May 30, 2000

Mr. Larry Seto Sr. Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Protection (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SUBJECT:

2277 SEVENTH STREET, OAKLAND, CALIFORNIA

STID #3899

Dear Mr. Seto:

My apologies for the late reply to your April 19th letter. Please find enclosed copies of the following quarterly monitoring events:

May 1, 1999, Quarterly Groundwater Monitoring and Product Recovery report, 1st Quarter of 1999, 2277 Seventh Street, Oakland, California;

August 9, 1999, Quarterly Groundwater Monitoring and Product Recovery report, 2nd Quarter of 1999, 2277 Seventh Street, Oakland, California;

December 1, 1999, Quarterly Groundwater Monitoring and Product Recovery report, 3rd Quarter of 1999, 2277 Seventh Street, Oakland, California; and

April 19, 2000, Quarterly Groundwater Monitoring and Product Recovery report, 4th Quarter of 1999, 2277 Seventh Street, Oakland, California.

The first quarter report for this year is presently under preparation by the project consultant, Harding Lawson Associates. The final report will be forwarded to you as soon as it has been completed.

If you have any questions, please contact me at 627-1373.

Sincerely,

Associate Environmental Scientist

Cc: Jeff Jones

December 1, 1999

42633.1

Mr. John Prall Associate Environmental Scientist Port of Oakland 530 Water Street Oakland, California 94607

Quarterly Groundwater Monitoring and Product Recovery Report 3rd Quarter of 1999 2277 Seventh Street Oakland, California

Dear Mr. Prall:

Harding Lawson Associates (HLA) has prepared this Quarterly Groundwater Monitoring and Product Recovery Report on behalf of the Port of Oakland for the groundwater monitoring and sampling program and the operation of the product recovery system at 2277 Seventh Street in Oakland, California (Plate 1) between July 1, 1999 and September 30, 1999.

This report summarizes the monitoring of five groundwater monitoring wells, MW-2, MW-4, MW-5, MW-6, and MW-7 and the maintenance activities of the product recovery system during the third quarter of 1999. MW-3 and MW-1 contain in-well product skimmers that recover separate-phase petroleum hydrocarbons. MW-8 is not because it contains a thick viscous petroleum hydrocarbon. Well locations are presented on Plate 2.

The monitoring wells were installed at the site by others to assess groundwater quality following the removal of underground storage tanks (USTs) from the site in September 1993. The former USTs, located on the south side of Building 401, consisted of two 10,000-gallon gasoline tanks (CF-17 and CF-18), one 500-gallon oil tank (CF-19), and one 300-gallon waste oil tank (CF-20).

MONITORING AND SAMPLING OF MONITORING WELLS

HLA conducted the groundwater sampling at 2277 7th Street on September 28, 1999. Prior to purging and sampling the monitoring wells, HLA measured the depth to water with an electric water level indicator. HLA also measured the product level thickness in wells MW-1 and MW-3. Groundwater level measurements are summarized in Table 1, groundwater elevations and the gradient direction are presented on Plate 3, and product thickness measurements are summarized on Table 2. HLA did not use the

groundwater level measurements from MW-1, MW-3, and MW-8 to calculate groundwater elevations presented on Plate 3 because MW-1, and MW-3, contained product recovery equipment and because the thick viscous product in MW-8 prevented accurate groundwater level measurements.

After measuring the depth to water, HLA purged MW-2, MW-4, MW-5, MW-6, and MW-7 using a PVC bailer. Conductivity, pH, and temperature were monitored periodically during purging. Sampling was not performed until at least three well casing volumes of water were removed and conductivity, pH, and temperature measurements had stabilized. The depths to groundwater and field parameter measurements were recorded on Groundwater Sampling Forms included in Appendix A. The Port waste disposal contractor, Performance Excavators, Inc, disposed of the purge water.

HLA collected groundwater samples from the five monitoring wells using a Teflon disposable bailer and then transferred the groundwater into laboratory-provided containers. A duplicate sample was collected from MW-4. Sample containers were labeled with the sample number, date and time of collection, and sampler's initials, then placed in an insulated cooler with blue ice. The samples were accompanied by a laboratory provided trip blank and delivered under chain-of-custody protocol to Curtis and Thompkins, Ltd., a California-state certified laboratory.

LABORATORY ANALYSIS GROUNDWATER SAMPLES

Curtis and Tompkins, Ltd. performed the chemical analyses of the groundwater samples using the following analytical methods:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 modified.
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl t-butyl ether (MTBE) in accordance with Method 8021B.
- TPH as diesel (TPHd) in accordance with EPA Method 8015 modified following a silica-gel cleanup procedure.
- TPH as motor oil (TPHmo) in accordance with EPA Method 8015 modified following a silica-gel cleanup procedure.

The trip blank was analyzed for BTEX and MTBE. The laboratory results for the groundwater samples are summarized in Table 3 and are shown on Plate 4. Copies of the laboratory results and chain-of-custody forms are provided in Appendix B.

FINDINGS

Results of the September 28, 1999 groundwater sampling are summarized below:

- Separate-phase hydrocarbons were observed in monitoring wells MW-1, MW-3 and MW-8.
- TPHg was reported at a concentration of 750 micro grams per liter (μg/l) in MW-4 and 130 μg/l in MW-6. TPHg was not detected in MW-2, MW-5 or MW-7. TPHg was detected in the sample from MW-4 at 190 μg/l and in MW-6 at 120 μg/l last quarter.
- Benzene was reported at a concentration of 280 μg/l in MW-4, at 20 μg/l in MW-6 and was not detected in MW-2, MW-5, or MW-7. Benzene was detected in the sample from MW-4 at 360 μg/l and in MW-6 at 18 μg/l last quarter
- Toluene was reported at a concentration of 1.5 μg/l in MW-4, at 0.51 μg/l in MW-6 and was not detected in MW-2, MW-5, or MW-7.
- Ethylbenzene was reported at a concentration of 2.2 μg/l in MW-6 and was not detected in MW-2, MW-4, MW-5, or MW-7.
- Total xylenes were not detected above the reporting limit in any of the wells sampled.
- MTBE was reported at a concentration of 14 µg/l in MW-7 and was not detected in MW-2, MW-4, MW-5 or MW-6. MTBE was detected in the sample from MW-7 at 12 µg/l last quarter and at 5.3 µg/l the quarter before.
- TPHd was reported at a concentration of 63μg/l in MW-4 and of 820 μg/l in MW-6 and was not detected in MW-2, MW-5, and MW-7. TPHd was not detected in the sample from MW-4 and was detected in MW-6 at 1,700 μg/l last quarter.
- TPHmo was not detected above the reporting limit in any of the wells sampled.

QUALITY ASSURANCE AND QUALITY CONTROL

- BTEX and MTBE were not detected in the trip blank.
- The relative percent difference between the analytical results from MW-4 and the duplicate sample was considered within acceptable limits, ranging from zero to 23 percent

PRODUCT RECOVERY SYSTEM

The product recovery system consists of an air-actuated (active) product skimmer in MW-3 and a passive product skimmer in MW-1. HLA completed product recovery at MW-6 and removed the passive skimmer on April 19, 1999. The product in MW-3 discharges to a product recovery tank and HLA periodically removes the product collected in skimmer in MW-1. HLA removed product from the passive skimmer at MW-1 four times during this reporting period. The total volume of product recovered from MW-1 during the third quarter of 1999 was 0.8 gallons. The Port's waste disposal contractor, Performance Excavators,

Inc., removed product from the product recovery tank on July 16, 1999. The total product removed was an estimated to be 830 gallons, consisting of product and water discharged by the active skimmer in MW-3. Table 2 presents product removal data. A summary of the activities during the past quarter associated with the operation and maintenance of the product recovery system is presented in Table 4.

If you have any questions, please contact James McCarty at (510) 628-3220.

Yours very truly,

HARDING LAWSON ASSOCIATES

James G. McCarty
Project Engineer

Stephen J. Osborne Geotechnical Engineer

JGM/SJO/mlw/42633/037486L

3 copies submitted

Attachments: Table 1 – Groundwater Elevations Data

Table 2 - Summary of Product Removal and Product Thickness Data

Table 3 - Groundwater Sample Results

Table 4 - Summary of Operation and Maintenance Activities

Plate 1 – Vicinity Map

Plate 2 - Site Plan

Plate 3 - Groundwater Elevations, September 28, 1999

GE 658

ED 3-31-03

Plate 4 - Groundwater Sample Results, September 28, 1999

Appendix A - Groundwater Sampling Forms

Appendix B - Laboratory Reports

Harding Lawson Associates

TABLES

Table 1. Groundwater Elevations Data
Port of Oakland
2277 7th Street, Oakland California

Well ID	Elevation Top of Casing (feet)	Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)
MW-2	14.36	12/31/1997	8.73	5 .63
	,	4/13/1998	7.72	6.64
		11/6/1998	9.43	4.93
		3/19/1999	8.21	6.15
		6/24/1999	8 .91	5.45
·		9/28/1999	9.42	4.94
MW-4	13.15	12/31/1997	7.09	6.06
		4/13/1998	7.71	5.44
		11/6/1998	8.69	4.46
		3/19/1999	8.00	5.15
		6/24/1999	8.45	4.70
		9/28/1999	8.73	4.42
MW-5	13.49	12/31/1997	6.38	7.11
		4/13/1998	5.56	7.93
		11/6/1998	9.56	3.93
		3/19/1999	6.20	7.29
		6/24/1999	6.73	6.76
 		9/28/1999	6.91	6.58
MW-6	14.00	6/24/1999	8.61	5.39
		9/28/1999	9.26	4.74
MW-7	14.35	12/31/1997	8.88	5.47
		4/13/1998	7.8 6	6.49
		11/6/1998	9.55	4,80
		3/19/1999	8.41	5.94
		6/24/1999	9.08	5.27
		9/28/1999	9.60	4.75

Elevation data relative to Port of Oakland datum; well surveys performed on September 12, 1996, and February 4, 1998, by PLS Surveys.

⁻ Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.

Table 2. Product Removal and Product Thickness Data Port of Oakland 2277 7th Street, Oakland California

			22// /th	Street, Oa	Kiang Camo	rma	
Well	Elevation	Date Of	Depth	Depth	Product	Estimated	Product Removal
ID	of Top of	Monitoring	to Free	to Water	Thickness	Product	Method ²
	Casing ¹	_	Product	(feet)	(feet)	Removed	
	(feet)		(feet)	(1001)	(1001)	(gallons)	
MW-1	14.14	12/31/1997	_	-	=	0.2	passive skimmer
******		1/29/1998	_	-	_	0.2	passive skimmer
		3/2/1998	_	•	-	0.018	passive skimmer
		5/11/1998	-		-	0.02	passive skimmer
		6/15/1998	-	-	-	0.2	passive skimmer
		11/6/1998	9.34	10.3	0.96	1.2	passive skimmer
		1/7/1999	-	- :	· -	0.2	passive skimmer
		2/11/1999	-	-	-	0.2	passive skimmer
		3/12/1999	•	-	-	0.2	passive skimmer
		3/19/1999	NM	8.45	>0.01	0.07	passive skimmer
		4/14/1999	•	-	-	0.2	passive skimmer
	1	5/11/1999	-	-	-	0.2	passive skimmer
		6/24/1999	8.88	9.63	0.8	0.2	passive skimmer
		7/15/1909	-		-	0.2	passive skimmer
		7/16/1999			-	0.2	passive skimmer
		8/27/1999	-			0.2	passive skimmer
		9/28/1999			0.65	0.2	passive skimmer
MW-3	14.22	12/31/1997	-	-	•	30	active skimmer
		1/29/1998	•	-	-	10	active skimmer
		4/13/1998	-	-	-	240	active skimmer
		5/11/1998	•	-	-	1,545	active skimmer
		6/15/1998	•	-	-	1,950	active skimmer
		11/6/1998	8.84	9.94	1.1	500	active skimmer
		1/5/1999	-	-	-	275 ²	active skimmer
		1/14/1999	-	-	-	400 ²	active skimmer
		2/3/1999	-	-	-	400²	active skimmer
		2/26/1999	-	0.05	-	570²	active skimmer
		3/19/1999	7.52	8.05	0.5	211	active skimmer
		6/16/1999	-	0.56	-	310	active skimmer
		6/24/1999	8.38	8.56	0.2		active skimmer
		7/14/1999	-	***	-	30	active scimmer
		8/27/1999		•		200 100	active skimmer active skimmer
MW-6	14.00	9/28/1999 13/31/97			0.2	0.0014	passive skimmer
IVI W =0	14.00	1/29/1998	•	-	-	0.0014	passive skimmer
		3/2/1998	-	_	_	0.0014	passive skimmer
		11/6/1998	NM	9.62	>0.01	0.0014	passive skimmer
		3/19/1999	NM NM	7.37	>0.01	0.0 0.0	passive skimmer
200001	10.04						passive skilling
MW-8 1	12.94	12/31/1997	8.49	8.82	0.33	4.38	-
		11/6/1998	9.25	10.3	1.1	3.48	-

⁻ Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.

