

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsuitants.cor

RECEIVED

3:00 pm, Dec 18, 2007

Alameda County Environmental Health

December 17, 2007

Mr. Jerry Wickham, P.G. Hazardous material Specialist Alameda Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

Request for Work Plan to Address Technical Comments

Fuel Leak Case RO0000018, GeoTracker Global ID T0600100262

Carnation Dairy Property

1310 14th St. Oakland, CA 94607

Dear Mr. Wickham:

Attached is a copy of the report summarizing the tank removal activities by Encinal and their response to your request for a workplan to address Technical Comments 11 through 14 of your September 28, 2007 letter.

AEI and Encinal 14th Street, LLC believe that all of the known releases in the area of the site not covered by the Nestlé deed restricted area has been remediated to acceptable levels and in many cases to below Residential/Drinking water standards. Something in excess of 1,500 cubic yards of impacted soil and around 40,000 gallons of water has been removed from the several excavations. As soon as the water and excavated soil currently stored on site has been disposed, site a tank removal report summarizing all onsite activities will be prepared and submitted to the Oakland Fire Department. Encinal is anxious to move ahead with development of the non-deed restricted area as soon as the linkage with that portion of the site can be dealt with.

If you have any questions I can be reached at 925-944-2899, extension 122.

Sincerely,

AEI Consultants

Robert F. Flory, P.G.

Senior Geologist/Project Manager

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of my knowledge.

Encinal 14th Street, LLC, a California limited liability company

By: Encinal, Inc., a California corporation

Its Manager

Mark D. Hall, President

December 14, 2007

Request for Workplan To Address Technical Comments

1310 14th Street Oakland, California

Project No. 273474

Prepared For

Encinal 14th Street, LLC 1855 Olympic Blvd. Walnut Creek, CA 94596

Prepared By

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 944-2899

Phone: (925) 944-2899

Fax: (925) 944-2895

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

December 14, 2007

Mr. Jerry Wickham, P.G. Hazardous material Specialist Alameda Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Request for Work Plan to Address Technical Comments

Fuel Leak Case RO0000018, GeoTracker Global ID T0600100262

Carnation Dairy Property

1310 14th St. Oakland, CA 94607

Dear Mr. Wickham:

AEI Consultants (AEI) has prepared this report at the request of Encinal 14th Street, LLC (Encinal). AEI has been retained by Encinal to provide environmental engineering and consulting services relating to the property known as the Carnation Dairy Property located at 1310 14th St. Oakland, CA 94607.

In a directive letter dated September 28, 2007 addressed to Mr. Michael Desso, Nestlé USA, Inc (Nestlé) and Mr. Mark Hall, Encinal 14th Street, LLC Alameda county Environmental Health (ACEH) summarized a review of the fuel leak file for the above referenced site. The directive included fourteen (14) Technical Comments. Technical comments 1 through 10 were directed at the northwestern portion of the site being remediated by Nestlé. EMC will be responding separately to these Technical Requests on behalf of Nestlé. This document is limited to Technical Comments 11 through 14 which concern the balance of the site owned by Encinal.

BACKGROUND

The subject property (hereafter referred to as the "site" or "property") is located at 1310 14th Street in Oakland, California (Figure 1: Site Location Map). The site is located an industrial area of Oakland. The site occupies the area between 16th and 14th Streets (International Drive) on the north and south, respectively and Poplar Street and Mandela Parkway on the east and west, respectively. The site, which is a former Carnation manufacturing facility, is currently vacant. Several large unused buildings were recently removed from the eastern and southeastern portion of the site. The site has been occupied by dairy operations since prior to 1950. More complete historical information can be found in the 2004 Lowney and Associates (Lowney) *Phase I Environmental Site Assessment and Soil and groundwater Quality Evaluation* Report (Lowney Phase I).

The Lowney Phase I identified the two abandoned in-place USTs located adjacent to the boiler room. The Lowney report documented the presence of Total Petroleum Hydrocarbons as gasoline (TPH-g), Total Petroleum Hydrocarbons as diesel (TPH-d), and Total Petroleum Hydrocarbons as motor oil (TPH-mo) at the north end of the USTs previously abandoned in place.

Two previous drilling events were carried out by AEI in 2005 in the area at the north end of the abandoned USTs along the south edge of the former loading dock. Analysis of groundwater samples from the AEI borings found TPH-g, TPH-d, and TPH-mo at concentrations up to 1,700 μ g/L, 9,900 μ g/L, and 38,000 μ g/L, respectively. The laboratory also reported light non-aqueous liquid (LNAPL) or free product in the groundwater samples from borings SB-7 and SB-9. Tables and figures from the final 2005 investigation are included in Appendix A.

RESPONSE TO TECHNICAL COMMENTS

11. Abandoned in Place USTs

AEI removed the two previously abandoned USTs (Tank 4 and Tank 5 – Figure 2) under City of Oakland Fire Department permits and supervision. Concurrent with the UST removal, AEI excavated all adjacent impacted soil (source area) to groundwater and dewatered the excavation several times. The area excavated included the area previously identified as impacted as well as additional impacted soil as shown on Figure 2. Maximum hydrocarbon concentration reported in sidewall samples from the tank removal and associated excavations for THP-g, TPH-d (C10-23) and Total Petroleum Oil and Grease (POG), were <50 mg/kg, 11 mg/kg, <50 mg/kg, respectively. This is below the San Francisco Bay Regional Water Quality Control Board (RWQCB) strictest cleanup standard for soil greater than 3 meters bgs (Table C-1 – Interim Final – Nov. 2007).

Analysis of the groundwater sample collected from the excavation reported THP-g, TPH-bo, TPH-d, and POG at concentrations of <50 µg/L, 210 µg/L, 120 µg/L, and <5.0 mg/L, respectively. The difference between the TPH-bo and TPH-d results indicates residual fuel or motor oil range (C-23+) hydrocarbons can be considered to be present at a concentration of 90 µg/L. Analysis of the water sample for Volatile Organic Compounds (VOCs) by method SW 8260B reported all analytes as non detectable. All analytes except diesel are below the RWQCB Drinking water ESL of 100 µg/L (Table F-1a – Interim Final – Nov. 2007). The reported diesel concentration is far below the non drinking water ESL of 2,500 µg/L (Table F-1b – Interim Final – Nov. 2007) and is almost half the risk based goal for drinking water of 210 µg/L (Table F-3 – Interim Final – Nov. 2007).

The removal of the two USTs, over excavation, and the dewatering of the excavation has reduced the hydrocarbons in the soil and groundwater in this area to below acceptable levels for the current use and proposed future use. AEI believes no further action in regard to these two USTs is warranted in this portion of the site.

12. Former Gasoline UST near EB-11

A data review has found a notation on a 1911-1912 Sanborn Map which has a circular symbol labeled "110 GAL." GASOLINE? "DRUM IN GROUND". The location of the "drum" on the 1912 Sanborn Map is shown behind (east) of a building labeled "AUTO", not at the west edge of the recently removed building as shown on Lowney figure 2. This places boring EB-11 to the northwest of the "drum" location, directly down the gradient of the "drum".

The purpose of Lowney boring EB-11 was to evaluate potential impact from releases from storage of gasoline at that location in the early 1900s. Analysis of soil and groundwater samples from boring EB-11 reported no gasoline or BTEX present in either the soil or groundwater. Diesel was reported in the groundwater at a concentration of 74 μ g/L, which is below the Drinking Water ESL (Table F-1a – Interim Final – Nov. 2007). Copies of the Sanborn Map and Lowney Figure 2 are attached in Appendix B.

Based on this information, AEI believes no further action is required to evaluate possible historic hydrocarbon releases from this fuel storage prior to the construction of the operation of the site as a dairy processing facility.

13. Vinyl Chloride in Groundwater

The Lowney investigation in 2004 reported dichlorobenzene and vinyl chloride along with gasoline, diesel and oil range hydrocarbon contamination in groundwater samples from borings EB-14 and EB-15 which were located adjacent to the two USTs abandoned in place. The removal of these two USTs and subsequent excavation resulted in the removal of both borings (see Figure 2). Groundwater sample from this excavation reported no dichlorobenzene or vinyl chloride at a detection limit of $0.5~\mu g/L$.

No dichlorobenzene, vinyl chloride, or any other VOCs were detected in groundwater; therefore no further action is warranted with regard to the historic detection of VOCs at this location of the site.

14. Petroleum Hydrocarbons Detected in Boring EB-20

The ACEH directive refers to detection of TPH as motor oil reported in a "soil sample" reported in the 2004 Lowney Associates Report. Review of the Lowney report finds that the sample in question is referred to by Lowney as "suspected insulating material" between layers of concrete at the location of boring EB-20 in a room identified as a "former cold storage room". This is consistent with the blocks of a rigid, shiny, black, foam material observed below the floor slab and above the lower foundation slab at that location observed by Robert F. Flory, AEI Professional Geologist during a walk through of the site during the initial phase of building demolition. This material and the underlying slab(s) were removed and disposed of by the demolition contractor. All of the insulation material and concrete slabs above and below the insulating material have been removed.

AEI believes no further action is warranted in regard to the previous analysis of building insulation materials at that location.

USTs DISCOVERED DURING BUILDING DEMOLITION

Three previous unidentified USTs were uncovered during the recent building demolition on the subject site. Two of the tanks, Tank 1 (T-1) and Tank 2 (T-2) were located beneath the building in lot 5 (Figure 2). The third tank, Tank 3 (T-3) was uncovered west of the previously abandoned in place USTs (T-4 and T-5).

Tank 1 – 1,500 Gallon Bunker Oil

Tank 1 (T-1) was an approximately 1,300 gallon vertical axis UST which was discovered beneath the building. The top of the tank was in an underground vault and the lower half was below the current groundwater level of approximately 12 feet bgs. T-1 contained a heavy black residual fuel or Bunker Fuel. During demolition of the buildings, T-1 was breached during removal of the overlying slab and an estimated 50 gallons of fuel was released. AEI immediately responded to the site, emptied the tank and removed as much of the released material as was practical prior to the removal of the UST.

T-1 was removed under the supervision of the Oakland Fire department. The side wall samples collected during the removal of T-1 reported normal background levels of metals and no other analytes except for 2.1 mg/kg xylenes in one sample indicating that the soil impacted by the release when T-1 was discovered had been removed to below the most restrictive ESLs. The tank was examined at the time of removal and was determined to be intact with no evidence of leaks except for the damage in the top of the tank, which was incurred at the time the tank was discovered

During removal of T-1 a small quantity of hydrocarbons (Bunker oil) was observed on the surface of the water in the excavation. The excavation was dewatered until the groundwater appeared clean. Analysis of a groundwater sample collected on November 13, 2007 following the removal of T-1 reported TPH-g, TPH-bo, TPH-d, and POG at concentrations of 130 μ g/L, 2,100 μ g/L, 1,700 μ g/L, and 7,900 μ g/L, respectively indicating some bunker fuel was still present on the surface of the water in the excavation. After dewatering the excavation several times a second groundwater sample was collected on December 12, 2007. Analysis of this sample reported TPH-g, TPH-bo, and TPH-d at concentrations of ND<50 μ g/L, ND<250 μ g/L, and ND<50 μ g/L, respectively. This water sample demonstrates that the bunker fuel released on to the surface of groundwater when the tank was initially encountered has been removed to non detectable levels and that the no impacted soil or groundwater remains at the T-1 location.

AEI believes no further action is warranted at the site of this previously unidentified tank.

AEI also believes that no further action is needed in regard to the three USTs (T-1, T-2, and T-3) uncovered during the recent building demolition as contaminants identified during their removal have been either totally removed or reduced to below the applicable RWQCB ESLs.

AEI finds no evidence of the presence in the eastern half and southwestern quarter of the subject site of contaminants above the applicable RWQCB ESLs. AEI believes that no further action is warranted with respect to the entire property outside of deed restricted northwestern portion of the site where Nestlé and ECM are currently active.

AEI requests written confirmation on behalf of Encinal that no further action is required on their portion of the site and the pending case affects only the deed restricted northwest portion of the site.

If any additional information is required or have any questions regarding this review, please contact the undersigned at (925) 944-2899, ext. 122.

Sincerely,

AEI Consultants

Robert F. Flory, PG Senior Geologist No. 5825

OF CALIFO

Tank 2 – 750 Gallon

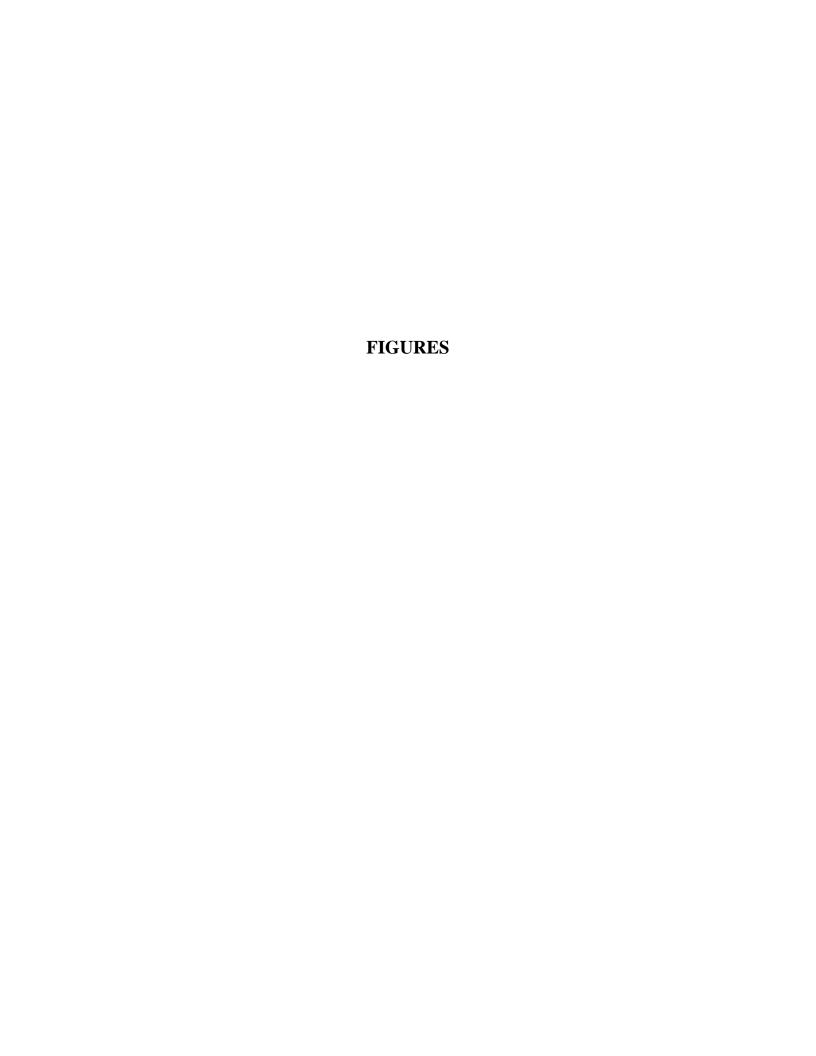
Tank 2 (T-2) was a 750 gallon horizontal axis UST located immediately north of T-1, the top of which was buried at approximately 4 feet bgs. The tank was dry and no record is available of what was stored in it. One soil sample was collected from a depth of approximately 7 feet bgs below T-2. No hydrocarbons or VOCs were at or above reporting limits. Analysis for metals reported no metals above normal back ground levels. On this basis, it appears no releases have occurred from T-2.

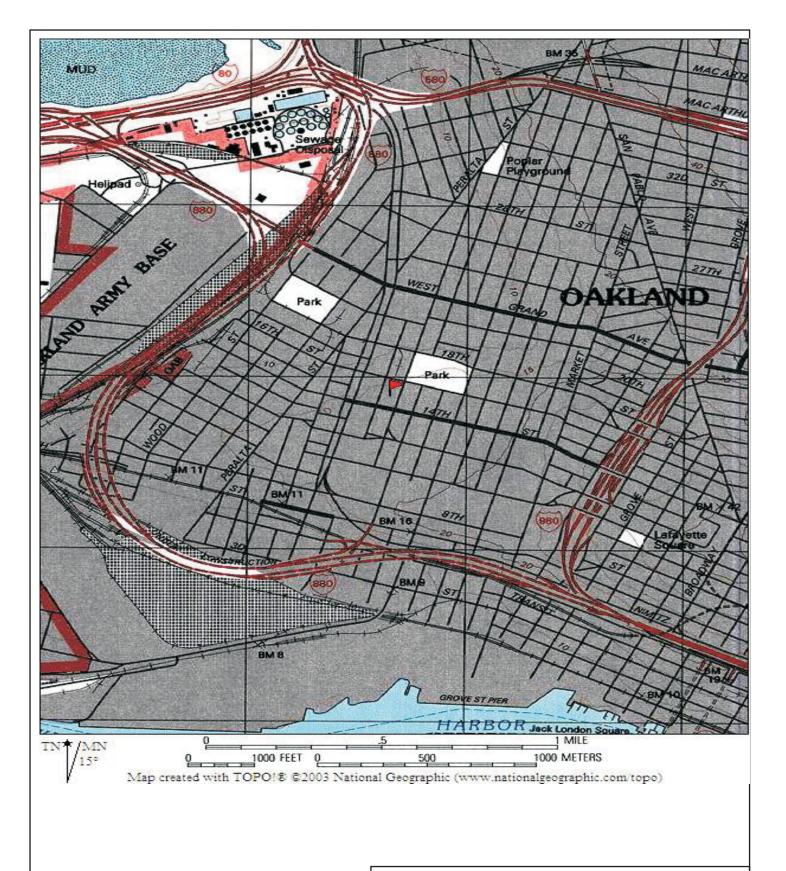
No further action is warranted at the site of this previously unidentified tank.

Tank 3 – 750 Gallon Gasoline

Tank 3 (T-3) was an approximately 750 gallon horizontal axis tank located just west of Lot 10 in the open area of the site. No previous records of the UST or its contents have been located to date.

Analysis of the soil sample was collected immediately below T-3 reported TPH-g and TPH-d at concentrations of 5,400 mg/kg and 1,400 mg/kg, respectively. The area was over excavated to remove all obviously stained soil to below the groundwater (12' bgs) and the excavation was dewatered several times. Analysis of soil samples from the excavations 4 side walls reported no detectable concentrations of TPH-g, TPH-d, or MBTEX. Analysis of the groundwater sample collected from the excavation following over excavation reported TPH-g and TPH-d at concentrations of 85 μ g/L and 92 μ g/L, respectively. These concentrations are below the RWQCB Drinking Water ESL of 100 μ g/L (Table F-1a – Interim Final – Nov. 2007). No MTBE or BTEX were reported in groundwater sample TW.

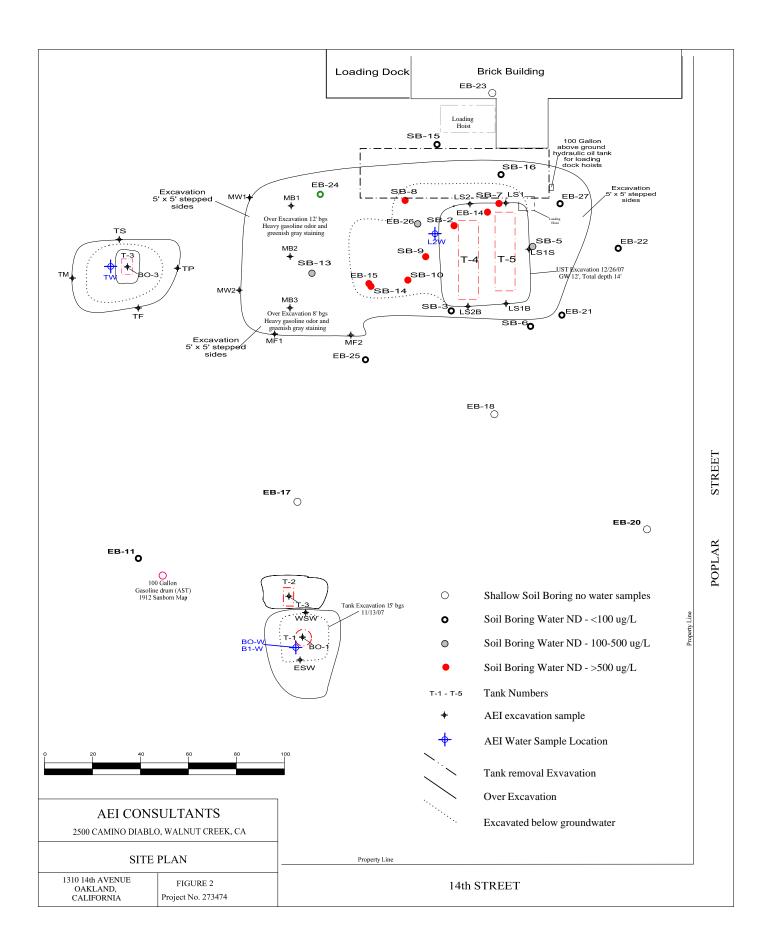

No further action is warranted at the site of this previously unidentified tank.


SUMMARY

Based on the data presented, all hydrocarbon and VOCs identified in the soil under the eastern half of the site have been excavated to significantly below regional Water Quality Control Board (RWQCB) ESLs for residential, commercial or industrial sites.

The remaining hydrocarbon concentrations reported in the groundwater are significantly below RWQCB nondrinking water ESLs (Table F-1b – November 2007) and below the risk based screening level for groundwater (Table F-3 – Interim Final – Nov. 2007).

AEI believes no further action is necessary in regard to items 11 through 14 of the September 28, 2007 directive letter as all contaminants referenced in the directive letter have been either totally removed or reduced to below the applicable RWQCB ESLs.


AEI CONSULTANTS

2500 Camino Diablo, Walnut Creek, CA 94597

SITE LOCATION PLAN

1310 14th Street Oakland, California

FIGURE 1 Job No: 273474

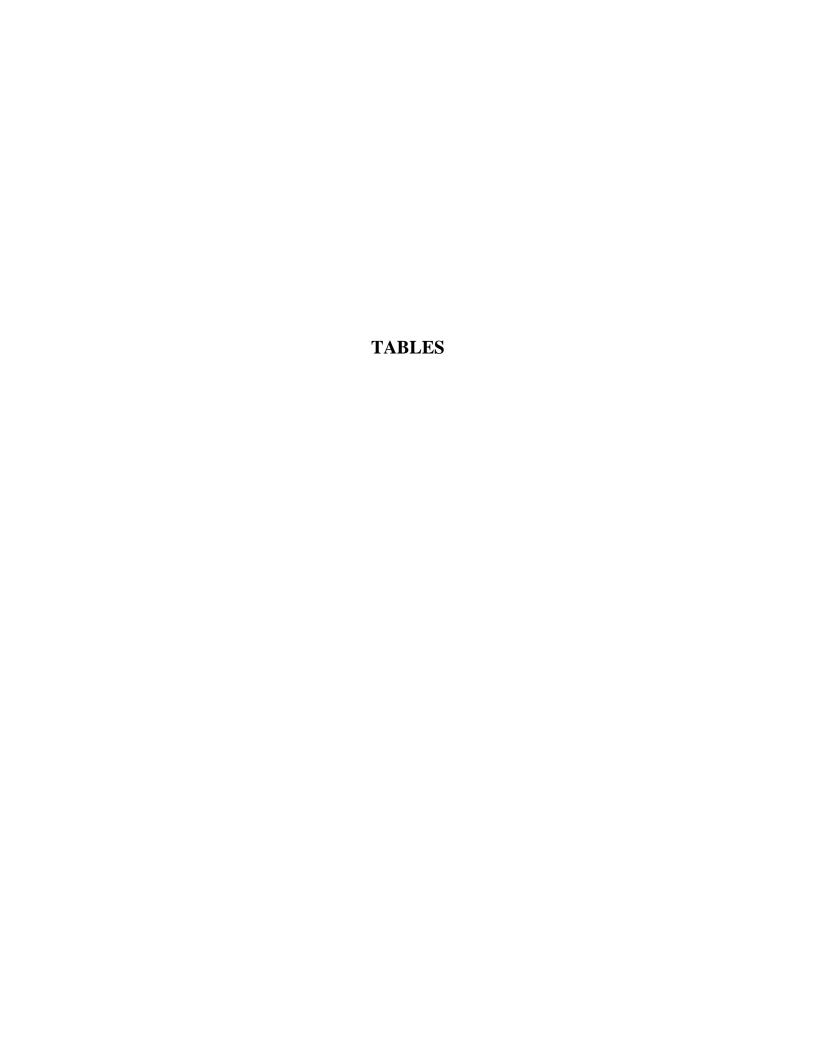


Table 1: Soil Analytical Data Former Carnation Site, 1310 14th Street Oakland, CA

Sample	Date	TPH-g	TPH-bo	TPH-d	POG	MTBE	Benzene	Toluene	Ethyl-	Xylenes	Comments
ID			Metho	J 001 <i>5</i>			Math	od 8021B	benzene		
		/1	Metho		/1	//				/1	
		mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
ESW	11/13/07	<1.0		<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-1 S sidewall sample per OFD
WSW	11/13/07	<1.0		<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	2.1	T-1 N sidewall sample per OFD
*****	11/15/07	1.0		1.0	20	0.02	0.002	0.002	0.002	2.1	T T V State want sample per OT B
BO-2	11/13/07	<1.0		<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-2 Bottom sample per OFD
TW	12/10/07	5,400		1,400	< 50	<10	<1.0	<1.0	<1.0	<1.0	T-3 bottom sample per OFD pre-excavation
TF	12/10/07	<1.0		<1.0		< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-3 S wall sample following excavation per OFD
TP	12/10/07	<1.0		<1.0		< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-3 E sidewall sample following excavation per OFD
TS	12/10/07	<1.0		<1.0		< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-3 N sidewall sample following excavation per OFD
TM	12/10/07	<1.0		<1.0		< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-3 W sidewall sample following excavation per OFD
LS1	11/26/07	< 50	< 50	11	<50	< 0.05	< 0.005	< 0.005	< 0.005	<0.005	T 4 N sidemall complex tools are experienced OFD
LS1S	11/26/07	<50	<50	<1.0	<50	< 0.05		< 0.005	< 0.005		T-4 N sidewall samples tank excavation per OFD
	11/26/07	<50	<50	<1.0 <1.0	<50	< 0.05	<0.005 <0.005	< 0.005	< 0.005	< 0.005	T-4 E sidewall samples tank excavation per OFD
LS1B LS2	11/26/07	<50	<50	<1.0 <1.0	<50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	T-4 S sidewall samples tank excavation per OFD
		<50	<50 <50	<1.0 <1.0	<50 <50		< 0.005			< 0.005	T-5 sidewall samples at ends of excavation per OFD
LS2B	11/26/07	<30	<30	<1.0	<30	< 0.05	<0.003	< 0.005	< 0.005	< 0.005	T-5 sidewall samples at ends of excavation per OFD
MW1	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	West wall, North sample EB-15 excavation per OFD
MW2	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	West wall, South sample EB-15 excavation per OFD
MF1	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	South wall, West sample EB-15 excavation per OFD
MF2	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	South wall, East sample EB-15 excavation per OFD
MB1	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	North bottom sample EB-15 excavation per OFD
MB2	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	Center bottom sample EB-15 excavation per OFD
MB3	11/29/07	< 50	< 50	<1.0	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	South bottom sample EB-15 excavation per OFD
MD3	11/29/07	\30	\30	<1.0	\30	<0.03	<0.003	<0.003	<0.003	<0.003	South bottom sample EB-13 excavation per OFD

Table 1: Soil Analytical Data Former Carnation Site, 1310 14th Street Oakland, CA

Sample	Date	TPH-g	TPH-bo	TPH-d	POG	MTBE	Benzene	Toluene	Ethyl-	Xylenes	Comments
ID									benzene		
			Metho	d 8015			Meth	od 8021B/	/8260		
		mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Stock Pile Sa	amples										
STK 1234	11/13/07	<1.0		19	< 50	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	Stockpile
STK 5678	11/13/07	610		8,700	14,000	< 0.05	< 0.005	0.83	1.0	5.1	Stockpile
STK 5678a	11/13/07	730		370	< 50	< 0.05	< 0.005	< 0.005	1.0	2.8	Stockpile
LST1234	11/26/07	ND	< 50	22	540	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	Stockpile
LSTB1234	11/26/07	ND	< 50	6.6	220	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	Stockpile
LST5678	11/26/07	1,200	< 50	1,200	2,700	< 5.0	< 0.50	< 0.50	3.2	2.4	Stockpile
LSTB5678	11/26/07	380	< 50	240	700	< 2.5	< 0.25	< 0.25	1.6	1.1	Stockpile
Soil > 3 mete	ers (9.86 ft))									
Comm/Ind E	` /	83	5,000	83	5,000	0.023	0.044	29	3.3	2.3	
Drinking wa			- ,		- ,						

Notes:

^{* -} Analysis by Method 8260 mg/kg = milligrams per kilogram

Table 2: Soil Analytical Data - Method 8260 Former Carnation Site, 1310 14th Street Oakland, CA

Well Number	Date	n-butyl benzene	sec-butyl benzene	Ethyl benzene	isopropyl benzene	isopropyl toluene	Napthalene	n-propyl benzene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes	Other Analytes
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
		mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
ESW	11/13/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
WSW	11/13/07	<0005	<0005	< 0005	<0005	<0005	<0005	<0005	< 0005	<0005	<0005	<0005	All ND
BO-2	11/13/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
BO-3	11/13/07	4.7	3.4	1.1	5.7	<33	8.0	7.1	ND	7.0	ND	ND	All ND
LS1	11/26/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
LS1S	11/26/07	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	All ND
LS1B	11/26/07	< 0005	< 0005	< 0005	< 0005	<0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	All ND
LS2	11/26/07	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	All ND
LS2B	11/26/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	< 0005	<0005	<0005	<0005	All ND
MW1	11/29/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
MW2	11/29/07	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	All ND
MF1	11/29/07	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	< 0005	All ND
MF2	11/29/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
STK 1234	11/13/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
STK 1234 STK 5678	11/13/07	1.0	0003	<0003 ND	1.5	0.34	3.0	1.6	<0005	<0005	<0005	<0005	All ND
STK 5678a	11/13/07	<0005	<0005	<0005	<0005	<0005	10	<0005	<0005	2.5	0.60	1.7	All ND
LST1234	11/13/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
LST1234 LSTB1234	11/26/07	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	<0005	All ND
LST5678	11/26/07	2.4	0.73	2.2	1.9	< 0.10	4.00	2.4	<0003	< 0.10	0.60	0.53	All ND
LSTB5678	11/26/07	0.92	0.73	0.91	0.87	< 0.10	2.6	1.2	< 0.10	< 0.10	0.44	0.33	All ND
Notes:	11/20/07	0.72	0.7	0.71	0.07	·0.10	2.0	1.2	·0.10	·0.10	0.77	0.27	min

Notes:

 μ g/L = micrograms per liter (parts per billion)

---- = not sampled or not analyzed

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

ND = not detected

Table 3 Soil Analytical Data - Metals
Former Carnation Site, 1310 14th Street Oakland, CA

