	12	14	ND(1)	6
3483	58	8	14	1	8
	3481 3482	GASOLINE (ug/L) 3481 1,900 3482 51	GASOLINE (ug/L) (ug/L) 3481 1,900 870 3482 51 12	GASOLINE (ug/L) (ug/L) (ug/L) 3481 1,900 870 440 3482 51 12 14	GASOLINE BENZENE (ug/L) (ug/L) (ug/L) (ug/L) 3481 1,900 870 440 12 3482 51 12 14 ND(1)

ND = None Detected; Limit of detection is indicated in parentheses.

QA/QC SUMMARY

#RFD	%RECOVERY	78
	*RPD	1 70

LABORATORY NUMBER: 18503

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 10/13/89

DATE ANALYZED: 10/20/89 DATE REPORTED: 10/24/89

PAGE 3 OF 6

Extractable Petroleum Hydrocarbons in Aqueous Solutions EPA 8015 (Modified) Extraction Method: EPA 3510

LAB ID	CLIENT ID	KEROSENE (mg/L)	DIESEL (mg/L)	OTHER (mg/L)
18503-1	3481	ND(0.5)	ND(0.5)	ND(0.5)
18503-2	3482	ND(0.5)	ND(0.5)	ND(0.5)
18503-3	8483	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not Detected; Limit of detection in parentheses.

QA/QC SUMMARY

RPD, %
Spike: % Recovery
98

LAB NUMBER: 18503

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 10/13/89 DATE ANALYZED: 10/20/89 DATE REPORTED: 10/24/89

PAGE 4 OF 6

POLYCHLORINATED BIPHENYLS (PCBs)

METHOD: EPA 8080

EXTRACTION METHOD: EPA 3510

LAB ID	CLIENT ID	AROCLOR	CONCENTRATION (ug/L)	MDL (ug/L)	
18504-1	3481		ND	0.05	
18504-2	3482	- 	ND	0.05	
18504-3	3483	هنا جن جند	ND	0.05	

ND = NONE DETECTED; LIMIT OF DETECTION IS INDICATED IN LAST COLUMN.

QA/QC SUMMARY

&RPD 5 **%RECOVERY** 121

LAB NUMBER: 18503

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT # : 004-88-059

DATE RECEIVED: 10/13/89
DATE ANALYZED: 10/19/89

DATE REPORTED: 10/24/89

PAGE 5 OF 6

ANALYSIS: OIL AND GREASE

METHOD: SMWW 503E

LAB ID	SAMPLE	ID	RESULT	UNITS	DETECTION LIMIT
18503-1	3481		ND	mg/L	20
18503-2	3482		ND	mg/L	20
18503-3	3483		ND	mg/L	20

QA/QC SUMMARY

RPD, %
RECOVERY, %
92

LABORATORY NUMBER: 18503

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 10/13/89

DATE ANALYZED: 10/16/89 DATE REPORTED: 10/24/89

PAGE 6 of 6

mg/L

ANALYSIS: TOTAL LEAD IN AQUEOUS SOLUTIONS

METHOD REFERENCE: EPA 7420

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT
18503-1	3481	ND	mg/L	0.05
18503-2	3482	ND	mg/L	0.05
18503-3	3483	ND	mg/L	0.05

ND = NOT DETECTED.

QA/QC:

RPD, % <1 RECOVERY, % 102

	JECT NO.	, midin	LAB REPORT NO.	T	<u> </u>						ALIES VICE	~			Adj
P.O. NO. SAPLERS: (signature) FERVICE: There		NO. OF	SAUPLE TYPE												
AB LOG NO.	DATE	THE	SAMPLE I.D.	TA INERS	SO COMP	IL GRAB	WATER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						7	/ REJUARKS
	19/13/89		3481	6			X	X	X	χ	X	X	X		
	il		3482	6			X	Χ.	×	X	X	X	X		
 	i I		3483	6			X	X	χ-	X	X	X	X		
					<u></u>		ļ		<u> </u>						
						ļ								<u> </u>	
				<u> </u>			ļ	<u> </u>		<u> </u>					
					ļ	<u> </u>		<u> </u>					<u> </u>		
					<u> </u>	ļ 	ļ	ļ	· · · · · · · · · · · · · · · · · · ·						:
		·		_		ļ		-						-	
				 	-			 							
				<u> </u>		-		-							
INOUIS	ED-87: (sign	sture)	DATE/TIME	PECEL	D By 3	signosyro)		REDWARKS		<u></u>					SULTS TO:
HOUTS	Dor (sign	oture)	DATE/TIME	RECEIV	ED BY: (:	signature)	<u>_</u>	Pion is	Jos	eph	Cox	eiës ars		ATTN: AHAWI 11330	MARLY SCRUGG A GEOLOGIC ENGINEERING SUNRISE PARK DR. SUITE
LINDUIS!	EDBY: (signo	oture)	DATE/TIME	RECEIV		signature)		ust 3	Fi	GE	- Six	n Pa	Ho	PHON	io cordova, ca 95742-654 E NO. (916)×151-0621
					u	h in of	USIO	יז ע							(916) 631-0154