⁻ Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product

⁻ Product removal volumes from 11/6/98 on represent total product removed during that reporting period.

Free product in well is too viscous to allow product thickness or groundwater level measurements.

Product removal totals for MW-3 are estimated from documentation of product removal from the treatment system performed by Performance Excavators, Inc.

NM - Well checked for free product but was not able to detect a measurable amount in the well.

Table 3. Groundwater Sample Result
Port of Oakland
2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (μg/l)	TPHd (μg/1)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/1)	MTBE (μg/l)
MW-2	05/27/94	87	470	NA	<0.5	<0.5	<0.5	<0.5	NA
	03/29/95	<50	110	1,400	<0.4	<0.3	<0.3	<0.4	NA
	09/06/95	<50	NA	NA	<0.4	<0.3	<0.3	<0.4	NA
	01/08/96	<50	<50	1200	· <0.4	<0.3	<0.3	<0.4	NA
	04/04/96	<50	160	320	<0.5	<0.5	<0.5	<1.0	NA
	07/10/96	<50	120	1400	<0.4	<0.3	<0.3	<0.4	NA
	12/03/96	<50	230 ^{1.2}	<250	<0.5	<0.5	<0.5	<1.0	NA
	03/28/97	<50	714	<250	<0.5	<0.5	<0.5	<1.0	NA
	06/13/97	51	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	09/18/97	82	<50	<250	0.56	<0.5	<0.5	<1.0	NA
	12/31/97	<50	<47	<280	1,4	<0.5	<0.5	<1.0	NA
	04/13/98	<50	<50	<300	<0.5	<0.5	<0.5	<1.0	NA
	11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/19/99	<50	< <u>5</u> 0	<300	<0.5	<0.5	<0.5	<0.5	<2 *
	06/24/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
MW-4	09/11/95	150	<200	500	23	<0.3	<0.3	<0.4	NA
	01/08/96	7 90	90	400	170	1.2	0.6	0.6	NA
	04/04/96	1,100	180	300	320	1.6	1.1	1.2	NA
	07/10/96	1,200	120	300	470	1.5	0.8	0.8	NA
	12/03/96	990	220 ^{1.2}	<250	350	3.3	1.3	1.3	NA
	03/28/97	440 ²	<50	<250	190	1.2	0.64	<1.0	NA
	06/13/97	1,300	92 ⁵	<250	500	5.5	3.4	2.8	NA
	09/18/97	1,300	150	<250	550	4.9	2.1	2.00	NA
	12/31/97	73 ^{1.2.3}	<47	<280	110 ¹	1.0 ^t	<0.5	<1.0	NA
	04/13/98	150 ^{2.3}	<50	<300	520	2.9	<2.5	<5.0	NA
	11/06/98	<50	<50	<300	250	1.7	<1	<1	<4
	03/19/99	81	<50	<300	250	<1	1.2	<1	<4
	06/24/99	190	<50	<300	360	1.4	2.2	1	24
	09/28/99	750 ^{3,5}	63 ^{3,5}	<300	280	1.5	<1	<1	<4
MW-5	09/11/95	90	<300	2,500	3.3	<0.3	<0.3	<0.4	NA
	04/04/96	<50	180	520	<0.5	<0.5	<0.5	<1.0	NA
	07/10/96	<50	120	1,500	<0.4	<0.3	<0.3	<0.4	NA
	12/03/96	<50	200 12	<250	<0.5	<0.5	<0.5	<1.0	NA
	03/28/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	06/13/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	09/18/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA

Table 3. Groundwater Sample Result
Port of Oakland
2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (μg/l)	TPHd (μg/l)	TPHmo (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/1)	MTBE (μg/1)
MW-5	12/31/97	<50	<47	<280	<0.5	<0.5	<0.5	<1.0	NA
(cont.)	04/13/98	<50	<47	<280	<0.5	<0.5	<0.5	<1.0	NA
	11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/19/99	<50	<50	<300	· <0.5	<0. <u>5</u>	<0.5	<0.5	<2
	06/24/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	3.1
	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
MW-6	11/06/98	120	12,000	1,200	19	0.65	1.8	<0.5	<2
	03/19/99	170	3,800	580	21	0.86	1.5	2.9	<2
	06/24/99	120	1,700 ⁷	<300 ⁷	18	<0.5	1	<0.5	54
	09/28/99	1303,5	820	<300	20	0.51	2.2	<0.5	<2
MW-7	09/06/95	<50	<300	800	<0.4	<0.3	<0.3	<0.4	NA
	01/08/96	<50	410	110	<0.4	<0.3	<0.3	<0.4	NA
	04/04/96	<50	5 30	340	<0.5	<0.5	<0.5	<1.0	NA
	07/1 0/96	80	840	1,700	<0.4	<0. <u>3</u>	<0.3	<0.4	NA 🔨
	12/03/96	<50	280 ^{1.2}	<250	<0.5	<0.5	<0.5	<1.0	NA
	03/28/97	65 ⁶	94 ²	<250	<0.5	<0.5	<0.5	<1.0	NA
	06/13/97	<50	100	<250	<0.5	<0.5	<0.5	<1.0	NA
•	09/18/97	<50	240	<250	<0.5	<0.5	<0.5	<1.0	NA
	12/31/97	<50	53 ^{2.3}	<280	<0.5	<0.5	<0.5	<1.0	NA
`	04/13/98	<50	<48	<290	<0.5	<0.5	<0.5	<1.0	NA
· -	11/06/98	< 50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	5,3
	06/24/99	73	<50	<300	<0.5	<0.5	<0.5	<0.5	12
•	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	14

Analyte found in the associated blank as well as in the sample.

² Hydrocarbons present do not match profile of laboratory standard.

Low-boiling-point/lighter hydrocarbons are present in the sample.

Chromatographic pattern matches known laboratory contaminant.

Hydrocarbons are present in the requested fuel quantification range, but do not resemble pattern of available fuel standard.

High-boiling-point hydrocarbons are present in sample.

Sample did not pass laboratory QA/QC and may be biased low

⁻ Data from December 1997 through April 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.

⁻Data prior to December 1997 taken from Groundwater Analytical Results, Quarterly Groundwater Monitoring Report: Third Quarter 1997, Building C-401, 2277 7th Street, Oakland, CA, dated October 24, 1997, by Uribe and Associate

NA Not Analyzed.

Table 4. Summary of Operation and Maintenance Activities Port of Oakland 2277 7th Street, Oakland California

Date	System Status	Comments
07/15/99	System Not Running	Restart system, remove product from MW-1, active skimmer appears to be removing water and product at a high rate, raise skimmers 6 inches
		÷
07/16/99	System Running	Remove product from MW-1, active skimmer appears to be removing product at a slow rate, lower skimmer 2 inches, seems to improve
08/27/99	System Running	Remove product from MW-1, lower passive skimmer 6 inches, check active skimmer, performing well
09/28/99	System Running	Remove product from MW-1 measure product level in both MW-1 and MW-3, active skimmer appears to be removing product at a slow rate, lower skimmers 3 inches

Harding Lawson Associates

December 1, 1999

42633.1

Mr. John Prall Associate Environmental Scientist Port of Oakland 530 Water Street Oakland, California 94607

Quarterly Groundwater Monitoring and Product Recovery Report 3rd Quarter of 1999 2277 Seventh Street Oakland, California

Dear Mr. Prall:

Harding Lawson Associates (HLA) has prepared this Quarterly Groundwater Monitoring and Product Recovery Report on behalf of the Port of Oakland for the groundwater monitoring and sampling program and the operation of the product recovery system at 2277 Seventh Street in Oakland, California (Plate 1) between July 1, 1999 and September 30, 1999.

This report summarizes the monitoring of five groundwater monitoring wells, MW-2, MW-4, MW-5, MW-6, and MW-7 and the maintenance activities of the product recovery system during the third quarter of 1999. MW-3 and MW-1 contain in-well product skimmers that recover separate-phase petroleum hydrocarbons. MW-8 is not because it contains a thick viscous petroleum hydrocarbon. Well locations are presented on Plate 2.

The monitoring wells were installed at the site by others to assess groundwater quality following the removal of underground storage tanks (USTs) from the site in September 1993. The former USTs, located on the south side of Building 401, consisted of two 10,000-gallon gasoline tanks (CF-17 and CF-18), one 500-gallon oil tank (CF-19), and one 300-gallon waste oil tank (CF-20).

MONITORING AND SAMPLING OF MONITORING WELLS

HLA conducted the groundwater sampling at 2277 7th Street on September 28, 1999. Prior to purging and sampling the monitoring wells, HLA measured the depth to water with an electric water level indicator. HLA also measured the product level thickness in wells MW-1 and MW-3. Groundwater level measurements are summarized in Table 1, groundwater elevations and the gradient direction are presented on Plate 3, and product thickness measurements are summarized on Table 2. HLA did not use the

groundwater level measurements from MW-1, MW-3, and MW-8 to calculate groundwater elevations presented on Plate 3 because MW-1, and MW-3, contained product recovery equipment and because the thick viscous product in MW-8 prevented accurate groundwater level measurements.

After measuring the depth to water, HLA purged MW-2, MW-4, MW-5, MW-6, and MW-7 using a PVC bailer. Conductivity, pH, and temperature were monitored periodically during purging. Sampling was not performed until at least three well casing volumes of water were removed and conductivity, pH, and temperature measurements had stabilized. The depths to groundwater and field parameter measurements were recorded on Groundwater Sampling Forms included in Appendix A. The Port waste disposal contractor, Performance Excavators, Inc, disposed of the purge water.

HLA collected groundwater samples from the five monitoring wells using a Teflon disposable bailer and then transferred the groundwater into laboratory-provided containers. A duplicate sample was collected from MW-4. Sample containers were labeled with the sample number, date and time of collection, and sampler's initials, then placed in an insulated cooler with blue ice. The samples were accompanied by a laboratory provided trip blank and delivered under chain-of-custody protocol to Curtis and Thompkins, Ltd., a California-state certified laboratory.

LABORATORY ANALYSIS GROUNDWATER SAMPLES

Curtis and Tompkins, Ltd. performed the chemical analyses of the groundwater samples using the following analytical methods:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 modified.
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl t-butyl ether (MTBE) in accordance with Method 8021B.
- TPH as diesel (TPHd) in accordance with EPA Method 8015 modified following a silica-gel cleanup procedure.
- TPH as motor oil (TPHmo) in accordance with EPA Method 8015 modified following a silica-gel cleanup procedure.

