April 30, 2014

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject:

Perjury Statement and Report Transmittal

1620-1640 Park Street (Parcel B) Alameda, California 94501 AEI Project No. 298931 ACEH RO#0000008

Dear Ms. Detterman:

I declare under penalty of perjury, that the information and/or recommendations contained in the attached report for the above-referenced site are true and correct to the best of my knowledge.

If you have any questions or need additional information, please do not hesitate to call me or Mr. Peter McIntyre at AEI Consultants, (925) 746-6004.

Sincerely

John Buestad
President

JB/pm

Attachment: AEI Consultants, Conceptual Site Model - April 2014

cc: Mr. Peter McIntyre, AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597

April 30, 2014

San Francisco HQ

Conceptual Site Model Update April 2014

Property Identification:

1620-1640 Park Street – Parcel B Alameda, California

AEI Project No. 298931 ACEH Fuel Leak Case No. RO0000008

Prepared for:

Foley Street Investments Attn: Mr. John Buestad 2533 Clement Avenue Alameda, CA 94501

Prepared by:

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000 Atlanta

Chicago

Costa Mesa

Dallas

Denver

Los Angeles

Miami

New York

Phoenix

Portland

San Jose

National Presence

Regional Focus

Local Solutions

TABLE OF CONTENTS

Attachment:

Low Threat Closure Policy Checklist Updated Conceptual Model – April 2014

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	Extended Site Plan
FIGURE 3	SITE PLAN
FIGURE 4	EXCAVATION ANALYTICAL DATA
FIGURE 5	SOIL VAPOR ANALYTICAL DATA
FIGURE 6	A – A' HISTORICAL DATA FENCE DIAGRAM
FIGURE 7	B – B' HISTORICAL DATA FENCE DIAGRAM
FIGURE 8	SELECT GROUNDWATER ANALYTICAL DATA
FIGURE 9	UTILITY MAP – PARCEL B
FIGURE 10	ISOCONCENTRATION MAP – MAY 18, 2012
FIGURE 11	ISOCONCENTRATION MAP – JULY 11, 2012
FIGURE 12	ISOCONCENTRATION MAP – NOVEMBER 16, 2012
FIGURE 13	ISOCONCENTRATION MAP – FEBRUARY 27, 2013
FIGURE 14	ISOCONCENTRATION MAP – MAY 1, 2013
FIGURE 15	ISOCONCENTRATION MAP – OCTOBER 24, 2013

TABLES

TABLE 1	Well Construction Details
TABLE 2	SOIL SAMPLE ANALYTICAL DATA - TPH AND MBTEX
TABLE 3	SOIL SAMPLE ANALYTICAL DATA - VOC'S
TABLE 4	SOIL SAMPLE ANALYTICAL DATA - FUEL OXYGENATES AND PCB'S
TABLE 5	SOIL SAMPLE ANALYTICAL DATA - METALS
TABLE 6	Grab Groundwater Analytical Data – TPH and MBTEX
TABLE 7	Grab Groundwater Analytical Data – VOC'S, Oxygenates and Lead
TABLE 8	Groundwater Monitoring Analytical Data – TPH, MBTEX and Lead
TABLE 9	GROUNDWATER MONITORING ANALYTICAL DATA – VOCS
TABLE 10	SOIL VAPOR SAMPLE ANALYTICAL DATA
TABLE 11	GROUNDWATER ELEVATION DATA

APPENDICIES

APPENDIX A	SOIL BORING LOGS
APPENDIX B	PROPOSED BUILDINGS PLAN

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

April 30, 2014

Alameda County Environmental Health Department Attn: Ms. Karel Detterman 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

Low Threat UST Case Closure Policy Evaluation

1630 Park Street, Parcel B Alameda, California AEI Project No. 298931

ACEH Fuel Leak Case No. RO0000008

Dear Ms. Detterman,

The following Low Threat UST Case Closure Policy Evaluation has been prepared and reviewed by AEI. Based on the review performed, the site appears to meet the Low Threat UST Case Closure Policy guidelines.

Please contact me at (925) 746-6028 if you have any questions or need any additional information.