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (415) 486-0900

RECEIVED OCT 2 8 1989

DATE RECEIVED: 10/16/89 DATE REPORTED: 10/24/89

PAGE 1 OF 6

LAB NUMBER: 18510

CLIENT: ANANIA GEOLOGIC ENGINEERING

REPORT ON: 2 WATER SAMPLES

JOB #: 004-88-059

RESULTS: SEE ATTACHED

QA/QC Officer

Laboratory Director

Berkeley

Wilmington

Los Angeles

LABORATORY NUMBER: 18510

CLIENT: ANANIA GEOLOGIC ENGINEERING

JOB NUMBER: 004-88-059

DATE RECEIVED: 10/16/89 DATE ANALYZED: 10/19/89 DATE REPORTED: 10/24/89

PAGE 2 OF 6

Total Volatile Hydrocarbons (TVH) by EPA 8015 Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
18510-1	3484	65	2.3	2.4	2.0	2.3
18510-2	3485	82	29	4.7	ND(1)	1.2

ND = None Detected; Limit of detection is indicated in parentheses.

QA/QC SUMMARY

%RPD	<1	
*RECOVERY	88	1
		1.00

LABORATORY NUMBER: 18510

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 10/16/89 DATE ANALYZED: 10/20/89

DATE REPORTED: 10/24/89 PAGE 3 OF 6

Extractable Petroleum Hydrocarbons in Aqueous Solutions EPA 8015 (Modified)

Extraction Method: EPA 3510

LAB ID	CLIENT ID	KEROSENE (mg/L)	DIESEL (mg/L)	OTHER (mg/L)
18510-1	3484	ND(0.5)	ND(0.5)	ND(0.5)
18510-2	3485	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not Detected; Limit of detection in parentheses.

QA/QC SUMMARY

RPD, %
Spike: % Recovery

7 98

LAB NUMBER: 18510

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT # : 004-88-059

DATE RECEIVED: 10/16/89
DATE ANALYZED: 10/19/89

DATE REPORTED: 10/24/89

PAGE 4 OF 6

ANALYSIS: OIL AND GREASE

METHOD: SMWW 503E

LAB ID	SAMPLE	ID	RESULT	UNITS	DETECTION
18510-1	3484		ND	mg/L	20
18510-2	3485		ND	mg/L	20

ND = NOT DETECTED

QA/QC SUMMARY

RPD, %
RECOVERY, %
STATEMENT OF THE PROPERTY O

LAB NUMBER: 18510

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

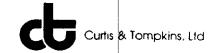
DATE RECEIVED: 10/16/89
DATE ANALYZED: 10/19/89
DATE REPORTED: 10/24/89

PAGE 5 OF 6

POLYCHLORINATED BIPHENYLS (PCBs)

METHOD: EPA 8080

EXTRACTION METHOD: EPA 3510


EXTRACTION MATNOD. BFA 5510

LAB ID	CLIENT ID	AROCLOR	CONCENTRATION (ug/L)	MDL (ug/L)
18510-1	3484		ND	1.0
18510-2	3485		ND	1.0

ND = NONE DETECTED; LIMIT OF DETECTION IS INDICATED IN LAST COLUMN.

QA/QC SUMMARY

%RPD 3
%RECOVERY 95

LABORATORY NUMBER: 18510

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 10/16/89
DATE ANALYZED: 10/17/89

DATE REPORTED: 10/17/89

PAGE 6 OF 6

ANALYSIS: TOTAL LEAD

METHOD REFERENCE: EPA 7421

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT	

18510-1	3484	ND	mg/L	0.05

18510-2 3485 ND mg/L 0.05

ND = NOT DETECTED.