Analyte				Samp	ole ID					
	ESW	WSW	BO-2	ВО-3	LS1	LS1S	LS1B	LS2	LS2B	MW1
	11/13/07	11/13/07	11/13/07	11/13/07	11/26/07	11/26/07	11/26/07	11/26/07	11/26/07	11/29/07
	mg/kg									
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	2.9	2.8	3.8	2.8	2.2	2.9	5.4	1.3	3.1	3.3
Barium	62	72	81	75	79	92	140	86	62	83
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	ND	ND	ND	ND	ND	ND
Cadmium	< 0.25	< 0.25	< 0.25	< 0.25	ND	ND	ND	ND	ND	ND
Chromium	47	51	43	42	47	55	61	120	48	45
Cobalt	5.2	6.2	6.4	6.2	7.0	9.8	7.4	4.5	7	6.4
Copper	10	8.6	11	9.2	9.9	12	11	7.9	9.5	7.7
Lead	3.5	3.2	3.6	3.3	3.5	4.6	3.7	4.7	3.4	3.6
Mercury	< 0.05	0.052	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.055	< 0.05	< 0.05
Molybdenum	< 0.5	< 0.5	< 0.5	< 0.5	ND	0.54	ND	ND	ND	ND
Nickel	37	43	46	40	40	41	45	34	41	46
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Silver	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	35	36	38	33	35	39	42	26	36	38
Zinc	32	29	29	28	33	37	37	29	30	31

Table 3 Soil Analytical Data - Metals
Former Carnation Site, 1310 14th Street Oakland, CA

Analyte				Sam	ple ID				_	=
	MW2	MF1	MF2	LST1234	LSTB1234	LST5678	LSTB5678	STK 1234	STK 5678	STK 5678a
	11/29/07	11/29/07	11/29/07	11/26/07	11/26/07	11/26/07	11/26/07	11/13/07	11/13/07	11/13/07
	mg/kg									
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	2.6	3.1	3.3	4.6	3.6	2.8	2.5	1.8	2.5	2.5
Barium	62	72	76	94	74	86	64	48	68	62
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	< 0.25	< 0.25	< 0.25	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Chromium	43	44	51	42	59	49	44	32	43	46
Cobalt	5.7	6.5	7.3	7.7	5.5	6.6	5.6	3.8	5.3	6.6
Copper	5.4	6.8	7.9	14	12	10	8.4	7.1	9.6	8.1
Lead	2.7	3.2	3.5	95	41	23	6.8	10	34	3.3
Mercury	< 0.05	< 0.05	< 0.05	0.064	0.067	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	< 0.5	< 0.5	< 0.5	0.56	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	36	41	48	30	36	36	38	25	34	36
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Silver	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	30	34	37	43	37	36	30	21	30	31
Zinc	24	28	31	80	53	45	28	27	57	55

Table 4 Groundwater Analytical Data

Former Carnation Site, 1310 14th Street Oakland, CA

Sample ID	Sample Date	ТРН-д	TPH-bo	TPH-d	POG	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	Tank Excavation
			EPA Meti	hod 8015			EPA	Method 80)21B		
		(µg/L)		(µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
BO-W	11/13/07	130	2,100	1,700	7.9	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	T-1
B1-W	12/12/07	< 50	<250	< 50							T-1
TW		85		92		<5.0	<0.5	<0.5	<0.5	<0.5	T-3
L2W	11/27/07	< 50	210 (90)	120	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	T-4/T-5

Notes

TPH-g = total petroleum hydrocarbons as gasoline - C6-C12

TPH-bo = total petroleum hydrocarbons as bunker oil - C10+

TPH-d = total petroleum hydrocarbons as diesel C10-C23

ND = not detected

MTBE = Methyl tertiary butyl Ether

 μ g/L = micrograms per liter (parts per billion)

---- = not sampled or not analyzed

^{* =} by Method 8260B 8260B

Table 5 Groundwater Analytical Data - Method 8260

Former Carnation Site, 1310 14th Street Oakland, CA

													All
	Date	n-butyl	sec-butyl	Ethyl	isopropyl	isopropyl	Napthalene	n-propyl	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes	Other
		benzene	benzene	benzene	benzene	toluene		benzene					Analytes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)
BO-W	11/13/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	13	< 0.5	0.58	3.0	0.82	1.1	All ND
L2W	11/27/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

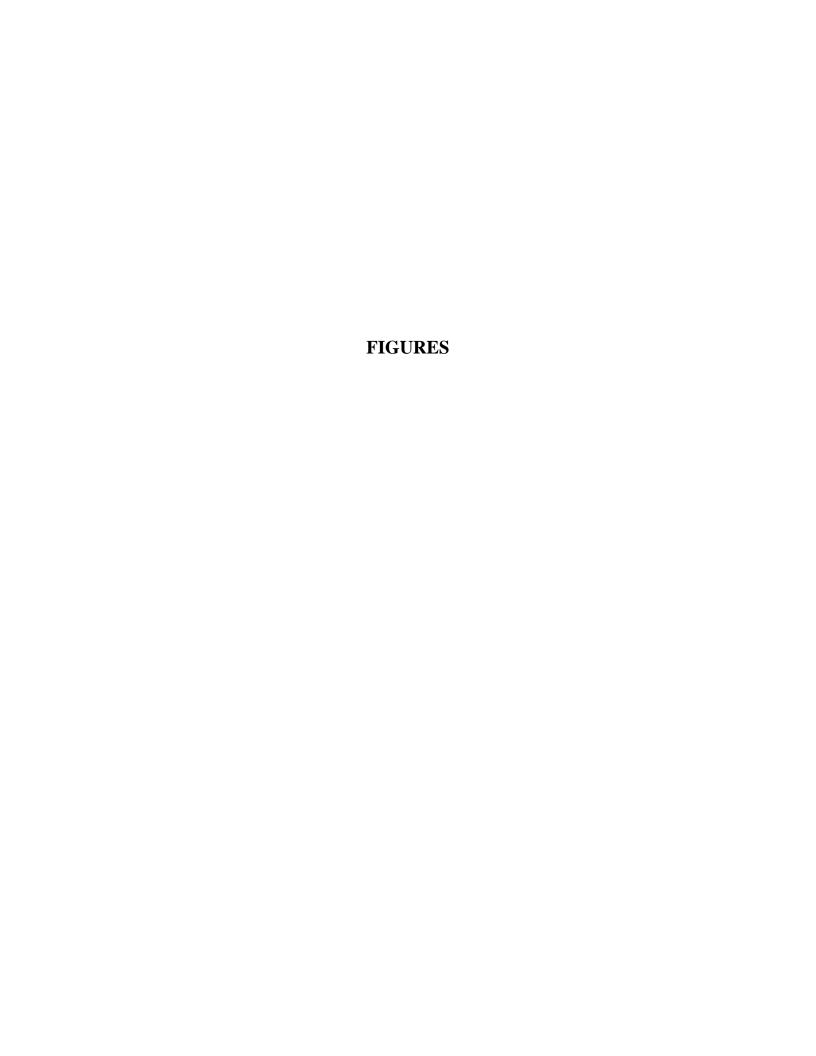
 μ g/L = micrograms per liter (parts per billion)

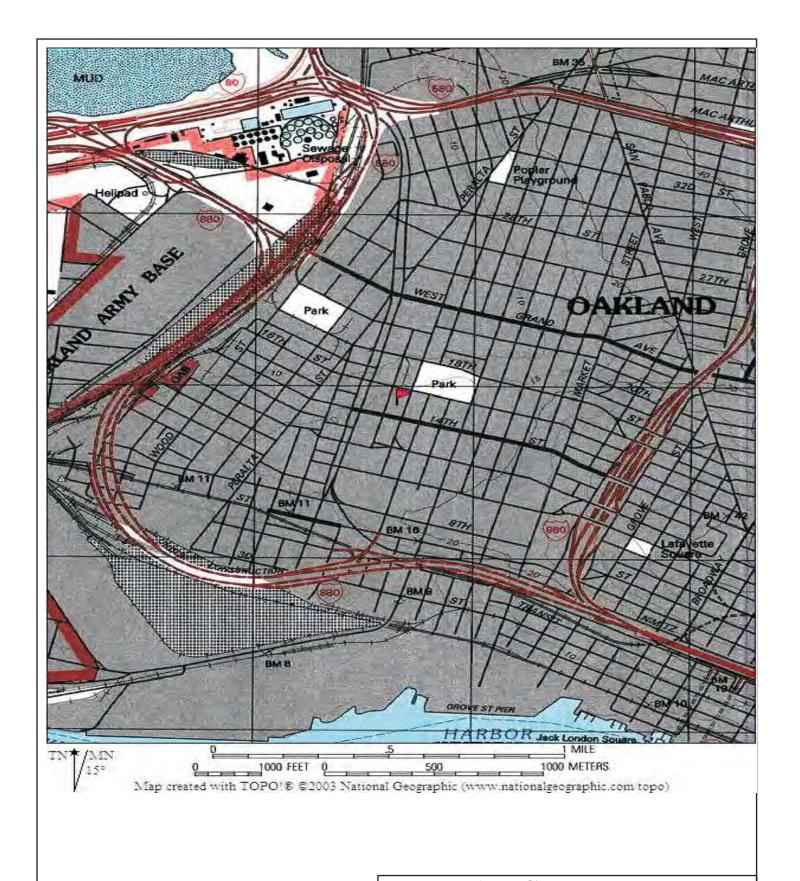
1,2,4-TMB = 1,2,4-trimethylbenzene

---- = not sampled or not analyzed

1,3,5-TMB = 1,3,5-trimethylbenzene

ND = not detected


Table 6 Water Analytical Data - Metals

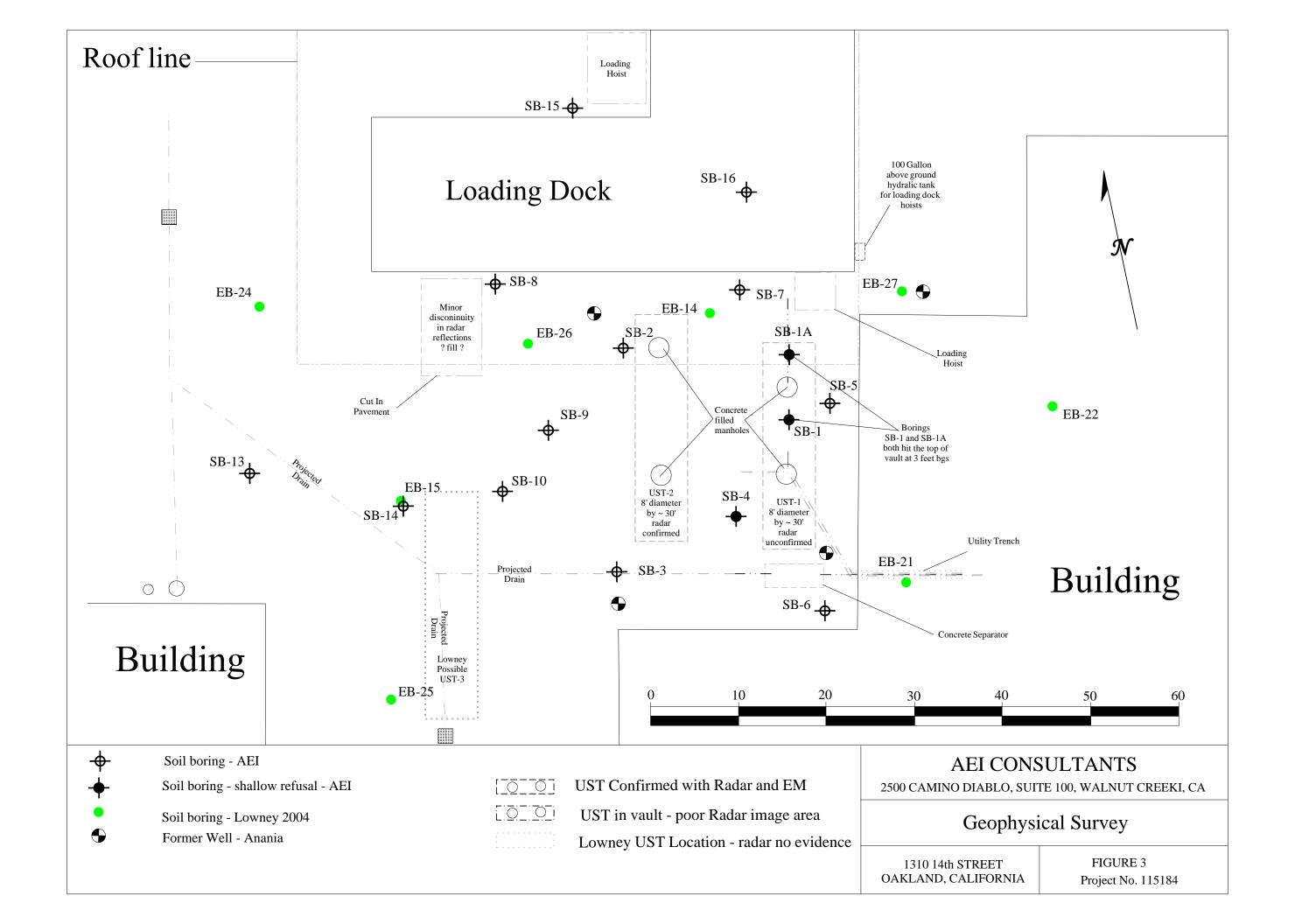

Former Carnation Site, 1310 14th Street Oakland, CA

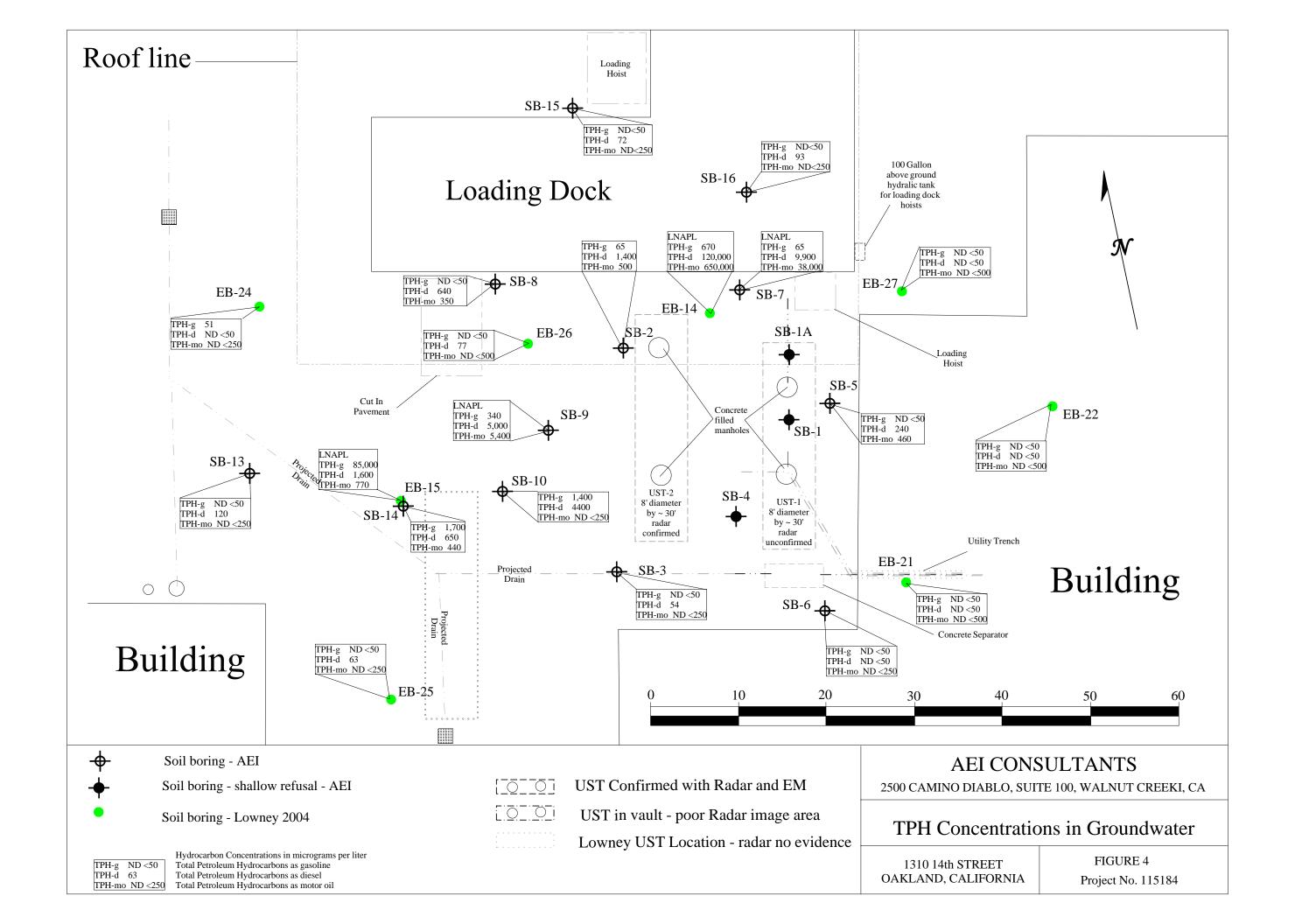
Analyte	Samp	ole ID
	BO-W	L2W
	11/13/07	11/27/07
	μg/L	
Antimony	<0.5	ND
Arsenic	< 0.5	4.1
Barium	130	340
Beryllium	< 0.5	ND
Cadmium	<0.25	ND
Chromium (Total)	< 0.5	47
Cobalt	4.2	11
Copper	0.78	17
Lead	< 0.5	27
Mercury	< 0.012	0.47
Molybdenum	< 0.5	0.95
Nickel	22.0	55
Selenium	< 0.5	0.61
Silver	< 0.19	ND
Thallium	< 0.5	ND
Vanadium	< 0.5	37
Zinc	<5.0	54

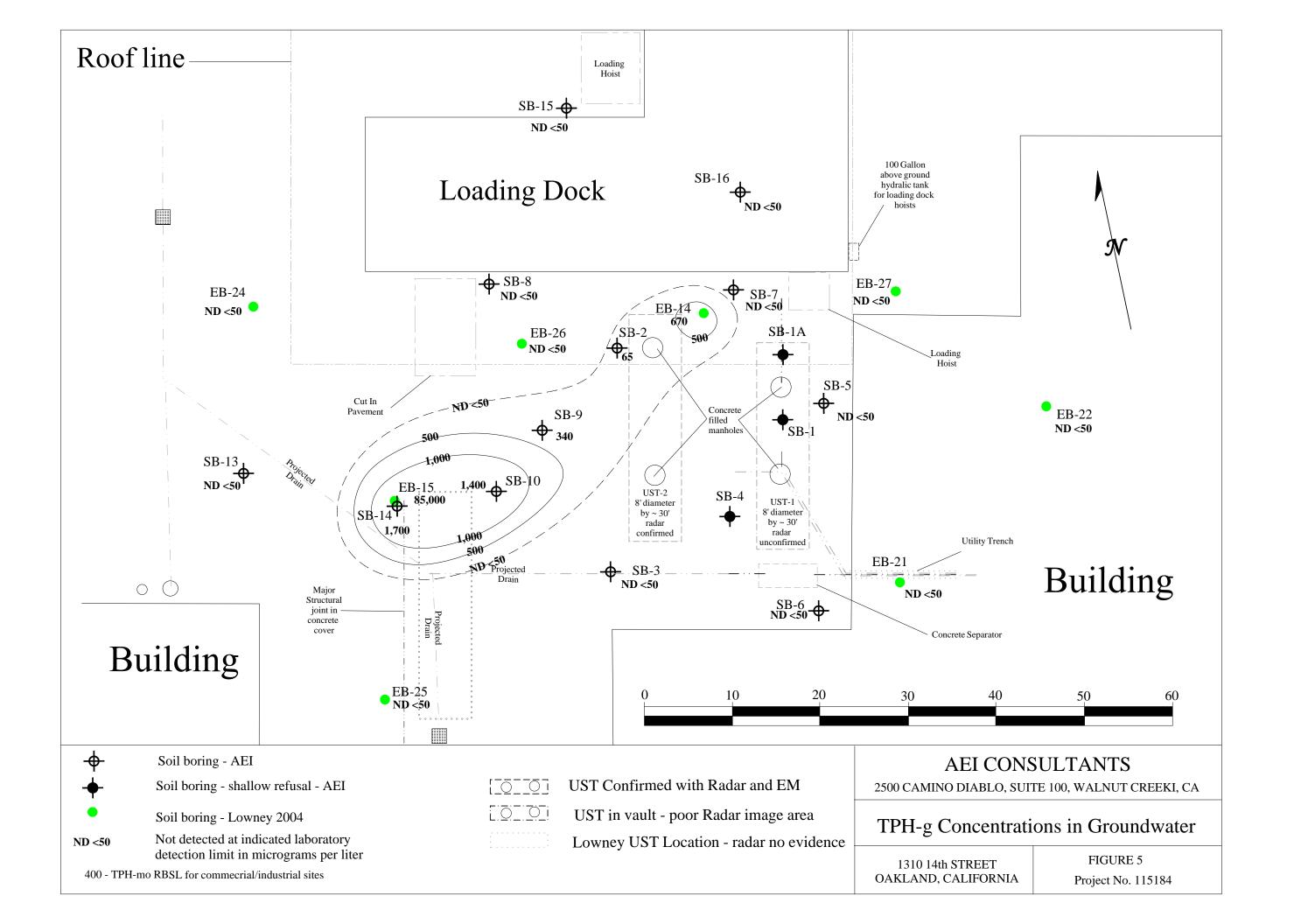
APPENDIX A

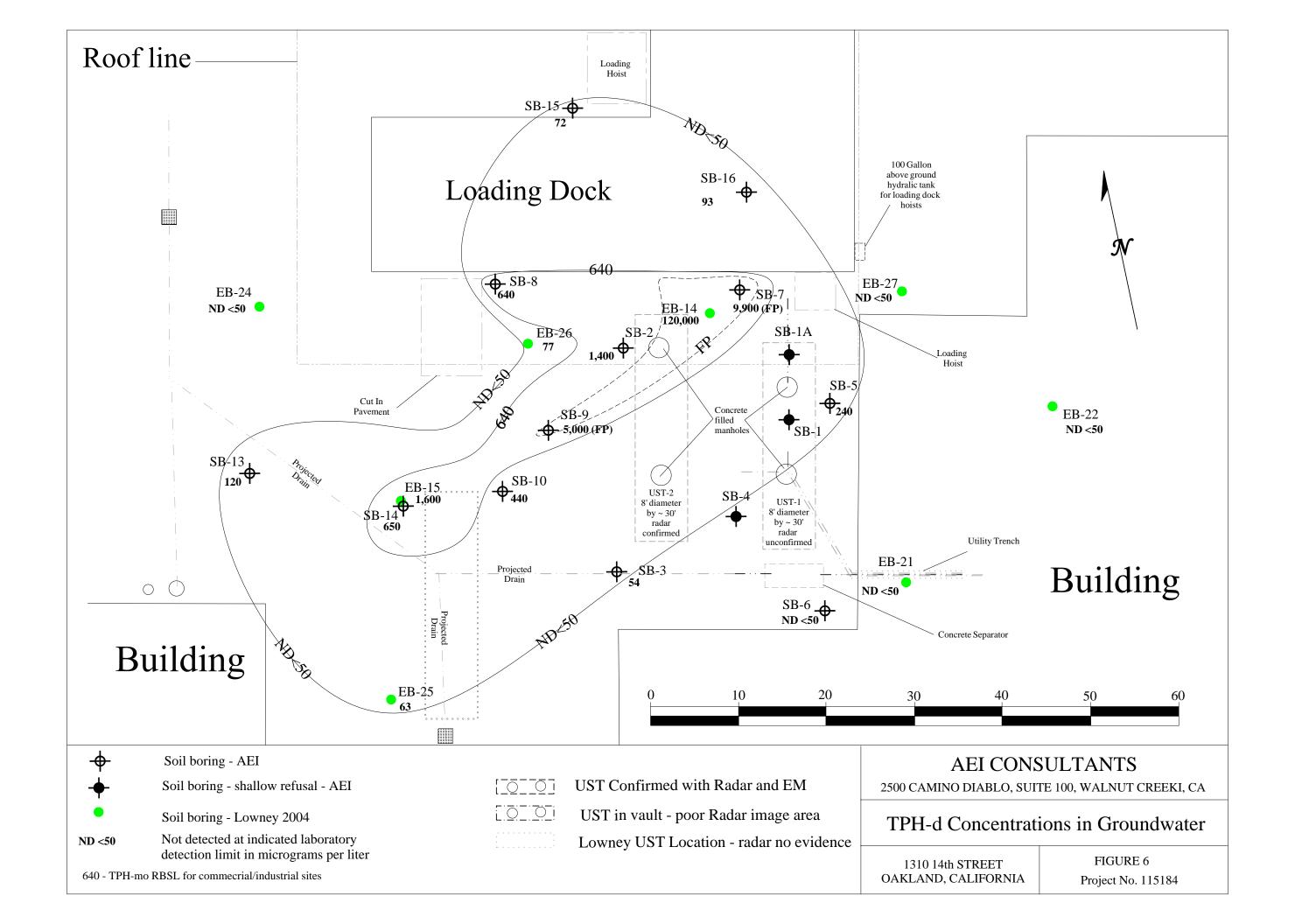
Previous AEI Report Figures and Tables

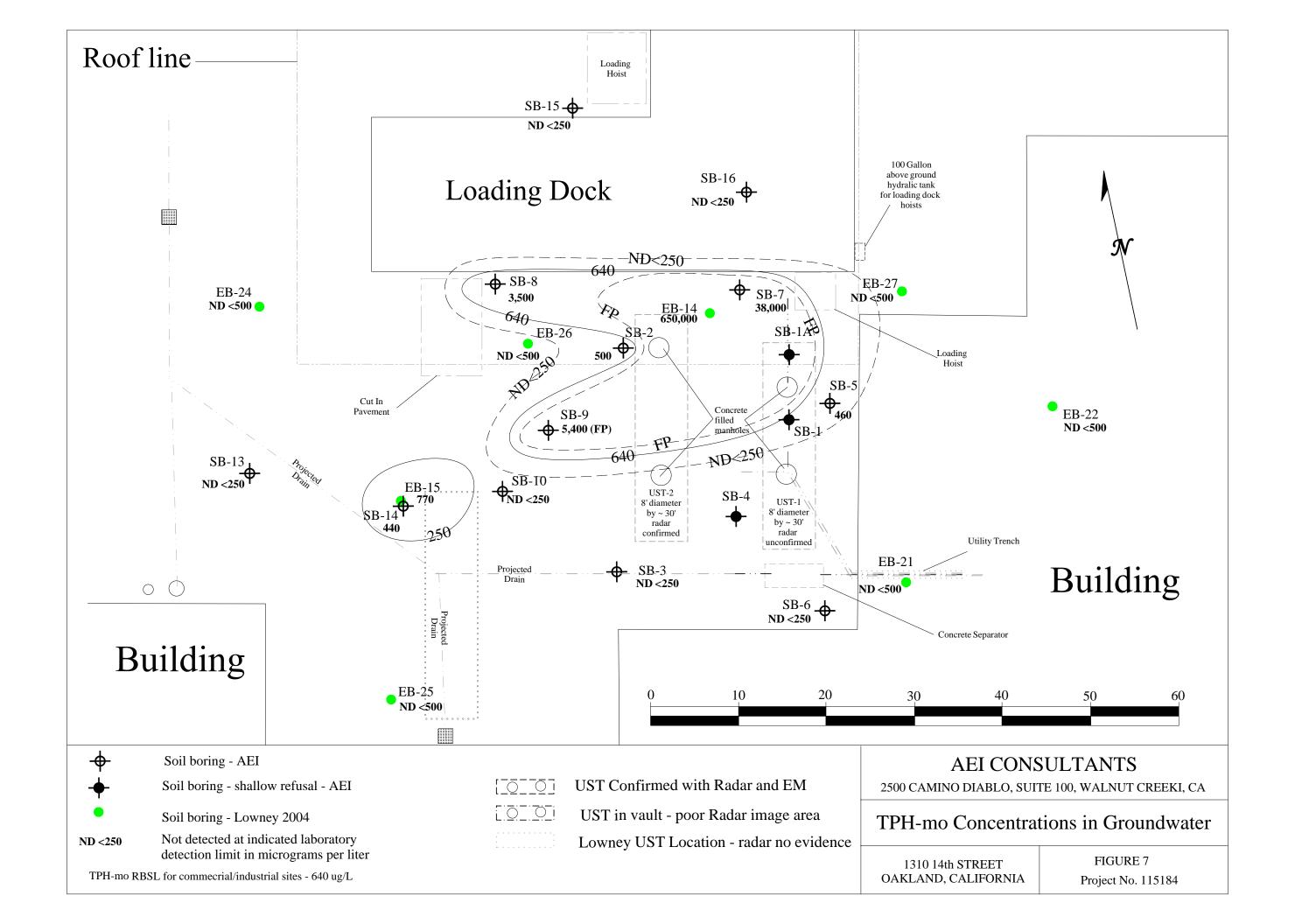
AEI CONSULTANTS


2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597


SITE LOCATION PLAN


1310 14th Street Oakland, California


FIGURE 1 Job No: 115184



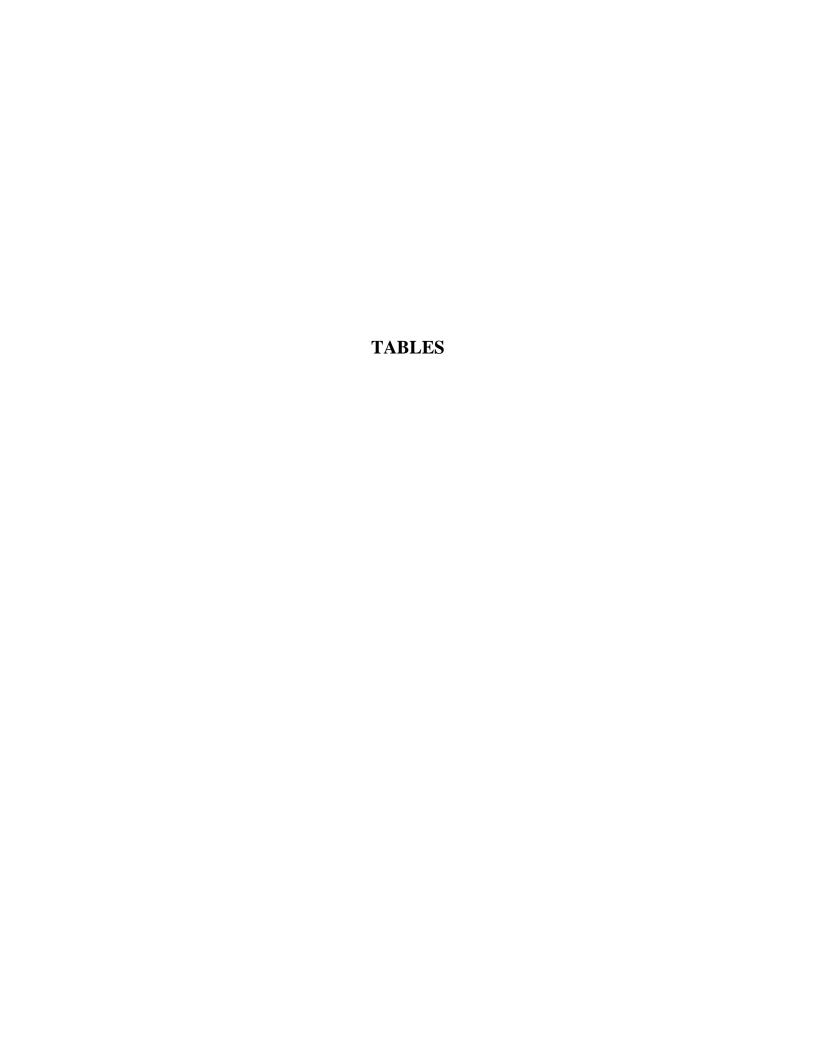


Table 1: Lowney Soil Analytical Data (2004)