Sincerely,

AEI Consultants

Jeremy Smith

Senior Project Manager

Peter McIntyre, PG Executive Vice President

Principal Geologist

General Criteria a: Is the Unauthorized Release Located within the Service Area of a P System?	ublic W	ater		/ N
LTCP Statement: "This policy is protective of existing water supply wells. Note to be installed in the shallow groundwater near former UST release sites. He a statewide basis, where new wells will be installed, particularly in rural development. This policy is limited to areas with available public water systemew wells in developing areas will be inadvertently impacted by residual closure outside of areas with a public water system should be evaluated principles in this policy and a site specific evaluation of developing water supplies this policy, a public water system is a system for the provision of water for he or other constructed conveyances that has 15 or more service connection individuals daily at least 60 days out of the year."	owever, areas tems to retroleud based based plies in temporary	it is difficities that are reduce to me in growth area in sumptions.	cult to pre undergoing the likeling oundwate the fund . For purp on throug	edict, on ing new bood that er. Case amental boses of gh pipes
If the unauthorized release is <u>located within</u> the service area of a public	water s	upply s	ystem, th	nen
Name of public water system agency? East Bay Municipal Utility District Zone 7 Water Agency City of Hayward Water Alameda County Water District Other: Are there existing water supply wells or other sources of water in the vicinity of site? Use General Criteria e – CSM Well Survey sheet to support answer.		□ Y		□ NE
Note: If yes, the site must still satisfy the groundwater media specific criteria a distance from the contaminant plume boundary to existing wells	for			
If the unauthorized release is <u>located outside</u> the service area of a public water supply system, then				
Are there additional characteristics to consider that might result in a low-threat designation?	☐ Y	□ N	□ NE	□NA
Has a site-specific evaluation of developing water supplies in the area been conducted?	□ Y	\square N	☐ NE	□NA
Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?	ΠΥ	□N	□ NE	□NA
Applicable County Sanitary Seal Requirements:				
Are impacted perched water zones not a viable potential water supply?	ΔΑ	□N	☐ NE	□NA
Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?		□N	□ NE	□NA
Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the expected need for use of any affected groundwater?	ПΥ	□N	□ NE	□NA

General Criteria a: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

General Criteria b:	│	□NO	□NE
Does the Unauthorized Release Consist only of Petroleum?			
LTCP Statement: "For purposes of this policy, petroleum is defined as crude oil, o liquid at standard conditions and temperature and pressure, which means 60 degree per square inch absolute including the following substances: motor fuels, jet fuels, oils, lubricants, petroleum solvents and used oils, including any additives and blend contained in the formulation of the substances."	es Fahrenho distillate fuel	eit and 14.7 բ oils, residua	oounds I fuel
Have adequate site investigation activities been conducted to evaluate unauthorized releases of potential chemicals of concern (PCOCs) and chemicals of concern (COCs) from on-site sources due to historical site activities and chemical usage?	□ Y □] N	□NA
Have areas of concern been identified based on historical site activities and chemical usage?		N NE	□ NA
Have unauthorized releases from underground storage tanks been identified?] N	□ NA □ NA
Have unauthorized releases from above ground storage tanks been identified? Have unauthorized releases from site infrastructure (i.e., sumps, drains, sanitary sewer, etc) been identified?		N NE	□ NA
Have unauthorized releases from surface spills at dispenser islands, tank fill ports, etc. been identified?	ПΥ	N NE	□NA
Have unauthorized releases from other on-site sources been identified?	□ Y □	N NE	☐ NA
Has the site been impacted by off-site sources?	□ Y □	N NE	□ NA
Are detected COCs consistent with reported site use?		N NE	□ NA
If detected COCs <u>are not consistent</u> with reported site use, then are there other regulatory cases in the vicinity of the site?]N	□ NA
Identify regulatory case number(s):			
If there <u>are not other regulatory cases</u> in the vicinity of the site, then has an investigation of other potential sources and contaminant migration pathways been conducted?]N	□ NA
Use General Criteria e – Conceptual Site Model (Off-site sources) sheets to support answer			
Has site contamination in all affected media been fully characterized?] N D NE	│ □ NA │
Use page b-2 and General Criteria e – Conceptual Site Model COCs and PCOCs sheets to identify site contaminants			
Soil?		N NE	□ NA
Soil Gas? Groundwater?		N NE	NA
Surface Water?] N	☐ NA
Has a data quality review verified the validity of historic analytical data?	NY F	N NE	□ NA
Use General Criteria e – Conceptual Site Model Analytical Data Quality Review sheets to support answers			
Have appropriate protocols been followed for obtaining representative samples?	□ Y	N NE	□NA
Are the analytical methods currently being used consistent with the recommended "best practices" in the CA LUFT Manual?	ПΥ	N NE	□NA
Have appropriate method detection limits been used (i.e., less than the LTCP media specific criteria for groundwater, vapor intrusion to indoor air, and direct contact and outdoor air exposure, and/or current environmental screening levels as appropriate?	Υ] N	□ NA