QA/QC:

RPD, %
RECOVERY, %

	GROFOGI	ic kngink													AGE N-
	JECT NO.		LAB REPORT NO.	NO.							ANALYS	 ES			
	-88-0.	57		1				Γ	I_{r}	11	77.	a /	7	<i>\u0</i>	
2.0. NO.	SAMPL	ERS: (signot	ure)	OF .		WPLE TYPE		7 / 3	77.	3/	XS	\sim	_/.	F	
	18	Herry	- Daws	00N		····	1	₹ \ \ ₹	0/2		7/1	J.	8/0	\v2\ \v2\	/
AB LOG	DATE	TIME	SAMPLE L.D.	TAINERS)IL	WATER	1/2 9	N_{f}	J / (6	S. 6. 1	oy o	977	\\ \\\	1
NO.	UNIL	1 (186	35 H 13.		COMP	GRAB		1		প্	<u> </u>		10.		REJARKS .
	10/11/m		24916	,					_\				_		j
	19/14/87	112/	3484	6	 	 	X	X.		X	X	Α.	X	ļ	
	Idilla	1215	3485	6	1		X		X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X	X	×	1	
	141401	1215	2700	<u> </u>	/*	 	 ^ -	 	 ^	 	-	_	-	 	
	1														
					†	1	 	†					ļ · · · · ·	1	
								1		1					
	1				1		1		<u> </u>	<u> </u>			1		
								l					ŀ		ļ
						<u> </u>		1							
														1	
						<u> </u>				<u> </u>					1
	ļ					1									
"		ļ			1	<u> </u>		1			<u> </u>		<u> </u>		<u> </u>
	Ì											1			
			<u> </u>			<u> </u>		<u> </u>		L					
		:			1			1					l		
		 				 	<u> </u>			ļ	ļ		<u> </u>	.↓	
								1		1			ł		
INDITIO	DBY: (sig	noture)	DATE/TIME	pene it	ATD BY · (signature)	1	201100	<u> </u>		<u> </u>	L	Щ,	000 R]
m	97-16	7.	14/16/86 152	· Mari		signature <i>)</i> ι ()	'	REDANKS	:	1					ESULTS TO:
HITTE	7)-/- 2) BY: (sig	mbra)	14/6/86 /52) 101VQ			<u> </u>	Pro	wil	e c	que	s A	0	ATTN:	Mary Scruffs
11 2()	ان سع (310)	ware)	DATE/TIME	NEXAL IV	יניטעם: (נ	signature)		·	d		1/2	60	\circ 1	IWANA	A GEOLOGIC KNGINKKRING
								103	affly	10	المستعار	10.	~	11330	SUMRISE PARK DR. SUIT
LINDUIS	ED BY: (sig	nature)	DATE/TIME	RECEIV	ED BY: (signature)		Sem	Pa	660	CH	Fice	-	SANGE	Mary Scruffs A GEOLOGIC ENGINEERING SURFISE PARK DR. SUIT HO CORDOVA, CA 95742-65
			1						,				1	PHON	TE NO. (216) x 1511-2004
					N	A IN OF	A PM	NV				·····			

CHAIN OF CUSTODY

(916) 631-0154

ANALYTICAL LABORATORIES

RECEIVED OCT 1 2 1989

DATE:

CHEMTECH ID:

October 12, 1989

1050CT

REPORTED TO:

INVOICED TO:

AGE ENGINEERING

SAME

11330 Sunrise Park Dr. Suite "C" Rancho Cordova, CA 95742

ATTN: MR. JIM WALLACE

The Environmental Service Division of, CHEMTECH Analytical Laboratories, Inc., has completed analyses requested for the project documented below.

PROJECT NAME: NONE

PROJECT NO.: 004-88-059

If you have any question concerning this report please contact CHEMTECH's Client Services Division at (916) 635-3962.

Thank You for using the environmental services of CHEMTECH Analytical Laboratories, Inc.