Hall Equities, 1310 14th Street (1310 16th Street) Oakland, CA

Sample	Sampling	TPH-g	TPH-d	TPH-mo	MTBE	Benzene	Toluene	Ethyl-	Xylenes
ID	Date							benzene	
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		(E.	PA method 8015	(C)		(E	PA method 8021	(B)	
EB-14	02/10/04	2	3,700	21,000	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
EB-15	02/10/04	610	230	300	ND<0.005	ND<0.005	ND<0.005	0.56	ND<0.005
EB-24	02/17/04	ND<1.0	ND<1.0	ND<50	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
EB-25	02/17/04	ND<1.0	ND<1.0	ND<50	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
EB-26	02/17/04	ND<1.0	ND<1.0	ND<50	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
EB-27	02/17/04	ND<1.0	ND<1.0	ND<50	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
WQCB RBSL		400	500	1000	5.6	0.38	9.3	1.3	1.5

for commecial/industrial sites, soul less than or equal to 3 meters, groundwater not a potential drinking water source.

values in bold exceed soil \RBSL

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

TPH-mo = Total petroleum hydrocarbons as motor oil

 $MTBE = methyl \ tertiary \ butyl \ ether$

 $mg/kg = milligrams \ per \ kilogram$

RBSL - Risk based screening level

Table 2: Lowney Groundwater Analytical Data (2004)

Hall Equities, 1310 14th Street (1310 16th Street) Oakland, CA

Sample	Sampling	TPH-g	TPH-d	TPH-mo	MTBE	Benzene	Toluene	Ethyl-	Xylenes
ID	Date							benzene	
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		(E.	PA method 8015	5C)		(E	PA method 8021	<i>B</i>)	
EB-14	02/10/04	670	120,000	650,000	ND<0.5	0.74	3.7	1.6	5.8
EB-15	02/10/04	85,000	1,600	770	ND<0.5	350	ND <100	450	ND <200
EB-21	02/12/04	ND<50	ND<50	ND<500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.0
EB-22	02/12/04	ND<50	ND<50	ND<500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
EB-24	02/17/04	51	ND<50	ND<500	ND<5.0	0.70	ND<0.5	ND<0.5	ND<0.5
EB-25	02/17/04	ND<50	63	ND<500	ND<5.0	0.70	ND<0.5	ND<0.5	ND<0.5
EB-26	02/17/04	ND<50	77	ND<500	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
EB-27	02/17/04	ND<50	ND<50	ND<500	ND<0.5	ND<0.5	ND<0.5	0.54	ND<0.5
RWQCB RBSL		500	640	640	1800	46	130	290	13

for commecial/industrial sites, groundwater not a potential drinking water source. values in bold exceed soil \BSL

1 = lighter than water immiscible sheen/product is present

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

TPH-mo = Total petroleum hydrocarbons as motor oil

 $MTBE = methyl \ tertiary \ butyl \ ether$

 $\mu g/L = micrograms \ per \ liter \ (ppb)$

Table 5: Soil Analytical Data
Hall Equities, 1310 14th Street (1310 16th Street) Oakland, CA

Sample	Sampling	TPH-g	TPH-d	TPH-mo	MTBE	Benzene	Toluene	Ethyl-	Xylenes
ID	Date							benzene	
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg
		(El	PA method 8015	(C)		(E.	PA method 8021	B)	
SB-1 & SB-1a	09/12/05	Shallow	refusal, no soil	samples					
SB2-10	09/12/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB3-10	09/12/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-4 & SB-4a	09/12/05	Shallow	refusal, no soil	samples					
SB5-10	09/12/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB6-10	09/12/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB 7-10	09/29/05	ND<1.0	21	130	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB 8-10	09/29/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB 9-10	09/29/05	7.3	34	40	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB 10-10	09/29/05	1.5	ND<1.0	ND<5.0	ND<0.05	0.018	ND<0.005	0.11	0.016
SB-11 - SB-12	Not drilled								
SB13-10	11/18/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB 14	No samples held	d for analysis							
SB15-10	11/18/05	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB 16	Unstable gravel	at surface - no s	oil samples						
RWQCB RBSI	<u></u>	400	500	1000	5.6	0.38	9.3	1.3	1.5

for commecial/industrial sites, soul less than or equal to 3 meters, groundwater not a potential drinking water source.

values in bold exceed soil \RBSL

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

TPH-mo = Total petroleum hydrocarbons as motor oil

MTBE = methyl tertiary butyl ether

 $mg/kg = milligrams \ per \ kilogram$

RBSL - Risk based screening level

Table 4: Groundwater Analytical Data
Hall Equities, 1310 14th Street (1310 16th Street) Oakland, CA

Sample	Sampling	TPH-g	TPH-d	TPH-mo	MTBE	Benzene	Toluene	Ethyl-	Xylenes
ID	Date	ца/І	μg/L	μg/L	па/І	ца/І	μg/L	benzene μg/L	ца/І
		μg/L (E.	μg/L PA method 8015		μg/L	μg/L (E	μg/L PA method 8021	,	μg/L
		(2)	11	((2			
SB-1 & SB-1a	09/12/05	Shallow	refusal, no wate	r samples					
SB-2-W19	09/12/05	65	1,400	500	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB-3-W19	09/12/05	ND<50	54	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB-4 & SB-4a	09/12/05	Shallow	refusal, no wate	r samples					
SB-5-W19	09/12/05	ND<50	240	460	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB-6-W19	09/12/05	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB 7- W	09/29/05	ND<50	9,900 1	38,000	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB-8 W	09/29/05	ND<50	640	350	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB-9 W	09/29/05	340	5,000 1	5,400	ND<5.0	1.0	ND<0.5	ND<0.5	ND<0.5
SB-10 W	09/29/05	1400	440	ND<250	ND<5.0	23	0.87	130	18
SB-11 - SB-12	Not drilled								
SB13-W-20	11/18/05	ND<50	120	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB14-W-20	11/18/05	1,700	650	440	ND<5.0	37	1.8	67	7.8
SB15-W-20	11/18/05	ND<50	72	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB16-W-20	11/18/05	ND<50	92	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
RWQCB RBSL		500	640	640	1800	46	130	290	13

for commecial/industrial sites, groundwater not a potential drinking water source. values in bold exceed soil \BSL

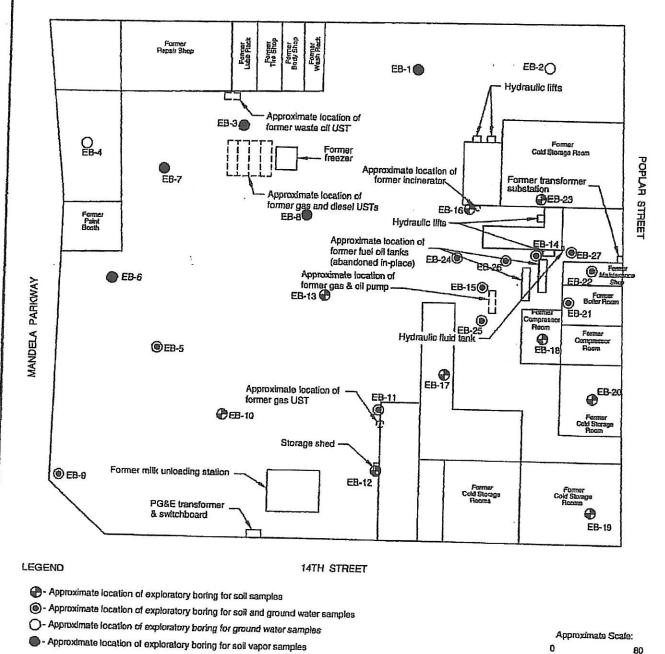
1 = lighter than water immiscible sheen/product is present

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

TPH-mo = Total petroleum hydrocarbons as motor oil

MTBE = methyl tertiary butyl ether

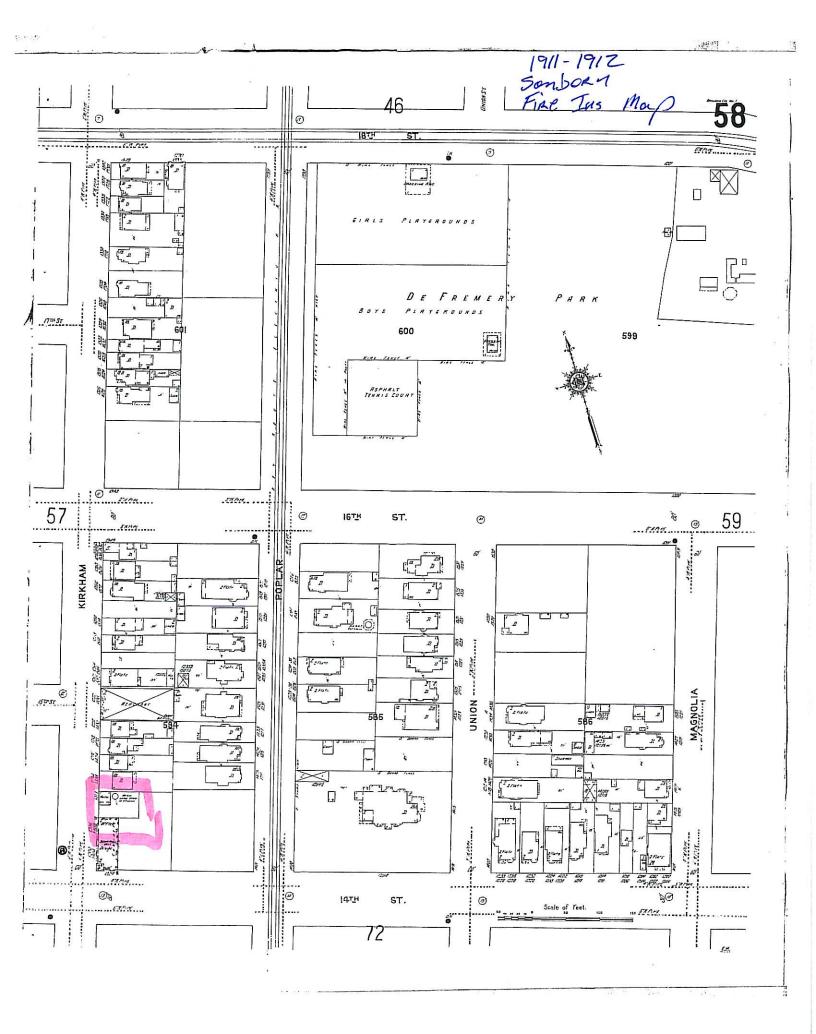

 μ g/L = micrograms per liter (ppb)

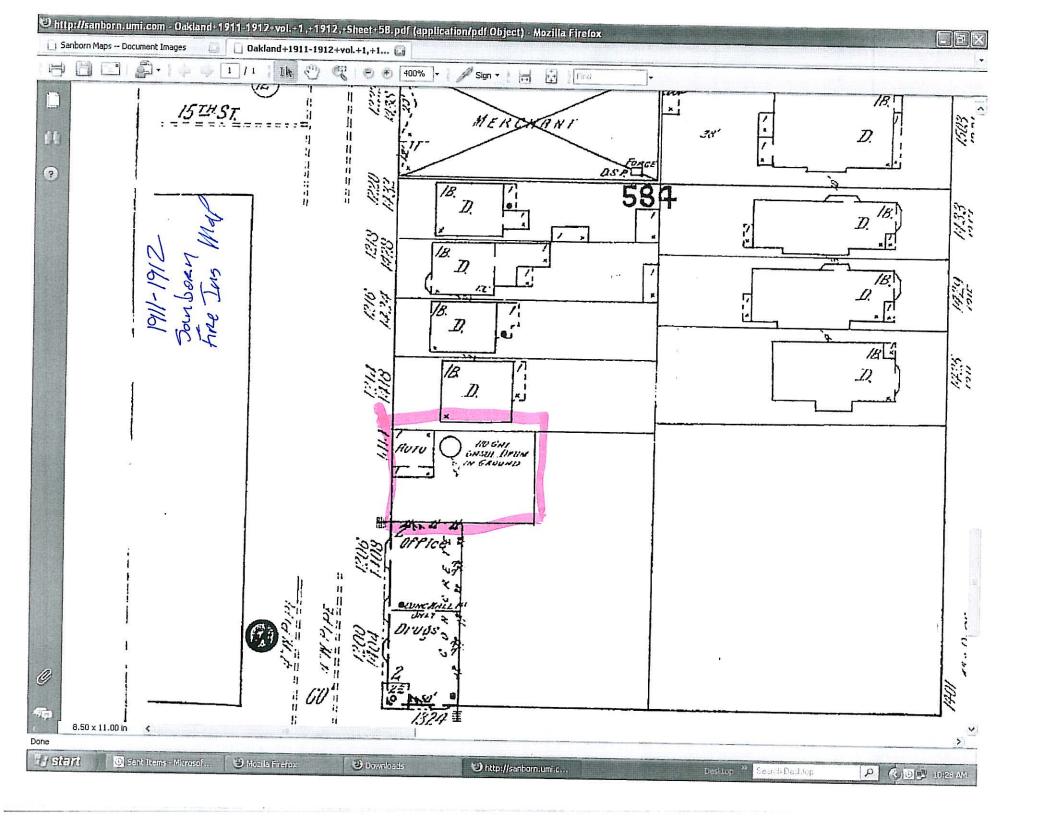
APPENDIX B

Miscellaneous Maps

16TH STREET

Base by TOPO Wildllower Productions.


SITE PLAN


1310 FOURTEENTH STREET Oakland, California

feet

Scale

APPENDIX C

Laboratory Analyses
With
Chain of Custody Documentation

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Reported: 11/20/07
Walliat Crock, Cri 71377	Client P.O.:	Date Completed: 11/20/07

WorkOrder: 0711340

November 20, 2007

Dear Kirby:

Enclosed are:

- 1). the results of 8 analyzed samples from your #275493; Carnation project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	AWA.
1	1 Th
1	

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262

Fax: (925) 252-9269

CHAIN OF CUSTODY RECORD

TURN AROUND TIME

RUSH 24 HR 48 HR 72 HR 5 DAY

GeoTracker EDF PDF Excel Write On (DW) Check if sample is effluent and "J" flag is required.

Report To: Kirby	Fernando		I	Bill To	: AF	I C	ons	ulta	nts										Δ				ques		шр	10 10	CII	iuci	it ai	_	Other	-	Comments
Company: AEI Consultants																		100	ucs						Т	\vdash		\neg					
2500 Camino Diablo #200, Walnut Creek 94597									MTBE		S&F)					ener												Filter					
E-Mail: kfernando@aeiconsultants.com									E) E/E					Cong						6	_				- 1	Samples for Metals					
Tele: (925) 944-	2899 x123		I	ax: (925	944	4-28	95						8015)/		552	0	(s	6		rs/(602(6020				- 1	analysis:
Project #: 275			I	rojec	t Nar	ne:	Con	rna	tio	0				+		999	418.	70C	/ 803	3	rock		cides			NAs)	010	10				- 1	Yes / No
Project Location:		Sto	Oaklax	ed)	/			11	i i	_				8021		l) es	ons (E	602	icide	Y; A	(sa	lerbi	(\$;	Cs)	s/P	8/6	9/8	020)			- 1	
Sampler Signatur	e: 1/2/ 1	SL	K	elo	19	7	1	3	-0	4				02/		Grea	carb	802	EPA	Pest	NE	sticid	CLE	000	SVO	PAH	200.	200.3	9/0			- 1	
	101	SAMI	PLING		ers	1	MÁ	PRI	X	P	ME			Gas (6	(5)	Oil & (lydro	8010 /	NLY (81 (CI	CB's C	NP Pe	Acidic	8260 (8270 (8310 (7.002	/ 2.00	8 / 601				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Othor	Ouner	HCI.	HNO,	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
Bo-2	Tank 2	11/13	12:45)			X							X	X	X					×			X			X						3
BO-3	Tank 3	1	12:50	1												1																	
STK 1234	Stock		1:00	4																													
STK5678	Stock 2		1:05	4						Τ																							
STK B5678	Stack 3		2:05	4						T																							
ESW ESW	South		2:20	1	9		T		T																					1			
WSW	west		2:25	1			1			T														1								7	
BO-W-	Tank 1		2:40	7		X								I							T			1			\perp						
										Т				7																			
					- 5					T																							
										t			П																П			1	
										T																							
										T																						\exists	
							\top		\top	t		\top																	П			\neg	
Refinquished By:		Date:	Time:	Rece	ived B	y:			_	- /	0	_		ICI	E/t° 4	4.	V				_							CON	1ME	NTS	:	_	
Vonla Conto	(8)	11-13	6:00	En	VIC	, =	Te	ch	5	5/							DIT																
Relinquished By: ENVIVO Tel		Date:	Time:	****		, ,							\exists	DE	CHL	ORI	NAT	ED I	IN L		_	20											
phono HEC	N	11/13	6.25	1.	1 cha	1	140	nas	in		1						ATE D IN			NER	cs		-										
Relinquished By:	1	Date:	Time: 6:45		yed By	y: 	V	~	5	PRESERVED IN LAB VOAS O&G METALS OTHER PRESERVATION pH<2																							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 2

WorkOrder: 0711340 ClientID: AEL

EDF Excel Fax ✓ Email HardCopy ThirdParty

Report to: Bill to: Requested TAT: 5 davs

Kirby Fernando Email: kfernando@aeiconsultants.com **AEI Consultants** TFI: FAX: (925) 283-6121

(925) 283-6000

2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597

ProjectNo: #275493; Carnation PO:

Denise Mockel **AEI Consultants**

2500 Camino Diablo, Ste. #200

Walnut Creek, CA 94597

dmockel@aeiconsultants.com

Date Received: 11/13/2007 Date Printed: 11/13/2007

Requested Tests (See legend below) Sample ID ClientSampID Matrix Collection Date Hold 2 3 10 11 12 0711340-001 BO-2 Soil 11/13/07 12:45:00 Α Α Α Α BO-3 0711340-002 11/13/07 12:50:00 Α Α Α Soil Α Α Α 0711340-003 STK 1234 Soil 11/13/07 1:00:00 Α Α Α Α Α Α 0711340-004 11/13/07 1:05:00 Α Α Α Α Α Α STK 5678 Soil 0711340-005 STK B5678 Soil 11/13/07 2:05:00 Α Α Α Α Α Α 0711340-006 **ESW** 11/13/07 2:20:00 Α Α Α Α Α Α Soil 0711340-007 WSW Soil 11/13/07 2:25:00 Α Α Α Α Α Α 0711340-008 BO-W Water 11/13/07 2:40:00 Е С В F F

Test Legend:

1	5520B_SG_W
6	8260B_W
11	PRDISSOLVED

2	5520E_SG_S
7	CAM17MS_DISS
12	TPH(D)_S

3	8082A_PCB_S
8	CAM17MS_S

4	8082A_PCB_W
9	G-MBTEX_S

5	8260B_S
10	G-MBTEX_W

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 2 of 2

WorkOrder: 0711340 ClientID: AEL EDF Excel Fax ✓ Email HardCopy ThirdParty Bill to: Report to: Requested TAT: 5 days Email: kfernando@aeiconsultants.com Denise Mockel Kirby Fernando **AEI Consultants** TFI: (925) 283-6000 FAX: (925) 283-6121 **AEI Consultants** Date Received: 11/13/2007 2500 Camino Diablo, Ste. #200 ProjectNo: #275493; Carnation 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 PO: Walnut Creek, CA 94597 Date Printed: 11/13/2007 dmockel@aeiconsultants.com Requested Tests (See legend below) Sample ID ClientSampID Matrix Collection Date Hold 13 14 15 20 22 23 24 0711340-001 BO-2 Soil 11/13/07 12:45:00 BO-3 0711340-002 11/13/07 12:50:00 Soil 0711340-003 STK 1234 Soil 11/13/07 1:00:00 0711340-004 Soil 11/13/07 1:05:00 STK 5678 0711340-005 STK B5678 Soil 11/13/07 2:05:00 0711340-006 **ESW** 11/13/07 2:20:00 Soil 0711340-007 WSW Soil 11/13/07 2:25:00 0711340-008 BO-W Water 11/13/07 2:40:00 D Test Legend: 15 13 TPH(D)_W 14 16 17 18 19 21 22 20 23 Prepared by: Ana Venegas

Comments:

Sample Receipt Checklist

Client Name:	AEI Cons	ultants					Date a	and Time Received:	11/13/07 7	:42:32 PM	
Project Name:	#275493;	Carnat	ion				Check	list completed and r	eviewed by:	Ana Venegas	
WorkOrder N°:	0711340		Matrix	Soil/Water			Carrie	r: <u>Michael Herna</u>	ındez (MAI Co	<u>urier)</u>	
Chain of Custody (COC) Information											
Chain of custody	y present?				Yes	V	No 🗆				
Chain of custody	signed whe	en relinqu	ished an	d received?	Yes	V	No 🗆				
Chain of custody	agrees with	n sample	labels?		Yes	✓	No 🗌				
Sample IDs noted	d by Client or	COC?			Yes	V	No 🗆				
Date and Time of	f collection n	oted by C	lient on C	OC?	Yes	~	No 🗆				
Sampler's name i	noted on CO	C?			Yes	✓	No 🗆				
				<u>s</u>	ample	Receipt	t Information	!			
Custody seals in	tact on shipp	oing conta	ainer/cod	ler?	Yes		No 🗆		NA 🔽		
Shipping contain	er/cooler in	good con	dition?		Yes	V	No 🗆				
Samples in prope	er containers	s/bottles?	,		Yes	~	No 🗆				
Sample containe	ers intact?				Yes	✓	No 🗆				
Sufficient sample	e volume for	indicated	I test?		Yes	✓	No 🗌				
			Sa	ample Prese	rvatio	n and Ho	old Time (HT)) Information			
All samples recei	ived within h	olding tin	ne?		Yes	✓	No 🗌				
Container/Temp I	Blank tempe	rature			Coole	er Temp:	4.6°C		NA \square		
Water - VOA via	ls have zero	headspa	ace / no l	oubbles?	Yes	~	No 🗆	No VOA vials subm	nitted \square		
Sample labels ch	hecked for c	orrect pre	eservatio	n?	Yes	~	No 🗌				
TTLC Metal - pH	acceptable	upon rece	eipt (pH<	2)?	Yes		No 🗆		NA 🗹		
										======	
Client contacted:				Date contac	ted:			Contacted	l by:		
Comments:											

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
, united Green, Gray 1897	Client P.O.:	Date Analyzed 11/16/07-11/19/07

Petroleum Oil & Grease with Silica Gel Clean-Up*

Analytical methods: SM5	520B/F/SM5520E/F			Work Order: 07	11340
Lab ID	Client ID	Matrix	POG	DF	% SS
0711340-001A	BO-2	S	ND	1	N/A
0711340-002A	BO-3	S	ND	1	N/A
0711340-003A	STK 1234	S	ND	1	N/A
0711340-004A	STK 5678	S	14,000	1	N/A
0711340-005A	STK B5678	S	ND	1	N/A
0711340-006A	ESW	S	ND	1	N/A
0711340-007A	WSW	S	ND	1	N/A
0711340-008E	BO-W	w	7.9,i	1	N/A
Report	ing Limit for DF =1;	W	5.0	m	g/L
ND me	ans not detected at or	S	50		ο/Κο

above the reporting limit	S	50	mg/Kg
* water samples and all TCLP & SPLP extracts are reported in	mg/L, soil	/sludge/solid samples in mg/kg, wipe samples in mg/wij	pe,
product/oil/non-aqueous liquid samples in mg/L.			

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
	Client P.O.:	Date Analyzed 11/14/07-11/16/07

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Analytical Method: SW8082A Work Order: 0711340

Extraction Method: SW3510C/SW3550C	Anal	ytical Method: SW808	2A		Work Order:	0711340
Lab ID	0711340-001A	0711340-002A	0711340-003A	0711340-004A		
Client ID	BO-2	BO-3	STK 1234	STK 5678	Reporting DF	
Matrix	S	S	S	S		
DF	1	1	1	50	S	W
Compound		Conce	entration		mg/kg	μg/L
Aroclor1016	ND	ND	ND	ND<1.2	0.025	0.5
Aroclor1221	ND	ND	ND	ND<1.2	0.025	0.5
Aroclor1232	ND	ND	ND	ND<1.2	0.025	0.5
Aroclor1242	ND	ND	ND	ND<1.2	0.025	0.5
Aroclor1248	ND	ND	ND	ND<1.2	0.025	0.5
Aroclor1254	ND	ND	ND	ND<1.2	0.025	0.5
Aroclor1260	ND	ND	ND	ND<1.2	0.025	0.5
PCBs, total	ND	ND	ND	ND<1.2	0.025	0.5
	Surrogate Recoveries (%)					
%SS:	95	121	117	115		
Comments			0	j,o		

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #275493; Carnation **AEI Consultants** Date Sampled: 11/13/07 Date Received: 11/13/07 2500 Camino Diablo, Ste. #200 Client Contact: Kirby Fernando Date Extracted: 11/13/07 Walnut Creek, CA 94597 Client P.O.: Date Analyzed 11/14/07-11/16/07

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Analytical Method: SW8082A Extraction Method: SW3510C/SW3550C Work Order: 0711340

Extraction Method: SW3510C/SW3550C	Anal	ytical Method: SW808	2A		Work Order:	0711340
Lab ID	0711340-005A	0711340-006A	0711340-007A	0711340-008C		
Client ID	STK B5678	ESW	WSW	BO-W	Reporting DF	
Matrix	S	S	S	W		
DF	50	1	1	1	S	W
Compound		Conce	entration		mg/kg	μg/L
Aroclor1016	ND<1.2	ND	ND	ND	0.025	0.5
Aroclor1221	ND<1.2	ND	ND	ND	0.025	0.5
Aroclor1232	ND<1.2	ND	ND	ND	0.025	0.5
Aroclor1242	ND<1.2	ND	ND	ND	0.025	0.5
Aroclor1248	ND<1.2	ND	ND	ND	0.025	0.5
Aroclor1254	ND<1.2	ND	ND	ND	0.025	0.5
Aroclor1260	ND<1.2	ND	ND	ND	0.025	0.5
PCBs, total	ND<1.2	ND	ND	ND	0.025	0.5
	Surr	ogate Recoveries	s (%)			
%SS:	84	105	113	116		
Comments	j			i		

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2300 Callino Diaolo, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/14/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID	0711340-001A
Client ID	BO-2
Matrix	Soil

IVIauix				2011			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			
			_	3 (

Surrogate Recoveries (%)					
%SS1:	100	%SS2:	98		
%SS3:	113				

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2500 Camino Diabio, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/15/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID	0711340-002A				
Client ID		BO-3			
Matrix		Soil			
Compound	Concentration * DE Reporting	Compound	Concentration *	DF	Reporting

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<3.3	67	0.05	Acrolein (Propenal)	ND<3.3	67	0.05
Acrylonitrile	ND<1.3	67	0.02	tert-Amyl methyl ether (TAME)	ND<0.33	67	0.005
Benzene	ND<0.33	67	0.005	Bromobenzene	ND<0.33	67	0.005
Bromochloromethane	ND<0.33	67	0.005	Bromodichloromethane	ND<0.33	67	0.005
Bromoform	ND<0.33	67	0.005	Bromomethane	ND<0.33	67	0.005
2-Butanone (MEK)	ND<1.3	67	0.02	t-Butyl alcohol (TBA)	ND<3.3	67	0.05
n-Butyl benzene	4.7	67	0.005	sec-Butyl benzene	3.4	67	0.005
tert-Butyl benzene	ND<0.33	67	0.005	Carbon Disulfide	ND<0.33	67	0.005
Carbon Tetrachloride	ND<0.33	67	0.005	Chlorobenzene	ND<0.33	67	0.005
Chloroethane	ND<0.33	67	0.005	2-Chloroethyl Vinyl Ether	ND<0.67	67	0.01
Chloroform	ND<0.33	67	0.005	Chloromethane	ND<0.33	67	0.005
2-Chlorotoluene	ND<0.33	67	0.005	4-Chlorotoluene	ND<0.33	67	0.005
Dibromochloromethane	ND<0.33	67	0.005	1,2-Dibromo-3-chloropropane	ND<0.33	67	0.005
1,2-Dibromoethane (EDB)	ND<0.33	67	0.005	Dibromomethane	ND<0.33	67	0.005
1,2-Dichlorobenzene	ND<0.33	67	0.005	1,3-Dichlorobenzene	ND<0.33	67	0.005
1,4-Dichlorobenzene	ND<0.33	67	0.005	Dichlorodifluoromethane	ND<0.33	67	0.005
1,1-Dichloroethane	ND<0.33	67	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.33	67	0.005
1,1-Dichloroethene	ND<0.33	67	0.005	cis-1,2-Dichloroethene	ND<0.33	67	0.005
trans-1,2-Dichloroethene	ND<0.33	67	0.005	1,2-Dichloropropane	ND<0.33	67	0.005
1,3-Dichloropropane	ND<0.33	67	0.005	2,2-Dichloropropane	ND<0.33	67	0.005
1,1-Dichloropropene	ND<0.33	67	0.005	cis-1,3-Dichloropropene	ND<0.33	67	0.005
trans-1,3-Dichloropropene	ND<0.33	67	0.005	Diisopropyl ether (DIPE)	ND<0.33	67	0.005
Ethylbenzene	1.1	67	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.33	67	0.005
Freon 113	ND<6.7	67	0.1	Hexachlorobutadiene	ND<0.33	67	0.005
Hexachloroethane	ND<0.33	67	0.005	2-Hexanone	ND<0.33	67	0.005
Isopropylbenzene	5.7	67	0.005	4-Isopropyl toluene	ND<0.33	67	0.005
Methyl-t-butyl ether (MTBE)	ND<0.33	67	0.005	Methylene chloride	ND<0.33	67	0.005
4-Methyl-2-pentanone (MIBK)	ND<0.33	67	0.005	Naphthalene	8.0	67	0.005
Nitrobenzene	ND<6.7	67	0.1	n-Propyl benzene	7.1	67	0.005
Styrene	ND<0.33	67	0.005	1,1,1,2-Tetrachloroethane	ND<0.33	67	0.005
1,1,2,2-Tetrachloroethane	ND<0.33	67	0.005	Tetrachloroethene	ND<0.33	67	0.005
Toluene	ND<0.33	67	0.005	1,2,3-Trichlorobenzene	ND<0.33	67	0.005
1,2,4-Trichlorobenzene	ND<0.33	67	0.005	1,1,1-Trichloroethane	ND<0.33	67	0.005
1,1,2-Trichloroethane	ND<0.33	67	0.005	Trichloroethene	ND<0.33	67	0.005
Trichlorofluoromethane	ND<0.33	67	0.005	1,2,3-Trichloropropane	ND<0.33	67	0.005
1,2,4-Trimethylbenzene	7.0	67	0.005	1,3,5-Trimethylbenzene	ND<0.33	67	0.005
Vinvl Chloride	ND<0.33	67	0.005	, , , , , , , , , , , , , , , , , , , ,	ND<0.33	67	0.005
		Surr	ogate Re	ecoveries (%)			

%SS1: 90 %SS2: 106 %SS3: 112

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2500 Carrillo Diablo, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/14/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID	0711340-003A
Client ID	STK 1234
Matrix	Soil