General Criteria b: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

Chemicals of Concern (COCs - detected) and Potential Chemicals of Concern (PCOCs - i.e., not detected but used in site operations) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC				
Gasoline ²	ПҮ	□N	□ NE	□ NA
Fuel Oils ³	Y	□N	□ NE	□ NA
Diesel	Y	□N	□ NE	□ NA
Stoddard Solvent	Y	□N	□ NE	□ NA
Jet Fuels	ΠY	□N	□ NE	☐ NA
Kerosene	☐ Y	□N	☐ NE	□NA
Home Heating Fuel	☐ Y	□ N	☐ NE	□NA
Bunker Fuel	☐ Y	□ N	☐ NE	□NA
Others		□ N	☐ NE	□NA
Oils	☐ Y	□ N	☐ NE	□ NA
Waste Oil ⁴	☐ Y	□ N	☐ NE	□NA
Hydraulic Oil	☐ Y	□ N	☐ NE	□NA
Lubricating Oil	☐ Y	□ N	☐ NE	☐ NA
Oil and Grease	☐ Y	□N	☐ NE	☐ NA
Motor Oil	☐ Y	□N	☐ NE	☐ NA
Others	☐ Y	□ N	☐ NE	☐ NA
Aromatics		□ N	☐ NE	☐ NA
Benzene	☐ Y	□ N	☐ NE	□NA
Toluene		□ N	☐ NE	□NA
Ethylbenzene	☐ Y	□ N	☐ NE	□NA
Xylenes	☐ Y	□ N	☐ NE	☐ NA
Napthalene	ΠY	□ N	☐ NE	☐ NA
Fuel Oxys ⁵	☐ Y	□ N	☐ NE	□ NA
MTBE ⁶	Y	□ N	☐ NE	☐ NA
ETBE	□ Y	□ N	☐ NE	☐ NA
TAME	□ Y	□ N	☐ NE	☐ NA
TBA	□ Y	□ N	☐ NE	☐ NA
DIPE	□ Y	□N	□ NE	☐ NA
Ethanol	Y	□N	□ NE	□ NA
Methanol	☐ Y	□N	□ NE	□ NA
Leaded Gas	Y	□N	□ NE	□ NA
TML ⁷	☐ Y	□N	□ NE	☐ NA
EDC ⁸	☐ Y	□N	□ NE	☐ NA
EDB ⁸	☐ Y	□N	□ NE	□ NA
Wear Metals ¹⁰	Y	□N	□ NE	□ NA
Total Lead	□ Y	□N	□ NE	□ NA
Cadmium	□ Y	□N	□ NE	□ NA
Chromium		□ N	□ NE	□ NA
Zinc Nickel	<u> </u>	N N	□ NE	□ NA
Others			□ NE	□ NA
		□ N	□ NE	□ NA
PAHs ⁹	☐ Y	□ N	□ NE	□ NA
CVOCs ¹¹	☐ Y	□ N	□ NE	□ NA
PCBs PCPs		□N	☐ NE	□ NA
Dioxins & Furans ¹²	<u> </u>	N N	☐ NE ☐ NE	□ NA □ NA
DIUXIIIS & FUI AIIS	T	IN	□ INE	□ NA