Sincerely,

Mad Masson

MARK MASINO Executive Vice President Environmental Division

pdp/MM

ANALYTICAL DATA RESULTS

LABORATORY FILE CODE:

PROJECT NAME:

1050CT

004-88-059

Received: 10-04-89

Sampled: 10-03-89

Extracted: 10-05-89

Analyzed: 10-06/10-89

Benzene, Toluene, E. Benzene, Xylenes

METHOD: 8020

AMOUNT LABORATORY **SAMPLE** MATRIX DETECTED SAMPLE ID: DESCRIPTION TYPE \underline{T} E <u>X</u> 3466 34 2.0 -1 ND 39 REPORTING LIMITS: B=0.5T=1.0E=1.0X=2.0REPORTING UNITS: ug/L,ppb

> ANALYSIS: Petroleum Hydrocarbons METHOD: Modified 8015

LABORATORY **SAMPLE MATRIX** AMOUNT DETECTED SAMPLE ID: DESCRIPTION TYPEPETROLEUM HYDROCARBONS

W

3466 -1

ND

NOTE: Analysis did indicate the presents of fuel hydrocarbons in the C-6 to C-12 range, however the TPH results were below the reporting limit for gasoline and diesel fuel. REPORTING LIMIT: 0.075 mg/L, ppm gasoline - diesel fuel

ND = NOT DETECTED S = SOILW = WATERHZ = WASTE

DATE: 10-12-85

QUALITY ASSURANCE REPORT

The "Quality Assurance Report" is an integral part of CHEMTECH's "Analytical Data Report". The QRA combines the industry-standard QC requirements with CHEMTECH's routine and client specific QC results which are critical for evaluating the "Data Results" for the CHEMTECH FILE/PROJECT listed below.

Quality assurance protocols may vary depending upon the analysis, sample matrix and regulatory agencies/project specific requirements. CHEMTECH has available, upon request, a technical bulletin which summarizes/defines technical terms and protocols.

Tech Bulletin #989-TRG "TECHNICAL REFERENCE GUIDE"

Since CHEMTECH's Quality Assurance Reports are "CUSTOMIZED" for each project, only the items with an asterisk (*) are contained in this QA/QC report.

CHEMTECH FILE IDENTIFICATION & CLIENT PROJECT NUMBER/SITE CODE

CHEMTECH	ID:	PROJECT ID:	
1050CT	1053CT	004-88-059	004-89-077-01
1052CT	1054CT	004-89-078-01	004-89-079-01

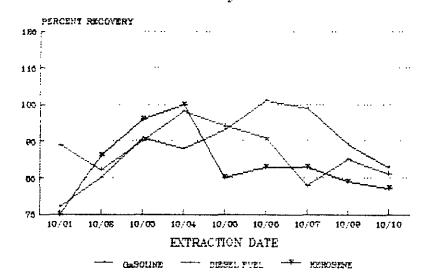
(**) PETROLEUM & FUEL HYDROCARBONS ANALYSIS

- (*) Method Blank Results
- (*) Calibration Verification Results
- (*) Laboratory Control Sample Results/Control Chart
- () Surrogate/Peak Indexing Compound Results/Control Chart
- () Duplicate Sample Results/Control Chart
- () Spike Sample Results/Control Chart
- () Modification/Clients Specific QC Results

(**) VOLATILES by GC & GC/MS (8010/20, 601/2, BTEX, 8240/624)

- (*) Method Blank Results
- (*) Calibration Verification Results
- (*) Laboratory Control Sample Results/Control Chart
- () Surrogate/Recovery Results/Control Chart
- () Duplicate Sample Results/Control Chart
- () Spike Sample Results/Control Chart
- () Modification/Clients Specific QC Results

QUALITY ASSURANCE REPORT


(**) PETROLEUM & FUEL HYDROCARBON ANALYSIS

<u>Method Blank Results:</u> The method blank which was extracted and/or analyzed with the samples received contained NO DETECTABLE compounds at or above one-half (50%) of the "Reporting Limit" listed on each analytical data sheet for this method.

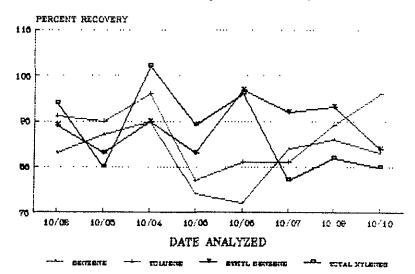
<u>Calibration</u> <u>Verification</u> <u>Results:</u> All compounds listed on the analytical data sheets were within the "Control Limits" outlined in the Tech Bulletin #989-TRG.