Matrix	Soil							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	, , , , , , , , , , , , , , , , , , , ,	ND	1.0	0.005	
		Surr	ogate Re	ecoveries (%)				

%SS3: 99
Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

100

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

100

%SS1

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2300 Callino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/15/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID				0711340-004A			
Client ID		STK 5678					
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit

IVIALIIX	Maurx								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND<3.3	67	0.05	Acrolein (Propenal)	ND<3.3	67	0.05		
Acrylonitrile	ND<1.3	67	0.02	tert-Amyl methyl ether (TAME)	ND<0.33	67	0.005		
Benzene	ND<0.33	67	0.005	Bromobenzene	ND<0.33	67	0.005		
Bromochloromethane	ND<0.33	67	0.005	Bromodichloromethane	ND<0.33	67	0.005		
Bromoform	ND<0.33	67	0.005	Bromomethane	ND<0.33	67	0.005		
2-Butanone (MEK)	ND<1.3	67	0.02	t-Butyl alcohol (TBA)	ND<3.3	67	0.05		
n-Butyl benzene	ND<0.33	67	0.005	sec-Butyl benzene	ND<0.33	67	0.005		
tert-Butyl benzene	ND<0.33	67	0.005	Carbon Disulfide	ND<0.33	67	0.005		
Carbon Tetrachloride	ND<0.33	67	0.005	Chlorobenzene	ND<0.33	67	0.005		
Chloroethane	ND<0.33	67	0.005	2-Chloroethyl Vinyl Ether	ND<0.67	67	0.01		
Chloroform	ND<0.33	67	0.005	Chloromethane	ND<0.33	67	0.005		
2-Chlorotoluene	ND<0.33	67	0.005	4-Chlorotoluene	ND<0.33	67	0.005		
Dibromochloromethane	ND<0.33	67	0.005	1,2-Dibromo-3-chloropropane	ND<0.33	67	0.005		
1,2-Dibromoethane (EDB)	ND<0.33	67	0.005	Dibromomethane	ND<0.33	67	0.005		
1,2-Dichlorobenzene	ND<0.33	67	0.005	1,3-Dichlorobenzene	ND<0.33	67	0.005		
1,4-Dichlorobenzene	ND<0.33	67	0.005	Dichlorodifluoromethane	ND<0.33	67	0.005		
1,1-Dichloroethane	ND<0.33	67	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.33	67	0.005		
1,1-Dichloroethene	ND<0.33	67	0.005	cis-1,2-Dichloroethene	ND<0.33	67	0.005		
trans-1,2-Dichloroethene	ND<0.33	67	0.005	1,2-Dichloropropane	ND<0.33	67	0.005		
1,3-Dichloropropane	ND<0.33	67	0.005	2,2-Dichloropropane	ND<0.33	67	0.005		
1,1-Dichloropropene	ND<0.33	67	0.005	cis-1,3-Dichloropropene	ND<0.33	67	0.005		
trans-1,3-Dichloropropene	ND<0.33	67	0.005	Diisopropyl ether (DIPE)	ND<0.33	67	0.005		
Ethylbenzene	ND<0.33	67	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.33	67	0.005		
Freon 113	ND<6.7	67	0.1	Hexachlorobutadiene	ND<0.33	67	0.005		
Hexachloroethane	ND<0.33	67	0.005	2-Hexanone	ND<0.33	67	0.005		
Isopropylbenzene	ND<0.33	67	0.005	4-Isopropyl toluene	ND<0.33	67	0.005		
Methyl-t-butyl ether (MTBE)	ND<0.33	67	0.005	Methylene chloride	ND<0.33	67	0.005		
4-Methyl-2-pentanone (MIBK)	ND<0.33	67	0.005	Naphthalene	10	67	0.005		
Nitrobenzene	ND<6.7	67	0.1	n-Propyl benzene	ND<0.33	67	0.005		
Styrene	ND<0.33	67	0.005	1,1,1,2-Tetrachloroethane	ND<0.33	67	0.005		
1,1,2,2-Tetrachloroethane	ND<0.33	67	0.005	Tetrachloroethene	ND<0.33	67	0.005		
Toluene	ND<0.33	67	0.005	1,2,3-Trichlorobenzene	ND<0.33	67	0.005		
1,2,4-Trichlorobenzene	ND<0.33	67	0.005	1,1,1-Trichloroethane	ND<0.33	67	0.005		
1,1,2-Trichloroethane	ND<0.33	67	0.005	Trichloroethene	ND<0.33	67	0.005		
Trichlorofluoromethane	ND<0.33	67	0.005	1,2,3-Trichloropropane	ND<0.33	67	0.005		
1,2,4-Trimethylbenzene	2.5	67	0.005	1,3,5-Trimethylbenzene	0.60	67	0.005		
Vinvl Chloride	ND<0.33	67	0.005		1.7	67	0.005		
		Surr		coveries (%)					
				(/0)					

	Surrogate Recoveries (%)								
%SS1:	102	%SS2:	96						
%SS3:	92								

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2300 Callino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/15/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID	0711340-005A	
Client ID	STK B5678	
Matrix	Soil	
	Reporting	Reporting

IVIALITA	waux Son								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND<1.0	20	0.05	Acrolein (Propenal)	ND<1.0	20	0.05		
Acrylonitrile	ND<0.40	20	0.02	tert-Amyl methyl ether (TAME)	ND<0.10	20	0.005		
Benzene	ND<0.10	20	0.005	Bromobenzene	ND<0.10	20	0.005		
Bromochloromethane	ND<0.10	20	0.005	Bromodichloromethane	ND<0.10	20	0.005		
Bromoform	ND<0.10	20	0.005	Bromomethane	ND<0.10	20	0.005		
2-Butanone (MEK)	ND<0.40	20	0.02	t-Butyl alcohol (TBA)	ND<1.0	20	0.05		
n-Butyl benzene	1.0	20	0.005	sec-Butyl benzene	0.87	20	0.005		
tert-Butyl benzene	ND<0.10	20	0.005	Carbon Disulfide	ND<0.10	20	0.005		
Carbon Tetrachloride	ND<0.10	20	0.005	Chlorobenzene	ND<0.10	20	0.005		
Chloroethane	ND<0.10	20	0.005	2-Chloroethyl Vinyl Ether	ND<0.20	20	0.01		
Chloroform	ND<0.10	20	0.005	Chloromethane	ND<0.10	20	0.005		
2-Chlorotoluene	ND<0.10	20	0.005	4-Chlorotoluene	ND<0.10	20	0.005		
Dibromochloromethane	ND<0.10	20	0.005	1,2-Dibromo-3-chloropropane	ND<0.10	20	0.005		
1,2-Dibromoethane (EDB)	ND<0.10	20	0.005	Dibromomethane	ND<0.10	20	0.005		
1,2-Dichlorobenzene	ND<0.10	20	0.005	1,3-Dichlorobenzene	ND<0.10	20	0.005		
1,4-Dichlorobenzene	ND<0.10	20	0.005	Dichlorodifluoromethane	ND<0.10	20	0.005		
1,1-Dichloroethane	ND<0.10	20	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.10	20	0.005		
1,1-Dichloroethene	ND<0.10	20	0.005	cis-1,2-Dichloroethene	ND<0.10	20	0.005		
trans-1,2-Dichloroethene	ND<0.10	20	0.005	1,2-Dichloropropane	ND<0.10	20	0.005		
1,3-Dichloropropane	ND<0.10	20	0.005	2,2-Dichloropropane	ND<0.10	20	0.005		
1,1-Dichloropropene	ND<0.10	20	0.005	cis-1,3-Dichloropropene	ND<0.10	20	0.005		
trans-1,3-Dichloropropene	ND<0.10	20	0.005	Diisopropyl ether (DIPE)	ND<0.10	20	0.005		
Ethylbenzene	ND<0.10	20	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.10	20	0.005		
Freon 113	ND<2.0	20	0.1	Hexachlorobutadiene	ND<0.10	20	0.005		
Hexachloroethane	ND<0.10	20	0.005	2-Hexanone	ND<0.10	20	0.005		
Isopropylbenzene	1.5	20	0.005	4-Isopropyl toluene	0.34	20	0.005		
Methyl-t-butyl ether (MTBE)	ND<0.10	20	0.005	Methylene chloride	ND<0.10	20	0.005		
4-Methyl-2-pentanone (MIBK)	ND<0.10	20	0.005	Naphthalene	3.0	20	0.005		
Nitrobenzene	ND<2.0	20	0.1	n-Propyl benzene	1.6	20	0.005		
Styrene	ND<0.10	20	0.005	1,1,1,2-Tetrachloroethane	ND<0.10	20	0.005		
1,1,2,2-Tetrachloroethane	ND<0.10	20	0.005	Tetrachloroethene	ND<0.10	20	0.005		
Toluene	ND<0.10	20	0.005	1,2,3-Trichlorobenzene	ND<0.10	20	0.005		
1,2,4-Trichlorobenzene	ND<0.10	20	0.005	1,1,1-Trichloroethane	ND<0.10	20	0.005		
1,1,2-Trichloroethane	ND<0.10	20	0.005	Trichloroethene	ND<0.10	20	0.005		
Trichlorofluoromethane	ND<0.10	20	0.005	1,2,3-Trichloropropane	ND<0.10	20	0.005		
1,2,4-Trimethylbenzene	ND<0.10	20	0.005	1,3,5-Trimethylbenzene	ND<0.10	20	0.005		
Vinvl Chloride	ND<0.10	20	0.005	Xvlenes	ND<0.10	20	0.005		
		Surre	ogate Re	coveries (%)					

	Surrogate Recoveries (%)								
%SS1:	101	%SS2:	87						
%SS3:	99								

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2300 Callino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/14/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID				0711340-006A			
Client ID				ESW			
Matrix				Soil			
Compound	Concentration *	DE	Reporting	Compound	Concentration *	DE	Reporting

Combound Concentration DF	IVIaulix	5011							
Aervlonirile	Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Benzene	Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Bromochloromethane	Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005	
Bromoform	Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
2-Butanone (MEK) ND	Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005	
Butyl benzene	Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005	
ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005 Chlorobenzene ND 1.	2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
Carbon Tetrachloride	n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
Chloroethane	tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005	
Chloroform	Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005	
2-Chlorotoluene	Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Dibromochloromethane ND	Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005	
1,2-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 Dichloroethane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 Dichloroethane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discoprople Discoprople ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discoprople Discoprople ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discoprople Discoprop	2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005	
1,2-Dichlorobenzene	Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005	
1,4-Dichlorobenzene	1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005	
1,1-Dichloroethane	1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005	
1,1-Dichloroethene	1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005	
trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.00 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.00 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.00 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.00 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 Methyl-t-butyl ether (MTBE)	1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005	
1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloropthane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.	1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005	
1,1-Dichloropropene	trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005	
trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.00 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.00 1.1,2-Tetrachloroethane ND 1.0 0.	1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005	
Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.01 n-Propyl benzene ND 1.0 0.00 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.00 1,2,4-Trichloroethane ND 1.0 0	1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005	
Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.00 1,1,2,2-Tetrachloroethane ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.00 1,2,4-Trichloroethane ND 1.0 0.005	trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005	
Hexachloroethane	Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	
Isopropylbenzene	Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND	Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND <	Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005	
Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.00 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 Xylenes ND 1.0 0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005	
Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 Xylenes ND 1.0 0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005	
Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005	
1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005	
Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.000	Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005	
	1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005	
Surrogate Recoveries (%)	Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005	
			Surre	ogate Re	ecoveries (%)				

Surrogate Recoveries (%)							
%SS1:	98	%SS2:	98				
%SS3:	110						

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

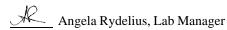
^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2500 Callino Diaolo, Stc. #200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/14/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID				0711340-007A			
Client ID				WSW			
Matrix				Soil			
Compound	Concentration *	DE	Reporting	Compound	Concentration *	DE	Reporting


Combound Concentration DF	Matrix Soil									
Aervlonirile	Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Benzene	Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05		
Bromochloromethane	Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005		
Bromoform	Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005		
2-Butanone (MEK) ND	Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005		
Butyl benzene	Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005		
ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005 Chlorobenzene ND 1.	2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05		
Carbon Tetrachloride	n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005		
Chloroethane	tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
Chloroform	Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005		
2-Chlorotoluene	Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01		
Dibromochloromethane ND	Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005		
1,2-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 Dichloroethane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 Dichloroethane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discoprople Discoprople ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discoprople Discoprople ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discoprople Discoprop	2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005		
1,2-Dichlorobenzene	Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005		
1,4-Dichlorobenzene	1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005		
1,1-Dichloroethane	1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005		
1,1-Dichloroethene	1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005		
trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.00 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.00 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.00 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.00 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 Methyl-t-butyl ether (MTBE)	1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005		
1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloropthane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.	1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005		
1,1-Dichloropropene	trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005		
trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.00 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.00 1.1,2-Tetrachloroethane ND 1.0 0.	1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005		
Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.01 n-Propyl benzene ND 1.0 0.00 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.00 1,2,4-Trichloroethane ND 1.0 0	1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005		
Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.00 1,1,2,2-Tetrachloroethane ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.00 1,2,4-Trichloroethane ND 1.0 0.005	trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005		
Hexachloroethane	Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005		
Isopropylbenzene	Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005		
Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND	Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND <	Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005		
Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.00 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 Xylenes ND 1.0 0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005		
Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 Xylenes ND 1.0 0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005		
Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005		
1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005		
Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.000	Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005		
	1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005		
Surrogate Recoveries (%)	Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005		
			Surre	ogate Re	ecoveries (%)					

	Surrogate Ke	ecoveries (%)	
%SS1:	99	%SS2:	97
%SS3:	112		

Comments.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2300 Callino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/15/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/15/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711340

Lab ID	0711340-008B	
Client ID	BO-W	
Matrix	Water	
		T

Matrix	Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	13	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	0.58	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	3.0	1.0	0.5	1,3,5-Trimethylbenzene	0.82	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	3.1	1.0	0.5
		Surr	ogate Re	ecoveries (%)			

 %SS1:
 110
 %SS2:
 92

 %SS3:
 97

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

"When Ouality Counts" Telephone			e: 877-252-9262 Fax: 925-252-9269				
AEI Consultants	AEI Consultants Client Project ID:			3; Carnation	Date Sampled:	11/13/07	
2500 Coming Distance #200				Date Received:	11/13/07		
2500 Camino Diablo, Ste. #200	C	Client Contact: K	irby Fe	rnando	Date Extracted:	11/13/07	
Walnut Creek, CA 94597 Cl		Client P.O.:			Date Analyzed	11/14/07	
	·	CAM / CCI	R 17 Me	tals*	•		
Lab ID	0711340-	-008F				Reporting Lin	nit for DF =1:
Client ID	BO-V	W				ND means rabove the rep	not detected
Matrix	W					S	W
Extraction Type	DISS	S.				mg/kg	μg/L
Analytical Method: E200.8		ICP-MS Metals Extraction Metho				Work Order:	0711340
Dilution Factor	1					1	1
Antimony	ND)				NA	0.5
Arsenic	ND)				NA	0.5
Barium	130)				NA	5.0
Beryllium	ND)				NA	0.5
Cadmium	ND)				NA	0.25
Chromium	ND)				NA	0.5
Cobalt	4.2	,				NA	0.5
Copper	0.78	8				NA	0.5
Lead	ND)				NA	0.5
Mercury	ND)				NA	0.012
Molybdenum	ND)				NA	0.5
Nickel	22					NA	0.5
Selenium	ND)				NA	0.5

$*water\ samples\ are\ reported\ in\ \mu g/L,\ product/oil/non-aqueous\ liquid\ samples\ and\ all\ TCLP\ /\ STLC\ /\ DISTLC\ /\ SPLP\ extracts\ are\ reported\ in\ samples\ are\ reported\ are\ reported\ in\ samples\ are\ reported\ in\ samples\ are\ reporte$
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

ND

ND

1.7

ND

N/A

TOTAL = acid digestion.

Silver

Zinc

Thallium

Vanadium

%SS:

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

0.19

0.5

0.5

5.0

NA

NA

NA

NA

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
2500 Camino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/14/07

2300 Carrinio Diabio, Ste. #200	Client C	ontact: Kirby Fe	nando	Date Extracted: 11/13/07		
Walnut Creek, CA 94597	Client P.	O.:		Date Analyzed	11/14/07	
	C	AM / CCR 17 Me	tals*			
Lab ID (0711340-001A BO-2	0711340-002A BO-3	0711340-003A STK 1234	0711340-004A STK 5678	Reporting Lin	mit for DF =
Chefit ID	БО-2	BO-3	S1K 1254	S1K 3078	above the re	
Matrix	S	S	S	S	S	W
Extraction Type	TOTAL	TOTAL	TOTAL	TOTAL	mg/Kg	mg/L
Analytical Method: 6020A		AS Metals, Conce			Work Order:	0711340
Dilution Factor	1	1	1	1	1	1
Antimony	ND	ND	ND	ND	0.5	NA
Arsenic	3.8	2.8	1.8	2.5	0.5	NA
Barium	81	75	48	68	5.0	NA
Beryllium	ND	ND	ND	ND	0.5	NA
Cadmium	ND	ND	ND	ND	0.25	NA
Chromium	43	42	32	43	0.5	NA
Cobalt	6.4	6.2	3.8	5.3	0.5	NA
Copper	11	9.2	7.1	9.6	0.5	NA
Lead	3.6	3.3	10	34	0.5	NA
Mercury	ND	ND	ND	ND	0.05	NA
Molybdenum	ND	ND	ND	ND	0.5	NA
Nickel	46	40	25	34	0.5	NA
Selenium	ND	ND	ND	ND	0.5	NA
Silver	ND	ND	ND	ND	0.5	NA
Thallium	ND	ND	ND	ND	0.5	NA
Vanadium	38	33	21	30	0.5	NA
Zinc	29	28	27	57	5.0	NA
%SS:	97	98	75	92		

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/14/07

2500 Camino Diablo, Ste. #200				Date Received. 11/13/07			
2500 Camino Diablo, Stc. #200	Client C	ontact: Kirby Fe	rnando	Date Extracted:	11/13/07		
Walnut Creek, CA 94597	Client P.	O.:		Date Analyzed	11/14/07		
	C	CAM / CCR 17 Me	tals*				
Lab ID	0711340-005A	0711340-006A	0711340-007A		Reporting Lin	nit for DF =	
Client ID	STK B5678	ESW	WSW			not detected	
Matrix	S	S	S		S	W	
Extraction Type	TOTAL	TOTAL	TOTAL		mg/Kg	mg/L	
	ICP-N	MS Metals, Conce	ntration*				
Analytical Method: 6020A	Extr	action Method: SW30	50B		Work Order:	0711340	
Dilution Factor	1	1	1		1	1	
Antimony	ND	ND	ND		0.5	NA	
Arsenic	2.5	2.9	2.8		0.5	NA	
Barium	62	81	72		5.0	NA	
Beryllium	ND	ND	ND		0.5	NA	
Cadmium	ND	ND	ND		0.25	NA	
Chromium	46	47	51		0.5	NA	
Cobalt	6.6	5.2	6.2		0.5	NA	
Copper	8.1	10	8.6		0.5	NA	
Lead	3.3	3.5	3.2		0.5	NA	
Mercury	ND	ND	0.052		0.05	NA	
Molybdenum	ND	ND	ND		0.5	NA	
Nickel	36	37	43		0.5	NA	
Selenium	ND	ND	ND		0.5	NA	
Silver	ND	ND	ND		0.5	NA	
Thallium	ND	ND	ND		0.5	NA	
Vanadium	31	35	36		0.5	NA	
Zinc	55	32	29		5.0	NA	
%SS:	101	95	116				

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

Walnut Creek, CA 94597

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Date Extracted: 11/13/07-11/16/07

Telephone: 877-252-9262 Fax: 925-252-9269 **AEI Consultants** Client Project ID: #275493; Carnation Date Sampled: 11/13/07 Date Received: 11/13/07 2500 Camino Diablo, Ste. #200

Client Contact: Kirby Fernando

Client P.O.: Date Analyzed 11/14/07-11/16/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0711340 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS 001A BO-2 S ND ND ND ND ND ND 1 94 002A BO-3 S 5400,g,m ND<10 ND<1.0 1.9 8.8 15 200 113 003A STK 1234 S ND ND ND ND ND ND 1 92 004A STK 5678 S ND<5.0 ND<0.50 0.83 5.1 100 115 610,g 1.0 005A S ND<0.50 100 74 STK B5678 730,g,m ND<5.0 ND<0.50 1.0 2.8 006A **FSW** S ND ND 100 ND ND ND ND 1 007A WSW S ND ND ND ND ND ND 1 95 008A BO-W W 130,g,i ND ND ND ND 2.1 1 97

Reporting Elimit for B1 =1;	vv	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg
* water and vapor samples and all TC	I P & SPI !	P extracts are re-	norted in ug/L	soil/sludge/solid	samples in mg/	ko wine samnle	es in ug/wine		

product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
	Client P.O.:	Date Analyzed 11/14/07-11/17/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Analytical methods SW8015C Extraction method SW3510C/SW3550C Work Order: 0711340 Lab ID Client ID Matrix TPH(d) DF % SS 0711340-001A BO-2 S ND 1 108 0711340-002A BO-3 S 1400,n 20 86 0711340-003A STK 1234 108 S 19,g,b 1 0711340-004A STK 5678 S 100 8700,a,g 120 0711340-005A STK B5678 S 370,n 10 100 0711340-006A S 108 **ESW** ND 1 0711340-007A S 1 92 WSW ND 0711340-008D BO-W W 111 1700,a,g,i 1

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 11/13/07
2500 Camino Diablo, Ste. #200		Date Received: 11/13/07
	Client Contact: Kirby Fernando	Date Extracted: 11/13/07
, union Cross, Gray 1097	Client P.O.:	Date Analyzed: 11/16/07
D' 1 (C10 C22) 1 C	N1/(C10.) E / / 11 H 1	1 1D 1 09#

	Diesel (C10-C23) and (Oil (C10+) Extracta	able Hydrocarbons as	Diesel and Bunker Oil*				
Extraction method: SW351	0C	Analytical me	thods: SW8015C	V	Work Order: 0711340			
Lab ID	Client ID	Matrix	TPH(d)	TPH(bo)	DF	% SS		
0711340-008D	BO-W	W	1700,a,g,i	2100	1	111		
	Limit for DF =1;	W	50	250	μ	g/L		
ND means not detected at or above the reporting limit		S	NA	NA	mg	/Kg		

above the reporting limit				0 0
* water samples are reported in µg/L, wipe samples in µg/	wipe, soil	/solid/sludge samples in mg/kg	g, product/oil/non-aqueous liqu	iid samples in mg/L,
and all DISTLC / STLC / SPLP / TCLP extracts are repo	rted in µg	z/L.		

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

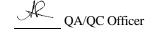
QC SUMMARY REPORT FOR SM5520B/F

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711340

EPA Method SM5520B/F Extraction SM5520B/F					BatchID: 31810 Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, may to	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
POG	N/A	100	N/A	N/A	N/A	110	110	0	N/A	N/A	70 - 130	25

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31810 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-008E	11/13/07 2:40 PM	M 11/13/07	11/16/07 2:56 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

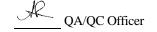
QC SUMMARY REPORT FOR SM5520E/F

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711340

EPA Method SM5520E/F Extraction SM5520E/F					BatchID: 31817 Spiked Sample ID: 0711245-001A					1 A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
7 thaty to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
POG	ND	1000	110	107	2.74	104	103	0.909	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31817 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-001A	11/13/07 12:45 PM	11/13/07	11/19/07 5:27 PM	0711340-002A	11/13/07 12:50 PM	11/13/07	11/19/07 5:32 PM
0711340-003A	11/13/07 1:00 PM	11/13/07	11/19/07 5:37 PM	0711340-004A	11/13/07 1:05 PM	11/13/07	11/19/07 5:42 PM
0711340-005A	11/13/07 2:05 PM	11/13/07	11/19/07 5:47 PM	0711340-006A	11/13/07 2:20 PM	11/13/07	11/19/07 5:52 PM
0711340-007A	11/13/07 2:25 PM	11/13/07	11/19/07 5:57 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

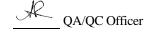
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711340

EPA Method SW8082A	Extra	ction SW	3550C		Bat	chID: 31	848	Sp	Spiked Sample ID: 0711266-006A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Tillalyto	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND	0.075	97.8	98.5	0.744	106	106	0	70 - 130	20	70 - 130	20
%SS:	105	0.050	95	92	3.11	96	111	14.3	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31848 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-001A	11/13/07 12:45 PM	11/13/07	11/14/07 4:18 PM	0711340-002A	11/13/07 12:50 PM	11/13/07	11/14/07 5:14 PM
0711340-003A	11/13/07 1:00 PM	11/13/07	11/14/07 6:09 PM	0711340-004A	11/13/07 1:05 PM	11/13/07	11/15/07 6:33 PM
0711340-005A	11/13/07 2:05 PM	11/13/07	11/15/07 7:29 PM	0711340-006A	11/13/07 2:20 PM	11/13/07	11/14/07 9:51 PM
0711340-007A	11/13/07 2:25 PM	11/13/07	11/14/07 10:46 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

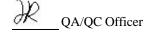
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0711340

EPA Method SW8082A	Extrac	tion SW	3510C		Bat	tchID: 31	884	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, ilially to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	N/A	3.75	N/A	N/A	N/A	96.4	97.6	1.15	N/A	N/A	70 - 130	20
%SS:	N/A	2.5	N/A	N/A	N/A	105	103	2.37	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31884 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-008C	11/13/07 2:40 PM	M 11/13/07	11/16/07 8:42 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

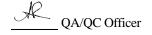
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711340

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 31	864	Sp	iked Samp	ole ID:	0711313-00	5A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, may to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	98.8	104	4.95	96.7	99.5	2.90	70 - 130	30	70 - 130	30
Benzene	ND	0.050	111	117	5.84	114	114	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	76.1	80	4.99	75.1	78	3.72	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	113	114	0.803	117	117	0	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	107	106	1.14	109	97.4	11.0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	89.6	95.1	5.94	89.7	89.2	0.576	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	111	103	7.96	109	97.8	10.9	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	103	110	6.52	103	105	1.38	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	94.3	99.6	5.42	93.4	92.3	1.19	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	92.3	96.3	4.24	89.8	85.5	4.94	70 - 130	30	70 - 130	30
Toluene	ND	0.050	97.1	97.6	0.474	101	98	3.28	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	93.7	96.6	2.99	96.2	91.5	5.00	70 - 130	30	70 - 130	30
%SS1:	95	0.050	100	102	2.06	95	92	3.03	70 - 130	30	70 - 130	30
%SS2:	98	0.050	86	86	0	87	83	3.58	70 - 130	30	70 - 130	30
%SS3:	109	0.050	94	93	1.22	91	92	1.92	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 31864 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-001A	11/13/07 12:45 PM	11/13/07	11/14/07 1:55 PM	0711340-002A	11/13/07 12:50 PM	11/13/07	11/15/07 11:44 AM
0711340-003A	11/13/07 1:00 PM	11/13/07	11/14/07 4:54 PM	0711340-004A	11/13/07 1:05 PM	11/13/07	11/15/07 12:33 PM
0711340-005A	11/13/07 2:05 PM	11/13/07	11/15/07 10:58 AM	0711340-006A	11/13/07 2:20 PM	11/13/07	11/14/07 5:42 PM
0711340-007A	11/13/07 2:25 PM	11/13/07	11/14/07 9:02 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

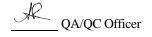
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711340

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 31	883	Sp	iked Samı	ole ID:	0711343-00	4B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
7 way to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND<250	10	110	116	5.69	98.2	100	1.85	70 - 130	30	70 - 130	30
Benzene	ND<250	10	109	113	3.42	115	113	2.11	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND<2500	50	89.1	88.1	1.11	76.6	78.7	2.76	70 - 130	30	70 - 130	30
Chlorobenzene	ND<250	10	121	123	1.80	118	115	1.91	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND<250	10	103	107	3.69	111	112	1.49	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND<250	10	90.3	96.1	6.27	91.1	91.8	0.759	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND<250	10	105	115	8.82	112	97	14.6	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<250	10	106	111	4.74	105	106	1.07	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<250	10	94.8	100	5.73	95.3	97	1.75	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	14,000	10	NR	NR	NR	93.9	95.1	1.31	70 - 130	30	70 - 130	30
Toluene	ND<250	10	101	103	2.44	101	100	0.721	70 - 130	30	70 - 130	30
Trichloroethene	ND<250	10	90.5	95.4	5.25	97.5	96.2	1.29	70 - 130	30	70 - 130	30
%SS1:	90	10	91	95	4.89	97	98	0.629	70 - 130	30	70 - 130	30
%SS2:	87	10	91	93	1.28	87	87	0	70 - 130	30	70 - 130	30
%SS3:	89	10	91	92	1.39	92	93	1.18	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 31883 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0711340-008B	11/13/07 2:40 PM	11/15/07	11/15/07 12:45 PM					Ī

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711340

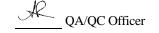
EPA Method E200.8	Extra	ction E20	0.8		Bat	chID: 31	874	Sp	iked Samı	ole ID:	0711331-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
ruidiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	1.2	10	131, F1	112	14.8	105	104	1.12	70 - 130	20	80 - 120	20
Arsenic	2.0	10	110	111	0.153	102	103	0.0976	70 - 130	20	80 - 120	20
Barium	93	100	113	114	0.630	109	107	1.86	70 - 130	20	80 - 120	20
Beryllium	ND	10	88.6	90.7	2.34	107	107	0	70 - 130	20	80 - 120	20
Cadmium	ND	10	93.4	95	1.73	97.3	96.1	1.29	70 - 130	20	80 - 120	20
Chromium	ND	10	95.2	95.5	0.369	102	103	1.27	70 - 130	20	80 - 120	20
Cobalt	ND	10	90.9	93	2.21	100	101	0.793	70 - 130	20	80 - 120	20
Copper	6.1	10	93.4	94.4	0.647	105	106	1.42	70 - 130	20	80 - 120	20
Lead	ND	10	101	101	0	95.8	95.3	0.555	70 - 130	20	80 - 120	20
Mercury	0.023	0.25	101	98.7	1.66	94.8	91.3	3.83	70 - 130	20	80 - 120	20
Molybdenum	13	10	109	111	1.11	98.5	96.3	2.30	70 - 130	20	80 - 120	20
Nickel	6.2	10	96.1	96.7	0.380	103	104	0.581	70 - 130	20	80 - 120	20
Selenium	6.1	10	118	119	0.445	103	103	0	70 - 130	20	80 - 120	20
Silver	ND	10	92.1	93.1	1.12	98.3	98.2	0.143	70 - 130	20	80 - 120	20
Thallium	ND	10	101	102	1.28	94.7	95.1	0.421	70 - 130	20	80 - 120	20
Vanadium	1.8	10	104	104	0	102	104	1.26	70 - 130	20	80 - 120	20
Zinc	5.6	100	100	100	0	103	104	1.05	70 - 130	20	80 - 120	20
%SS:	99	750	102	103	0.182	102	101	0.968	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

F1 = MS / MSD outside of acceptance criteria. LCS - LCSD validate prep batch.