Key: ■ Y = Detected at site

[■] N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

[■] NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

[■] NA = Not Applicable (never present at site – validated by case review)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC		5	Soil		Grou <mark>nd</mark> water				Soil		rawl Spac or Air	ce or	Surface Water				
TPH	124 517	HEAL					Te Men									A Hara	
TPH-g	Y	\square N	☐ NE	□ NA	Y 🔀	□N	☐ NE	☐ NA	X Y	□N	☐ NE	☐ NA	ΠY	□ N	☐ NE	◯ NA	
GRO	Y 🕎	\square N	☐ NE	☐ NA	Y	□ N	☐ NE	☐ NA	× Y	\square N	☐ NE	☐ NA	Y	□N	☐ NE	☐ NA	
Others	ΠY	□ N	☐ NE	□ NA	ΠY	□N	☐ NE	□ NA	☐ Y	□ N	☐ NE	□ NA	ΠY		☐ NE	☐ NA	
Aromatics	TWEET				facili.								IA YES				
Benzene	₽ Y	□N	☐ NE	☐ NA	≽ Y	□N	☐ NE	☐ NA	NY	□N	☐ NE	□ NA	ΠY	□N	☐ NE	□ NA	
Toluene	× Y	□N	☐ NE	☐ NA	№ Y	□ N	☐ NE	☐ NA	Y	□N	☐ NE	☐ NA	ΠY	□N	☐ NE	□ NA	
Ethylbenzene	× Y	□N	☐ NE	□NA	≽ Y	□N	☐ NE	□ NA	k Y	□N	☐ NE	☐ NA	□Y	□N	☐ NE	□ NA	
Xylenes	× Y	□ N	☐ NE	☐ NA	Y	□N	☐ NE	☐ NA	≽ Y	□N	☐ NE	☐ NA	ΠY	□N	☐ NE	☐ NA	
Napthalene	Y	□ N	☐ NE	☐ NA	Y	□N	☐ NE	☐ NA	Y	N	☐ NE	☐ NA	Y	\square N	☐ NE	I □ NA	
Fuel Oxys ⁵													19711				
MTBE ⁶	ΠY	Ŋ N	☐ NE	□ NA	XY	□N	☐ NE	☐ NA	☐ Y	□N	☐ NE	□ NA	ΠY	□N	☐ NE	□ NA	
ETBE	ΠY	N €	☐ NE	□ NA	ΠY	K N	☐ NE	☐ NA	Y	□N	☐ NE	☐ NA	ΠY	□N	☐ NE	☐ NA	
TAME	□ Y	Ŭ N	☐ NE	☐ NA	☐ Y	XN	☐ NE	☐ NA	Y	□ N	☐ NE	☐ NA	□Y	□ N	☐ NE	□ NA	
TBA	□ Y	☑ N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	Y	□ N	☐ NE	☐ NA	☐ Y	□ N	☐ NE	☐ NA	
DIPE	□ Y	► N	☐ NE	☐ NA	□ Y	ĭ≽ N	☐ NE	☐ NA	☐ Y	□ N	☐ NE	☐ NA	ΠY	□N	☐ NE	NA	
Ethanol	☐ Y	≥ N	☐ NE	☐ NA	_ Y	N N	☐ NE	□ NA	□ Y	□ N	☐ NE	☐ NA	☐ Y	□ N	☐ NE	☐ NA	
Methanol	∐ Y	≥ N	☐ NE	□ NA	Ŭ Y	X N	☐ NE	<u></u> NA	□ Y	□ N	NE	□ NA	☐ Y	□ N	☐ NE	☐ NA	
Others	☐ Y	N 📗	☐ NE	□ NA	_ Y	L N	☐ NE	∐ NA	Y	∐ N	☐ NE	☐ NA	LIY	N	☐ NE	☐ NA	
Leaded Gas			186						ERATE	Inches							
TML'	☐ Y	□ N	☐ NE	™ NA	Y	□ N	☐ NE	MA	Y	□ N	☐ NE	✓ NA	☐ Y	□N	☐ NE	☐ NA	
EDC ⁸	☐ Y	N	☐ NE	☐ NA	Y	× N	☐ NE	□ NA	Y	N	☐ NE	⋉ NA	☐ Y	□ N	☐ NE	NA	
EDB ⁸	I Y	× N	│	□ NA	$\square \square Y$	> N	□ NE	\square NA	\square	N	□ NE	NA NA	Y	\square N	□ NE	NA	