Laboratory Control Sample (LCS) Results/Control Chart:

LABORATORY CONTROL SAMPLE Petroleum Hydrocarbons

Listed on each "Analytical Data Sheet" locate the "Date Extracted" or "Extraction Batch No." and Cross-Reference this point with the % Recovery value. In addition, the graph shows historical data points for the last ten LCS samples analyzed.

QUALITY ASSURANCE REPORT


(**) VOLATILES by GC & GC/MS (8010/20, 601/2, BTEX, 8240/624)

<u>Method Blank Results:</u> The method blank which was extracted and/or analyzed with the samples received contained *NO DETECTABLE* compounds at or above one-half (50%) of the "Reporting Limit" listed on each analytical data sheet for this method.

<u>Calibration</u> <u>Verification</u> <u>Results:</u> All compounds listed on the analytical data sheets were within the "Control Limits" outlined in the Tech Bulletin #989-TRG.

Laboratory Control Sample (LCS) Results/Control Chart:

LABORATORY CONTROL SAMPLE VOLATILES by GC & GC/MS

Listed on each "Analytical Data Sheet" locate the "Date Extracted" or "Date Analyzed" and Cross-Reference this point with the % Recovery value. In addition, the graph shows historical data points for the last ten LCS samples analyzed.

M. Masen 10/10/89.

Yell LAGO OP

APPENDIX E

NOVEMBER 1989 GROUNDWATER ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

RECEIVED BEC 0 7 1989

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710. Phone (415) 486-0900

DATE RECEIVED: 11/15/89 DATE REPORTED: 11/27/89

PAGE 1 OF 6

LAB NUMBER: 18712

CLIENT: ANANIA GEOLOGIC ENGINEERING

REPORT ON: 3 WATER SAMPLES

PROJECT #: 004-88-059

RESULTS: SEE ATTACHED

QA/QC Officer

Laboratory Director

Berkeley Wilmington Los Angeles

RECEIVED DEC 0 7 1989

LABORATORY NUMBER: 18712

CLIENT: ANANIA GEOLOGIC ENGINEERING

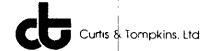
PROJECT #: 004-88-059

DATE RECEIVED: 11/15/89

DATE ANALYZED: 11/17/89 DATE REPORTED: 11/27/89

PAGE 2 OF 6

Extractable Petroleum Hydrocarbons in Aqueous Solutions EPA 8015 (Modified) Extraction Method: EPA 3510


LAB ID CLIENT ID KEROSENE DIESEL OTHER (mg/L) (mg/L)

18712-1	12101	ND(0.5)	ND(0.5)	ND(0.5)
18712-2	12102	ND(0.5)	ND(0.5)	ND(0.5)
18712-3	12103	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not Detected; Limit of detection in parentheses.

QA/QC SUMMARY

RPD, %
Spike: % Recovery
93

LABORATORY NUMBER: 18712

CLIENT: ANANIA GEOLOGIC ENGINEERING

JOB NUMBER: 004-88-059

DATE RECEIVED: 11/15/89 DATE ANALYZED: 11/22/89 DATE REPORTED: 11/27/89

PAGE 3A OF 6

Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT ID	BENZENE	TOLUENE	TOTAL XYLENES	ETHYL BENZENE	REPORTING LIMIT *
	~	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
18712-1	12101	30	2.1	ND	ND	1.0
18712-2	12102	4,200	3,000	840	ND	100.0
18712-3	12103	ND	3.1	ND	ND	1.0

ND = Not Detected.

* Reporting Limit applies to all analytes.

QA/QC SUMMARY

%RPD	<1
%RECOVERY	83

RECEIVED GEC U 7 1989

LAB NUMBER: 18712

CLIENT: ANANIA GEOLOGIC ENGINEERING

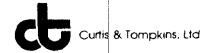
PROJECT # : 004-88-059

DATE RECEIVED: 11/15/89

DATE ANALYZED: 11/22/89 DATE REPORTED: 11/27/89

PAGE 4 OF 6

ANALYSIS: OIL AND GREASE


METHOD: SMWW 503E

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT
18712-1	12101	ND	mg/L	20
18712-2	12102	230	mg/L	20
18712-3	12103	100	mg/L	20

QA/QC SUMMARY	
**	=======
RPD, %	3
PECOVERY 1	Ω 7

RECEIVED DEC 0 7 1989

LAB NUMBER: 18712

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 11/15/89
DATE ANALYZED: 11/22/89

DATE REPORTED: 11/27/89

PAGE 5 OF 6

POLYCHLORINATED BIPHENYLS (PCBs)

ANALYSIS METHOD: EPA 8080
EXTRACTION METHOD: EPA 3510

LAB ID	CLIENT ID	AROCLOR	CONCENTRATION (mg/Kg)	MDL (mg/Kg)
18712-1	12101		N D	0.5
18712-2	12102		ND	0.5
18712-3	12103		ND	0.5

ND = NONE DETECTED; LIMIT OF DETECTION IS INDICATED IN LAST COLUMN.