BATCH 31874 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0711340-008F	11/13/07 2:40 PM	I 11/13/07	11/14/07 7:48 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

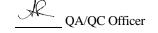
QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711340

EPA Method 6	020A			Extracti	on SW305	0B	В	atchID: 3	1846	Spiked Sa	mple	ID 0711279	-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)
7 that y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	50	111	112	1.05	10	105	106	0.284	70 - 130	20	80 - 120	20
Arsenic	4.5	50	99.2	99.9	0.644	10	102	103	1.66	70 - 130	20	80 - 120	20
Barium	84	500	103	103	0	100	108	109	1.11	70 - 130	20	80 - 120	20
Beryllium	ND	50	100	99.6	0.418	10	111	111	0	70 - 130	20	80 - 120	20
Cadmium	ND	50	103	104	0.617	10	108	109	0.832	70 - 130	20	80 - 120	20
Chromium	78	50	86.2	86	0.0825	10	102	106	3.42	70 - 130	20	80 - 120	20
Cobalt	11	50	98.3	97.2	0.855	10	106	108	1.68	70 - 130	20	80 - 120	20
Copper	20	50	94.6	95.4	0.650	10	103	105	1.70	70 - 130	20	80 - 120	20
Lead	20	50	98.4	98.8	0.330	10	107	109	1.82	70 - 130	20	80 - 120	20
Mercury	ND	1.25	97.8	98.5	0.706	0.25	96.7	96.1	0.664	70 - 130	20	80 - 120	20
Molybdenum	ND	50	98.8	99.7	0.860	10	101	102	0.885	70 - 130	20	80 - 120	20
Nickel	50	50	92.6	93	0.186	10	102	104	1.84	70 - 130	20	80 - 120	20
Selenium	ND	50	103	102	0.796	10	106	110	3.25	70 - 130	20	80 - 120	20
Silver	ND	50	99.2	100	1.04	10	109	101	8.10	70 - 130	20	80 - 120	20
Thallium	ND	50	101	101	0	10	106	109	2.78	70 - 130	20	80 - 120	20
Vanadium	66	50	88.9	88.1	0.364	10	102	106	3.74	70 - 130	20	80 - 120	20
Zinc	56	500	102	103	0.528	100	109	110	1.19	70 - 130	20	80 - 120	20
%SS:	107	250	102	101	0.988	250	102	104	2.01	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31846 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-001A	11/13/07 12:45 PM	11/13/07	11/14/07 6:21 PM	0711340-002A	1/13/07 12:50 PM	11/13/07	11/14/07 6:35 PM
0711340-003A	11/13/07 1:00 PM	11/13/07	11/14/07 7:07 PM	0711340-004A	11/13/07 1:05 PM	11/13/07	11/14/07 7:15 PM
0711340-005A	11/13/07 2:05 PM	11/13/07	11/14/07 7:22 PM	0711340-006A	11/13/07 2:20 PM	11/13/07	11/14/07 7:29 PM
0711340-007A	11/13/07 2:25 PM	11/13/07	11/14/07 7:37 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

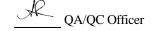
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711340

EPA Method SW8015C Extraction SW3550C				BatchID: 31820			Spiked Sample ID: 0711244-002a					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١
7 may to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	18	20	123	87.8	17.9	115	115	0	70 - 130	30	70 - 130	30
%SS:	91	50	90	73	20.7	93	92	0.307	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31820 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-001A	11/13/07 12:45 PM	11/13/07	11/14/07 10:24 PM	0711340-002A	11/13/07 12:50 PM	11/13/07	11/15/07 7:38 PM
0711340-003A	11/13/07 1:00 PM	11/13/07	11/16/07 12:25 AM	0711340-004A	11/13/07 1:05 PM	11/13/07	11/16/07 1:33 AM
0711340-005A	11/13/07 2:05 PM	11/13/07	11/17/07 1:34 PM	0711340-006A	11/13/07 2:20 PM	11/13/07	11/15/07 1:52 AM
0711340-007A	11/13/07 2:25 PM	11/13/07	11/15/07 2:56 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

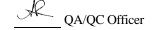
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711340

EPA Method SW8015C	Extra	ction SW	3510C		Bat	chID: 31	863	Sp	iked Samı	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	128	119	7.68	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	104	78	28.0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31863 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0711340-008D	11/13/07 2:40 PM	M 11/13/07	11/16/07 4:58 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711340

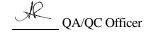
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 31	866	Sp	iked Sam	ole ID:	0 70 - 130 3 0 70 - 130 3								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)								
7 tildiyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD							
TPH(btex)	ND	0.60	103	107	4.46	113	105	7.13	70 - 130	30	70 - 130	30							
MTBE	ND	0.10	98.8	90.9	8.43	89	90.3	1.37	70 - 130	30	70 - 130	30							
Benzene	ND	0.10	97.9	86.8	12.0	88	93.6	6.21	70 - 130	30	70 - 130	30							
Toluene	ND	0.10	101	94.1	7.40	93.6	99.2	5.72	70 - 130	30	70 - 130	30							
Ethylbenzene	ND	0.10	118	109	7.84	109	116	6.15	70 - 130	30	70 - 130	30							
Xylenes	ND	0.30	113	107	6.06	107	113	6.06	70 - 130	30	70 - 130	30							
%SS:	92	0.10	101	90	11.2	94	100	6.32	70 - 130	30	70 - 130	30							

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 31866 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-001A	11/13/07 12:45 PM	11/13/07	11/15/07 10:24 PM	0711340-002A	11/13/07 12:50 PM	11/13/07	11/15/07 9:54 PM
0711340-003A	11/13/07 1:00 PM	11/13/07	11/15/07 10:55 PM	0711340-004A	11/13/07 1:05 PM	11/13/07	11/16/07 2:28 AM
0711340-005A	11/13/07 2:05 PM	11/13/07	11/16/07 4:00 AM	0711340-006A	11/13/07 2:20 PM	11/13/07	11/14/07 10:52 PM
0711340-007A	11/13/07 2:25 PM	11/13/07	11/14/07 11:22 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711340

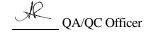
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 31	877	Sp	iked Samp	ole ID:	0711330-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 that yes	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	85.7	86.2	0.593	86.9	80	8.25	70 - 130	30	70 - 130	30
MTBE	ND	10	96.2	96.4	0.246	93.8	93.6	0.192	70 - 130	30	70 - 130	30
Benzene	ND	10	95.3	95.1	0.161	95.7	91.2	4.84	70 - 130	30	70 - 130	30
Toluene	ND	10	95.5	94.1	1.49	98.1	94.4	3.91	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	96.3	96.6	0.293	98.6	94.4	4.42	70 - 130	30	70 - 130	30
Xylenes	ND	30	95.3	91.7	3.92	92	90.7	1.46	70 - 130	30	70 - 130	30
%SS:	93	10	105	106	1.04	104	101	2.05	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 31877 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711340-008A	11/13/07 2:40 PM	1 11/15/07	11/15/07 9:31 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Reported: 12/05/07
Wallat Crook, Cri 71377	Client P.O.:	Date Completed: 12/05/07

WorkOrder: 0711621

December 05, 2007

Dear Kirby:

Enclosed are:

- 1). the results of 9 analyzed samples from your #276000; Carnation project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

Report To: Kirby	Consultants Camino Diab do@aeiconsu -2899 x123	PITTSBI ccampbe 7) 252-92 blo #200, Itants.cc	URG, CAS Ill.com El 262 Walnut	ASS RO 4565-1 mail: 1 Bill T Cree	DAD 1701 main@ Fax	©mec :: (92 EI C :97	25) 2 cons	obell 252- ulta 395	ecom 9269 nts						Geo T		cke	OU er H	EDI	F C	IM D	PD Che Rec	F eck ques	RUS	SH Ex imp	24 ccel le is	HR D	(050)	48 H Wri t an	IR ite (id "J	72 On (J" fla	HR DV ig is	5 DAY W) Comments Filter Samples for Metals analysis: Yes / No
Sampler Signatur	re: 120	SAM	PLING		T .	Т	MA	TD	rv.		мет			s (602 / 8		& Greas	Irocarbo	10 / 8021	Y (EPA	(Cl Pesti	S ONLY	Pesticid	die CI H	00 (VOC	O (SVO	0 (PAHs	.7 / 200.8	7 / 200.8	09/0109				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	er			Other		HCL	3	Other	BTEX & TPH as Ga	TPH as Diesel (8015)	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 /	Lead (200.7 / 200.8 / 6010 / 6020)				
LSI	Br and	11/26	11:26	1	BT		X			X				X	X	X					×			×			×					\Box	
LSIS	Ist side	-	11:29	1	1	Н	+	+	-	H			4			1					1			-					\square				
LSIB	Ist and B		11:32		Н		+	4	+	H			4		\perp	1		_											Ш			_	
LS2	2nd end		11:37	\vdash	\vdash	Н	1	+	-	4		_	4	\perp	\perp	+					-								\square			\dashv	
1.628			***	H	\vdash	Н	+	+	-	4		-	4		\perp	-					-			-							_	\dashv	
LS2B	2nd end B		11:43	_	\vdash		-	+		Н		-	+	+	+		-	_									\perp				-	\dashv	
LST1234	clean stk		12:14	4	\vdash		+	+	+	Н		+	+	\perp	+	\mathbb{H}	-	-						\perp			\perp		\vdash		_	\dashv	
LSTB 1234	clean stk	-	12:20	4	\vdash		+	+	-	Н		-	4	\perp	+		-	_					_	-					\Box	-	_	-	
LST 5678	dity sth		12:31	4	\vdash		+	+		Н		+	+	Н	+	1	-	_	_		+						\perp		\vdash		_	\dashv	
LSTB5678	duty stk		12:36	4	1	H		+		-		+	+	-	± .	-	-				4								\dashv		-	\dashv	
Refinquished By:	LA	Date:	Time:	Rece	ived B	y:			<	2			+	ICE	C/t°_	10				01		_					(COM	IME	NTS:		_	
Clarles los	Nobeln	11/26	600	En	ived B	0 -	16	cV	()	0					OD C					0)													
Relinquished By:	rsR.	Date:	Time: 1960	Th.	ived B	1/4	/_	7	<u>~</u>	(•			API	PROI	ORI	NAT	ED I	IN L	_	es >	e	S										
Relinquished By:	4:	Date:	Time: 1920	Rece	ived B	y: (1	7	9	X					FSFR			vo		08	G	ME		s	отн	ER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RFCORD

Page 1 of 1

WorkOrder: 0711621 ClientID: AEL

☐ EDF ☐ Excel ☐ Fax ✔ Email ☐ HardCopy ☐ ThirdParty

Report to: Bill to: Requested TAT: 5 days

Kirby Fernando Email: kfernando@aeiconsultants.com
AEI Consultants TEL: (925) 283-6000 FAX: (925) 283-6121

2500 Camino Diablo, Ste. #200 ProjectNo: #276000; Carnation

Walnut Creek, CA 94597 PO:

Denise Mockel AEI Consultants

2500 Camino Diablo, Ste. #200

Walnut Creek, CA 94597

dmockel@aeiconsultants.com

Date Received: 11/26/2007

Date Printed: 11/27/2007

Requested Tests (See legend below) Sample ID ClientSampID Matrix Collection Date Hold 2 3 10 11 12 0711621-001 LS1 Soil 11/26/07 11:26:00 Α Α 0711621-002 LS1S 11/26/07 11:29:00 Α Α Soil Α Α Α Α 0711621-003 LS1B Soil 11/26/07 11:32:00 Α Α Α Α Α 0711621-004 LS2 11/26/07 11:37:00 Α Α Α Α Α Soil Α 0711621-005 LS2B Soil 11/26/07 11:43:00 Α Α Α Α Α 0711621-006 LST1234 11/26/07 12:14:00 Α Α Α Α Α Soil Α 0711621-007 LSTB1234 Soil 11/26/07 12:20:00 Α Α Α Α Α Α 0711621-008 LST5678 Soil 11/26/07 12:31:00 Α Α Α Α Α Α 0711621-009 LSTB5678 Soil 11/26/07 12:36:00 Α Α Α Α Α

Test Legend:

1	5520E_SG_S
6	TPH(D)_S
11	

2	8082A_PCB_S
7	
12	

3	8260B_S
8	

4	CAM17MS_S	
9		٦

5	G-MBTEX_S
10	

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	11/26/07 7	:29:48 PM
Project Name:	#276000; Carnation				Check	klist completed and	reviewed by:	Rosa Venegas
WorkOrder N°:	0711621 Matrix	<u>Soil</u>			Carrie	er: <u>EnviroTech</u>		
		Chain of	Cus	stody (COC) Informa	ation		
Chain of custody	present?	Y	es	V	No \square			
Chain of custody	signed when relinquished ar	nd received? Y	es	V	No 🗆			
Chain of custody	agrees with sample labels?	Y	es	V	No 🗌			
Sample IDs noted	by Client on COC?	Y	es	V	No 🗆			
Date and Time of	collection noted by Client on C	COC? Y	es	✓	No \square			
Sampler's name r	noted on COC?	Y	es	✓	No \square			
		<u>Sam</u>	ple	Receipt Inf	ormation	<u>1</u>		
Custody seals in	tact on shipping container/coo	oler? Y	es		No \square		NA 🔽	
Shipping containe	er/cooler in good condition?	Y	es	V	No \square			
Samples in prope	er containers/bottles?	Y	es	V	No \square			
Sample containe	rs intact?	Y	es	✓	No 🗆			
Sufficient sample	e volume for indicated test?	Y	es	✓	No 🗌			
	<u>S</u>	ample Preserva	tion	and Hold	Time (HT) Information		
All samples recei	ved within holding time?	Y	es	✓	No 🗌			
Container/Temp B	Blank temperature	Co	oole	r Temp:			NA 🗹	
Water - VOA vial	ls have zero headspace / no	bubbles? Y	es		No \square	No VOA vials subr	nitted 🗹	
Sample labels ch	necked for correct preservation	n? Y	es	V	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Y	es		No 🗆		NA 🔽	
	:			-===				======
Client contacted:		Date contacted:				Contacte	d by:	
Comments:								

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
, and Green, Gray 1097	Client P.O.:	Date Analyzed 11/28/07-12/04/07

Petroleum Oil & Grease with Silica Gel Clean-Up*

Analytical methods: SM5		TON CO Groupe With Sin		Work Order: 07	11621
Lab ID	Client ID	Matrix	POG	DF	% SS
0711621-001A	LS1	S	ND	1	N/A
0711621-002A	LS1S	S	ND	1	N/A
0711621-003A	LS1B	S	ND	1	N/A
0711621-004A	LS2	S	ND	1	N/A
0711621-005A	LS2B	S	ND	1	N/A
0711621-006A	LST1234	S	540	1	N/A
0711621-007A	LSTB1234	S	220	1	N/A
0711621-008A	LST5678	S	2700	1	N/A
0711621-009A	LSTB5678	S	700	1	N/A
Report	ting Limit for DF =1;	W	NA	N	IA
	ans not detected at or	S	50		g/Kg

above the reporting limit	S	50	mg/Kg
* water samples and all TCLP & SPLP extracts are reported in	mg/L, soil	/sludge/solid samples in mg/kg, wipe samples in mg/w	ipe.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

product/oil/non-aqueous liquid samples in mg/L.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
, unite Cross, Crry 107,	Client P.O.:	Date Analyzed 11/28/07

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Extraction Method: SW3550C	Anal	Analytical Method: SW8082A						
Lab ID	0711621-001A	0711621-002A	0711621-003A	0711621-004A				
Client ID	LS1	LS1S	LS1B	LS2	Reporting DF			
Matrix	S	S	S	S				
DF	1	1	1	1	S W			
Compound		Concentration				ug/L		
Aroclor1016	ND	ND	ND	ND	0.025	NA		
Aroclor1221	ND	ND	ND	ND	0.025	NA		
Aroclor1232	ND	ND	ND	ND	0.025	NA		
Aroclor1242	ND	ND	ND	ND	0.025	NA		
Aroclor1248	ND	ND	ND	ND	0.025	NA		
Aroclor1254	ND	ND	ND	ND	0.025	NA		
Aroclor1260	ND	ND	ND	ND	0.025	NA		
PCBs, total	ND	ND	ND	ND	0.025	NA		
	Surr	ogate Recoveries	s (%)					
%SS:	115	105	92	103				
Comments								

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #276000; Carnation **AEI Consultants** Date Sampled: 11/26/07 Date Received: 11/26/07 2500 Camino Diablo, Ste. #200 Client Contact: Kirby Fernando Date Extracted: 11/26/07 Walnut Creek, CA 94597 Date Analyzed 11/28/07 Client P.O.:

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Analytical Method: SW8082A Extraction Method: SW3550C Work Order: 0711621

Extraction Method: SW3550C	Anal	Work Order: 0711621				
Lab ID	0711621-005A	0711621-006A	0711621-007A	0711621-008A		
Client ID	LS2B	LST1234	LSTB1234	LST5678	Reporting DF	
Matrix	S	S	S	S		
DF	1	5	1	20	S	W
Compound		Concentration				ug/L
Aroclor1016	ND	ND<0.12	ND	ND<0.50	0.025	NA
Aroclor1221	ND	ND<0.12	ND	ND<0.50	0.025	NA
Aroclor1232	ND	ND<0.12	ND	ND<0.50	0.025	NA
Aroclor1242	ND	ND<0.12	ND	ND<0.50	0.025	NA
Aroclor1248	ND	ND<0.12	ND	ND<0.50	0.025	NA
Aroclor1254	ND	ND<0.12	ND	ND<0.50	0.025	NA
Aroclor1260	ND	ND<0.12	ND	ND<0.50	0.025	NA
PCBs, total	ND	ND<0.12	ND	ND<0.50	0.025	NA
	Surr	ogate Recoveries	s (%)			
%SS:	107	113	101	126		
Comments		j,o		j,o		

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

AEI Consultants		Project ID: #27600	Date Sampled:	11/26/07		
2500 Camino Diablo, Ste. #200				Date Received:	11/26/07	
Walnut Creek, CA 94597	Client	Client Contact: Kirby Fernando Da			11/26/07	
Wallet Creek, CH 91397	Client	P.O.:		Date Analyzed	11/28/07	
Po	olychlorinated 1	Biphenyls (PCBs) A	roclors by GC-E	CCD*		
					Work Order:	0711621
Lab ID	0711621-009A]	
Client ID	LSTB5678				Reporting DF	
Matrix	S					
DF	1				S	W
Compound		Conce	mg/kg	ug/L		
Aroclor1016	ND				0.025	NA
Aroclor1221	ND				0.025	NA
Aroclor1232	ND				0.025	NA
Aroclor1242	ND				0.025	NA
Aroclor1248	ND				0.025	NA
Aroclor1254	ND				0.025	NA
Aroclor1260	ND				0.025	NA
PCBs, total	ND				0.025	NA
Surrogate Recoveries (%)						
%SS:	111					
Comments						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

^{*} water samples in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

	·	
AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2500 Camino Diabio, Stc. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/27/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-001A
Client ID	LS1
Matrix	Soil

Compound Concentration DF	Matrix	Soil						
Acrylonitrije ND	Compound	Concentration *	DF		Compound	Concentration *	DF	Reporting Limit
Benzene ND	Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Bromochloromethane	Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Bromoform	Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
2-Butanone (MEK) ND 1.0 0.02 t-Butyl benzene ND 1.0 0.05 n-Butyl benzene ND 1.0 0.005 sec-Butyl benzene ND 1.0 0.005 terr-Butyl benzene ND 1.0 0.005 sec-Butyl benzene ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroethane ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 Chlorotoluene ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 1.2-Dibromoenbane ND 1.0 0.005 1,2-Dichorobenthane (EDB) ND 1.0 0.005 1.2-Dichorobenzene ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.00	Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
n-Butvl benzene	Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
Tert-Butyl benzene	2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
Carbon Tetrachloride ND 1.0 0.005 Chloroethane ND 1.0 0.005 Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1.0 0.005 Chloroform ND 1.0 0.005 Chloroethane ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1.0 0.005 2-Chloroethane (EDB) ND 1.0 0.005 Dibromoethane (EDB) ND 1.0 0.005 Dibromoethane (EDB) ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,4-Dichloroethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 </td <td>n-Butyl benzene</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>sec-Butyl benzene</td> <td>ND</td> <td>1.0</td> <td>0.005</td>	n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
Chloroethane	tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Chloroform	Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
2-Chlorotoluene	Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Dibromochloromethane ND	Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
1,2-Dibromoethane (EDB) ND 1,0 0,005 Dibromomethane ND 1,0 0,005 1,2-Dichlorobenzene ND 1,0 0,005 1,3-Dichlorobenzene ND 1,0 0,005 1,4-Dichlorobenzene ND 1,0 0,005 Dichlorodifluoromethane ND 1,0 0,005 1,1-Dichloroethane ND 1,0 0,005 Dichlorodifluoromethane (1,2-DCA) ND 1,0 0,005 1,1-Dichloroethane ND 1,0 0,005 Cis-1,2-Dichloroethane (1,2-DCA) ND 1,0 0,005 1,1-Dichloroethane ND 1,0 0,005 Cis-1,2-Dichloroethane ND 1,0 0,005 1,3-Dichloroptopane ND 1,0 0,005 1,2-Dichloroptopane ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 1,2-Dichloroptopane ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Cis-1,3-Dichloroptopane ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Disoptopyle ther (DIPE) ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Ethyl tert-butyl ether (ETBE) ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Ethyl tert-butyl ether (ETBE) ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Ethyl tert-butyl ether (ETBE) ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Ethyl tert-butyl ether (ETBE) ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Ethyl tert-butyl ether (ETBE) ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0 0,005 Alsopropyl toluene ND 1,0 0,005 1,1-Dichloroptopane ND 1,0	2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
1,2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 1,1-Dichloropropane ND 1.0 0.005 1,	Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1.4-Dichlorobenzene	1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,1-Dichloroethane	1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1.1-Dichloroethene	1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1.0 0.005 trans-1,2-Dichloroptene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (DIPE) ND 1.0 0.005 Freon 113 ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Hexachloroethane ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Methyl-t-butyl ether (MTBE) <td>1,1-Dichloroethane</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>1,2-Dichloroethane (1,2-DCA)</td> <td>ND</td> <td>1.0</td> <td>0.005</td>	1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropvl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 Styrene ND	1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
1,1-Dichloropropene	trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0	1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nirobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 <	1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0	trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Hexachloroethane	Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Isopropylbenzene	Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND	Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0 0.005	Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0 0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0 0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
	1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Surrogate Recoveries (%)	Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
			Surr	ogate Re	ecoveries (%)			

 %SS1:
 103
 %SS2:
 94

 %SS3:
 106

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2300 Camino Diablo, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-002A						
Client ID	LS1S						
Matrix	Soil						
Compound	Concentration *	DE	Reporting	Compound	Concentration *	DF	Reporting

IVIALITX				2011			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	i · ·	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%)							
%SS1:	101	%SS2:	95				
%SS3:	107						

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2300 Camino Diabio, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-003A			
Client ID	LS1B			
Matrix	Soil			
	Reporting Report			

IVIALITX				2011			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			
1	1			1	1		

Surrogate Recoveries (%)						
%SS1:	103	%SS2:	95			
%SS3:	108					

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2300 Camino Diabio, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-004A			
Client ID	LS2			
Matrix	Soil			

Matrix	Matrix Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1.2-Dibromo-3-chloropropane	ND	1.0	0.005
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1.2-Dichloroethane (1.2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1.2.3-Trichlorobenzene	ND	1.0	0.005
1.2.4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND ND	1.0	0.005		ND ND	1.0	0.005
- m-r Chioride	ΗD	110			TID	1.0	. 0.003
Surrogate Recoveries (%)							

%SS3: Comments:

%SS1

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-005A
Client ID	LS2B
Matrix	Soil

Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)			
				· /			


 %SS1:
 101
 %SS2:
 95

 %SS3:
 109

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-006A
Client ID	LST1234
Matrix	Soil

Wattix Soil								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005		ND	1.0	0.005	
		Surre	ogate Re	coveries (%)				
1								

%SS1: 99 %SS2: 95 %SS3: 107

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Comments

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-007A
Client ID	LSTB1234
Matrix	Soil

Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)			
				· /			

Surrogate Recoveries (%)						
%SS1:	97	%SS2:	95			
%SS3:	104					

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597		Date Received: 11/26/07
	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID	0711621-008A	
Client ID	LST5678	
Matrix	Soil	
	Reporting	Reporting

				501			$\overline{}$
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1.0	20	0.05	Acrolein (Propenal)	ND<1.0	20	0.05
Acrylonitrile	ND<0.40	20	0.02	tert-Amyl methyl ether (TAME)	ND<0.10	20	0.005
Benzene	ND<0.10	20	0.005	Bromobenzene	ND<0.10	20	0.005
Bromochloromethane	ND<0.10	20	0.005	Bromodichloromethane	ND<0.10	20	0.005
Bromoform	ND<0.10	20	0.005	Bromomethane	ND<0.10	20	0.005
2-Butanone (MEK)	ND<0.40	20	0.02	t-Butyl alcohol (TBA)	ND<1.0	20	0.05
n-Butyl benzene	1.4	20	0.005	sec-Butyl benzene	0.73	20	0.005
tert-Butyl benzene	0.27	20	0.005	Carbon Disulfide	ND<0.10	20	0.005
Carbon Tetrachloride	ND<0.10	20	0.005	Chlorobenzene	ND<0.10	20	0.005
Chloroethane	ND<0.10	20	0.005	2-Chloroethyl Vinyl Ether	ND<0.20	20	0.01
Chloroform	ND<0.10	20	0.005	Chloromethane	ND<0.10	20	0.005
2-Chlorotoluene	ND<0.10	20	0.005	4-Chlorotoluene	ND<0.10	20	0.005
Dibromochloromethane	ND<0.10	20	0.005	1,2-Dibromo-3-chloropropane	ND<0.10	20	0.005
1,2-Dibromoethane (EDB)	ND<0.10	20	0.005	Dibromomethane	ND<0.10	20	0.005
1,2-Dichlorobenzene	ND<0.10	20	0.005	1,3-Dichlorobenzene	ND<0.10	20	0.005
1.4-Dichlorobenzene	ND<0.10	20	0.005	Dichlorodifluoromethane	ND<0.10	20	0.005
1,1-Dichloroethane	ND<0.10	20	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.10	20	0.005
1,1-Dichloroethene	ND<0.10	20	0.005	cis-1,2-Dichloroethene	ND<0.10	20	0.005
trans-1,2-Dichloroethene	ND<0.10	20	0.005	1,2-Dichloropropane	ND<0.10	20	0.005
1,3-Dichloropropane	ND<0.10	20	0.005	2,2-Dichloropropane	ND<0.10	20	0.005
1,1-Dichloropropene	ND<0.10	20	0.005	cis-1,3-Dichloropropene	ND<0.10	20	0.005
trans-1,3-Dichloropropene	ND<0.10	20	0.005	Diisopropyl ether (DIPE)	ND<0.10	20	0.005
Ethylbenzene	2.2	20	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.10	20	0.005
Freon 113	ND<2.0	20	0.1	Hexachlorobutadiene	ND<0.10	20	0.005
Hexachloroethane	ND<0.10	20	0.005	2-Hexanone	ND<0.10	20	0.005
Isopropylbenzene	1.9	20	0.005	4-Isopropyl toluene	ND<0.10	20	0.005
Methyl-t-butyl ether (MTBE)	ND<0.10	20	0.005	Methylene chloride	ND<0.10	20	0.005
4-Methyl-2-pentanone (MIBK)	ND<0.10	20	0.005	Naphthalene	4.0	20	0.005
Nitrobenzene	ND<2.0	20	0.1	n-Propyl benzene	2.4	20	0.005
Styrene	ND<0.10	20	0.005	1,1,1,2-Tetrachloroethane	ND<0.10	20	0.005
1,1,2,2-Tetrachloroethane	ND<0.10	20	0.005	Tetrachloroethene	ND<0.10	20	0.005
Toluene	ND<0.10	20	0.005	1,2,3-Trichlorobenzene	ND<0.10	20	0.005
1,2,4-Trichlorobenzene	ND<0.10	20	0.005	1,1,1-Trichloroethane	ND<0.10	20	0.005
1,1,2-Trichloroethane	ND<0.10	20	0.005	Trichloroethene	ND<0.10	20	0.005
Trichlorofluoromethane	ND<0.10	20	0.005	1,2,3-Trichloropropane	ND<0.10	20	0.005
1,2,4-Trimethylbenzene	2.1	20	0.005	1,3,5-Trimethylbenzene	0.60	20	0.005
Vinvl Chloride	ND<0.10	20	0.005		0.53	20	0.005
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%)							
%SS1:	101	%SS2:	93				
%SS3:	99						

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

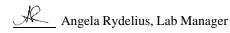
AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2300 Callino Diaolo, Stc. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/28/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711621

Lab ID		0711621-009A								
Client ID		LSTB5678								
Matrix		Soil								
Compound	Concentration *	DE Re	eporting	Compound	Concentration *	DE	Reporting			

Matrix Sc							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1.0	ND<1.0 20 0.05 Acrolein (Propenal)		Acrolein (Propenal)	ND<1.0	20	0.05
Acrylonitrile	ND<0.40	20	0.02	tert-Amyl methyl ether (TAME)	ND<0.10	20	0.005
Benzene	ND<0.10	20	0.005	Bromobenzene	ND<0.10	20	0.005
Bromochloromethane	ND<0.10	20	0.005	Bromodichloromethane	ND<0.10	20	0.005
Bromoform	ND<0.10	20	0.005	Bromomethane	ND<0.10	20	0.005
2-Butanone (MEK)	ND<0.40	20	0.02	t-Butyl alcohol (TBA)	ND<1.0	20	0.05
n-Butyl benzene	0.92	20	0.005	sec-Butyl benzene	0.40	20	0.005
tert-Butyl benzene	0.12	20	0.005	Carbon Disulfide	ND<0.10	20	0.005
Carbon Tetrachloride	ND<0.10	20	0.005	Chlorobenzene	ND<0.10	20	0.005
Chloroethane	ND<0.10	20	0.005	2-Chloroethyl Vinyl Ether	ND<0.20	20	0.01
Chloroform	ND<0.10	20	0.005	Chloromethane	ND<0.10	20	0.005
2-Chlorotoluene	ND<0.10	20	0.005	4-Chlorotoluene	ND<0.10	20	0.005
Dibromochloromethane	ND<0.10	20	0.005	1,2-Dibromo-3-chloropropane	ND<0.10	20	0.005
1,2-Dibromoethane (EDB)	ND<0.10	20	0.005	Dibromomethane	ND<0.10	20	0.005
1,2-Dichlorobenzene	ND<0.10	20	0.005	1,3-Dichlorobenzene	ND<0.10	20	0.005
1,4-Dichlorobenzene	ND<0.10	20	0.005	Dichlorodifluoromethane	ND<0.10	20	0.005
1,1-Dichloroethane	ND<0.10	20	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.10	20	0.005
1,1-Dichloroethene	ND<0.10	20	0.005	cis-1,2-Dichloroethene	ND<0.10	20	0.005
trans-1,2-Dichloroethene	ND<0.10	20	0.005	1,2-Dichloropropane	ND<0.10	20	0.005
1,3-Dichloropropane	ND<0.10	20	0.005	2,2-Dichloropropane	ND<0.10	20	0.005
1,1-Dichloropropene	ND<0.10	20	0.005	cis-1,3-Dichloropropene	ND<0.10	20	0.005
trans-1,3-Dichloropropene	ND<0.10	20	0.005	Diisopropyl ether (DIPE)	ND<0.10	20	0.005
Ethylbenzene	0.91	20	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.10	20	0.005
Freon 113	ND<2.0	20	0.1	Hexachlorobutadiene	ND<0.10	20	0.005
Hexachloroethane	ND<0.10	20	0.005	2-Hexanone	ND<0.10	20	0.005
Isopropylbenzene	0.87	20	0.005	4-Isopropyl toluene	ND<0.10	20	0.005
Methyl-t-butyl ether (MTBE)	ND<0.10	20	0.005	Methylene chloride	ND<0.10	20	0.005
4-Methyl-2-pentanone (MIBK)	ND<0.10	20	0.005	Naphthalene	2.6	20	0.005
Nitrobenzene	ND<2.0	20	0.1	n-Propyl benzene	1.2	20	0.005
Styrene	ND<0.10	20	0.005	1,1,1,2-Tetrachloroethane	ND<0.10	20	0.005
1,1,2,2-Tetrachloroethane	ND<0.10	20	0.005	Tetrachloroethene	ND<0.10	20	0.005
Toluene	ND<0.10	20	0.005	1,2,3-Trichlorobenzene	ND<0.10	20	0.005
1,2,4-Trichlorobenzene	ND<0.10	20	0.005	1,1,1-Trichloroethane	ND<0.10	20	0.005
1,1,2-Trichloroethane	ND<0.10	20	0.005	Trichloroethene	ND<0.10	20	0.005
Trichlorofluoromethane	ND<0.10	20	0.005	1,2,3-Trichloropropane	ND<0.10	20	0.005
1,2,4-Trimethylbenzene	0.97	20	0.005	1,3,5-Trimethylbenzene	0.44	20	0.005
Vinvl Chloride	ND<0.10	20	0.005		0.27	20	0.005
Vinvl Chloride	ND<0.10			Xvlenes ecoveries (%)	0.27	20	0.