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC		5	Soil		Groundwater				Soil Gas □, Crawl Space □, Indoor Air □				Surface Water			
TPH																
TPH-d	Y	N	☐ NE	⋈ NA	Y	□N	☐ NE	⋈ NA	Y		☐ NE	X NA	Y	□ N	☐ NE	NA NA
DRO	Y	□N	☐ NE	☐ NA	☐ Y	□ N	☐ NE	☑ NA	Y	□N	☐ NE	II NA	ΠY	□N	☐ NE	N/
ГЕРН	ΠY	□N	☐ NE	☐ NA	□Y	□ N	☐ NE	■ NA	ΠY	□N	□ NE	□ NA	ПΥ	ΠN	□ NE	NA NA
Aromatics	E AVE				k-yelli	Home a			Mair M							l seed to
Benzene	☐ Y	□N	☐ NE	☐ NA	☐ Y	□N	☐ NE	■ NA	ΠY	□N	□ NE	□ NA	ΠY	ΠN	□NE	□ NA
Γoluene	☐ Y	□ N	☐ NE	☐ NA	Y	□ N	☐ NE	II NA	Y	□N	□ NE	II NA	ΠY	ΠN	□ NE	N/
Ethylbenzene	Y	□N	☐ NE	☐ NA	☐ Y	□N	☐ NE	□ NA	Y	□N	☐ NE	NA NA	ΠY	□N	□ NE	N/
Kylenes	Y	□N	☐ NE	☐ NA	Y	□ N	☐ NE	□ NA	Y	□N	☐ NE	■ NA	ΠY	□N	□ NE	NA NA
Napthalene	Y	□ N	☐ NE	☐ NA	☐ Y	□ N	☐ NE	₩ NA	☐ Y	□ N	□ NE	■ NA	☐ Y	□ N	☐ NE	NA NA
Others						I Lewis			A TOTAL			MAN AND AND ADDRESS OF THE PARTY OF THE PART				
PAHs ⁹	Y	N	☐ NE	I NA	Y	N	NE	I NA	ΠY	\square N	NE	NA	ПΥ	ПN	□ NE	NA