QA/QC SUMMARY

%RPD	10	
%RECOVERY	94)
\$KECOVEKI		

RECEIVED BEC 0 7 1989

LABORATORY NUMBER: 18712

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #:004-88-059

DATE RECEIVED: 11/15/89
DATE ANALYZED: 11/20/89
DATE REPORTED: 11/27/89

PAGE 6 OF 6

ANALYSIS: LEAD

PREPARATION METHOD: EPA 3010 METHOD REFERENCE: EPA 7420

METHOD REFERENCE: EPA 7420

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT
18712-1	12101	ND	mg/L	0.05
18712-2	12102	ND	mg/L	0.05
18712-3	12103	ND	mg/L	0.05

ND = NOT DETECTED; LIMIT OF DETECTION IN LAST COLUMN

QA/QC:

RPD, %

RECOVERY, %

101

ANANIA GEOLOGIC ENGINEERING

<u>minnim</u>	ומטוטמט	C DAUTHI	mum A												Aun ''-
PRO.	JECT NO.		LAB REPORT NO.	NO.							ANALYS	ES			
0. NO.	-88-C	37 ⊞S: (signor	tura	OF				$-\int_{\gamma}$		7	\mathcal{T}	TI	# L.		7
.U. NO.	1054	-100 (SIGH)	TEY-KOBEDIS	L	S	MPLE TYPE				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10	0.0	V.		· · / · · · · · · · · · · · · · · · · · · ·
B LOG				CON- Tainers	S0	L	WATER	$\left \sqrt{\chi} \right $	18 C	J. W.	7 6	27 W.			
NB LOG NO.	DATE	TIME	SAMPLE I.D.		COMP	GRAB	BATCA.	人.	7/2	10	NV x	10,0	3/2		REMARKS
	11/189	12005	12 10 1	6			×	X	X	×	×	X	\ \rac{1}{2}		
		12003	12 10 1		 			 ^ -		-		 ^ -	Λ	+-	
	4/15/89	14.38	12102	6			X	X	X	X	X	X	X		
	11.7/64	1603	R 103	6			X	X	×	×	×	X	$ \times$	1	
	11/12 pc/	1600	1 - 100	1	 				<u> </u>	 ^	_	/	^	┼┈	
		<u> </u>			<u> </u>	ļ		<u> </u>						<u> </u>	
			}												
					 	 	ļ	 	-		-	 		-	
					<u> </u>					<u> </u>					
					 			╂──	 	 	 -	ļ		 	
		<u> </u>			<u> </u>										<u></u>
	j ,	<u> </u>						1	}	 		}			
					 			 	 	 	 		-	+	
·															
	<u> </u>				 	 		╂	 		_		-	-	
		<u> </u>								<u> </u>					
.I nduis h 	ED BY: (sign	noture)	DATE/TIME 21/15/89	RECEIV	ED By: (: D By: (:	signature)	_	REMARKS	:						ESULTS TO:
	D BY: (v)g		DATE/TIME	REDE IV	// // ED BY: 14	ionature)		Sem	of co	pies	40	Att	1.	ATTN:	MAGY SCRUTTS IA GEOLOGIC ENGINEERING D SUBRISE PARK DR. SUITE HO CORDOVA, CA 95742-6542 WE NO. 1910/1451-0821
	- V		onity i list	,	<u>/</u> -	· · · · · · · · · · · · · · · · · · ·		Joge	96	7.17	کیمرر در دم	(a)		1133	IA GEOLOGIC ENGINEERING O SUMRISE PARK DR. SUITE
INDUISH	ED BY: (sig	nature)	DATE/T INE	RECEIV	ED BY: (s	ignature)		Sin	Po	its lo	CH	F7 CC		RANCI	HO CORDOVA, CA 95742-6542
		_				<i>y</i> • <i>y</i>		5	DA	<i>4</i> Y	TA	ナ		PHO	RE NO. (210) x 151 - 1021
					(N	AIN OF	CIKTO	TY	·/ ·					<u>, </u>	(014) (21 015)