 %SS1:
 101
 %SS2:
 94

 %SS3:
 94

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2500 Camino Biablo, Stc. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/27/07-12/04/07

Walnut Creek, CA 94597	Client P.	O.:		Date Analyzed	11/27/07-12/04/07		
	C	AM / CCR 17 Me	tals*				
Lab ID	0711621-001A	0711621-002A	0711621-003A	0711621-004A	Reporting Lin	nit for DF =1	
Client ID	LS1	LS1S	LS1B	LS2	ND means	not detected porting limit	
Matrix	S	S	S	S	S	W	
Extraction Type	TOTAL	TOTAL	TOTAL	TOTAL	mg/Kg	mg/L	
		MS Metals, Conce					
Analytical Method: 6020A		action Method: SW305			Work Order:	0711621	
Dilution Factor	1	1	1	1	1	1	
Antimony	ND	ND	ND	ND	0.5	NA	
Arsenic	2.2	2.9	5.4	1.3	0.5	NA	
Barium	79	92	140	86	5.0	NA	
Beryllium	ND	ND	ND	ND	0.5	NA	
Cadmium	ND	ND	ND	ND	0.25	NA	
Chromium	47	55	61	120	0.5	NA	
Cobalt	7.0	9.8	7.4	4.5	0.5	NA	
Copper	9.9	12	11	7.9	0.5	NA	
Lead	3.5	4.6	3.7	4.7	0.5	NA	
Mercury	ND	ND	ND	0.055	0.05	NA	
Molybdenum	ND	0.54	ND	ND	0.5	NA	
Nickel	40	41	45	34	0.5	NA	
Selenium	ND	ND	ND	ND	0.5	NA	
Silver	ND	ND	ND	ND	0.5	NA	
Thallium	ND	ND	ND	ND	0.5	NA	
Vanadium	35	39	42	26	0.5	NA	
Zinc	33	37	37	29	5.0	NA	
	100	100	99	99			

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/26/07
2500 Camino Diablo, Ste. #200		Date Received: 11/26/07
2500 Camino Diablo, Stc. #200	Client Contact: Kirby Fernando	Date Extracted: 11/26/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/27/07-12/04/07

2500 Camino Diablo, Ste. #200							
2300 Callino Diaolo, Sic. π200	Client C	ontact: Kirby Fe	rnando	Date Extracted: 11/26/07			
Walnut Creek, CA 94597	Client P.	O.:		Date Analyzed 11/27/07-12/04/07			
	C	AM / CCR 17 Me	tals*				
Lab ID	0711621-005A	0711621-006A	0711621-007A	0711621-008A	D I in		
Client ID	LS2B	LST1234	LSTB1234	LST5678	Reporting Limit for DF = ND means not detected above the reporting limit		
Matrix	S	S	S	S	S	W	
Extraction Type	TOTAL	TOTAL	TOTAL	TOTAL	mg/Kg	mg/L	
	ICP-N	AS Metals, Conce	ntration*	•			
Analytical Method: 6020A	Extr	action Method: SW305	50B	T	Work Order:	0711621	
Dilution Factor	1	1	1	1	1	1	
Antimony	ND	0.54	ND	ND	0.5	NA	
Arsenic	3.1	4.6	3.6	2.8	0.5	NA	
Barium	62	94	74	86	5.0	NA	
Beryllium	ND	ND	ND	ND	0.5	NA	
Cadmium	ND	0.25	ND	ND	0.25	NA	
Chromium	48	42	59	49	0.5	NA	
Cobalt	7.0	7.7	5.5	6.6	0.5	NA	
Copper	9.5	14	12	10	0.5	NA	
Lead	3.4	95	41	23	0.5	NA	
Mercury	ND	0.064	0.067	ND	0.05	NA	
Molybdenum	ND	0.56	ND	ND	0.5	NA	
Nickel	41	30	36	36	0.5	NA	
Selenium	ND	ND	ND	ND	0.5	NA	
Silver	ND	ND	ND	ND	0.5	NA	
Thallium	ND	ND	ND	ND	0.5	NA	
Vanadium	36	43	37	36	0.5	NA	
Zinc	30	80	53	45	5.0	NA	
	102	104	102	107	1	1	

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in ug/wipe, filter samples in ug/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Ouality Counts"				Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants	Client			Date Sampled:	11/26/07				
2500 Coming Dights 945 #200				Date Received:	11/26/07				
2500 Camino Diablo, Ste. #200	Client	Contact: K	irby Fe	mando	Date Extracted:	11/26/07			
Walnut Creek, CA 94597	Client	P.O.:			Date Analyzed	11/27/07-1	2/04/07		
	CAM / CCR 17 Metals*								
Lab ID	0711621-009	Λ				Paparting I is	nit for DF =1;		
Client ID	LSTB5678					ND means	not detected porting limit		
Matrix	S					S	W		
Extraction Type	TOTAL					mg/Kg	mg/L		
Analytical Method: 6020A		P-MS Metals Extraction Metho	-			Work Order:	0711621		
Dilution Factor	1					1	1		
Antimony	ND					0.5	NA		
Arsenic	2.5					0.5	NA		
Barium	64						1121		
Beryllium						5.0	NA		
Cadmium	ND					5.0 0.5			
Chromium	ND ND						NA		
						0.5	NA NA		
Cobalt	ND					0.5 0.25	NA NA NA		
Cobalt Copper	ND 44					0.5 0.25 0.5	NA NA NA NA		
	ND 44 5.6					0.5 0.25 0.5 0.5	NA NA NA NA NA		
Copper	ND 44 5.6 8.4					0.5 0.25 0.5 0.5 0.5	NA NA NA NA NA NA		
Copper Lead	ND 44 5.6 8.4 6.8					0.5 0.25 0.5 0.5 0.5 0.5	NA NA NA NA NA NA NA NA		

$*water\ samples\ are\ reported\ in\ \mu g/L,\ product/oil/non-aqueous\ liquid\ samples\ and\ all\ TCLP\ /\ STLC\ /\ DISTLC\ /\ SPLP\ extracts\ are\ reported\ in\ product.$
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

ND

ND

ND

30

28

101

TOTAL = acid digestion.

Selenium

Thallium

Vanadium

%SS:

Comments

Silver

Zinc

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

0.5

0.5

0.5

0.5

5.0

NA

NA

NA

NA

NA

AEI Consultants Client Project ID: #276000; Carnation Date Sampled: 11/26/07 Date Received: 11/26/07 2500 Camino Diablo, Ste. #200 Client Contact: Kirby Fernando Date Extracted: 11/26/07 Walnut Creek, CA 94597 Client P.O.: Date Analyzed 11/27/07-11/28/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extracti	Extraction method SW5030B Analytical methods SW8021B/8015Cm						Work Order: 0711621			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	LS1	S	ND	ND	ND	ND	ND	ND	1	82
002A	LS1S	S	ND	ND	ND	ND	ND	ND	1	84
003A	LS1B	S	ND	ND	ND	ND	ND	ND	1	85
004A	LS2	S	ND	ND	ND	ND	ND	ND	1	86
005A	LS2B	S	ND	ND	ND	ND	ND	ND	1	91
006A	LST1234	S	ND	ND	ND	ND	ND	ND	1	81
007A	LSTB1234	S	ND	ND	ND	ND	ND	ND	1	81
008A	LST5678	S	1200,g,m	ND<5.0	ND<0.50	ND<0.50	3.2	2.4	100	123
009A	LSTB5678	S	380,g,m	ND<2.5	ND<0.25	ND<0.25	1.6	1.1	50	120
_	orting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled:	11/26/07
2500 Camino Diablo, Ste. #200		Date Received:	11/26/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted:	11/26/07
, united Green, Gray 1897	Client P.O.:	Date Analyzed	11/27/07-11/28/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method SW35	550C	Analytical met	hods SW8015C	Work Order: 0711621			
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS		
0711621-001A	LS1	S	11,g,b	1	113		
0711621-002A	LS1S	S	ND	1	115		
0711621-003A	LS1B	S	ND	1	116		
0711621-004A	LS2	S	ND	1	100		
0711621-005A	LS2B	S	ND	1	100		
0711621-006A	LST1234	S	22,g,b	5	110		
0711621-007A	LSTB1234	S	6.6,g,b	2	99		
0711621-008A	LST5678	S	1200,n,b,g	20	91		
0711621-009A	LSTB5678	S	240,n,b,g	2	115		

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

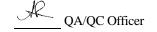
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711621

EPA Method SW8015C Extraction SW3550C						BatchID: 32069				piked Sample ID: 0711598-003A			
Analyte	Sample Spiked MS MS		MSD	MS-MSD LCS LCSD LCS-LCSD		Acceptance Criteria (%)			١				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(d)	ND	20	74.6	74.9	0.351	89.4	102	13.0	70 - 130	30	70 - 130	30	
%SS:	89	50	88	88	0	77	80	3.04	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32069 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711621-001A	11/26/07 11:26 AM	11/26/07	11/28/07 1:13 AM	0711621-002A	11/26/07 11:29 AM	11/26/07	11/28/07 2:22 AM
0711621-003A	11/26/07 11:32 AM	11/26/07	11/28/07 3:30 AM	0711621-004A	11/26/07 11:37 AM	11/26/07	11/27/07 4:53 PM
0711621-005A	11/26/07 11:43 AM	11/26/07	11/27/07 6:02 PM	0711621-006A	11/26/07 12:14 PM	11/26/07	11/28/07 8:42 PM
0711621-007A	11/26/07 12:20 PM	11/26/07	11/28/07 10:45 PM	0711621-008A	11/26/07 12:31 PM	11/26/07	11/28/07 2:04 AM
0711621-009A	11/26/07 12:36 PM	11/26/07	11/28/07 6:38 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711621

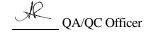
EPA Method SW8021B/8015Cm	EPA Method SW8021B/8015Cm Extraction SW5030B								iked Samp	ed Sample ID: 0711598-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD Acceptance Criter			Criteria (%)				
,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	95.9	101	5.07	113	107	5.13	70 - 130	30	70 - 130	30
MTBE	ND	0.10	91.5	84.1	8.37	95.2	98.7	3.68	70 - 130	30	70 - 130	30
Benzene	ND	0.10	90.2	85.7	5.15	99.4	100	0.641	70 - 130	30	70 - 130	30
Toluene	ND	0.10	99.8	96.6	3.07	114	112	0.949	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	96.2	97	0.888	108	109	0.716	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	103	107	3.17	120	120	0	70 - 130	30	70 - 130	30
%SS:	93	0.10	86	83	3.25	94	94	0	70 - 130	30	70 - 130	30

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 32070 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711621-001A	11/26/07 11:26 AM	11/26/07	11/27/07 7:55 PM	0711621-002A	11/26/07 11:29 AM	11/26/07	11/27/07 9:56 PM
0711621-003A	11/26/07 11:32 AM	11/26/07	11/27/07 11:26 PM	0711621-004A	11/26/07 11:37 AM	11/26/07	11/28/07 1:26 AM
0711621-005A	11/26/07 11:43 AM	11/26/07	11/28/07 1:56 AM	0711621-006A	11/26/07 12:14 PM	11/26/07	11/27/07 10:54 PM
0711621-007A	11/26/07 12:20 PM	11/26/07	11/28/07	0711621-008A	11/26/07 12:31 PM	11/26/07	11/28/07 4:14 PM
0711621-009A	11/26/07 12:36 PM	11/26/07	11/28/07 5:45 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8260B

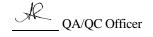
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711621

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 32	074	Sp	Spiked Sample ID: 0711621-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce)		
7.11.47.10	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	101	106	4.99	109	107	2.15	70 - 130	30	70 - 130	30
Benzene	ND	0.050	120	126	4.95	130	126	2.43	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	78	79.7	2.07	81.2	82.6	1.74	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	122	124	1.82	127	122	4.04	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	107	115	7.05	119	114	3.90	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	85.6	92.4	7.71	97.8	97.3	0.514	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	101	122	19.5	126	130	3.36	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	106	112	5.52	115	112	2.94	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	96.2	104	7.49	106	103	2.51	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	90.6	99.1	8.98	105	101	3.25	70 - 130	30	70 - 130	30
Toluene	ND	0.050	106	109	2.81	113	109	3.69	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	101	110	7.96	112	111	1.35	70 - 130	30	70 - 130	30
%SS1:	103	0.050	81	86	5.24	90	90	0	70 - 130	30	70 - 130	30
%SS2:	94	0.050	84	84	0	85	86	1.06	70 - 130	30	70 - 130	30
%SS3:	106	0.050	94	94	0	94	94	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 32074 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711621-001A	11/26/07 11:26 AM	11/26/07	11/27/07 9:37 PM	0711621-002A	11/26/07 11:29 AM	11/26/07	11/28/07 12:09 AM
0711621-003A	11/26/07 11:32 AM	11/26/07	11/28/07 12:58 AM	0711621-004A	11/26/07 11:37 AM	11/26/07	11/28/07 1:48 AM
0711621-005A	11/26/07 11:43 AM	11/26/07	11/28/07 2:37 AM	0711621-006A	11/26/07 12:14 PM	11/26/07	11/28/07 3:27 AM
0711621-007A	11/26/07 12:20 PM	11/26/07	11/28/07 4:18 AM	0711621-008A	11/26/07 12:31 PM	11/26/07	11/28/07 2:25 PM
0711621-009A	11/26/07 12:36 PM	11/26/07	11/28/07 3:13 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

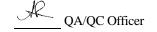
QC SUMMARY REPORT FOR SM5520E/F

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711621

EPA Method SM5520E/F	Extra		BatchID: 32089				Spiked Sample ID: N/A					
Analyte	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Accept					eptance	ptance Criteria (%)					
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
POG	N/A	1000	N/A	N/A	N/A	96.1	97.1	0.967	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32089 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711621-001A	11/26/07 11:26 AM	11/26/07	11/28/07 9:21 PM	0711621-002A	11/26/07 11:29 AM	11/26/07	11/28/07 9:26 PM
0711621-003A	11/26/07 11:32 AM	11/26/07	11/28/07 9:31 PM	0711621-004A	11/26/07 11:37 AM	11/26/07	11/28/07 9:36 PM
0711621-005A	11/26/07 11:43 AM	11/26/07	11/28/07 9:41 PM	0711621-006A	11/26/07 12:14 PM	11/26/07	11/28/07 9:46 PM
0711621-007A	11/26/07 12:20 PM	11/26/07	11/28/07 9:51 PM	0711621-008A	11/26/07 12:31 PM	11/26/07	11/28/07 9:56 PM
0711621-009A	11/26/07 12:36 PM	11/26/07	12/04/07 3:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

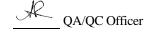
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711621

EPA Method SW8082A	Bat	chID: 32	090	Spiked Sample ID: 0711621-008A								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١
	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND<0.50	0.075	NR	NR	NR	120	117	2.04	70 - 130	20	70 - 130	20
%SS:	126	0.050	123	121	0.943	100	97	2.30	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32090 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711621-001A	11/26/07 11:26 AM	11/26/07	11/28/07 3:25 AM	0711621-002A	11/26/07 11:29 AM	11/26/07	11/28/07 4:20 AM
0711621-003A	11/26/07 11:32 AM	11/26/07	11/28/07 6:11 AM	0711621-004A	11/26/07 11:37 AM	11/26/07	11/28/07 7:07 AM
0711621-005A	11/26/07 11:43 AM	11/26/07	11/28/07 8:04 AM	0711621-006A	11/26/07 12:14 PM	11/26/07	11/28/07 2:14 PM
0711621-007A	11/26/07 12:20 PM	11/26/07	11/28/07 9:56 AM	0711621-008A	11/26/07 12:31 PM	11/26/07	11/28/07 3:08 PM
0711621-009A	11/26/07 12:36 PM	11/26/07	11/28/07 10:52 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

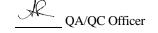
QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711621

EPA Method 6	020A			Extracti	on SW3050	0B	В	atchID: 3	2091	Spiked Sample ID 0711621-001A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)						
Tilalyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
Arsenic	2.2	50	103	104	0.185	10	110	109	0.457	70 - 130	20	80 - 120	20			
Barium	79	500	105	107	1.30	100	112	113	0.443	70 - 130	20	80 - 120	20			
Beryllium	ND	50	85.4	87.4	2.23	10	98.4	98.6	0.223	70 - 130	20	80 - 120	20			
Cadmium	ND	50	102	104	1.82	10	110	110	0	70 - 130	20	80 - 120	20			
Chromium	47	50	96.3	100	1.93	10	113	112	0.267	70 - 130	20	80 - 120	20			
Cobalt	7.0	50	101	103	2.09	10	115	114	0.963	70 - 130	20	80 - 120	20			
Copper	9.9	50	98.5	99.6	0.976	10	110	109	0.457	70 - 130	20	80 - 120	20			
Lead	3.5	50	100	102	1.35	10	108	108	0	70 - 130	20	80 - 120	20			
Mercury	ND	1.25	93	94.9	2.02	0.25	99	98.4	0.649	70 - 130	20	80 - 120	20			
Molybdenum	ND	50	98.9	101	2.29	10	110	111	0.995	70 - 130	20	80 - 120	20			
Nickel	40	50	97.3	99.3	1.14	10	109	107	1.66	70 - 130	20	80 - 120	20			
Selenium	ND	50	104	105	1.59	10	112	111	0.898	70 - 130	20	80 - 120	20			
Silver	ND	50	100	102	1.29	10	108	109	0.460	70 - 130	20	80 - 120	20			
Thallium	ND	50	103	105	1.35	10	106	107	0.750	70 - 130	20	80 - 120	20			
Vanadium	35	50	99	101	1.29	10	115	113	1.40	70 - 130	20	80 - 120	20			
Zinc	33	500	105	106	1.00	100	114	114	0	70 - 130	20	80 - 120	20			
%SS:	100	250	100	102	1.70	250	102	103	1.56	70 - 130	20	70 - 130	20			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32091 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711621-001A	1/26/07 11:26 AN	И 11/26/07	11/27/07 6:50 PM	0711621-002A	1/26/07 11:29 AM	11/26/07	11/27/07 7:13 PM
0711621-003A	1/26/07 11:32 AM	M 11/26/07	11/27/07 7:21 PM	0711621-004A	1/26/07 11:37 AM	11/26/07	11/27/07 7:28 PM
0711621-004A	1/26/07 11:37 AN	M 11/26/07	11/27/07 7:38 PM	0711621-005A	1/26/07 11:43 AM	11/26/07	11/27/07 7:35 PM
0711621-006A	11/26/07 12:14 PM	M 11/26/07	11/27/07 7:43 PM	0711621-007A	1/26/07 12:20 PM	I 11/26/07	11/27/07 7:50 PM
0711621-008A	11/26/07 12:31 PM	M 11/26/07	11/27/07 7:57 PM	0711621-009A	1/26/07 12:36 PM	I 11/26/07	12/04/07 3:22 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/27/07
2500 Camino Diablo, Ste. #200		Date Received: 11/27/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Reported: 12/04/07
wamat creek, cri 54377	Client P.O.:	Date Completed: 12/04/07

WorkOrder: 0711634

December 04, 2007

Dear Kirby:

Enclosed are:

- 1). the results of 1 analyzed sample from your #276000; Carnation project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

_ W	1cCAMP	BELL	ANA	LY	LIC	AL	, II	NC.	1														FC	CU	ST	OI	DY	R	E	ço	R	D	
		PITTSBI	JRG, CA 9	4565-1	701	011	16	3	1				-	T	UF	N.	AR	OU	JNI	D T	IM	Œ		L.	1]		L_	1		L	7
w w	ebsite: www.m lephone: (87	ccampbe	Il.com E	mail: n	Fax	mcc	amp	bell.	com				-	C	'eo'	Гга	ck	or l	ED	F [7	ΡI	E			24				HR			R 5 DAY W) □
1e	iepnone: (87	1) 454-9	202		rax	: (92	3) 4	34-9	209				-	G	ico	114	ick				5												s required
Report To: Kirby	Fernando		1	Bill To	o: Al	EI C	onst	ltan	ts				7						1			Re								_	Othe	_	Comments
Company: AEI	Consultants														_	_						T	Ť			1			П				
2500	Camino Dial	olo #200,	Walnut	Cree	k 945	97								TBE	Ö	B&F					gene												Filter Samples
E-Mail: kfernan	do@aeiconsu	ltants.co	om		1									8015) / MTBE	Burbe.	0 E/					Com						6						for Metals
Tele: (925) 944-				Fax: (4	(\$100	Š	/ 552	=	(8)	51)		\ Suo		9			_	/ 602	602(analysis:
Project #: 276				Projec	t Na	me:	Car	nat	100	· ·			4	+	al.	1999	(418,	700	/ 80	8	rock		icide			NAS	010	010	_				Yes / No
Project Location:		Th St	. Oakle	nd									4	8021		ıse ()	Suo	=	1 602	ficid	Y; A	des)	Herb	(s)	50	ls / P	9/8	8/6	9020)				
Sampler Signatur	re: 12-9	10		_	_	_			_				4	(602/	Sign	Gree	carh	/ 802	(EP)	l Pes	NO.	stici	5	S	SVC	PAE	7 200	200	10/01				
	1)	SAM	PLING	١	ers	1	MA	TRE	K			HOD RVE		Gas (TPH as Diesel (8015)////ij	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
SAMPLE ID	LOCATION/			ler.	l iii		Т	Т				1	٦	8	1 (80	m C	a a	01/	0 X	7.80	82 PC	41 ()	51 (24 /	25/1	M/8	als (2	ds (2	2007				7/
SAMPLEID	Field Point		l	# Containers	Containers									BTEX & TPH	Diese	trole	trole	2/6	BTE	09 /	80	8 /	/ 81	2 / 6	2/6	10 SI	Met	Meta	0.7				
	Name	Date	Time	5	be	Water	=	اط	her	田	귀	HNO3	Other	XX.	as	l Pe	l Pe	505	BE/	505	809	507	515	524	525	952	117	15	1 (20				
				#	Type	3	Soil	Sludge	ŏ	ICE	HCL	E	히	BTE	Ē	Tota	Tota	EPA	A	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CA	E	Lead				
LSW	1st was	11/26	12:44	1		X-	-01	2/4	1	160	Re	c,	T	X	×	X					×			X			X		2	5	an	e	Sample
L2W	2nd water	11/27	12:02	7		X							1	X	X	X					X			X			X		5		er		vent,
		1					\top					\top	1														,			1			,
						\Box	+	+			\pm	+	+						-														
				\vdash	\vdash		+	+			+	+	+	-			0	- 8											Н	\vdash			
			_	-	_	\vdash	+	4		Н	+	+	+	-	-	-		_		-		-							\vdash				
<u> </u>		_	_	-	_	Н	+				-	+	+	-	_	_																	
				_		Ш	4	_			_		4	_																			
													1																				
													T																				
							\top	\top				\top	†		\exists														П				
						\Box	1		\vdash	\vdash	+	+	+																\vdash				
					_		+	+	Н		+	+	+	+	-	-													\vdash				
,							+	+		+	+	+	+	+							-								-				
Relinquished By:	9	Date:	Time:	Poor	numb D			_	ų	ᆜ	_	_	+	ICE	/t°/	10	2											001		n Impo			
	V	11 27	2: 26pm	The contract of	hed B	in	ac	1	1	/-		X		GO	OD (CON	DIT	ION	L	/	~							CON	INE	NTS:			
Relinquished By:		Date:	Time:	Reco	ved B						20	0	4	HE.	AD S	PAC	EA	BSE	NT	I P	0												
3.		Date:	Time.	I Kece	rea D	7.														INEI VR	RS	-	/										
Relinquished By:		Date:	Time:	Recei	ved B	V*									ESEF																		
		L'antei	· ·········	Merce	red D	,.												vo	AS	08	è G	ME	TAL	s	отн	ER							
														PRE	ESEF	RVA'	TIO		/	L	/	pH<											

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0711634 ClientID: AEL

EDF Excel Fax ✓ Email HardCopy ThirdParty

Bill to: Report to: Requested TAT: 5 days

Kirby Fernando Email: kfernando@aeiconsultants.com **AEI Consultants** TEL: (925) 283-6000 FAX: (925) 283-6121

2500 Camino Diablo, Ste. #200 ProjectNo: #276000; Carnation

Walnut Creek, CA 94597 PO: Denise Mockel **AEI Consultants**

2500 Camino Diablo, Ste. #200

Walnut Creek, CA 94597

dmockel@aeiconsultants.com

Date Received: 11/27/2007 Date Printed: 11/27/2007

							Re	equeste	ed Test	s (See	legend	below)			
Sample ID	ClientSampID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711634-001	L2W	Water	11/27/07 12:02:00	С	D	Е	F	Α	В						

Test Legend:

1	5520B_SG_W
6	TPH(DMO)_W
11	

2	8082A_PCB_W
7	
12	

3	8260B_W
8	

4	CAM17(T)MS_W
9	

5	G-MBTEX_W
10	

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consultants			Date a	and Time Received	11/27/07 2	:31:02 PM
Project Name:	#276000; Carnation			Check	dist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0711634 Matrix	<u>Water</u>		Carrie	r: <u>Client Drop-In</u>		
		Chain of C	ustody (COC) Inform	nation		
Chain of custody	present?	Yes	V	N \square			
Chain of custody	signed when relinquished ar	nd received? Yes	V	N \square			
Chain of custody	agrees with sample labels?	Yes	✓	N 🗆			
Sample IDs noted	by Client on COC?	Yes	V	No 🗆			
Date and Time of	collection noted by Client on C	COC? Yes	~	No 🗆			
Sampler's name r	noted on COC?	Yes	~	No 🗆			
		Sampl	e Receip	ot Informatio	<u>n</u>		
Custody seals in	tact on shipping container/coo	oler? Yes		N□		NA 🔽	
Shipping containe	er/cooler in good condition?	Yes	V	N \square			
Samples in prope	er containers/bottles?	Yes	✓	N \square			
Sample containe	rs intact?	Yes	✓	N□			
Sufficient sample	volume for indicated test?	Yes	✓	N \square			
		Sample Preservat	ion and I	Hold Time (H	T) Information		
All samples recei	ved within holding time?	Yes	✓	N \square			
Container/Temp B	Blank temperature	Coole	er Temp:	18.2°C		NA \square	
Water - VOA vial	s have zero headspace / no	bubbles? Yes		N 🗹	No VOA vials subm	itted 🗆	
Sample labels ch	necked for correct preservation	n? Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Yes	✓	N \square		NA \square	
=====		=====		====	=====	====	======
Client contacted:		Date contacted:			Contacted	by:	
Comments: A	III Voas had headspace						

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/27/07
2500 Camino Diablo, Ste. #200		Date Received: 11/27/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/27/07
	Client P.O.:	Date Analyzed 11/30/07

Walnut Creek, CA 9439/		ient P.O.:	Date Analyze	Date Analyzed 11/30/07		
Petroleum Oil & Grease with Silica Gel Clean-Up* Analytical methods: SM5520B/F Work Order: 0711634						
Lab ID	Client ID	Matrix	POG	DF % S		
0711634-001C	L2W	W	ND	1 N/2		
ND mean	g Limit for DF =1; as not detected at or the reporting limit	W S	5.0 NA	mg/L NA		

Reporting Limit for DF =1;	W	5.0	mg/L
ND means not detected at or above the reporting limit		NA	NA

^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

		•				
AEI Consultants	Client Pr	Client Project ID: #276000; Carnation Da			11/27/07	
2500 Camino Diablo, Ste. #200				Date Received:	11/27/07	
Walnut Creek, CA 94597	Client C	ontact: Kirby Fe	rnando	Date Extracted:	11/27/07	
wallut Cleek, CA 34331	Client P.	.O.:		Date Analyzed	11/28/07	
Po	olychlorinated Bi	phenyls (PCBs) A	roclors by GC-E	CCD*		
Extraction Method: SW3510C	Ana	lytical Method: SW808	2A		Work Order:	0711634
Lab ID	0711634-001D					
Client ID	L2W				Reporting DF	Limit for
Matrix	W					
DF	1				S	W
Compound		Conce	entration		ug/kg	μg/L
Aroclor1016	ND				NA	0.5
Aroclor1221	ND				NA	0.5
Aroclor1232	ND				NA	0.5
Aroclor1242	ND				NA	0.5
Aroclor1248	ND				NA	0.5
Aroclor1254	ND				NA	0.5
Aroclor1260	ND				NA	0.5
PCBs, total	ND				NA	0.5
	Surr	ogate Recoveries	s (%)			
%SS:	102					
Comments						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/27/07
2500 Camino Diablo, Ste. #200		Date Received: 11/27/07
2500 Callino Diablo, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/29/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 11/29/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711634

Lab ID			0711634-001E			
Client ID			L2W			
Matrix			Water			
Compound	Concentration * Di	Reporting	Compound	Concentration *	DE	Reporting

Matrix Water							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1.4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1.1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1.2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1.2.3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1.1.2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1.2.3-Trichloropropane	ND	1.0	0.5
1.2.4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		110	0.0	coveries (%)		***	

Surrogate Recoveries (%)									
%SS1:	103	%SS2:	98						
%SS3:	91								

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

"When Ouality Counts"				Telephone: 877-252-9262 Fax: 925-252-9269				
AEI Consultants	Client Project ID	: #27600	00; Carnation	Date Sampled:	11/27/07			
2500 Camino Diablo, Ste. #200					Date Received:	11/27/07		
2300 Canino Diabio, Ste. #200		Client Contact:	Kirby Fe	rnando	Date Extracted:	11/27/07		
Walnut Creek, CA 94597	•	Client P.O.:			Date Analyzed	11/28/07		
		CAM / CO	CR 17 Me	tals*				
Lab ID	07116	34-001F				Reporting Lir	nit for DF =1;	
Client ID	L	2W				ND means i		
Matrix	,	W				S	W	
Extraction Type	ТО	TAL				mg/kg	μg/L	
Analytical Method: E200.8	ICP-MS Meta Extraction Met				Work Order:	0711634		
Dilution Factor		1				1	1	
Antimony	1	ND				NA	0.5	
Arsenic	۷	4.1				NA	0.5	
Barium	3	40				NA	5.0	
Beryllium	N	ND				NA	0.5	
Cadmium	N	ND				NA	0.25	
Chromium	4	47				NA	0.5	
Cobalt		11				NA	0.5	
Copper		17				NA	0.5	
Lead	2	27				NA	0.5	
Mercury	0	.47				NA	0.012	
Molybdenum	0	.95				NA	0.5	
Nickel		55				NA	0.5	
Selenium	0	.61				NA	0.5	
Silver	1	ND				NA	0.19	
Thallium	N	ND				NA	0.5	

$*water\ samples\ are\ reported\ in\ \mu g/L,\ product/oil/non-aqueous\ liquid\ samples\ and\ all\ TCLP\ /\ STLC\ /\ DISTLC\ /\ SPLP\ extracts\ are\ reported\ in\ product.$
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

37

54

72

TOTAL = acid digestion.