The trip blank was analyzed for BTEX and MTBE. The laboratory results for the groundwater samples are summarized in Table 3 and are shown on Plate 4. Copies of the laboratory results and chain-of-custody forms are provided in Appendix B.

FINDINGS

Results of the September 28, 1999 groundwater sampling are summarized below:

- Separate-phase hydrocarbons were observed in monitoring wells MW-1, MW-3 and MW-8.
- TPHg was reported at a concentration of 750 micro grams per liter (μg/l) in MW-4 and 130 μg/l in MW-6. TPHg was not detected in MW-2, MW-5 or MW-7. TPHg was detected in the sample from MW-4 at 190 μg/l and in MW-6 at 120 μg/l last quarter.
- Benzene was reported at a concentration of 280 μg/l in MW-4, at 20 μg/l in MW-6 and was not detected in MW-2, MW-5, or MW-7. Benzene was detected in the sample from MW-4 at 360 μg/l and in MW-6 at 18 μg/l last quarter
- Toluene was reported at a concentration of 1.5 μg/l in MW-4, at 0.51 μg/l in MW-6 and was not detected in MW-2, MW-5, or MW-7.
- Ethylbenzene was reported at a concentration of 2.2 μg/l in MW-6 and was not detected in MW-2, MW-4, MW-5, or MW-7.
- Total xylenes were not detected above the reporting limit in any of the wells sampled.
- MTBE was reported at a concentration of 14 μg/l in MW-7 and was not detected in MW-2, MW-4, MW-5 or MW-6. MTBE was detected in the sample from MW-7 at 12 μg/l last quarter and at 5.3 μg/l the quarter before.
- TPHd was reported at a concentration of 63µg/l in MW-4 and of 820 µg/l in MW-6 and was not detected in MW-2, MW-5, and MW-7. TPHd was not detected in the sample from MW-4 and was detected in MW-6 at 1,700 µg/l last quarter.
- TPHmo was not detected above the reporting limit in any of the wells sampled.

QUALITY ASSURANCE AND QUALITY CONTROL

- BTEX and MTBE were not detected in the trip blank.
- The relative percent difference between the analytical results from MW-4 and the duplicate sample was considered within acceptable limits, ranging from zero to 23 percent

PRODUCT RECOVERY SYSTEM

The product recovery system consists of an air-actuated (active) product skimmer in MW-3 and a passive product skimmer in MW-1. HLA completed product recovery at MW-6 and removed the passive skimmer on April 19, 1999. The product in MW-3 discharges to a product recovery tank and HLA periodically removes the product collected in skimmer in MW-1. HLA removed product from the passive skimmer at MW-1 four times during this reporting period. The total volume of product recovered from MW-1 during the third quarter of 1999 was 0.8 gallons. The Port's waste disposal contractor, Performance Excavators,

December 1, 1999

42633,1

Mr. John Prall

Associate Environmental Scientist

Port of Oakland

Page 4

Inc., removed product from the product recovery tank on July 16, 1999. The total product removed was an estimated to be 830 gallons, consisting of product and water discharged by the active skimmer in MW-3. Table 2 presents product removal data. A summary of the activities during the past quarter associated with the operation and maintenance of the product recovery system is presented in Table 4.

If you have any questions, please contact James McCarty at (510) 628-3220.

Yours very truly,

HARDING LAWSON ASSOCIATES

James G. McCarty Project Engineer

Stephen I. Osborne Geotechnical Engineer

JGM/SJO/miw/42633/037486L

3 copies submitted

Attachments: Table 1 – Groundwater Elevations Data

Table 2 - Summary of Product Removal and Product Thickness Data

Table 3 - Groundwater Sample Results

Table 4 - Summary of Operation and Maintenance Activities

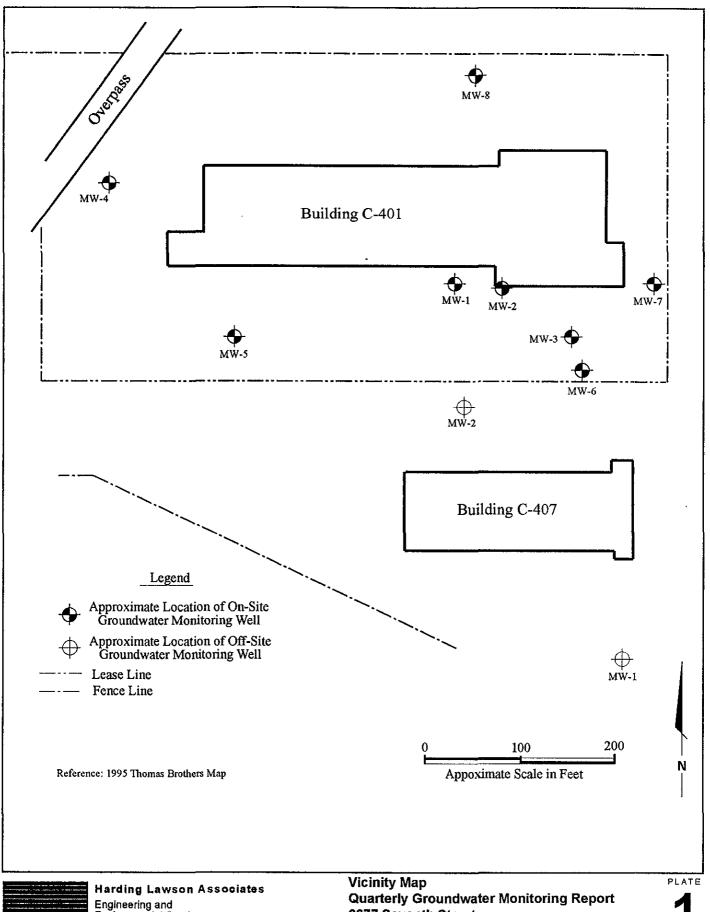
GE 656

EXT. 3-31-03

Plate 1 – Vicinity Map

Plate 2 - Site Plan

Plate 3 – Groundwater Elevations, September 28, 1999

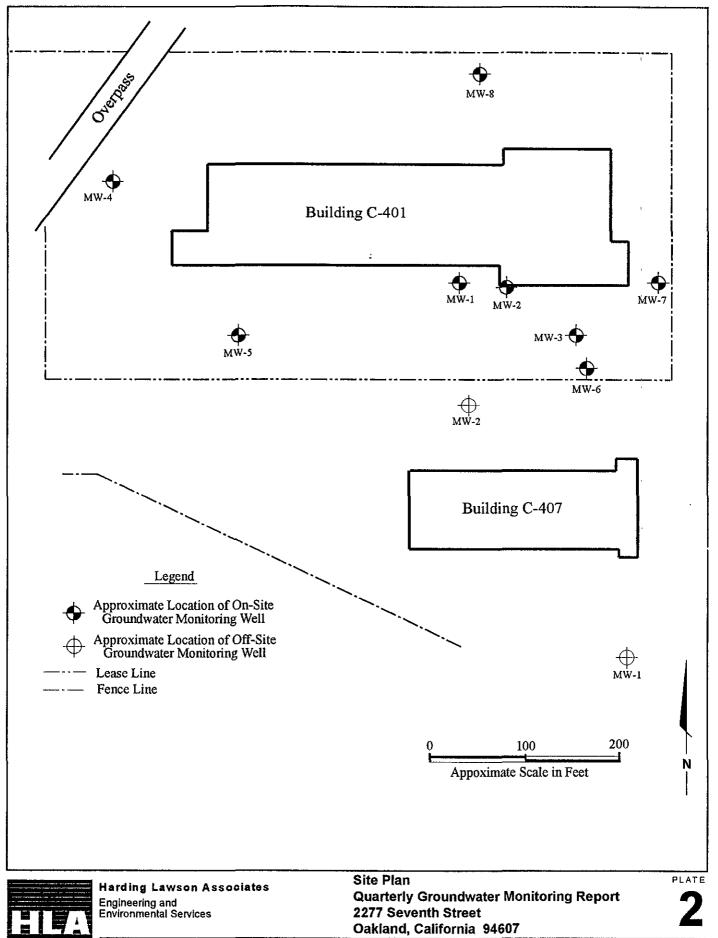

Plate 4 – Groundwater Sample Results, September 28, 1999

Appendix A - Groundwater Sampling Forms

Appendix B - Laboratory Reports

Harding Lawson Associates

PLATES

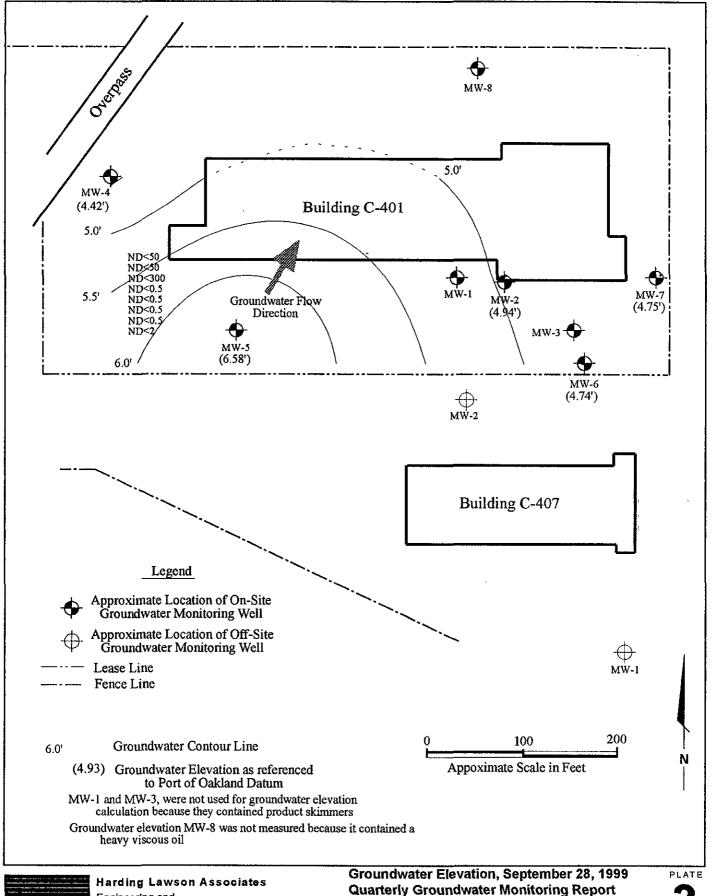

Engineering and Environmental Services

2277 Seventh Street Oakland, California 94607

DRAWN PROJECT NUMBER jgm 42633.1

APPROVED

DATE 09/28/99



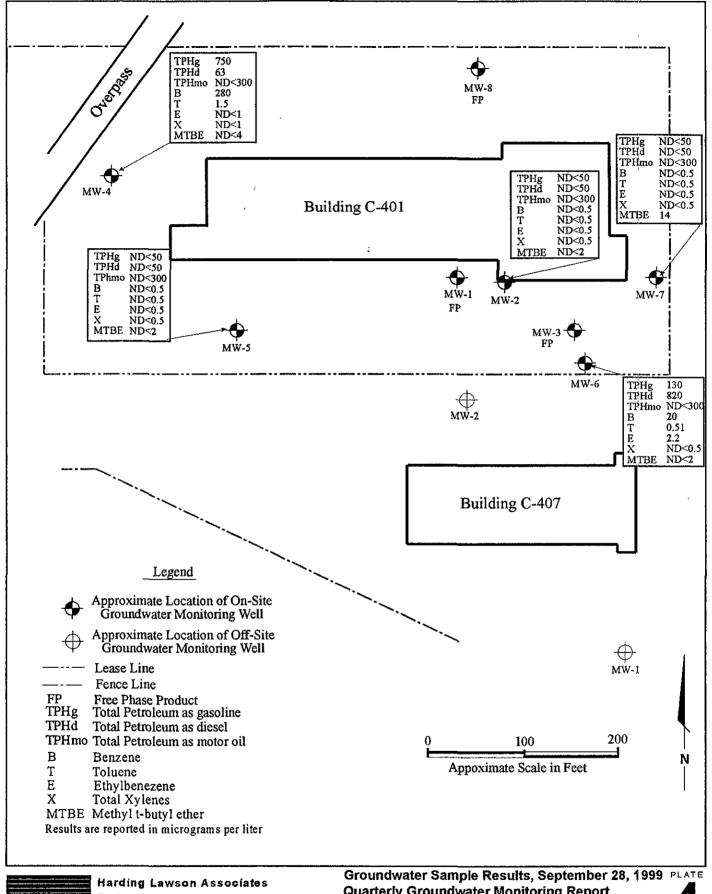
DRAWN jgm

PROJECT NUMBER 42633.1

APPROVED

DATE 09/28/99

Engineering and Environmental Services


Groundwater Elevation, September 28, 1999
Quarterly Groundwater Monitoring Report
2277 Seventh Street
Oakland, California 94607