CHAIN OF CUSTODY

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

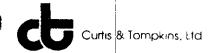
DATE RECEIVED: 11/16/89 DATE REPORTED: 11/30/89

PAGE 1 OF 6

LAB NUMBER: 18730

CLIENT: ANANIA GEOLOGIC ENGINEERING

REPORT ON: 2 WATER SAMPLES


JOB #:004-88-059

RESULTS: SEE ATTACHED

QA/QC Officer

Laboratory Director

RECEIVED DEC _ 2 1989

LABORATORY NUMBER: 18730

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 11/16/89 DATE ANALYZED: 11/26/89

DATE REPORTED: 11/30/89

PAGE 2 OF 6

Extractable Petroleum Hydrocarbons in Aqueous Solutions
EPA 8015 (Modified)
Extraction Method: EPA 3510

LAB ID	CLIENT ID	KEROSENE (mg/L)	DIESEL (mg/L)	OTHER (mg/L)
18730-1	12104	ND(0.5)	ND(0.5)	ND(0.5)
18730-2	12105	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not Detected; Limit of detection in parentheses.

QA/QC SUMMARY

RPD, %
Spike: % Recovery 97

LABORATORY NUMBER: 18730

CLIENT: ANANIA GEOLOGIC ENGINEERING

JOB NUMBER: 004-88-059

DATE RECEIVED: 11/16/89
DATE ANALYZED: 11/29/89

DATE REPORTED: 11/30/89

PAGE 3 OF 6

Total Volatile Hydrocarbons (TVH) by EPA 8015 Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
18730 - 1	12104	ND(50)	ND(1)	ND(1)	ND(1)	ND(1)
18730 - 2	12105	ND(50)	ND(1)	ND(1)	ND(1)	ND(1)

ND = None Detected; Limit of detection is indicated in parentheses.

QA/QC SUMMARY

 %RPD
 2

 %RECOVERY
 7 6

RECEIVED DEC _ 2 1989

LAB NUMBER: 18730

CLIENT: ANANIA GEOLOGIC ENGINEERING

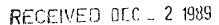
PROJECT # : 004-88-059

DATE RECEIVED: 11/16/89

DATE ANALYZED: 11/22/89 DATE REPORTED: 11/30/89

PAGE 4 OF 6

ANALYSIS: OIL AND GREASE


METHOD: SMWW 503E

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT
18730-1	12104	5 0	mg / L	20
18730-2	12105	150	mg / L	2 0

QA/QC SUMMARY

RPD, % 3

RECOVERY, % 87

LAB NUMBER: 18730

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 11/16/89
DATE ANALYZED: 11/26/89

DATE REPORTED: 11/30/89

PAGE 5 OF 6

POLYCHLORINATED BIPHENYLS (PCBs)

ANALYSIS METHOD: EPA 8080

EXTRACTION METHOD: EPA 3510; SEPARATORY FUNNEL

LAB ID	CLIENT ID	AROCLOR	CONCENTRATION (mg/L)	MDL (mg/L)
18730-1	12104		ND	0.5
18730 - 2	12105		ND	0.5

ND = NONE DETECTED; LIMIT OF DETECTION IS INDICATED IN LAST COLUMN.

QA/QC SUMMARY

%RPD 2
%RECOVERY 122

RECEIVED DEC _ 2 1989

LABORATORY NUMBER: 18730

CLIENT: ANANIA GEOLOGIC ENGINEERING

PROJECT #: 004-88-059

DATE RECEIVED: 11/16/89
DATE ANALYZED: 11/20/89
DATE REPORTED: 11/30/89

PAGE 6 OF 6

ANALYSIS: LEAD

PREPARATION METHOD: EPA 3010 METHOD REFERENCE: EPA 7420

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT
18730-1	12104	ND	mg / L	0.05
18730-2	12105	ND	mg/L	0.05

ND = NOT DETECTED

QA/QC:

RPD, %

RECOVERY, %

RECOVERY, % 100

White_AGE

Yelinaa LandaCop

(916) 631-0154