Vanadium

%SS:

Comments

Zinc

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

NΑ

NA

0.5

5.0

"When Ouality Counts"

Web: www.mccampbell.com E-mai
Telephone: 877-252-9262 F

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/27/07					
2500 Camino Diablo, Ste. #200		Date Received: 11/27/07					
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/28/07					
	Client P.O.:	Date Analyzed 11/28/07					
Casalina Panga (C6 C12) Valatila Hydrogarbans as Casalina with RTEV and MTRE*							

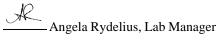
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0711634 Lab ID Client ID MTBE Toluene Ethylbenzene Xylenes DF % SS Matrix TPH(g) Benzene 001A L2W W ND ND ND ND ND ND 92 1

Reporting Elimit for B1 =1;	vv	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
* water and vapor samples and all TC	IP& SPI	P extracts are re	norted in ug/L	oil/sludge/solid	samples in mg/l	ko wine sample	es in ug/wine		

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.


AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 11/27/07
2500 Camino Diablo, Ste. #200		Date Received: 11/27/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/27/07
, and cross, crivisy	Client P.O.:	Date Analyzed 11/28/07

F		Bunker Oil (C		vil(C18+) Range Extrac			11634
Extraction method SW3510C Lab ID Client ID M		Matrix	Analytical methods SW80150 Matrix TPH(d) T		Work Order: 0 TPH(mo) DF		% SS
001B	L2W	W	120,b	210	ND	1	119
							_
	L' 'AC DE 1						
ND mean	g Limit for DF =1; as not detected at or the reporting limit	S	50 NA	50 NA	250 NA		g/L g/Kg

above the reporting limit	S	NA	NA	NA	mg/Kg			
* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L,								
and all DISTLC / STLC / SPLP / TCLP e	xtracts are	reported in µg/L.						

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711634

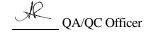
EPA Method SW8021B/8015Cm Extraction SW5030B					Bat	chID: 32	102	Sp	iked Sam	ole ID:	0711643-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 tildiyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	102	98.8	3.10	104	102	1.28	70 - 130	30	70 - 130	30
MTBE	ND	10	101	92	9.65	94.8	85.7	10.1	70 - 130	30	70 - 130	30
Benzene	ND	10	89.3	87.3	2.27	87.8	86.2	1.83	70 - 130	30	70 - 130	30
Toluene	ND	10	86	84.3	1.94	85.6	84.7	1.07	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	97.9	97.6	0.310	95.3	95.8	0.502	70 - 130	30	70 - 130	30
Xylenes	ND	30	96.7	93	3.87	91.3	92	0.727	70 - 130	30	70 - 130	30
%SS:	94	10	93	93	0	91	89	2.55	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 32102 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0711634-001A	11/27/07 12:02 PM	11/28/07	11/28/07 8:01 AM					


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

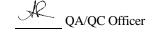
QC SUMMARY REPORT FOR SM5520B/F

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711634

EPA Method SM5520B/F Extraction SM5520B/F					BatchID: 32105 Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, and yes	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
POG	N/A	100	N/A	N/A	N/A	99.7	93.6	6.29	N/A	N/A	70 - 130	25

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32105 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711634-001C	11/27/07 12:02 PM	A 11/27/07	11/30/07 12:15 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711634

EPA Method SW8082A	Extraction SW3510C				BatchID: 32101			Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	N/A	3.75	N/A	N/A	N/A	115	116	0.362	N/A	N/A	70 - 130	20
%SS:	N/A	2.5	N/A	N/A	N/A	100	99	0.552	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32101 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711634-001D	11/27/07 12:02 PM	1 11/27/07	11/28/07 8:11 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

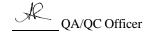
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0711634

EPA Method SW8260B	Extraction SW5030B				BatchID: 32092				Spiked Sample ID: 0711622-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	104	101	3.15	100	106	5.21	70 - 130	30	70 - 130	30
Benzene	ND	10	120	114	4.67	116	120	3.13	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	82.1	84.5	2.85	83.3	82.7	0.802	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	128	124	3.11	125	122	3.06	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	109	101	7.46	99.3	109	9.20	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	93.4	89.6	4.23	90.7	96.6	6.28	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	103	114	10.3	102	119	15.2	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	111	106	4.54	107	112	4.75	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	100	94.7	5.62	95.4	102	6.44	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	0.54	10	94.5	88	6.73	88.6	97.2	9.19	70 - 130	30	70 - 130	30
Toluene	ND	10	109	103	5.16	104	105	1.28	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	102	97.4	4.83	97.6	105	6.92	70 - 130	30	70 - 130	30
%SS1:	109	10	91	90	2.05	90	95	6.16	70 - 130	30	70 - 130	30
%SS2:	91	10	89	88	1.54	86	89	2.83	70 - 130	30	70 - 130	30
% SS3:	84	10	91	90	0.286	88	89	1.08	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 32092 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711634-001E	11/27/07 12:02 PM	11/29/07	11/29/07 11:03 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

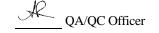
QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711634

EPA Method E200.8	Extra	ction E20	0.8		Bat	chID: 32	096	Sp	iked Samp	ole ID:	0711634-00	1F
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	10	81.3	80	1.57	114	114	0	70 - 130	20	80 - 120	20
Arsenic	4.1	10	101	100	0.774	101	103	2.32	70 - 130	20	80 - 120	20
Barium	340	100	97.6	103	1.14	103	103	0	70 - 130	20	80 - 120	20
Beryllium	ND	10	74.8	73.2	2.04	98.5	102	3.14	70 - 130	20	80 - 120	20
Cadmium	ND	10	103	101	1.25	105	105	0	70 - 130	20	80 - 120	20
Chromium	47	10	84	90.3	1.13	106	107	1.04	70 - 130	20	80 - 120	20
Cobalt	11	10	75.7	75.5	0.107	111	111	0	70 - 130	20	80 - 120	20
Copper	17	10	86.7	89.7	1.18	105	105	0	70 - 130	20	80 - 120	20
Lead	27	10	104	98	1.54	104	103	1.35	70 - 130	20	80 - 120	20
Mercury	0.47	0.25	102	103	0.399	92.4	94.3	2.06	70 - 130	20	80 - 120	20
Molybdenum	0.95	10	85.1	81.8	3.53	101	102	0.691	70 - 130	20	80 - 120	20
Nickel	55	10	84.9	85.4	0.0782	104	103	0.290	70 - 130	20	80 - 120	20
Selenium	0.61	10	96	94.9	1.08	101	101	0	70 - 130	20	80 - 120	20
Silver	ND	10	100	98.5	1.55	104	104	0	70 - 130	20	80 - 120	20
Thallium	ND	10	103	100	2.44	101	100	0.795	70 - 130	20	80 - 120	20
Zinc	54	100	92.6	92.6	0	102	102	0	70 - 130	20	80 - 120	20
%SS:	72	750	100	98	1.80	94	94	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32096 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711634-001F	11/27/07 12:02 PM	1 11/27/07	11/28/07 4:09 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

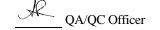
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0711634

EPA Method SW8015C	Extraction SW3510C				BatchID: 32104			Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Tillalyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	103	103	0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	116	116	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32104 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711634-001B	11/27/07 12:02 PM	1 11/27/07	11/28/07 7:34 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Reported: 12/06/07
Wallat Crook, Cri 71377	Client P.O.:	Date Completed: 12/06/07

WorkOrder: 0711727

December 06, 2007

Dear Kirby:

Enclosed are:

- 1). the results of 7 analyzed samples from your 276000; Carnation project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

McCAMPBELL ANALYTICAL, INC.						CHAIN OF CUSTODY RECORD																											
		1534 WII	RG, CA 9	SS RO.	AD								- 1	T	UR	N.	AR										3			-			Ø
We We	bsite: www.me					mce	amp	bell.	com				- 1							100				RUS			HR		48 I		72		5 DAY
	ephone: (877				Fax:								- 1	G	eo'	Γra	cke	er E	CDF														7) 🗖
								_					4							_		_		_	mp	le is	effl	uen	t an	_		_	required
Report To: Kirby			ŀ	Bill To	: AE	CIC	ons	ultan	its				\rightarrow						A	nal	ysis	Rec	lues	t		_	_	_	_	0	ther	4	Comments
Company: AEI C			*** *		0.45	0.00				-			\dashv	E		(E)					siers												Filter
	Camino Diab			Creek	9459	97							\dashv	8015) / MTBE		E/B&F)					ngen												Samples
E-Mail: kfernand Tele: (925)944-		itants.co		Zawa (025	0.4	4 20	0.5			_		\dashv	5)/1	3	55201					Co						(070	20)					for Metals
Project #: 27 600				ax: (resons.	0.1			\dashv	801	~	4/8	8.1)	(5)	8021	70000	clors		des)			(8)	9/0	09/					analysis:
Project #: 276000 Project Name: Caration Project Location: 1310 (Hthe St. Oakland)							\dashv	+17	व	991)	s (41	HVC	02 / 8	ides)	Aro	-	rbici		6	PN/	109	901	6				Yes / No						
Sampler Signatur		2	4 04	1000	/								\dashv	(602 / 8021	Š	rease	rbon	021 (PA 6	estic	LY;	cides	1 He	OCs)	VOC	/Hs	8.00	8.00	/ 602				
		SAMI	PLING		90		MA	TRE	v	N	1ET	ног	5		_	S S	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	17/2	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
	1001710111	DI LIVII	Ling	LS	Type Containers	H	1	11(1.		PR	ESE	RVI	ED	as Gas	as Diesel (8015)	ı Oil	n Hy	1/80	ONI	8081	PCB	S	(Aci	/ 82	1 82	/ 831	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	(200	/8.0				
SAMPLE ID	LOCATION/ Field Point			Containers	nta					1				TPH	esel (leun	leun	/ 601	LEX	/80	8082	8141	8151	/ 624	/ 625	SIM	letals	etals	7 / 20				
	Name	Date	Time	nts	ပိ	r e		90	2 2		- 1	3		3	is Di	Petro	Petro	02.2	3 / B	05/6	/80	077	515/	24.2	25.2	8270	17 N	S M	200.				
		1	30000000	ည	yp	Water	Soil	Air	Other	ICE	HCL	ž	Other	BTEX	TPH 2	Total Petroleu	otal	PA 5	ITB	PA 5	PA 6	PA 5	EPA 5	PA S	EPA 5	EPA :	AM	UFT	ead (
				#	_	1	-	4, 0	, 0	-	н	-	\rightarrow				Н	м	2	ω	Ξ.	(A)	Ξ.	Ξ.	ы	Œ	_	٦	-	\square	\rightarrow	4	
MBI	Base 1	11/29	11:55	1	BT		χ			╙			_	X	人	X					X			X			X					\perp	
MB2	B242	1	1700	1	1		1						_	1	1	1								1			1					\perp	
MB3	Best 3		12:05	1									- 1																				
MWI	Wall 1		12:40	1																												1	48hr per A
MW2	Wall 2		12:15	1																													1 11/30
MFI	Side 1		12:20	1									1																\exists				
MF2	Sale 2		12:25	,	1		1							1		1													\exists	9	-		
1-11-	Stale 4		10.23	-			-		+				+																\dashv		_	-	
				\vdash		\vdash	+	+	-	Н	-	-	+	-			-	-	-			-	-		-	-	-	-	\dashv	-	+	+	
				-	_	Н	+	+	-	\vdash		-	+	_	-			-	-			-			-	-	-	-	-		+	+	
							4		-			_	4								- 1		_						_			\perp	
													4																			\perp	
						П		,																									
Relinquished By		Date:	Time:	Recei	yed By	y: /	1	1	7	0 /	2			ICE													-	COM	IME	NTS:			
VEX A	A	11/29	1:45		X	5	M	- (Y								DITI E A			-													
Relinquished By:	8	Date:	Time:	Recei	ved By	(C)			april 1								NAT			\B_	_	_											
1)1																	TE				RS_		-										
Relinquished By:		Date:	Time:	Recei	ved By	y:								FRI	ESEI	VE	D IN			_													
														PRI	ESEF	RVA	TION		AS	80		ME pH<		S	ОТН	ER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0711727 ClientID: AEL

AEI Consultants

☐ EDF ☐ Excel ☐ Fax ☑ Email ☐ HardCopy ☐ ThirdParty

Report to:

Bill to:

Requested TAT: 5 days

Kirby Fernando

Email: kfernando@aeiconsultants.com

Denise Mockel

Kirby Fernando Email: kfernando@aeiconsultants.com
AEI Consultants TEL: (925) 283-6000 FAX: (925) 283-6121

2500 Camino Diablo, Ste. #200 ProjectNo: 276000; Carnation

Walnut Creek, CA 94597 PO:

ProjectNo: 276000; Carnation 2500 Camino Diablo, Ste. #200 PO: Walnut Creek, CA 94597

dmockel@aeiconsultants.com

Date Received: 11/29/2007

Date Printed: 11/30/2007

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711727-001	MB1	Soil	11/29/2007		Α	Α	Α	А	Α	Α						
0711727-002	MB2	Soil	11/29/2007		Α	Α	Α	Α	Α	Α						
0711727-003	MB3	Soil	11/29/2007		Α	Α	Α	Α	Α	Α						
0711727-004	MW1	Soil	11/29/2007		Α	Α	Α	Α	Α	Α						
0711727-005	MW2	Soil	11/29/2007		Α	Α	Α	Α	Α	Α						
0711727-006	MF1	Soil	11/29/2007		Α	Α	Α	Α	Α	Α						
0711727-007	MF2	Soil	11/29/2007		Α	Α	Α	Α	Α	Α						

Test Legend:

1	5520E_SG_S	
6	TPH(D)_S	
11		

2	8082A_PCB_S
7	
12	

3	8260B_S
8	

4	CAM17MS_S
9	

5	G-MBTEX_S
10	

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consu	ıltants			Date a	and Time Received:	11/29/2007	7 1:45:00 PM
Project Name:	276000; C	arnation			Check	dist completed and r	eviewed by:	Michael Hernandez
WorkOrder N°:	0711727	Matrix Soil			Carrie	r: Client Drop-In		
		<u>c</u>	hain of Cu	stody (0	COC) Informa	ation		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when	relinquished and receive	d? Yes	V	No 🗆			
Chain of custody	agrees with	sample labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on (COC?	Yes	V	No 🗆			
Date and Time of	collection not	ed by Client on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC	?	Yes	✓	No 🗆			
			Sample	Receip	t Information	ļ		
Custody seals in	tact on shippi	ng container/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in go	ood condition?	Yes	V	No 🗆			
Samples in prope	er containers/	bottles?	Yes	~	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for ir	ndicated test?	Yes	✓	No 🗌			
		Sample Pr	eservatio	n and Ho	old Time (HT) Information		
All samples recei	ived within ho	Iding time?	Yes	✓	No 🗌			
Container/Temp I	Blank tempera	ature	Coole	er Temp:	4.6°C		NA \square	
Water - VOA via	ls have zero h	neadspace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for co	rrect preservation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable up	oon receipt (pH<2)?	Yes		No 🗆		NA 🗹	
							====	======
Client contacted:		Date co	ntacted:			Contacted	by:	
Comments:								

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Wallat Greek, GIT / 1871	Client P.O.:	Date Analyzed 12/03/07

	Petroleun	n Oil & Grease with Silica	n Gel Clean-Up*		
Analytical methods: SM55	20E/F			Work Order: 071	1727
Lab ID	Client ID	Matrix	POG	DF	% SS
0711727-001A	MB1	S	ND	1	N/A
0711727-002A	MB2	S	ND	1	N/A
0711727-003A	MB3	S	ND	1	N/A
0711727-004A	MW1	S	ND	1	N/A
0711727-005A	MW2	S	ND	1	N/A
0711727-006A	MF1	S	ND	1	N/A
0711727-007A	MF2	S	ND	1	N/A
	ng Limit for DF =1;	W	NA	N	A
	ns not detected at or the reporting limit	S	50	mg	/Kg

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	50	mg/Kg

^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Tumat Creek, Crivisy	Client P.O.:	Date Analyzed 11/30/07

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Extraction Method: SW3550C	Anal	Work Order:	0711727			
Lab ID	0711727-001A	0711727-002A	0711727-003A	0711727-004A		
Client ID	MB1	MB2	MB3	MW1	Reporting Limit for DF =1	
Matrix	S	S	S	S		
DF	1	1	1	1	S	W
Compound		Conce	entration		mg/kg	ug/L
Aroclor1016	ND	ND	ND	ND	0.025	NA
Aroclor1221	ND	ND	ND	ND	0.025	NA
Aroclor1232	ND	ND	ND	ND	0.025	NA
Aroclor1242	ND	ND	ND	ND	0.025	NA
Aroclor1248	ND	ND	ND	ND	0.025	NA
Aroclor1254	ND	ND	ND	ND	0.025	NA
Aroclor1260	ND	ND	ND	ND	0.025	NA
PCBs, total	ND	ND	ND	ND	0.025	NA
	Surrogate Recoveries (%)					
%SS:	98	92	98	94		
Comments						

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

Client Project ID: 276000; Carnation **AEI Consultants** Date Sampled: 11/29/07 Date Received: 11/29/07 2500 Camino Diablo, Ste. #200 Date Extracted: 11/30/07 Client Contact: Kirby Fernando Walnut Creek, CA 94597 Date Analyzed 11/30/07 Client P.O.:

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Extraction Method: SW3550C	Anal	Work Order:	0711727		
Lab ID	0711727-005A	0711727-006A	0711727-007A		
Client ID	MW2	MF1	MF2	Reporting DF	
Matrix	S	S	S		
DF	1	1	1	S	W
Compound		Conce	entration	mg/kg	ug/L
Aroclor1016	ND	ND	ND	0.025	NA
Aroclor1221	ND	ND	ND	0.025	NA
Aroclor1232	ND	ND	ND	0.025	NA
Aroclor1242	ND	ND	ND	0.025	NA
Aroclor1248	ND	ND	ND	0.025	NA
Aroclor1254	ND	ND	ND	0.025	NA
Aroclor1260	ND	ND	ND	0.025	NA
PCBs, total	ND	ND	ND	0.025	NA
Surrogate Recoveries (%)					
%SS:	90	98	95		
Comments					

* water samples in μg/L, soil/sludge/solid samples in mg/kg, v	pe samples in μg/wipe, filter samples in μg/filter, product/oil/non-aqueous liquid
samples and all TCLP & SPLP extracts are reported in mg/I	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2500 Caninio Diaolo, Stc. #200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/30/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID	0711727-004A	
Client ID	MW1	
Matrix	Soil	
	n .	

Matrix	Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

%SS3: 109

101

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

97

%SS1

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2300 Callino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/30/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID			0711727-005A			
Client ID			MW2			
Matrix			Soil			
Compound	Concentration * DF	Reporting	Compound	Concentration *	DF	Reporting

Compound Concentration DF	Matrix		Soil					
Aerylonitrile	Compound	Concentration *	DF		Compound	Concentration *	DF	Reporting Limit
Benzene ND	Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Bromochloromethane	Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Bromoform	Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
2-Butanone (MEK) ND 1.0 0.02 t-Butyl alcohol (TBA) ND 1.0 0.05 n-Butyl benzene ND 1.0 0.005 sec-Butyl benzene	Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
NB	Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
Internative ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005 Chloromethane ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroben	2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
Carbon Tetrachloride ND 1.0 0.005 Chloroethane ND 1.0 0.005 Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1.0 0.005 Chloroform ND 1.0 0.005 Chloroethane ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1.0 0.005 2-Chlorochloromethane ND 1.0 0.005 1.2-Dibromo-3-chloropropane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichlorofifluoromethane ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 1,2-Dichloroethene ND 1.0 0.005 trans-1,2-Dichloroethene ND	n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
Chloroethane	tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Chloroform	Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
2-Chlorotoluene	Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Dibromochloromethane ND	Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
1,2-Dibromoethane (EDB) ND 1,0 0,005 Dibromomethane ND 1,0 0,005 1,2-Dichlorobenzene ND 1,0 0,005 1,3-Dichlorobenzene ND 1,0 0,005 1,3-Dichlorobenzene ND 1,0 0,005 1,3-Dichlorobenzene ND 1,0 0,005 1,3-Dichlorobenzene ND 1,0 0,005 1,1-Dichloroethane ND 1,0 0,005 1,2-Dichloroethane (1,2-DCA) ND 1,0 0,005 1,1-Dichloroethane ND 1,0 0,005 1,2-Dichloroethane (1,2-DCA) ND 1,0 0,005 1,1-Dichloroethane ND 1,0 0,005 1,2-Dichloroethane ND 1,0 0,005 1,3-Dichloropropane ND 1,0 0,005 1,1 0,005 1,	2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
1,2-Dichlorobenzene ND	Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1.4-Dichlorobenzene	1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,1-Dichloroethane	1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1.1-Dichloroethene	1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Disopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-t-butyl ether (MTBE) </td <td>1,1-Dichloroethane</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>1,2-Dichloroethane (1,2-DCA)</td> <td>ND</td> <td>1.0</td> <td>0.005</td>	1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Dissopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tetr-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 Virusee ND 1.0 0.005 Naphthalene ND 1.0 0.005 Virusee ND <th< td=""><td>1,1-Dichloroethene</td><td>ND</td><td>1.0</td><td>0.005</td><td>cis-1,2-Dichloroethene</td><td>ND</td><td>1.0</td><td>0.005</td></th<>	1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
1,1-Dichloropropene	trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.01 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND <t< td=""><td>1,3-Dichloropropane</td><td>ND</td><td>1.0</td><td>0.005</td><td>2,2-Dichloropropane</td><td>ND</td><td>1.0</td><td>0.005</td></t<>	1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0	1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>Diisopropyl ether (DIPE)</td> <td>ND</td> <td>1.0</td> <td>0.005</td>	trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Hexachloroethane	Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Isopropylbenzene	Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND	Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0 0.005	Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0 0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0 0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005	Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
	1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Surrogate Recoveries (%)	Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
			Surr	ogate Re	ecoveries (%)			

%SS1: 102 %SS2: 96 %SS3: 107

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Comments

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2300 Camino Diablo, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/30/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID	0711727-006A					
Client ID	MF1					
Matrix	Soil					
	Reporting	Reporting				

Matrix Soil							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)			

%SS1: 101 %SS2: 95 %SS3: 109

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

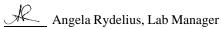
^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2500 Camino Diabio, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/30/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID	0711727-007A
Client ID	MF2
Matrix	Soil


Matrix Soil										
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05			
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005			
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005			
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005			
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005			
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05			
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005			
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005			
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01			
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005			
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005			
Dibromochloromethane	ND	1.0	0.005	1.2-Dibromo-3-chloropropane	ND	1.0	0.005			
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005			
1.2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005			
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005			
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005			
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005			
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane	ND	1.0	0.005			
1.3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005			
1.1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloropropene	ND	1.0	0.005			
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005			
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005			
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005			
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005			
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005			
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005			
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005			
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005			
Toluene	ND ND	1.0	0.005	1,2,3-Trichlorobenzene	ND ND	1.0	0.005			
1,2,4-Trichlorobenzene	ND ND	1.0	0.005	1,1,1-Trichloroethane	ND ND	1.0	0.005			
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005			
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloropropane	ND	1.0	0.005			
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005			
Vinyl Chloride	ND ND	1.0	0.005		ND ND	1.0	0.005			
Thirt emoride	110	1.0			110	1.0	. 0.005			
0/ 551	Surrogate Recoveries (%)									

%SS3: Comments

%SS1:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2500 Camino Diabio, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 12/03/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID	0711727-001A	
Client ID	MB1	
Matrix	Soil	•

Matrix	Soil								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01		
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005		
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005		
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005		
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005		
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005		
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005		
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005		
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005		
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005		
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005		
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005		
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005		
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005		
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005		
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005		
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005		
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005		
		Surre	ogate Re	coveries (%)					
0/s CC1 ·	7	3	6	0% \$5.2	10	00			

Surrogate Recoveries (%)							
%SS1:	73	%SS2:	100				
%SS3:	93						

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2300 Carrino Diabio, Ste. #200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 12/03/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID	0711727-002A							
Client ID		MB2						
Matrix				Soil				
Compound	Concentration *	DE	Reporting	Compound	Concentration *	DE	Reporting	

Matrix Soil									
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01		
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005		
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005		
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005		
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005		
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005		
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005		
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005		
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005		
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005		
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005		
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005		
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005		
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005		
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005		
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005		
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005		
Vinvl Chloride	ND	1.0	0.005	i · ·	ND	1.0	0.005		
		Surre	ogate Re	coveries (%)					

Surrogate Recoveries (%)							
%SS1:	74	%SS2:	99				
%SS3:	93						

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2300 Callino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 12/05/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0711727

Lab ID	0711727-003A	
Client ID	MB3	
Matrix	Soil	
	n d	n .:

Matrix	Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.003
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.003
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.003
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.003
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1.1.2.2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND	1.0	0.005	1.3.5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	7-7-	ND	1.0	0.005
		Surre		coveries (%)			
0/ 001		4		0/ 552		١0	

%SS1: 94 %SS2: 98 %SS3: 111

Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2500 Camino Diablo, Stc. π200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/30/07

2300 Camino Diabio, Ste. #200	Client C	ontact: Kirby Fe	Date Extracted:	11/30/07		
Walnut Creek, CA 94597 Client P.O.:				Date Analyzed	11/30/07	
	С	AM / CCR 17 Me	tals*			
	711727-001A	0711727-002A	0711727-003A	0711727-004A	Reporting Lir	
Client ID	MB1	MB2	MB3	MW1	ND means above the re	
Matrix	S	S	S	S	S	W
Extraction Type	TOTAL	TOTAL	TOTAL	TOTAL	mg/Kg	mg/L
Analytical Method: 6020A		MS Metals, Conceraction Method: SW305			Work Order:	0711727
Dilution Factor	1	1	1	1	1	1
Antimony	ND	ND	ND	ND	0.5	NA
Arsenic	2.8	2.3	2.6	3.3	0.5	NA
Barium	57	49	53	83	5.0	NA
Beryllium	ND	ND	ND	ND	0.5	NA
Cadmium	ND	ND	ND	ND	0.25	NA
Chromium	51	51	40	45	0.5	NA
Cobalt	4.8	4.8	5.2	6.4	0.5	NA
Copper	5.0	5.4	5.3	7.7	0.5	NA
Lead	2.4	2.1	2.6	3.6	0.5	NA
Mercury	ND	ND	ND	ND	0.05	NA
Molybdenum	ND	ND	ND	ND	0.5	NA
Nickel	35	34	34	46	0.5	NA
Selenium	ND	ND	ND	ND	0.5	NA
Silver	ND	ND	ND	ND	0.5	NA
Thallium	ND	ND	ND	ND	0.5	NA
Vanadium	33	32	30	38	0.5	NA
Zinc	21	21	22	31	5.0	NA
%SS:	107	102	99	101		

"water samples are reported in µg/L, product/oil/non-aqueous figure samples and all TCLP/STLC/DISTLC/SPLP extracts are reported in
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
2500 Camino Diaσio, Sic. π200	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 11/30/07

2500 Camino Diablo, Ste. #200				Date Received.	11/29/07	
2500 Callillo Diablo, Ste. #200	Client C	ontact: Kirby Fe	rnando	Date Extracted:	11/30/07	
Walnut Creek, CA 94597	Client P.	Client P.O.:			11/30/07	
	C	CAM / CCR 17 Me	tals*			
Lab ID	0711727-005A	0711727-006A	0711727-007A		Reporting Lin	nit for DF =
Client ID	MW2	MF1	MF2			not detected
Matrix	S	S	S		S	W
Extraction Type	TOTAL	TOTAL	TOTAL		mg/Kg	mg/L
	ICP-N	MS Metals, Conce	ntration*			
Analytical Method: 6020A	Extr	action Method: SW30	50B		Work Order:	0711727
Dilution Factor	1	1	1		1	1
Antimony	ND	ND	ND		0.5	NA
Arsenic	2.6	3.1	3.3		0.5	NA
Barium	62	72	76		5.0	NA
Beryllium	ND	ND	ND		0.5	NA
Cadmium	ND	ND	ND		0.25	NA
Chromium	43	44	51		0.5	NA
Cobalt	5.7	6.5	7.3		0.5	NA
Copper	5.4	6.8	7.9		0.5	NA
Lead	2.7	3.2	3.5		0.5	NA
Mercury	ND	ND	ND		0.05	NA
Molybdenum	ND	ND	ND		0.5	NA
Nickel	36	41	48		0.5	NA
Selenium	ND	ND	ND		0.5	NA
Silver	ND	ND	ND		0.5	NA
Thallium	ND	ND	ND		0.5	NA
Vanadium	30	34	37		0.5	NA
Zinc	24	28	31		5.0	NA
%SS:	98	103	103			

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in
mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
	Client P.O.:	Date Analyzed 11/30/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	on method SW5030B		Analy	ytical methods SV	V8021B/8015Cm			Work Order:	0711	727
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MB1	S	ND	ND	ND	ND	ND	ND	1	87
002A	MB2	S	ND	ND	ND	ND	ND	ND	1	86
003A	MB3	S	ND	ND	ND	ND	ND	ND	1	91
004A	MW1	S	ND	ND	ND	ND	ND	ND	1	85
005A	MW2	S	ND	ND	ND	ND	ND	ND	1	83
006A	MF1	S	ND	ND	ND	ND	ND	ND	1	82
007A	MF2	S	ND	ND	ND	ND	ND	ND	1	84
_	orting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/kg$, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: 276000; Carnation	Date Sampled: 11/29/07
2500 Camino Diablo, Ste. #200		Date Received: 11/29/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 11/30/07
, union Cross, Gray 1097	Client P.O.:	Date Analyzed 12/01/07

Diesel Range (C10-C23) Bunker Oil Range (C10+) Extractable Hydrocarbons as Diesel & Bunker Oil*

Extraction method: SW	73550C	Analytical m	ethods: SW8015C	Wor	k Order: 0'	711727
Lab ID	Client ID	Matrix	TPH(d)	TPH(bo)	DF	% SS
0711727-001A	MB1	S	ND	ND	1	112
0711727-002A	MB2	S	ND	ND	1	115
0711727-003A	MB3	S	ND	ND	1	115
0711727-004A	MW1	S	ND	ND	1	100
0711727-005A	MW2	S	ND	ND	1	98
0711727-006A	MF1	S	ND	ND	1	99
0711727-007A	MF2	S	ND	ND	1	100
	ting Limit for DF =1;	W	NA	NA	ug	g/L
	eans not detected at or e the reporting limit	S	1.0	5.0		/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L,
and all DISTLC / STLC / SPLP / TCLP extracts are reported in ug/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