3

jgm PROJECT NUMBER 42633.1

APPROVED

DATE 09/28/99

Engineering and **Environmental Services**

42633.1

jgm

Quarterly Groundwater Monitoring Report 2277 Seventh Street

Oakland, California 94607 DRAWN PROJECT NUMBER APPROVED

DATE 09/28/99

APPENDIX A

GROUNDWATER SAMPLE FORMS

GROUND-WATER SAMPLING FORM **Harding Lawson Associates** Engineering and Well No. __ MW - 1 **Environmental Services** Well Type: ✓ Monitor ☐ Extraction ☐ Other ____ Job Name 2277 7+4 54. ☐ Other Job Number 42633 - . Date 9/128/99 __ Time __ Recorded by ALUKA WELLERURGING (A SANGKA A REVERGE METHOD **DURGEVORUME** Ø Bailer - Type: PUC Casing Diameter (D in inches): ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: 2 2-inch Q 4-inch Q 6-inch Q Other ☐ Other - Type: _ Total Depth of Casing (TD in feet BTOC): _____ Water Level Depth (WL in feet BTOC): ______ STANCE THE STANCES Number of Well Volumes to be purged (# Vols) ☐ Near Bottom ☐ Near Top ☐ Other_ **⊈**3 □4 □5 □10 Other ____ Depth in feet (BTOC): _____ Screen Interval in Feet (BTOC) from _____ to ___ (1)3(d=1/6)491(=6/14/84)431(0)(8 ____ gallons _ X ____ X 0.0408 = ___ WL (feet) D (inches) Calculated Purge Volume RUNGERIME **CORGERATE** PAGITALIPURGEVOLUME Start _____ Stop____ Elapsed Initial _____ gpm Final ____ gpm GIGADARAMGIGI MERSUBIANGAN Cond. Minutes Since Cond. Minutes Since Other ____ ρН (µmhos/cm) Other (µmhos/cm) Pumping Began Pumping Began Meter Nos. Observations During Purging (Well Condition, Turbidity, Color, Odor): 0.2 gal modust remark from passibe Skimmer Discharge Water Disposal: Sanitary Sewer Storm Sewer Other Drum on Site THE SAME TESTS OF SOME ONE WAY WITH THE SAME TO SAME THE SAME TO SAME THE S ☐ Same As Above M Bailer - Type: Teflou Disposable - Grab - Type: ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: _____ ☐ Other - Type: _____ Sample Series: ___ Volume/Cont. Analysis Requested Comments Preservatives Sample No. Curtis + Tompkins of silica get chearup 2 Ambers TPHd, TPHMO TPH9, BTEX HCL MTBE OMENION OF THE **Duplicate Samples** Blank Samples Other Samples Original Sample No. | Duplicate Sample No. Sample No. Sample No. Trip

GROUND-WATER SAMPLING FORM Harding Lawson Associates Engineering and Environmental Services Well No. MW-2 Well Type: Monitor ☐ Extraction ☐ Other ___ Job Name 2277 7+4 54. Well Material: 2 PVC ☐ St. Steel □ Other Job Number 42633 - 1 Date 9/28/99 Recorded by Sampled by _ Jen HD ME A STATE OF THE PERSON AND THE PURGING THE SOUTH SERVICE OF THE STATE OF THE SERVICE OF THE SE **CHECKENERO** RURGEVOLUME PVC Z Bailer - Type: ____ Casing Diameter (D in inches): ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: Ø 2-inch □ 4-inch □ 6-inch □ Other _ Total Depth of Casing (TD in feet BTOC): 15.27 C Other - Type: _ Water Level Depth (WL in feet BTOC): _____ BROKE REAL PARTIES Number of Well Volumes to be purged (# Vols) ☐ Near Bottom ☐ Near Top ☐ Other_ Other __ **4**3 **04 05 010** Depth in feet (BTOC): _____ Screen Interval in Feet (BTOC) PROPERTY (CONTINUES) THE PROPERTY OF THE PROP $15.27 - 9.42 \times 2^2 \times 3 \times 0.0408 = 2.86$ Calculated Purge Volume " gallons PURGERATE ACTUAL PURGE VOLUME! PURGETIME 1056 Start 1059 Stop 9 Elapsed Initial _____ gpm Final ____ gpm FIELD PARAMETER MEASUREMENT Minutes Since Minutes Since Cond. T☐°C Other _ Other (umhos/cm) (umhos/cm) Pumping Began Pumping Began 7.76 2360 17.72 2350 7.67 2310 72.0 9510 Meter Nos. Observations During Purging (Well Condition, Turbidity, Color, Odor): no odor initially clean becomes 5, Hy brown Discharge Water Disposal: Sanitary Sewer Storm Sewer Wother Drum on Site Discharge Water Disposal: Sanitary Sewer Storm Sewer Other Drum A SEMPLINE CELEVATION OF THE PROPERTY OF THE P SCHELL (SOLETHOE) ☐ Same As Above # Bailer - Type: Teflow Disposable | Grab - Type: ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: ☐ ☐ Other - Type: ☐ Sample Series: ___ Volume/Cont. Analysis Requested Preservatives Sample No. Comments Curtis + Tompkins of silica gel cheanys M Ambers TPHd, TPHMO NW -2 TPH9, BTEX CUALITY CONTROLS AMPLES **Duplicate Samples Blank Samples** Other Samples Original Sample No. Duplicate Sample No. Sample No. Sample No Type

GROUND-WATER SAMPLING FORM Harding Lawson Associates Engineering and **Environmental Services** Well No. MW-3 Well Type: Monitor □ Extraction □ Other Well Material: ☑ PVC □ St. Steel □ Other ____ Job Number 42 633 - 1 Date <u>9/28/99</u> Time ___ Recorded by _____ Sampled by ____ **PERCEMENTO** ANTRE EVOLUME Z Bailer - Type: PVC Casing Diameter (D in inches): ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: 2 2-inch 4-inch 6-inch Other Other - Type: Total Depth of Casing (TD in feet BTOC): Water Level Depth (WL in feet BTOC): ____ BENNENDIAKESEENIKE Number of Well Volumes to be purged (# Vols) ☐ Near Bottom ☐ Near Top ☐ Other___ □ Other _____ **7**3 C 5 C 10 Depth in feet (BTOC): _____ Screen Interval in Feet (BTOC) THE STATE OF THE S from _____ to ____ - ______ X ____ X ____ X 0.0408 = _____ Calcula Calculated Purge Volume RECEIPATE **PACTUAL PURGE VOEUME** REFINE Start _____ Stop___ Elapsed Initial _____ gpm Final ____ gpm RIELD PARAMETER MEASUREMENT Minutes Since Minutes Since Cond. Other Other __ (µmhos/cm) Pumping Began Pumping Began (umhos/cm) Meter Nos. Observations During Purging (Well Condition, Turbidity, Color, Odor): 0.2 feet product in well Discharge Water Disposal: Sanitary Sewer Storm Sewer Other Drum 是是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种,但是一种的一种, स्तर्भाववार (क्रांशवार विकास ☐ Same As Above Ø Bailer - Type: Teflou Disposable O Grab - Type: ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: _____ ☐ Other - Type: ___ ENERGY ENGINEERING Sample Series: ____ Curtis + Tomplains of silica goi cheaning Volume/Cont. Analysis Requested Preservatives Sample No. 2 Ambers TPHd, TPHmo TPH9, BTEX 3 V 0 45 MTBE QUARTY CONTROLS AMPLES Other Samples **Duplicate Samples** Blank Samples Sample No. Original Sample No. | Duplicate Sample No. Sample No. Type Trip

0746

Harding Lawson Associates GROUND-WATER SAMPLING FORM Engineering and **Environmental Services** Well No. MW-4 Well Type: ✓ Monitor □ Extraction □ Other ___ Job Name 2277 7+4 54. ☐ Other ____ Well Material: ☑ PVC ☐ St. Steel Job Number 42633-Time 1138 Date 9/28/99 Sampled by Sew ADL Recorded by MARKET THE RESIDENCE OF THE PURCHASE OF THE PROPERTY OF THE PR Kaukof Kentor TURGEVOLUME PVC 2 Bailer - Type: ____ Casing Diameter (D in inches): ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.:___ 2 2-inch 4-inch 6-inch Other _ Total Depth of Casing (TD in feet BTOC): 18.84 Other - Type: Water Level Depth (WL in feet 8TOC): 5-13 Number of Well Volumes to be purged (# Vols) □ Near Bottom □ Near Top □ Other_ Q4 Q5 Q10 **7**3 C Other _ Depth in feet (BTOC): _____ Screen Interval in Feet (BTOC) THE CONTROL OF THE PROPERTY OF THE PARTY OF 18.84 - 8.73) x 2 2 x 3 x 0.0408 = 4.95 Calculated Purge Volume D (inches) ACTUAL FURGEVOLUME RUFGERIME #24 Start 1133 Stop 9 Elapsed Initial _____ gpm Final ____ gpm FIELD PARAMETER MEASUREMENT Minutes Since Cond. Minutes Since TQ °C Other _ Other (µmhos/cm) Pumping Began (µmhos/cm) Pumping Began 8.01 74.3 1890 7.62 1700 Meter Nos. 95ID Observations During Purging (Well Condition, Turbidity, Color, Odor): No Sor Clas to to the brown Discharge Water Disposal: Sanitary Sewer Storm Sewer Other Drum AND THE SAME PROPERTY OF THE S ્વારા વેલા (ઇસ્ટો**ઇસ્ટો**ઇસ ☐ Same As Above Bailer - Type: Reflow Disposable O Grab - Type: ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: _____ ☐ Other - Type: ____ Sample Series: _ Curtis + Tompkins of silica get cleanup Analysis Requested Preservatives Volume/Cont. Sample No. QIAMbers TPHd. TPHMO MW - 4 TPH9, BTEX MTBE QUALITY CONTROL SAMPLES Blank Samples **Duplicate Samples** Sample No. Original Sample No. Duplicate Sample No. Sample No. DUP0999 MW>4