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC			Soil			Grou	ndwater		Soil C	as 🔀, 🤇	Crawl Sp	ace 🔲,		Surfac	ce Water	
TPH										Indoc	r Air 🗌			7	TTUICH	
TPH-g	Y Y	ПИ	□NE	□NA	PΥ	ПИ	□NE	□NA								
GRO	Y	HN	□ NE	□ NA	×Υ		□ NE	□ NA	Y Y	□ N	□ NE	□ NA		N N	□ NE	N/
TPH-d	Y	HN	□ NE	□ NA	Y Y		□ NE	□ NA		□ N	□ NE	□ NA		N	□ NE	II N
DRO	XY	H N	□ NE	□ NA	Y	HN	□ NE	□ NA	ΠY	□ N	□ NE	NA NA		□ N	NE NE	N.
TPH-mo	RY	HN	□ NE	□ NA	XY		□ NE	□ NA	HY	□ N	□ NE	NA NA		□ N	□ NE	N.
TEPH		HN	□ NE	NA NA	TY		□ NE		HY	□ N	□ NE	NA NA		□ N	□ NE	□ N
MORO	HY		□ NE	NA	HY		□ NE	NA NA		□ N	□ NE	№ NA		□ N	□ NE	□ N
Others	HY		□ NE	□ NA	ΠΥ		□ NE	NA NA	□ Y □ Y	□ N	□ NE	NA NA	□ Y	I N	□ NE	N/
Aromatics		I IN	L INE	L INA	Y	L IN	L INE	□ NA	Y	□ N	☐ NE	□ NA	□ Y	□ N	☐ NE	□ N/
Benzene	PY	ΠN	□ NE	□NA	Y	ΠN	□NE	LINIA			DNE					
Toluene	Y		□ NE	□ NA	Y		□ NE	□ NA	Y	∐ N	□ NE	□ NA	□ Y	□ N	NE NE	N/
Ethylbenzene	Y Y		□ NE	□ NA	Y		□ NE	□ NA □ NA	Y	□ N	□ NE	□ NA		□ N	□ NE	N.
Xylenes	Y	HN	□ NE	□ NA	Y	HN	□ NE	□ NA	Y			□ NA		N	☐ NE	□ N
Napthalene	XY		□ NE	□ NA	XY		□ NE	□ NA	X Y	□ N	□ NE	□ NA		□ N	□ NE	□ N
Fuel Oxys		IN	LINE	LINA	LAT	L IN	L INE	NA	Y	∐ N	□ NE	□ NA	ΠY	□ N	☐ NE	
MTBE	ПУ	№ N	□NE	□NA	XY	ПМ	□ NE	□NA	ПУ	I AI						-
TBA	H	I N	□ NE	□ NA	XY		□ NE	□ NA	Y	≥ N	□ NE	□ NA		□ N	□ NE	□ N
Others	H	15 N	□ NE	□ NA	Y	× N	□ NE	□ NA	Y	□ N	□ NE	□ NA		□ N	□ NE	☐ N/
Wear Metals ¹⁰		LA IN		L INA	шт	N N		□ NA	Y	N №	□ NE	□ NA	ΠΥ	□ N	□ NE	₩ N/
Total Lead	ПУ	Пи	□NE	₩ NA	ПУ	Пи	□NE	₩ NA	ПΥ	E N		The had				
Cadmium	H \		□ NE	NA NA	HY		□ NE	NA NA		□ N	□ NE	NA NA		□ N	□ NE	□ N/
Chromium		□ N	□ NE	NA NA	HY	H N	□ NE	NA NA		□ N	☐ NE			L N	□ NE	N/
Zinc	H	ΠN	□ NE	NA NA	ΠY	I N	□ NE	NA NA	H 🗸	L N	☐ NE	NA NA	□ Y	□ N	□ NE	N/
Nickel	H	HN	□ NE	NA NA	HY		□ NE	NA NA	ΗY	□ N	☐ NE	NA NA		□ N	□ NE	N/
Others		114		LA INA				K NA	Y	□ N	□ NE	⋈ NA	☐ Y	□N	☐ NE	□ N/
CVOCs ¹¹	№ Y	Пи	□NE	Пиа	ΚY	Пи	□NE	Пиа	NV	ПИ	LINE	DNA				-
PCBs	TY	₩ N	☐ NE	□ NA	ΠY	N ≥ N	☐ NE	□ NA	Y		□ NE	□ NA		□ N	□ NE	□ N/
PCPs	 	N	☐ NE	NA NA	HY	N N	☐ NE	NA NA	H↓	□ N	□ NE	NA NA		□ N	□ NE	N/
Dioxins &	H	H N	☐ NE	NA NA	ΗY					I I N	□ NE	NA NA	L Y	□ N	□ NE	N.
Furans ¹²				INA INA	L Y			NA 🔼	☐ Y	□N	☐ NE	NA NA		□ N	☐ NE	∄ N/

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

NON PETROL	EUM H	YDRO	CARBON	N SOUR	CE - RI	ELATE	CONT	AMINAN	TS							
COC/PCOC	Soil				Groundwater					as □, 0 Indoo	rawl Spar r Air 🗌	ace 🔲,	Surface Water			
	□ Y	□ N	☐ NE	I NA	□ Y	□N	☐ NE	№ NA	□ Y	\square N	☐ NE	I NA	Y	□ N	☐ NE	⊠ NA
VOCs ¹¹	☐ Y	□ N	☐ NE	☐ NA	Y	□ N	☐ NE	■ NA	Y	N	☐ NE	■ NA	□ Y	□N	☐ NE	/ NA
SVOCs ¹³	ΠY	□ N	☐ NE	□ NA	☐ Y	□N	☐ NE	□ NA	□ Y	□N	☐ NE	□ NA	ΠY	□N	☐ NE	□ NA
OCPs ¹⁴		□ N	☐ NE	□ NA	Y	\square N	☐ NE	☐ NA	□ Y	\square N	☐ NE	■ NA	☐ Y	□N	☐ NE	□ NA
Herbicides ¹⁵	Y	N	☐ NE	☐ NA	Y	\square N	☐ NE	□ NA	□ Y	\square N	☐ NE	■ NA	☐ Y	□ N	☐ NE	□ NA
Metals ¹⁶	☐ Y	□N	☐ NE	□ NA	Y	\square N	☐ NE	■ NA	Y	\square N	☐ NE	■ NA	☐ Y	\square N	☐ NE	□ NA
Others		□N	☐ NE	☐ NA	ΔΥ	N	☐ NE		Y	□N	☐ NE	■ NA	□ Y	□N	☐ NE	□ NA