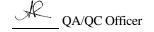
QC SUMMARY REPORT FOR SM5520E/F

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711727

EPA Method SM5520E/F		BatchID: 32190 Spiked Sample ID: 0711727-007A						7A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
7 thaty to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
POG	ND	1000	103	107	3.50	95.1	89.6	5.99	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32190 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711727-001A	11/29/07 11:55 AM	11/30/07	12/03/07 6:27 PM	0711727-002A	11/29/07 12:00 PM	11/30/07	12/03/07 6:32 PM
0711727-003A	11/29/07 12:05 PM	11/30/07	12/03/07 6:37 PM	0711727-004A	11/29/07 12:10 PM	11/30/07	12/03/07 6:42 PM
0711727-005A	11/29/07 12:15 PM	11/30/07	12/03/07 6:47 PM	0711727-006A	11/29/07 12:20 PM	11/30/07	12/03/07 6:52 PM
0711727-007A	11/29/07 12:25 PM	11/30/07	12/03/07 6:22 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

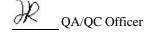
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0711727

EPA Method SW8082A		BatchID: 32191 Spiked Sample ID: 07117				0711727-00	7A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Tillalyto	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND	0.075	93.7	95.3	1.63	95.9	96.5	0.632	70 - 130	20	70 - 130	20
%SS:	95	0.050	100	100	0	106	104	1.91	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32191 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711727-001A	11/29/07 11:55 AM	11/30/07	11/30/07 3:44 PM	0711727-002A	11/29/07 12:00 PM	11/30/07	11/30/07 4:44 PM
0711727-003A	11/29/07 12:05 PM	11/30/07	11/30/07 5:41 PM	0711727-004A	11/29/07 12:10 PM	11/30/07	11/30/07 6:39 PM
0711727-005A	11/29/07 12:15 PM	11/30/07	11/30/07 7:36 PM	0711727-006A	11/29/07 12:20 PM	11/30/07	11/30/07 9:32 PM
0711727-007A	11/29/07 12:25 PM	11/30/07	11/30/07 10:29 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

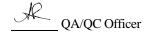
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711727

EPA Method SW8260B	Extra	ction SW		Bat	Spiked Sample ID: 0711727-001A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١
, and yet	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	105	108	2.72	105	106	0.499	70 - 130	30	70 - 130	30
Benzene	ND	0.050	119	122	2.76	121	123	2.35	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	83.7	81.3	2.97	80.7	80.4	0.401	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	126	125	0.775	126	129	2.40	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	111	114	2.47	115	114	0.624	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	98.2	101	3.28	93.3	97.3	4.12	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	124	121	2.26	125	122	2.02	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	110	112	1.73	106	109	2.31	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	100	104	3.86	99.2	99.2	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	98.3	106	7.59	98.5	96.6	1.91	70 - 130	30	70 - 130	30
Toluene	ND	0.050	106	104	1.24	116	120	4.01	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	104	110	5.12	109	110	0.856	70 - 130	30	70 - 130	30
%SS1:	73	0.050	94	98	4.76	92	86	6.80	70 - 130	30	70 - 130	30
% SS2:	100	0.050	87	88	0.733	91	90	1.10	70 - 130	30	70 - 130	30
%SS3:	93	0.050	90	89	1.70	91	90	0.917	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 32176 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711727-001A	11/29/07 11:55 AM	11/30/07	12/03/07 2:51 PM	0711727-002A	11/29/07 12:00 PM	11/30/07	12/03/07 3:35 PM
0711727-003A	11/29/07 12:05 PM	11/30/07	12/05/07 4:15 PM	0711727-004A	11/29/07 12:10 PM	11/30/07	11/30/07 6:21 PM
0711727-005A	11/29/07 12:15 PM	11/30/07	11/30/07 7:17 PM	0711727-006A	11/29/07 12:20 PM	11/30/07	11/30/07 8:11 PM
0711727-007A	11/29/07 12:25 PM	I 11/30/07	11/30/07 9:05 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

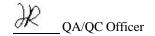
QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0711727

EPA Method 6	EPA Method 6020A)B	В	atchID: 3	2193	Spiked Sample ID 0711727-007A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)
7 trialy to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	50	103	108	4.22	10	102	104	1.75	70 - 130	20	80 - 120	20
Arsenic	3.3	50	97.7	102	3.58	10	98.5	99.3	0.839	70 - 130	20	80 - 120	20
Barium	76	500	99.1	103	3.69	100	94.4	96.9	2.64	70 - 130	20	80 - 120	20
Beryllium	ND	50	93.4	97.3	4.15	10	101	103	1.57	70 - 130	20	80 - 120	20
Cadmium	ND	50	98.3	103	4.24	10	97.3	100	2.97	70 - 130	20	80 - 120	20
Chromium	51	50	83.4	88.9	2.95	10	94.4	95.6	1.27	70 - 130	20	80 - 120	20
Cobalt	7.3	50	90.2	95.1	4.51	10	94.6	97	2.49	70 - 130	20	80 - 120	20
Copper	7.9	50	101	106	3.96	10	97.6	97.6	0	70 - 130	20	80 - 120	20
Lead	3.5	50	95.1	100	4.72	10	93.4	95.1	1.79	70 - 130	20	80 - 120	20
Mercury	ND	1.25	88.8	92.9	4.32	0.25	89	87.8	1.29	70 - 130	20	80 - 120	20
Molybdenum	ND	50	96.6	101	4.41	10	94.1	96.9	2.93	70 - 130	20	80 - 120	20
Nickel	48	50	98.4	105	3.19	10	100	99.7	0.430	70 - 130	20	80 - 120	20
Selenium	ND	50	95.7	96	0.250	10	98.4	98.2	0.193	70 - 130	20	80 - 120	20
Silver	ND	50	95.5	99.2	3.80	10	95	97.5	2.57	70 - 130	20	80 - 120	20
Thallium	ND	50	97.7	102	4.45	10	94.4	96.6	2.23	70 - 130	20	80 - 120	20
Vanadium	37	50	87.6	92.7	3.10	10	94.9	96.2	1.39	70 - 130	20	80 - 120	20
Zinc	31	500	101	105	4.01	100	103	106	2.78	70 - 130	20	80 - 120	20
%SS:	103	250	97	101	3.88	250	92	94	2.67	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32193 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted Date Analyzed
0711727-001	A 1/29/07 11:55 AM	1 11/30/07 11	/30/07 10:11 PM	0711727-002A	11/29/07 12:00 PM	11/30/07 11/30/07 10:19 PM
0711727-003	A 11/29/07 12:05 PM	A 11/30/07 11	/30/07 10:26 PM	0711727-004A	11/29/07 12:10 PM	11/30/07 11/30/07 10:33 PM
0711727-005	A 11/29/07 12:15 PM	A 11/30/07 11	/30/07 10:41 PM	0711727-006A	11/29/07 12:20 PM	11/30/07 11/30/07 10:48 PM
0711727-007	A 11/29/07 12:25 PM	<u>11/30/07 11</u>	/30/07 10:56 PM			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

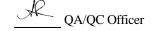
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711727

EPA Method SW8015C Extraction SW3550C						BatchID: 32187 Spiked Sample ID: 0711717-002					2A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
ruidiyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	11	20	94	90.4	2.46	106	99.2	6.30	70 - 130	30	70 - 130	30
%SS:	90	50	88	102	14.2	117	106	9.57	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32187 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711727-001A	11/29/07 11:55 AM	11/30/07	12/01/07 6:37 PM	0711727-002A	11/29/07 12:00 PM	11/30/07	12/01/07 7:45 PM
0711727-003A	11/29/07 12:05 PM	11/30/07	12/01/07 8:53 PM	0711727-004A	11/29/07 12:10 PM	11/30/07	12/01/07 3:25 PM
0711727-005A	11/29/07 12:15 PM	11/30/07	12/01/07 4:37 PM	0711727-006A	11/29/07 12:20 PM	11/30/07	12/01/07 5:48 PM
0711727-007A	11/29/07 12:25 PM	11/30/07	12/01/07 6:59 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0711727

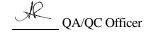
EPA Method SW8021B/8015Cm	5Cm Extraction SW5030B			BatchID: 32188			Spiked Sample ID: 0711717-001A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	87.2	90.1	3.26	83.9	98.4	15.9	70 - 130	30	70 - 130	30
MTBE	ND	0.10	78.2	86.8	10.5	81.3	79.3	2.47	70 - 130	30	70 - 130	30
Benzene	ND	0.10	96.3	97	0.798	93.8	95.2	1.53	70 - 130	30	70 - 130	30
Toluene	ND	0.10	90.4	89.9	0.602	89.7	90.8	1.25	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	102	101	1.21	96.8	98.7	1.96	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	96.3	95.7	0.694	91.7	91.7	0	70 - 130	30	70 - 130	30
%SS:	82	0.10	86	85	0.605	82	84	2.84	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 32188 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711727-001A	11/29/07 11:55 AM	11/30/07	11/30/07 5:09 PM	0711727-002A	11/29/07 12:00 PM	11/30/07	11/30/07 6:11 PM
0711727-003A	11/29/07 12:05 PM	11/30/07	11/30/07 7:13 PM	0711727-004A	11/29/07 12:10 PM	11/30/07	11/30/07 2:54 PM
0711727-005A	11/29/07 12:15 PM	11/30/07	11/30/07 3:28 PM	0711727-006A	11/29/07 12:20 PM	11/30/07	11/30/07 4:03 PM
0711727-007A	11/29/07 12:25 PM	11/30/07	11/30/07 4:37 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 12/10/07
2500 Camino Diablo, Ste. #200		Date Received: 12/10/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Reported: 12/13/07
	Client P.O.:	Date Completed: 12/13/07

WorkOrder: 0712272

December 13, 2007

Dear Kirby:

Enclosed within are:

- 5 analyzed samples from your project: #276000; Carnation, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius

Laboratory Manager

McCampbell Analytical, Inc.

0112212

	AVIA	
_		
1		
)

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD

PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262

Fax: (925) 252-9269

CHAIN OI TURN AROUND TIME	F CUST	FODY	REC	ORI
TURN AROUND TIME				Н

RUSH 24 HR 48 HR 72 HR 5 DAY

GeoTracker EDF PDF Excel Write On (DW)

Report To: Kirby Fernando Bill To: AEI Consultants										Check if sample is effluent and "J" flag is required										s required													
Report To: Kirby				Bill T	0: Al	EI (Cons	ulta	ints					Analysis Request Other Commo									Comments										
Company: AEI																6					su:												Filter
	Camino Diah			Cree	k 945	97								MTBE		/B&					gen												Samples
E-Mail: kfernan		ltants.co												- N		20 E					Con						6	6					for Metals
Tele: (925) 944-	THE RESERVE AND ADDRESS OF THE PARTY OF THE			Fax:										8015)/		1.55	=	3	21)		ors/		(S			_	602	602					analysis:
Project #: 2760				Projec	et Nai	me:	Co	ra	atio.	1				+		999	418	voc	/ 80	93	rocl		icide			NAS	010	010				1	Yes / No
Project Location:		57,5	26 tlane)/		1	1		11	2	1	-		8021		se ()	ons	E	602	icid	Y: A	3	lerb	(8)	3	s / P	9/8	9/8	020)			Ó	
Sampler Signatui	re: 160	1	1	no	21	7	10	Y	1	_				(602 / 1		Grease (1664 / 5520 E/B&F)	carb	802	EPA	Pes	NE	ticic	5	νõ	svo	PAH	200.	2007	9/0			2.11	
	10	SAM	PLING		ers		MA	TR	IX			THO		Gas (6	(51	Sil &	lydro	/ 0108	NLY (81 (CI	CB's (VP Pes	Acidic	8260 (8270 (310 (/ 1.00	72.00	109/8			7	
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	ICE	HCL	HNO,	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)			48 HR TAT	
TF	144	12/10	11:04	1	55	П	X			X				X	X																		CHAMPEOTO
TP	Peplar	12/10	11:15					\top		T				T	1																-	⅌	CHAMPEOTO FX HP PUSH ON 12:11:07 PER FAX/
TS	1612	1	11:25							Ħ			П				*												\exists		1	\Diamond	P.F. FAX/
TM	Mandela		11:31	1			1			Ħ																					-	\Diamond	
TW	water	+	11:40	3	Am5	X				X				1	1		w														1	$^{\sim}$	Rush Hao
																		4													\neg		24 HR KF
						Г		\top		\vdash																			\exists			1	
							\Box	1	1	t		T																	\exists		+	+	
						T				t										\exists		\neg							\forall	_	+	+	
								1		t			П							1		\exists		\exists					1	_	\pm	+	
										T																- 42					\forall	\forall	4
										Г													\exists						\forall		\forall	1	
Mar. 1	4.																												\exists		\forall	†	
										\vdash														_					\exists		\dashv	$^{+}$	
Relinquished By:	13	Date:	Time:	Recei	ived B	y:				_			\dashv	ICI	E/t°	2.1	P		- 10	1.			_				-	OM	ME	NTS:	_	_	
12/10/07 12-45 BIVERO. TECH SERVICES AA							GO	OD	CON	DIT	ION	X	216	25																			
Relinquished By: Seauces AA Date: Time: Received By:						1	DE	CHL	ORI	NAT	ED I	NL	NB_		_ 14	25																	
65/0/07/07/9					APPROPRIATE CONTAINERS PRESERVED IN LAB																												
Relinquished By:	1	Date:	Time:	Recei	ived By	Š		1	2						300		2 114			_													
	190/0/8/0 VX CmiV In						PRI	ESEI	RVA	TION		AS	30		ME'		S (нто	ER														
	/	/			(2)			_															-										

McCampbell Analytical, Inc.

153 Pitt (92

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0712272 ClientID: AEL

☐ EDF ☐ Excel ☐ Fax ☑ Email ☐ HardCopy ☐ ThirdParty

Report to:

Bill to:

Requested TAT:

1 day

Kirby Fernando

Email: kfernando@aeiconsultants.com

Denise Mockel

Kirby Fernando Email: kfernando@aeiconsultants.com
AEI Consultants TEL: (925) 283-6000 FAX: (925) 283

TEL: (925) 283-6000 FAX: (925) 283-6121 AEI Consultants
blo, Ste. #200 ProjectNo: #276000; Carnation 2500 Camino Diablo, Ste. #200

2500 Camino Diablo, Ste. #200 ProjectNo: #276000; Carnation Walnut Creek, CA 94597 PO:

Walnut Creek, CA 94597

dmockel@aeiconsultants.com

Date Received: 12/10/2007

Date Printed: 12/11/2007

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0712272-001	TE	Soil	12/10/2007		Δ		Δ									
0712272-001	TP	Soil	12/10/2007	ㅏ片	Δ		A									
0712272-003	TS	Soil	12/10/2007		A		A									
0712272-004	TM	Soil	12/10/2007		Α		Α									
0712272-005	TW	Water	12/10/2007			Α		В								

Test Legend:

1	G-MBTEX_S	2 G-MBTEX_W	3 TPH(D)_S	4	TPH(D)_W	5	
6		7	8	9		10	
11		12					

Prepared by:	Rosa	Venegas
--------------	------	---------

Comments: Soils turned to 48hr tat per note on 12/11/07

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	12/10/07 4	:36:04 PM
Project Name:	#276000; Carnation				Check	list completed and r	eviewed by:	Rosa Venegas
WorkOrder N°:	0712272 Matrix	Soil/Water			Carrie	r: <u>EnviroTech</u>		
		Chain of	f Cus	stody (C	OC) Informa	ition		
Chain of custody	present?	Y	es/	V	No 🗆			
Chain of custody	signed when relinquished ar	nd received? Y	es/	V	No \square			
Chain of custody	agrees with sample labels?	Y	es/	✓	No 🗌			
Sample IDs noted	by Client on COC?	Y	es/	V	No \square			
Date and Time of	collection noted by Client on C	COC? Y	es/	✓	No \square			
Sampler's name r	noted on COC?	Y	es/	~	No 🗆			
		Sam	ple	Receipt	Information			
Custody seals in	tact on shipping container/coo	oler? Y	es/		No 🗆		NA 🗹	
Shipping containe	er/cooler in good condition?	Y	es/	V	No 🗆			
Samples in prope	er containers/bottles?	Y	es/	✓	No 🗆			
Sample containe	rs intact?	Y	es/	✓	No \square			
Sufficient sample	volume for indicated test?	Y	es/	✓	No 🗌			
	<u>S</u> :	ample Preserva	ation	and Ho	ld Time (HT)) Information		
All samples recei	ved within holding time?	Y	es/	✓	No 🗌			
Container/Temp B	Blank temperature	C	Coole	r Temp:	2.6°C		NA \square	
Water - VOA vial	s have zero headspace / no	bubbles? Y	es/	✓	No 🗆	No VOA vials subm	itted \square	
Sample labels ch	necked for correct preservation	n? Y	es/	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Y	es/		No 🗆		NA 🗹	
	=======							======
Client contacted:		Date contacted	:			Contacted	by:	
Comments:								

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 12/10/07
2500 Camino Diablo, Ste. #200		Date Received: 12/10/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 12/10/07
Wallat Clock, CI15 1557	Client P.O.:	Date Analyzed 12/10/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods SW8021B/8015Cm Extraction method SW5030B Work Order: 0712272 Lab ID Client ID Matrix TPH(g) MTBE Toluene Ethylbenzene Xylenes DF % SS Benzene 001A TF \mathbf{S} ND ND ND ND ND ND 1 89 002A ΤP S ND ND ND ND ND ND 1 93 003A TSS ND ND ND ND ND ND 1 92 004A TMS ND ND ND ND ND ND 90 Reporting Limit for DF =1:

ND	**	11/1	11/1	11/1	11/1	11/1	11/1	1	ug/L		
ND means not detected at or above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg		
* wystag and vignag complex and all TCUD & CDUD systemate are greated in your activities and complex in market wine complex in your incomplex in your complex											

water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #276000; Carnation	Date Sampled: 12/10/07
2500 Camino Diablo, Ste. #200		Date Received: 12/10/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 12/10/07
Wallat Greek, Grip 1897	Client P.O.:	Date Analyzed 12/13/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method SW35	50C	Analytical met	hods SW8015C	Work Order: 0'	712272
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0712272-001A	TF	S	ND	1	111
0712272-002A	TP	S	ND	1	108
0712272-003A	TS	S	ND	1	98
0712272-004A	ТМ	S	ND	1	97

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

tell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Web: www.mccampbell.com
Telephone: 877-252-9262

E-mail: main@mccampbell.com
Telephone: 877-252-9262

Tax: 925-252-9269

When Stanty Estants		Telephone, of 7 202 7202	Tunt /20 202 /20/	
AEI Consultants	Client Project ID:	#276000; Carnation	Date Sampled:	12/10/07
2500 Camino Diablo, Ste. #200			Date Received:	12/10/07
Walnut Creek, CA 94597	Client Contact: Ki	rby Fernando	Date Extracted:	12/11/07
	Client P.O.:		Date Analyzed	12/11/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0712272 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS W 005A TWND ND ND ND ND 105 85,b 1

Reporting Limit for D1 =1,	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
* water and vapor samples and all TC	LP & SPL	P extracts are re	norted in 110/L	soil/sludge/solid	samples in mo/	kg. wine sample	es in µø/wine		

cluttered chromatogram; sample peak coelutes with surrogate peak.

product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

TOTAL STREET			· · · · · · · · · · · · · · · · · · ·				
AEI Consulta	nnts	Client Proje	ect ID: #276000; Carnation	Date Sampled: 12/10/	/07		
2500 Camino	Diablo, Ste. #200			Date Received: 12/10/	/07		
Walnut Creek	CA 94597	Client Cont	act: Kirby Fernando	Date Extracted: 12/10/	07		
vulliat Creek	, (11)	Client P.O.:		Date Analyzed 12/11/	07		
	Diesel Rang	ge (C10-C23)	Extractable Hydrocarbons as	s Diesel*			
Extraction method	SW3510C	An	nalytical methods SW8015C	Work Or	der: 07	12272	
Lab ID	Client ID	Matrix	TPH(d))	DF	% SS	
0712272-005B	TW	W	92,d		1	88	
				<u> </u>			

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0712272

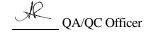
EPA Method SW8021B/8015Cm	EPA Method SW8021B/8015Cm Extraction SW5030B						BatchID: 32423 Spiked Sample ID: 0712266-017A					
Analyte	Sample	Sample Spiked MS		MSD	MSD MS-MSD LCS LCSD			LCS-LCSD	Acce	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	113	111	2.24	119	110	7.59	70 - 130	30	70 - 130	30
MTBE	ND	0.10	101	99.5	1.43	105	104	0.981	70 - 130	30	70 - 130	30
Benzene	ND	0.10	90.6	94.2	3.87	98.1	96.1	2.09	70 - 130	30	70 - 130	30
Toluene	ND	0.10	82.8	84.8	2.24	88.5	90.1	1.82	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	94.7	97.1	2.54	96.1	98.1	2.10	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	91.3	92	0.727	91.3	92.3	1.09	70 - 130	30	70 - 130	30
%SS:	70	0.10	86	88	2.58	87	89	2.48	70 - 130	30	70 - 130	30

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 32423 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712272-001A	12/10/07 11:04 AM	12/10/07	12/10/07 10:00 PM	0712272-002A	12/10/07 11:15 AM	12/10/07	12/10/07 10:30 PM
0712272-003A	12/10/07 11:25 AM	12/10/07	12/10/07 11:01 PM	0712272-004A	12/10/07 11:31 AM	12/10/07	12/10/07 11:32 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0712272

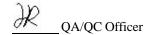
EPA Method SW8021B/8015Cm		BatchID: 32414 Spiked Sample ID:				ole ID:	0712251-002A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	107	104	2.36	104	103	1.41	70 - 130	30	70 - 130	30
MTBE	ND	10	94.3	89.2	5.60	94.4	96.7	2.43	70 - 130	30	70 - 130	30
Benzene	ND	10	92	88.7	3.66	91.2	91.7	0.476	70 - 130	30	70 - 130	30
Toluene	ND	10	91.9	88.7	3.59	90.9	91.5	0.724	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	96	92.9	3.29	94.3	95.2	0.898	70 - 130	30	70 - 130	30
Xylenes	ND	30	107	103	3.17	107	107	0	70 - 130	30	70 - 130	30
%SS:	92	10	89	90	1.02	88	90	1.80	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 32414 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712272-005A	12/10/07 11:40 AM	12/11/07	12/11/07 10:57 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

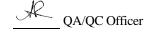
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0712272

EPA Method SW8015C Extraction SW3550C					BatchID: 32399			Spiked Sample ID: 0712230-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	109	108	1.21	107	107	0	70 - 130	30	70 - 130	30
%SS:	100	50	101	100	1.81	117	116	0.592	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32399 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712272-001A	12/10/07 11:04 AM	12/10/07	12/13/07 12:17 PM	0712272-002A	12/10/07 11:15 AM	12/10/07	12/13/07 12:17 PM
0712272-003A	12/10/07 11:25 AM	12/10/07	12/13/07 11:43 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

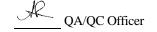
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0712272

EPA Method SW8015C Extraction SW3550C					BatchID: 32429			Spiked Sample ID: 0712279-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	7.4	20	115	115	0	109	110	0.395	70 - 130	30	70 - 130	30
%SS:	103	50	120	120	0	118	118	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32429 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712272-004A	12/10/07 11:31 AM	12/10/07	12/13/07 12:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

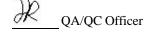
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0712272

EPA Method SW8015C	Extraction SW3510C				Bat	BatchID: 32436 S			piked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			١
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	114	114	0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	117	118	0.644	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32436 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712272-005B	12/10/07 11:40 AM	I 12/10/07	12/11/07 7:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 12/12/07
2500 Camino Diablo, Ste. #200		Date Received: 12/12/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Reported: 12/13/07
wante creek, cri y 1897	Client P.O.:	Date Completed: 12/13/07

WorkOrder: 0712381

December 13, 2007

Dear	Kir	by:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #275493; Carnation,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD TURN AROUND TIME 24 HR RUSH 48 HR 72 HR 5 DAY w.mccampbell.com Email: main@mccampbell.com GeoTracker EDF PDF Excel Write On (DW) Telephone: (877) 252-9262 Fax: (925) 252-9269 Check if sample is effluent and "J" flag is required Report To: Kirby Fernando Bill To: AEI Consultants Analysis Request Other Comments Company: AEI Consultants EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter TPH as Gas (602 / 8021 + 8015) / MTBE 2500 Camino Diablo #200, Walnut Creek 94597 Samples E-Mail: kfernando@aeiconsultants.com for Metals CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Fax: (925) 944-2895 Tele: (925) 944-2899 x123 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: Total Petroleum Hydrocarbons (418.1) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: 275493 Project Name: Carrety Yes / No EPA 505/ 608 / 8081 (CI Pesticides) Lead (200.7 / 200.8 / 6010 / 6020) Project Location: 1310 14th St Onkland EPA 525.2 / 625 / 8270 (SVOCs) EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: METHOD SAMPLING MATRIX **Type Containers** PRESERVED # Containers LOCATION/ SAMPLE ID Field Point Name Date Time Other Other HCL ICE Soil Air 12/12 10:34 BIW Bunter Hoo Relinguished By: ICE/t°) - Z Date: Time: Received By: COMMENTS: ENVIRO-TECH SERVICES AA GOOD CONDITION \ HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS N PRESERVED IN LAB Relinquished By: Received By: Time: VOAS O&G METALS OTHER PRESERVATION pH<2

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbu:	rg, CA 94565-1701 252-9262					Work	Order	: 0712	381	(ClientI	D: AEL					
(>==)				☐ EDF		Excel		Fax		✓ Email	l	Hard	Сору	Thi	rdParty		
		TEL: (kfernando@a (928) 944-2899 #275493; Ca				AE 25 W	enise M El Cons 500 Can alnut Ci mockel @	ultants nino Di reek, C	A 9459	7		Dat	uested e Rece e Prin	ived:	12/12/ 12/12/	
								1 .				(See le					
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
712381-001	B1W		Water	12/12/07 10:34:00		Α											
	BTEX_W 2 7			3 8				4					_	5 10			
11	12																
The following Sa	mpID: 001A contains testgroup.												Prepa	ared by	: Elisa	Venega	ıs

24hr rush **Comments:**

Sample Receipt Checklist

Client Name:	AEI Consultants			Date a	and Time Received:	12/12/07 6	:15:15 PM
Project Name:	#275493; Carnation			Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0712381 Matrix	<u>Water</u>		Carrie	er: Rob Pringle (M	IAI Courier)	
		Chain of C	ustody (C	COC) Informa	ation		
Chain of custody	present?	Yes	V	No 🗆			
Chain of custody	signed when relinquished ar	nd received? Yes	V	No \square			
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?	Yes	V	No 🗆			
Date and Time of	collection noted by Client on C	COC? Yes	✓	No \square			
Sampler's name r	noted on COC?	Yes	✓	No 🗆			
		<u>Sampl</u>	e Receip	t Information	<u>1</u>		
Custody seals int	tact on shipping container/coo	oler? Yes	. 🗆	No 🗆		NA 🔽	
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗆			
Samples in prope	er containers/bottles?	Yes	~	No \square			
Sample containe	rs intact?	Yes	✓	No 🗆			
Sufficient sample	volume for indicated test?	Yes	. ✓	No 🗌			
	<u>S</u> :	ample Preservation	on and Ho	old Time (HT) Information		
All samples recei	ved within holding time?	Yes	· 🗸	No 🗌			
Container/Temp B	Blank temperature	Coo	ler Temp:	3.2°C		NA \square	
Water - VOA vial	s have zero headspace / no	bubbles? Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct preservation	n? Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Yes	. 🗆	No 🗆		NA 🗹	
=====			===	====	=====	====	======
Client contacted:		Date contacted:			Contacted	by:	
Comments:							

IcCampbell Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701
iccampoen Analytical, inc.	Web: www.mccampbell.com E-mail: main@mccampbell.com
"When Ouality Counts"	Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 12/12/07
2500 Camino Diablo, Ste. #200		Date Received: 12/12/07
Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 12/13/07
amar cross, cray toy	Client P.O.:	Date Analyzed 12/13/07

	Gasolir	ne Kange ((26-C12) Vola	atile Hydroca	rbons as Gaso	line with BT	EX and MTBE [*]	F		
Extraction m	ethod SW5030B		Anal	ytical methods SV	W8021B/8015Cm	Work Order:	0712	381		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	B1W	W	ND	ND					1	112
	ng Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/I
	ns not detected at or	S	NA	NA	NA	NA	NA	NA	1	mg/l

Reporting Elimit for D1 =1;	vv	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
* water and vapor samples and all TC	I P & SPI	P extracts are re	norted in ug/L	oil/sludge/solid	samples in mg/l	ko wine sample	es in Ho/wine		

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

AEI Consultants	Client Project ID: #275493; Carnation	Date Sampled: 12/12/07						
2500 Camino Diablo, Ste. #200		Date Received: 12/12/07						
2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597	Client Contact: Kirby Fernando	Date Extracted: 12/12/07						
	Client P.O.:	Date Analyzed 12/13/07						
Discal (C10 22) and Bumbon Oil (C10). Donor Entroptable Hadronenham on Discal and Bumbon Oil#								

Diesel (C10-23) and Bunker Oil (C10+) Range Extractable Hydrocarbons as Diesel and Bunker Oil*

Extraction method: SW351	0C	Analytical methods: SW8015C						
Lab ID	Client ID	Matrix	TPH(d)	TPH(bo)	DF	% SS		
0712381-001A	B1W	W	ND	ND	1	107		
				_				
				_				
				_				
						-		
						-		
	Limit for DF =1; not detected at or	W	50	250		g/L		
ND means	not detected at of	S	NΔ	NΔ	me	r/K or		

* water samples are reported in μg/L, wipe samples in μg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L,
and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

NA

S

mg/Kg

NA

above the reporting limit

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0712381

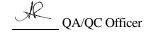
EPA Method SW8021B/8015Cm Extraction SW5030B			BatchID: 32511				Sp	Spiked Sample ID: 0712381-001A				
Analyte	Sample	Spiked MS MSD			MS-MSD	LCS LCSD		LCS-LCSD	CSD Acceptance Criteria (%			
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	97	111	13.2	106	95.6	10.2	70 - 130	30	70 - 130	30
MTBE	ND	10	117	103	12.7	106	107	0.411	70 - 130	30	70 - 130	30
Benzene	ND	10	99.1	94.1	5.16	95.9	97.7	1.82	70 - 130	30	70 - 130	30
Toluene	ND	10	89.8	88.8	1.16	88.9	91	2.33	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	97.1	98.3	1.24	98	99.5	1.50	70 - 130	30	70 - 130	30
Xylenes	ND	30	92	96.3	4.60	96.7	100	3.39	70 - 130	30	70 - 130	30
%SS:	112	10	99	96	2.21	96	97	0.838	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 32511 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0712381-001A	12/12/07 10:34 AM	1 12/13/07	12/13/07 2:20 AM					Ī


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

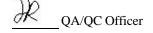
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0712381

EPA Method SW8015C Extraction SW3510C			BatchID: 32490			Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			١
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	114	102	11.0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	128	109	16.5	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32490 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0712381-001A	12/12/07 10:34 AM	I 12/12/07	12/13/07 2:35 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