MW=4 DUP0999 Frip

GROUND-WATER SAMPLING FORM **Harding Lawson Associates** Engineering and Well No. MW-5 **Environmental Services** Well Type: ✓ Monitor □ Extraction □ Other Job Name 2277 7+4 54. Well Material: ☑ PVC ☐ St. Steel ☐ Other Job Number 42633-Date 9/20/99 Sampled by 3 Cus HD Recorded by WEEL-PURGING OF THE PROPERTY O EPIEGENETHODI PREGENOLUME Z Bailer - Type: ____ Casing Diameter (D in inches): ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: 2 2-inch 4-inch 6-inch Other Total Depth of Casing (TD in feet BTOC):) 子・6 8 Other - Type: AND CONTRACTOR OF THE PROPERTY Number of Well Volumes to be purged (# Vois) - O Near Bottom O Near Top O Other_ **7**3 Q 5 Q 10 □ Other Depth in feet (BTOC): _____ Screen Interval in Feet (BTOC) from _____ to ___ POTE CENTRAL PROPERTY OF THE P 17.68 - 6.91) x 2 2 x 3 x 0.0408 = 5.27 Calculated Purge Volume D (inches) ACTUAL/PURGE VOLUME HUHGERATE FURGETIME CA4ZStart <u>CASI</u> Stop 9 Elapsed Initial _____ gpm Final ____ gpm REPORTATION OF THE REAL PROPERTY OF THE PROPER Minutes Since Cond. Minutes Since Cond. Other Other _ (µmhos/cm) (µmhos/cm) Pumping Began Pumping Began 7 23 2460 74.9 725 2551 7.24 **2250** 7.26 Observations During Purging (Well Condition, Turbidity, Color, Odor): Qoo, no color be comes nee Discharge Water Disposal: Sanitary Sewer Storm Sewer Other Drum WAS STORY OF THE PERSON OF THE अन्तराम्यार् (कार्यक्रम् ☐ Same As Above Bailer - Type: ______ Teflow Disposable ____ O Grab - Type: ___ ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: _____ _Q. Other - Type: _ Sample Series: -Sample No. Volume/Cont. Analysis Requested Comments Preservatives Curtis +Tomplains al Ambers TPHd, TPHMO TPH9, BTEX ~ MTBE QUALITY CONTROL SAMPLES Other Samples **Duplicate Samples** Blank Samples Original Sample No. | Duplicate Sample No. | Sample No. Sample No. Type 1RIP 0999

OFFICE COPY - WINTE FIELD COPY - CANARI

0746

Harding Lawson Associates GROUND-WATER SAMPLING FORM Engineering and **Environmental Services** Well No. MW~ C Well Type: ✓ Monitor ☐ Extraction ☐ Other.____ Job Name 2277 7+4 54. □ Other Job Number 42633 Recorded by Another Sampled by SGM + DL STATE OF THE PROPERTY OF THE P NAME (COMENTAL) DERGEVOLUME Ø Bailer - Type: PVC Casing Diameter (D in inches): ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.:____ 2-inch 4-inch 6-inch 6Other □ Other - Type: Total Depth of Casing (TD in feet BTOC): ___ Water Level Depth (WL in feet BTOC): ___ Number of Well Volumes to be purged (# Vols) - Near Bottom Near Top Other_ **⊈**3 □4 □5 □10 □ Other __ Depth in feet (BTOC): _____ Screen Interval in Feet (BTOC) FUEGEVOLUME GALGUTATIONS from _____ to ____ $^{2}x = \frac{3}{3} \times 0.0408 = \frac{4.3}{3}$ Calculated Purge Volume D (inches) RURGERAVE **PACTUAL PURGEVOLUME HURGETIME!** 1704 Start 1226 Stop 22 Elapsed Initial _____ gpm Final ____ gpm EJELD PARAMETER MEASUREMENT Minutes Since Cond. Taric Other _ Minutes Since Cond. Other _ (µmhos/cm) (µmhos/cm) Pumping Began Pumping Began 7.54 4790 75.2 44.3 Meter Nos. Observations During Purging (Well Condition, Turbidity, Color, Odor): fuel odar, clear wiftoatics to grey see Discharge Water Disposal: Sanitary Sewer Storm Sewer Other Drum STATE OF STREET ☐ Same As Above Bailer - Type: Reflow Disposable O Grab - Type: ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.: ☐ ☐ Other - Type: ______ Sample Series: Lab Comments. Curtis + Tompkins + silica get clea Volume/Cont. Analysis Requested Preservatives Sample No. AlAmbers TPHd, TPHMO mw-6 TPH9, BTEX HCI MTBE **OUALITY CONTROL SAMPLES** Other Samples Blank Samples **Duplicate Samples** Original Sample No. | Duplicate Sample No. Sample No. Sample No. Trip

Harding Lawson Associates	GROUND-WATER SAMPLING FORM
Engineering and Environmental Services	Weil No. MW-7
14h SI	Well Type: ✓ Monitor □ Extraction □ Other
ob Name 2277 7+4 54.	Well Material: ☑ PVC ☐ St. Steel ☐ Other
ob Number 42633 - 1	- Date <u>9/28/99</u> Time <u>1033</u>
Recorded by (Signature)	Sampled by Jour H. V. (Indias)
	erickenser en
FURCEVOLINE	FURGEMERION
Casing Diameter (D in inches):	Ø Bailer - Type: PVC ☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.:
☑ 2-inch ☐ 4-inch ☐ 6-inch ☐ Other	☐ Other - Type:
Water Level Depth (WL in feet BTOC): 9.65	ास क्षा पुराच्या पंतर पुरव⊒का स्टब्स स
Number of Well Volumes to be purged (# Vols) 3 0 4 0 5 0 10 0 Other	- Near Bottom Near Top Other
	Depth in feet (BTOC): Screen Interval in Feet (BTOC) from to
(18.16 - 9.60) x 2 2x	
(18.16 - 1.60) X A X	2 X 0.0408 = 4.2 gailons Vols Calculated Purge Volume "
·	
PURCEAUME PURCE	ACTEASPORGE VOLUME
1015 Start 1027 Stop 12 Elapsed Initial	gpm Final gpm 4,5 gallons
RIELD PARAMETER MEASUREMEND	gp/// / /// gp///
	Minutes Since Cand. TD°C
Pumping Began PH (µmhos/cm) PoF Other —	— Minutes Since pH Cond. T□°C Other
1, 7.60 2300 724	
1.5 7.58 77.30 72.1 3 7.47 2210 71.4	
3 7.47 Javo 71.4 4.5 7.43 2210 72.0	
9.3 7.4 220 72.9	Meter Nos. 9570
Observations During Purging (Well Condition, Turbidity, Color, Odo	i): slight sulfur oder sitty brown
Discharge Water Disposal: Sanitary Sewer Storm Sewer	Fother Drum on Site
- FINANCES (SEE SECTION)	SAMBLE CONTRACTOR OF THE SAME
PRINCIPLES	☐ Same As Above
M Bailer-Type: Teflow Disposable	☐ Grab - Type:
☐ Submersible ☐ Centrifugal ☐ Bladder; Pump No.:	
Sample Series:	
Sample No. Volume/Cont. Analysis Requested	Preservatives Lab Comments.
MW-7 AlAmbers TPHd, TPHMO	Curtis + lomplains of silica get clean
3 VONS TPH9, BTEX	HCL /'
3VOMS MTBE	
SUALITY CONTROLSAMPLES	,
Duplicate Samples Black	ank Samples Other Samples
Original Sample No. Duplicate Sample No. Type	Sample No. Type Sample No.
	Trip

APPENDIX B

LABORATORY REPORTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

ANALYTICAL REPORT

Prepared for:

Harding Lawson Associates 383 Fourth Street Third Floor Oakland, CA 94607

Date: 13-OCT-99 Lab Job Number: 141692

> Project ID: 42633.1 Location: Port of Oakland-2277

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

Harding Lawson Associates 383 Fourth Street, Third Floor

14169 CHAIN OF CUSTODY FORM

Lab: Crustic & Tomokine

j	L.	I^{Λ}	3	Oak	dan	d, C	Cali	forni	a 9	160	7						- /'	Ч	, , ,																										_		• –	_	<u>~</u> ~		ىد		<u>-</u>		7.11	٣						
		•••••• •		(510 (510)) 4 () 4	51-	100 316	5 - I	Pho Fax	ne													S	ar	np	le	rs	į	4	2	H	1	C	· N		L	e	2	,						Γ					1A	NAL	YS		RE	QUE	Sī	ED					
o	b N	lun	nbe	er:			4	2	0	3	2) .	1																					•	•								-							T	Ú	בון	Ξ									
		e/Le			n:		Ŧ	201	<u>_</u> +	U	<u>_</u> _	C	ak	بار:	کد	D		2	22	7	} -	7	=	7	H~	ξ	+	? (2	_	 ;			•						·							1	١				ž	5			ĺ						
٥,	oje	ct i	Иa	na	ge	r: _	3	Īi c	N	Ļ	$\mathcal{R}_{\mathcal{C}}$	<u>>C</u>	۵		لاغ	半		_				_		Rec										Q,	2	Sign	natur	y	LQ.	<u>Q</u>	ر				-					101		3 EX	7 7 7 1									
병				ATR	ix		-		& P	RESI	NER ERV.	s	T	S	AMI	(OR			R	T				1	DA	TE					1			<u> </u>		•		<u> </u>	<u> </u>	RIPT					EPA 8010	9020	EPA 8260	8270	L'S	EPA 8015M/TPHG	8020/1	8015N									
SOUR	CODE		Water	Sediment	200	ō		Unpres.	S, H	g E	刺	90	$oldsymbol{+}$	Yr		Wk	NUA		ER eq			Yr		Mo	,]	D	ay	T	- 1	· -	e	-								TES						다. 전 :	¥	EPA	EPA	MEI	EPA	EPA	EPA	ig.	,				1	1	1	L
)	X		floor	·					犯			16	२ 1	C P	2) (1 4	20	? ¢	2 6	7	o	9	2	8	. (7	7	2	3	r																ì		3		3						-			
		,	X					1			_	X	1	۷ ۷	N-	- 0	5				9		2) ⁽	9	2	8	0)	2	S	5																			N.	X	X							i		
			X					I			3/	(41	N-	- -	7				_ <	7/9	7	s k	?	2	8	1	7		3	3																_		Þ	X;	X,	×					Ì		1		į
		1	X					I		ľ	3	(1	4 1	N-	- 2	2				6	7 0	7	0	9	2	8	1		1	2	4																			X.	X.	X		i 							ł
		,	X							-7	3			WV	7	- 4	ŧ				(7	?	of	7	Z	8	1		į	3	8							.,										Ī	-		X							į	[1
			X					7			3	X	It	عاد	λ¥	2	5 9	1	7 9	?	c	7	7	0	9	<u></u>	હ	,		4	S	7																		-	X	X,	X	_								
			V.		7			1			2	χ	ľ	44	u ·	. 6	$\frac{1}{2}$	T	T	T		79					ဗ္ဗ	1	1	2	3	2	ľ	•													1		7	:	X.	X	d		T							!
٦			1	1	7				1	1			1	1	1	1	1	+	\top		<u> </u>			1			Ĭ		+	1	1	٦													╏		1	\dashv	\top	\top		_		}-	-	-		-		-		ļ
				\top	7	1				1	1	\top	1		1	T	T	T	\top		1	T	1	_					+	1		7													11	\top	1	7		1	十	寸		- †	-				1	-		
					1										I	1		I	1		1								1																								1		-† 							
			LAI	3 BER	,		1	D	EP IN			COL MTE			QA ODE		T													T												Cŀ	IAIN	OF	CUS	STO	DY	' RI	ECC)RE	—–)											
γ	'r	Wk			Se	q	\exists		FEE	T	\downarrow	CD	\perp				\perp					CEL								Ţ	REL	INOI	uis	HEI	BY	f: (S	ign	ature)	•)					REC	EIVE	ĎВ	Y: /	gn	ature	<u>)</u>		1		7	<i>'</i>		_	υ	ATF	/T 17:5	E	_
		\perp															1	2	ili	0	_ (Q 2	儿	<u>U</u>	le	a١	ኊ	φ)	}	W	Œ	1	\mathscr{K}	بيرا	Z	${\cal L}$	J.	e	2_				X	Δ	_v	R	: . : =	$\not \sqsubseteq$		111	H	7	Ľ	₹	q	12	28/	q	}	132	ZC
_				ॏ.	1			_				_ _	\perp			\perp		_(<u> </u>	1	2	10	L	4	1	P	1	M.	0_]	REL	ING	UIS	HE	PÝ	ř: (S	ign;	ature,)					ĦÉC	EÍVE	D B	Y : (Sign	ature.	•			V	2				D	ATE.	/TIM	E	
	_					_			_ .												····									ŀ	7EL	INQ	UIS	HEI	В	7- rs	 Signi	ature,	·)					REC	EIVE	8 G	Υ : /8	 Sign.	ature,	,·								Ö	ATE.	/TIM	IE	
		_	_].						\bot						\perp		2	$\widehat{\exists}$	ta	Λ	d	مر	d		1	1	+	1																																		
															Ĺ				h			-	a	•				·		7	AEL	INO	UIS	SHE	97	i - IS	Signi	ature	1)			· · · · ·		REC	EIVE	DB	Y: (Sign	alure	,								מ	ATE	אנזע	ι Σ	. ,
					1																									1	DISI	ATO	ĊHĒ	ED E	Y. ((Sıgı		ıre)	<u></u>				DAT	E/TIME		RE	CE	VE	FOI	Ä LA	18 8	 Y:					•-	۵ .	ATE	/TIM	1F	
			_														4	ã	mc	le.	_	TR	1	R	19	9	9]																I/S	igna	ture,	,										ļ			
_]							_]										T		-	1	-12	g	,	512	33,	M	æ	E		1	WET	HOL	ōō)FSI	IIPA	KEN	īT																-			-	•		•	•		
																	\int							(σ						SAN	IPLE	. c	ONE	ITIC	- ON V	ŇHE	EN RI	ECEN	VED E	ву тн	iE LA	BOR	TOR	 7							-			-	-		-				
							- 1																		-					1																																

TVH-Total Volatile Hydrocarbons

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 5030

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
141692-002 MW-5	50999	09/28/99	10/01/99	10/01/99	'
141692-003 MW-7	50999	09/28/99	10/01/99	10/01/99	
141692-004 MW-2	50999	09/28/99	10/01/99	10/01/99	
141692-005 MW-4	50999	09/28/99	10/02/99	10/02/99	
					<u> </u>

Matrix: Water

Analyte Diln Fac:	Units	141692-002 1	141692-003 1	141692-004 1	141692-005 1
Gasoline C7-C12	ug/L	<50	<50	<50	750 YL
Surrogate					
Trifluorotoluene	%REC	92	95	. 98	115
Bromofluorobenzene	%REC	99	98	98	98

Y: Sample exhibits fuel pattern which does not resemble standard

L: Lighter hydrocarbons than indicated standard

Chromatogram

Sample Name : 141692-005,50999

FileName : G:\GC05\DATA\274G024.raw

: TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

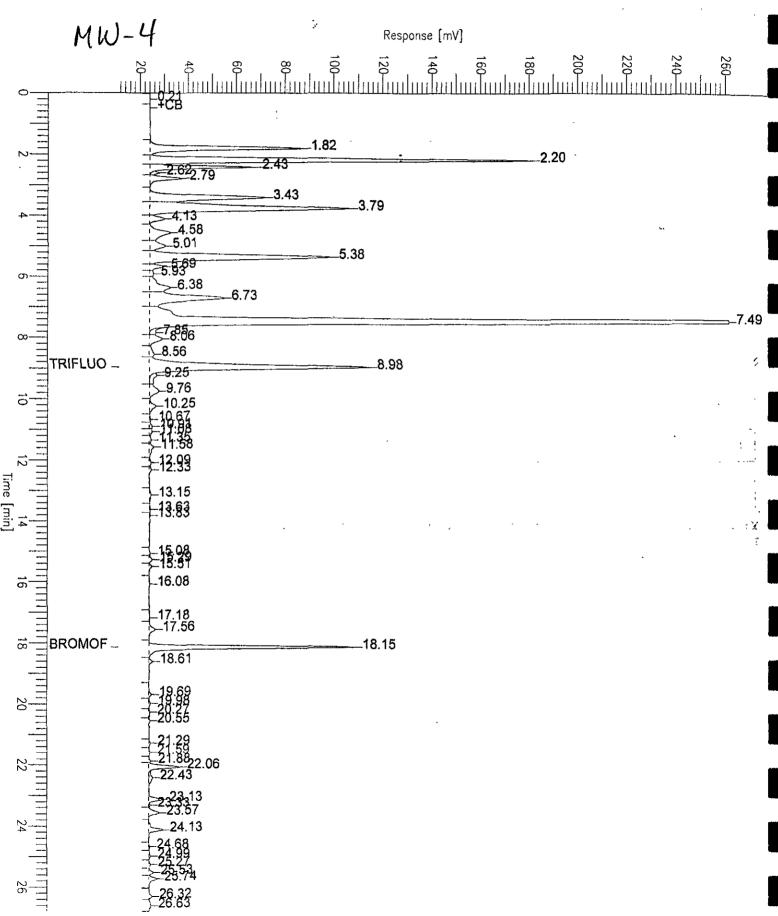
Method

End Time : 26.80 min Plot Offset: 11 mV

Sample #:

Date: 10/2/99 04:20 AM

Time of Injection: 10/2/99


Low Point : 11.42 mV

High Point: 261.42 mV

Page 1 of 1

03:53 AM

Plot Scale: 250.0 mV

TVH-Total Volatile Hydrocarbons

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 5030

Batch #	Sampled	Extracted	Analyzed	Moisture
50999	09/28/99	10/02/99	10/02/99	
50999	09/28/99	10/01/99	10/01/99	
•	50999	50999 09/28/99	50999 09/28/99 10/02/99	50999 09/28/99 10/02/99 10/02/99

Matrix: Water

Analyte Diln Fac:	Units	141692-006 1	141692-007 1	
Gasoline C7-C12	ug/L	740 YL	130 YL	
Surrogate				
Trifluorotoluene	%REC	115	101	
Bromofluorobenzene	%REC	97	97	

Y: Sample exhibits fuel pattern which does not resemble standard

L: Lighter hydrocarbons than indicated standard

Chromatogram

Sample Name : 141692-006,50999 FileName

: G:\GC05\DATA\274G025.raw

Method : TVHBTXE

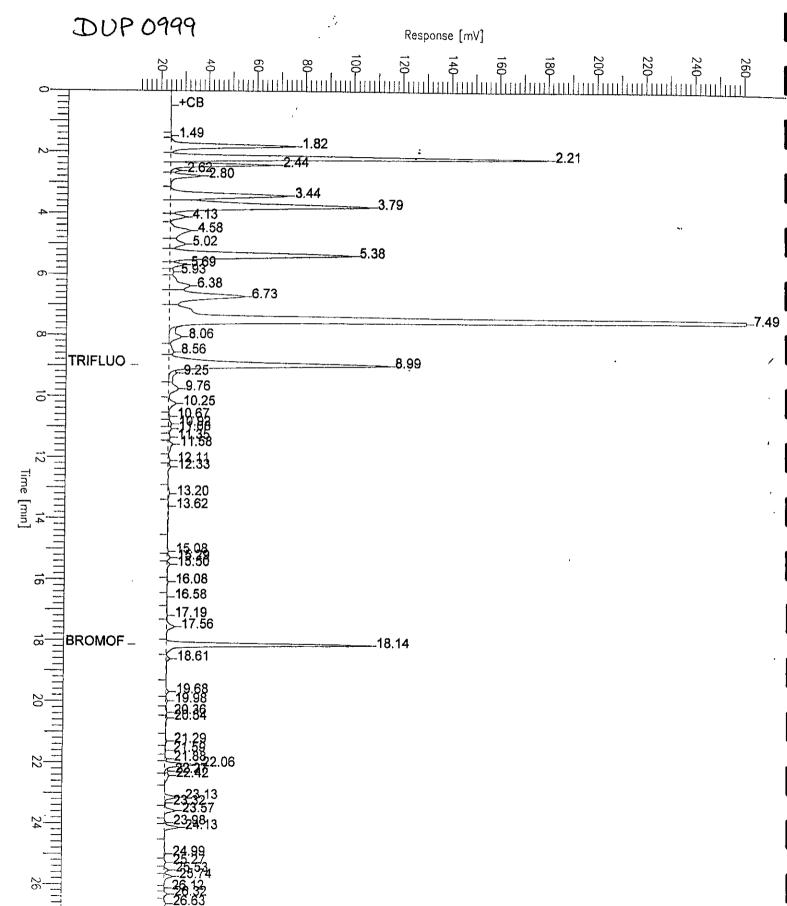
Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min

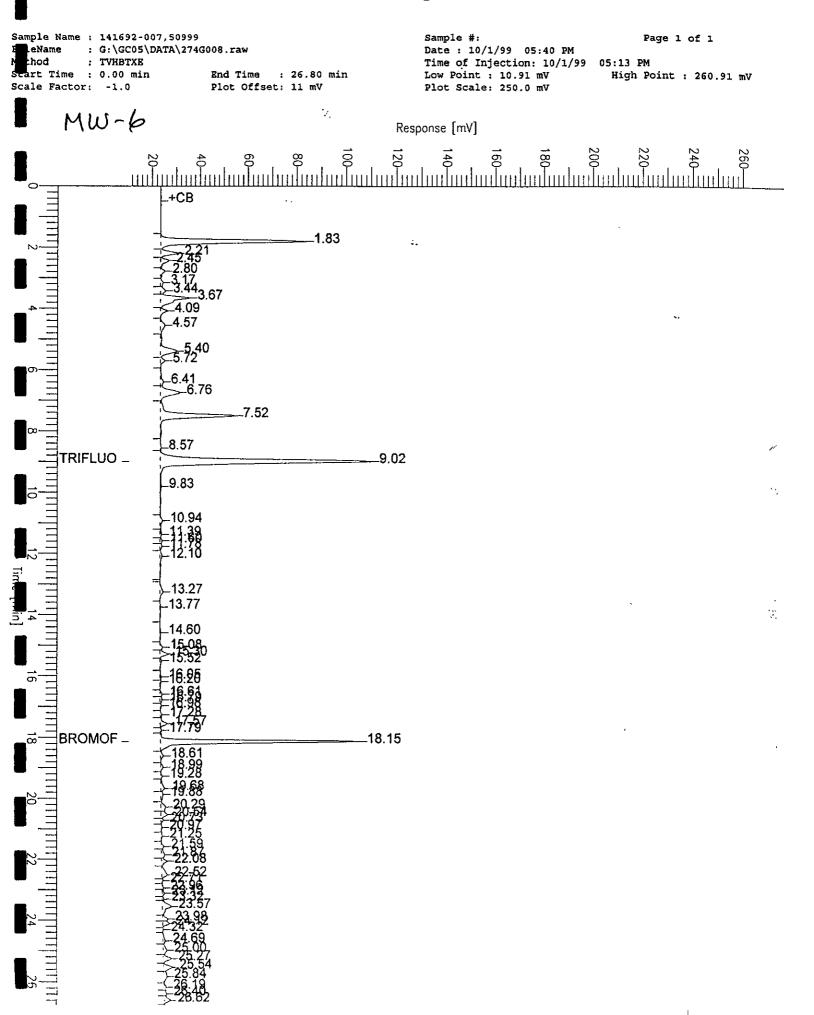
Plot Offset: 11 mV

Sample #:

Date : 10/2/99 05:01 AM


Time of Injection: 10/2/99 04:33 AM

Low Point : 11.35 mV


High Point : 261.35 mV

Page 1 of 1

Plot Scale: 250.0 mV

Chromatogram

GC05 'H' File PID BTXE Quant

Sample #: MBTXE

Date: 10/1/99 02:18 PM

Sample Name : LCS,QC09174,99WS8003,50999

: G:\GC05\DATA\274H003.raw

FileName

Page 1 of 1

Method : TVHBTXE Time of Injection: 10/1/99 01:51 PM High Point : 247.90 mV Start Time : 0.00 min End Time : 26.80 min Low Point : -2.10 mV Scale Factor: -1.0 Plot Offset: -2 mV Plot Scale: 250.0 mV Gasoline Stan Response [mV] MTBE 4.55 5:24 **-5.70** 6.35 7.25 7.50 BENZEN _ 8:49 8.99 TRIFLUO _ 9.63 19.34 11.06 11.58 TOLUEN _ ETHYLB _ 15.30 15.50 16.19 -16.57 O-XYLEN ... 17.92 **≟18.15 BROMOF** _

BTXE

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8021B

Prep Method: EPA 5030

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
141692-001 TRIP 0999	50999	09/28/99	10/02/99	10/02/99	
141692-002 MW-5	50999	09/28/99	10/01/99	10/01/99	1
141692-003 MW-7	50999	09/28/99	10/01/99	10/01/99	
141692-004 MW-2	50999	09/28/99	10/01/99	10/01/99	

Matrix: Water

Analyte Diln Fac:	Units	141692-001 1	141692-002 1	141692-003 1	141692-004 1
MTBE	ug/L	<2	<2	14	<2
Benzene	ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	ug/L	<0.5	<0.5	· <0.5	<0.5
Ethylbenzene	ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	ug/L	<0.5	<0.5	<0.5	<0.5
Surrogate					
Trifluorotoluene	%REC	84	83	85	85 -
Bromofluorobenzene	%REC	90	86	90	88

BTXE

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8021B

Prep Method: EPA 5030

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
141692-005 MW-4	51038	09/28/99	10/04/99	10/04/99	
141692-006 DUP 0999	51038	09/28/99	10/04/99	10/04/99	
141692-007 MW-6	50999	09/28/99	10/01/99	10/01/99	

Matrix: Water

Analyte Diln Fac:	Units	141692-005 2	141692-006 2	141692-007 1	
MTBE	ug/L	<4	<4	<2	
Benzene	\mathtt{ug}/\mathtt{L}	280	290	20	7
Toluene	ug/L	1.5	1.5	0.51	
Ethylbenzene	ug/L	<1	<1	2.2	
m,p-Xylenes	ug/L	<1	<1	<0.5	
o-Xylene	ug/L	<1	<1	<0.5	
Surrogate					
Trifluorotoluene	%REC	90	88	89	
Bromofluorobenzene	%REC	85	84	87	

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 5030

method blank

Matrix: Water

Batch#: 50999 Units: ug/L

Diln Fac: 1

Analysis Date: 10/01/99

Prep Date: 10/01/99

Analyte	Result	
Gasoline C7-C12	<50	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	93	53-150
Bromofluorobenzene	94	53-149

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Harding Lawson Associates Analysis Method: EPA 8015M

Project#: 42633.1 Prep Method: EPA 5030

Location: Port of Oakland-2277

LABORATORY CONTROL SAMPLE

Matrix: Water Prep Date: 10/01/99
Batch#: 50999

Batch#: 50999

Units: ug/L

Diln Fac: 1

Analysis Date: 10/01/99

LCS Lab ID: QC09173

Analyte	Result	Spike Added	%Rec #	Limits
Gasoline C7-C12	1981	2000	99	77-117
Surrogate	%Rec	Limits		
Trifluorotoluene	109	53-150		
Bromofluorobenzene	97	53-149		

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Spike Recovery: 0 out of 1 outside limits

BATCH QC REPORT

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

BTXE Analysis Method: EPA 8021B

Prep Method: EPA 5030

METHOD BLANK

Matrix: Water

Batch#: 50999 Units: ug/L

Diln Fac: 1

Prep Date: 10/01/99 Analysis Date: 10/01/99

Analyte	Result	
MTBE	<2.0	
Benzene	<0.5	
Toluene	<0.5	
Ethylbenzene	<0.5	
m,p-Xylenes	<0.5	
o-Xylene	<0.5	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	84	51-143
Bromofluorobenzene	87	37-146

BATCH QC REPORT

or like the partie BTXE is a reserved for the little like the little state of the state of the little stat

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8021B

Prep Method: EPA 5030

METHOD BLANK

 Matrix:
 Water
 Prep Date:
 10/04/99

 Batch#:
 51038
 Analysis Date:
 10/04/99

Units: ug/L Diln Fac: 1

Analyte	Result	
MTBE	<2.0	
Benzene	<0.5	
Toluene	<0.5	
Ethylbenzene	<0.5	
m,p-Xylenes	<0.5	
o-Xylene	<0.5	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	79	51-143
Bromofluorobenzene	80	37-146

BATCH QC REPORT

BTXE

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8021B

Prep Method: EPA 5030

LABORATORY CONTROL SAMPLE

Matrix: Water ' Prep Date: 10/01/99
Batch#: 50999 Analysis Date: 10/01/99

Units: ug/L Diln Fac: 1

LCS Lab ID: QC09174

Analyte	Result	Spike Added	%Rec #	Limits	
MTBE	17.13	20	86	66-126	
Benzene	19.17	20	96	65-111	
Toluene	19.24	20	96	76-117	
Ethylbenzene	20.78	20	104	71-121	
m,p-Xylenes	42.16	40	105	80-123	
o-Xylene	21.37	20	107	75-127	
Surrogate	%Rec	Limits			•
Trifluorotoluene	85	51-143			
Bromofluorobenzene	90	37-146			

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Spike Recovery: 0 out of 6 outside limits

BATCH QC REPORT

BTXE 👃

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Company of the second

Analysis Method: EPA 8021B

Prep Method: EPA 5030

BLANK SPIKE/BLANK SPIKE DUPLICATE

Matrix: Water Batch#: 51038 Prep Date: Analysis Date: 10/04/99

Units: ug/L Diln Fac: 1

BS Lab ID: QC09338

Analyte	Spike Added	BS	%Rec #	Limits
MTBE	20	16.47	82	66-126
Benzene	20	18.29	91	65-111
Toluene	20	18.16	91.	76-117
Ethylbenzene	20	19.51	98	71-121
m,p-Xylenes	40	40.02	100	80-123
o-Xylene	20	20.11	101	7 5-127
Surrogate	%Rec	Limits		
Trifluorotoluene	82	51-143		
Bromofluorobenzene	85	37-146	t.	

BSD Lab ID: QC09339

Analyte	Spike Added	BSD	%Rec #	Limits	RPD #	Limit
MTBE	20	16.82	84	66-126	2	12
Benzene	20	18.63	93	65-111	2	10
Toluene	20	18.66	93	76-117	3	10
Ethylbenzene	20	20.09	100	71-121	3	11
m,p-Xylenes	40	40.37	101	80-123	1	10
o-Xylene	20	20.49	102	75-127	2	11
Surrogate	%Rec	Limits	3			
Trifluorotoluene	83	51-143	3			
Bromofluorobenzene	86	37-146	5			

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 6 outside limits

Spike Recovery: 0 out of 12 outside limits

^{*} Values outside of QC limits

BATCH QC REPORT

BTXE

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8021B

Prep Method: EPA 5030

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Field ID: MW-2

Lab ID: 141692-004

Matrix: Water

Batch#: 50999

Units: ug/L Diln Fac: 1 Sample Date: 09/28/99

Received Date: 09/28/99
: Prep Date: 10/01/99

Analysis Date: 10/01/99

MS Lab ID: QC09176

Analyte	Spike Added	Sample	MS	%Rec #	Limits
MTBE	20	<2	23.36	117	49-136
Benzene	20	<0.5	18.67	93	55-122
Toluene	20	<0.5	18.64	93	63-139
Ethylbenzene	20	<0.5	20,15	101	61-137
m,p-Xylenes	40	<0.5	39.35	98	57-148
o-Xylene	20	<0.5	20.32	102	70-141
Surrogate	%Rec	Limits			
Trifluorotoluene	86	51-143	-		······································
Bromofluorobenzene	89	37-146			

MSD Lab ID: QC09177

Analyte	Spike Added	MSD	%Rec #	Limits	RPD #	Limit
MTBE	20	23.48	117	49-136	1.	11
Benzene	20	19.31	97	55-122	3	10
Toluene	20	19.12	96	63-139	3	10
Ethylbenzene	20	20.59	103	61-137	2	10
m,p-Xylenes	40	40.29	101	57-148	2	10
o-Xylene	20	20.76	104	70-141	2	10
Surrogate	%Rec	Limit	s			
Trifluorotoluene	87	51-14	3			
Bromofluorobenzene	91	37-14	б			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 6 outside limits

Spike Recovery: 0 out of 12 outside limits

TEH-Tot Ext Hydrocarbons

Client: Harding Lawson Associates,

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 3520

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
141692-002 MW-5	50991	09/28/99	09/30/99	10/04/99	
141692-003 MW-7	50991	09/28/99	09/30/99	10/04/99	
141692-004 MW-2	50991	09/28/99	09/30/99	10/04/99	
141692-005 MW-4	50991	09/28/99	09/30/99	10/04/99	

Matrix: Water

Analyte Units Diln Fac:		141692-002 141692-003		141692-004	141692-005
		1 1		1	1
Diesel C10-C24	ug/L	<50	<50	<50	63 YL
Motor Oil C24-C36	ug/L	<300	<300	<300	<300
Surrogate	<u> </u>				
Hexacosane	%REC	90	71	89	90

Y: Sample exhibits fuel pattern which does not resemble standard

L: Lighter hydrocarbons than indicated standard

Chromatogram

Sample Name : 141692-005sg, 50991

FileName : C:\GC15\CHB\277B007.RAW

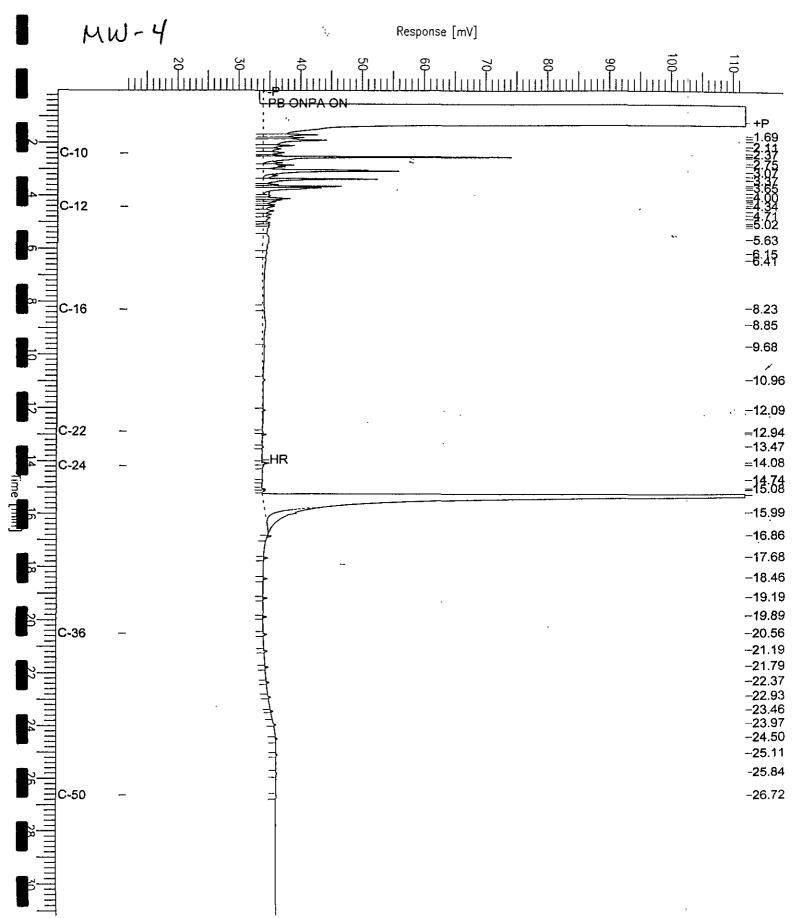
hod : BTEH244.MTH

rt Time : 0.01 min Scale Factor: 0.0

End Time : 31.19 min Plot Offset: 12 mV

Sample #: 50991

Date: 10/04/1999 03:37 PM


Time of Injection: 10/04/1999 12:51 PM

Low Point : 11.92 mV

High Point: 111.99 mV

Page 1 of 1

Plot Scale: 100.1 mV

TEH-Tot Ext Hydrocarbons

Client: Harding Lawson Associates;

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 3520

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
141692-006 DUP 0999 141692-007 MW-6	50991 50991		09/30/99 09/30/99	10/04/99 10/04/99	

Matrix: Water

Analyte Diln Fac:	Units	141692-006 1	141692-007 1	
Diesel C10-C24 Motor Oil C24-C36	ug/L ug/L	<50 <300	820 <300	
Surrogate				
Hexacosane	%REC	72	88	

Chromatogram

Sample Name : 141692-007sg,50991

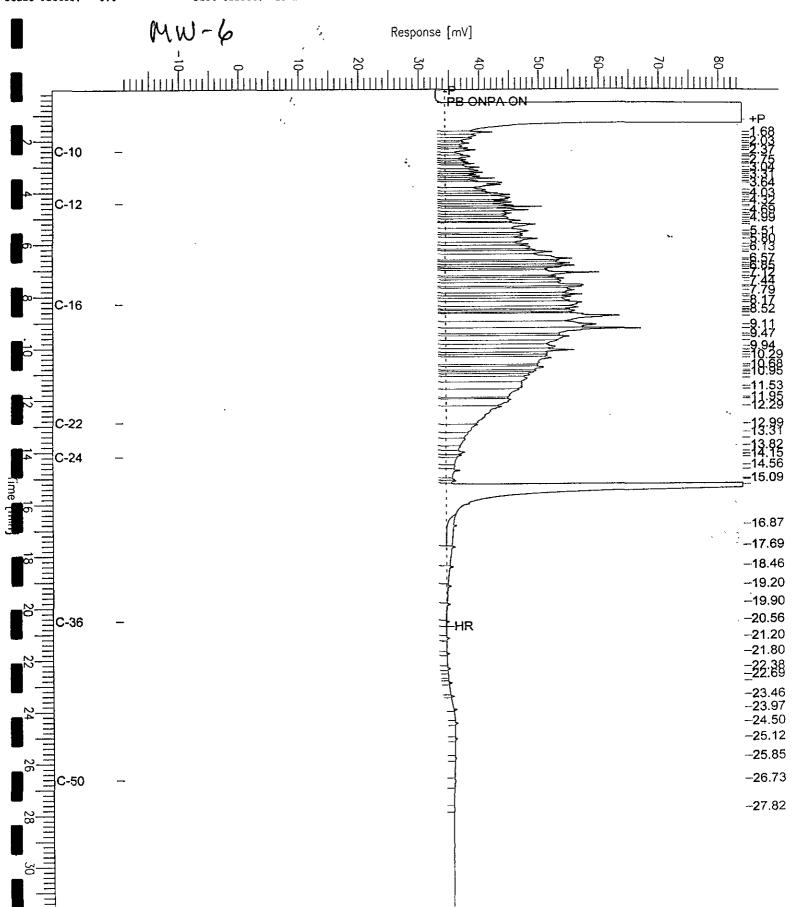
: C:\GC15\CHB\277B009.RAW

: BTEH244.MTH

rt Time : 0.01 min Scale Factor: 0.0

End Time : 31.91 min Plot Offset: -19 mV

Sample #: 50991


Date: 10/04/1999 03:38 PM

Time of Injection: 10/04/1999 02:17 PM Low Point: -19.36 mV

High Point: 83.81 mV

Page 1 of 1

Plot Scale: 103.2 mV

CIII OMA COGIAM

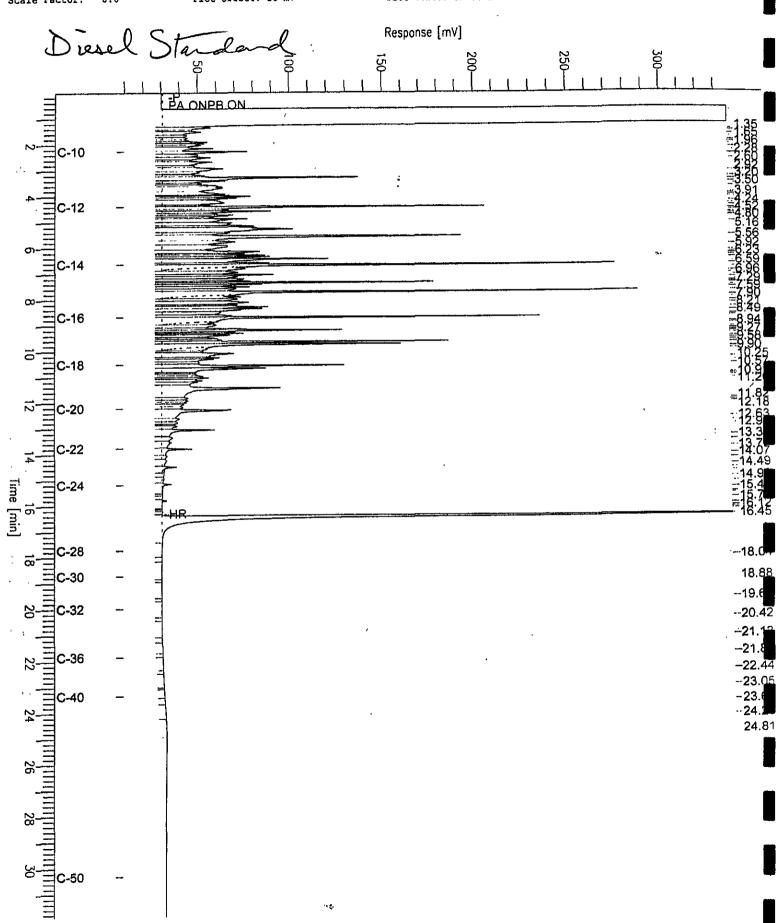
Sample Name : ccv, 99ws8168, dsl : G:\GC13\CHB\277B002.RAW FileName

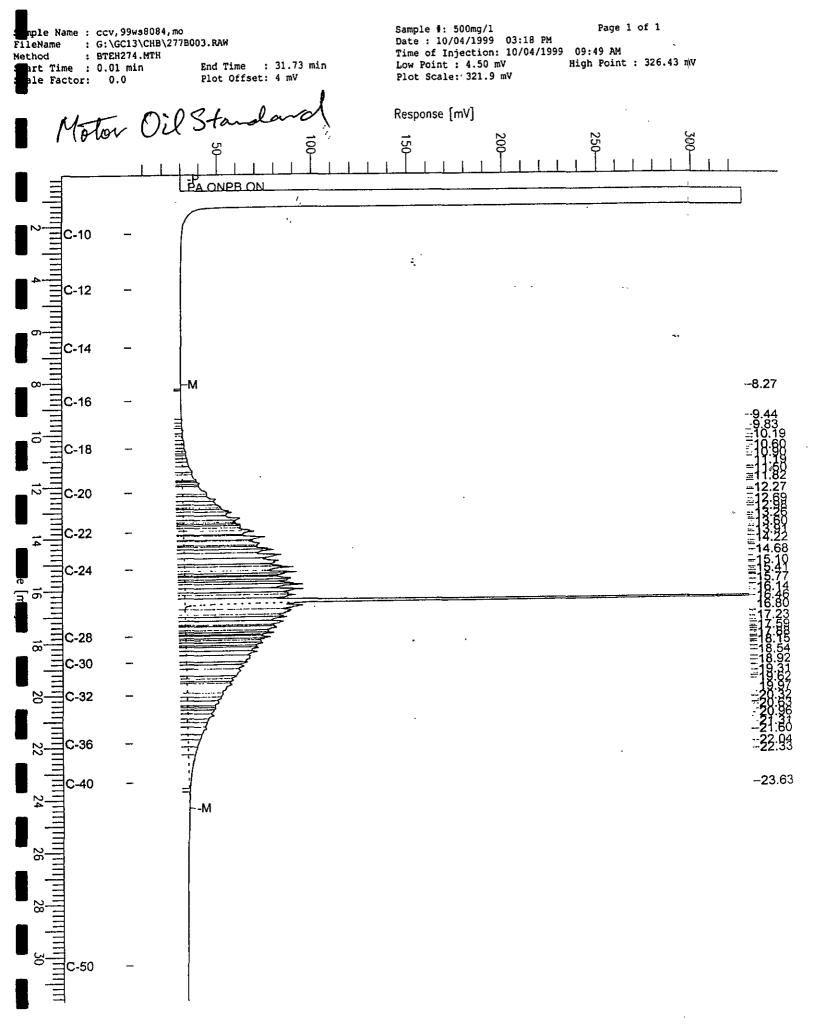
: BTEH274.MTH Method

Start Time : 0.01 min Scale Factor: 0.0

End Time : 31.91 min

Plot Offset: 10 mV


Sample #: 500mg/1 Page 1 of 1


Date: 10/04/1999 03:17 PM

Time of Injection: 10/04/1999 09:07 AM

High Point : 337.32 mV Low Point : 9.98 mV

Plot Scale: 327.3 mV

BATCH QC REPORT

TEH-Tot Ext Hydrocarbons

Client: Harding Lawson Associates,

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 3520


METHOD BLANK

Matrix: Water Prep Date: 09/30/99
Batch#: 50991 Analysis Date: 10/04/99

Units: ug/L Diln Fac: 1

Analyte	Result	
Diesel C10-C24 Motor Oil C24-C36	<50 <300	
Surrogate	%Rec	Recovery Limits
Hexacosane	94	58-128

BATCH QC REPORT

TEH-Tot Ext Hydrocarbons

Client: Harding Lawson Associates

Project#: 42633.1

Location: Port of Oakland-2277

Analysis Method: EPA 8015M

Prep Method: EPA 3520

BLANK SPIKE/BLANK SPIKE DUPLICATE

Matrix: Water Prep Date: 09/30/99
Batch#: 50991 Analysis Date: 10/04/99

Units: ug/L Diln Fac: 1

BS Lab ID: QC09148

Analyte	Spike Added BS	%Rec #	Limits
Diesel C10-C24	2475 1616,	65	50-114
Surrogate	%Rec Limits		,
Hexacosane	87 58-128		

BSD Lab ID: QC09149

Analyte	Spike Added	BSD	%Rec #	Limits	RPD #	Limit
Diesel C10-C24	2475	1735	70	50-114	7	25
Surrogate	%Rec	Limits				
Hexacosane	91	58-12	28			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 1 outside limits

Spike Recovery: 0 out of 2 outside limits