REMEDIATION	N - REL	ATED	BYPROI	DUCTS												
COC/PCOC		(Soil			Grou	ndwater		Soil G	as □, 0 Indoo	rawl Sparr Air	ace 🔲,		Surfa	ce Water	
Remediation Byproducts	ПΥ	□N	□ NE	▼ NA	ПΥ	□N	□ NE	NA NA	ПΥ	□N	□ NE	D:NA	□ Y	□N	□ NE	INA
Chromium VI Other Metals ¹⁶	☐ Y	□ N	□ NE	□ NA □ NA	□ Y	□ N	□ NE	□ NA □ NA	☐ Y	□ N	□ NE	☐ NA ☐ NA	☐ Y	□ N □ N	□ NE	☐ NA ☐ NA
Others	\square	∐ N	☐ NE	■ NA	LLY	\square N	NE NE	NA	Y	L N	☐ NE	■ NA	L Y	L N	☐ NE	□ NA

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

LOW THREAT CLOSURE POLICY - CONCEPTUAL SITE MODEL

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water

VOLATILE ORGANIC	cco	MPO	UNDS	3														
Compound	S	SG	GW	sw						Compound	S	SG	SW	GW				
Benzene	X	K	N.		XY	ΠN	□NE	□NA		2,2-Dichloropropane					ΠΥ	N	□NE	□ NA
Bromobenzene			T		ΠY	N 🔀	□ NE	□NA		1,3-Dichloropropane				T	ПΥ	N	□ NE	□ NA
Bromochloromethane					ПΥ	K N	□ NE	□NA	il e	1,1-Dichloropropene	П				ПΥ	N	□ NE	□ NA
Bromodichloromethane					ΠY	N 🔀	□ NE	□ NA		Ethylbenzene	A	×		M	X Y	□N	□ NE	□ NA
Bromoform					□ Y	N	☐ NE	□ NA		Hexachlorobutadiene					□ Y	N 🔁	☐ NE	□ NA
Bromomethane						N	☐ NE	□NA		Isopropylbenzene	K			×	X Y	\square N	☐ NE	□ NA
n-Butylbenzene	K		K		XY	□N	□ NE	□NA		p-Isopropyltoluene	2				N Y	□N	□ NE	□ N/
sec-Butylbenzene			k		Y	ΠN	□ NE	□NA		Methylene chloride					Y	XN	☐ NE	□ N/
tert-Butylbenzene					ΠY	N N	□ NE	□NA		Naphthalene	X			×	XY	□N	□ NE	□ N/
Carbon tetrachloride					ΠY	× N	☐ NE	□ NA		n-Propylbenzene				X	X Y	□N	☐ NE	□ N
Chlorobenzene					ΠY	N 🔀	☐ NE	□ NA		Styrene					ΠY	N 🔀	☐ NE	□ N
Chlorodibromomethane					ΠY	⋉ N	□ NE	□NA		1,1,1,2- Tetrachloroethane					ΠY	Ĭ¥N	□ NE	□ N
Chloroethane					ПΥ	⊠ N	□ NE	□NA		1,1,2,2- Tetrachloroethane					□ Y	N	☐ NE	□ N.
Chloroform			X		Y	\square N	☐ NE	□ NA		Tetrachloroethene	X	X		X	MY	□ N	☐ NE	
Chloromethane					ΔY	N	□ NE	□ NA		Toluene	7	1		1 K	X A	N	☐ NE	\square N
2-Chlorotoluene						N	☐ NE	□ NA		1,2,4-Trichlorobenzene					Y	N	☐ NE	\square N
4-Chlorotoluene					□ Y	N 🔁	☐ NE	□ NA	100	1,2,3-Trichlorobenzene						™ N	☐ NE	\square N
1,2-Dibromo-3- chloropropane					□ Y	N	□ NE	□ NA		1,1,1-Trichloroethane		X			X	Z	☐ NE	N
1,2-Dibromoethane						N	☐ NE	☐ NA		1,1,2-Trichloroethane						×N	☐ NE	□ N
Dibromomethane						¥ N	☐ NE	□ NA		Trichloroethene				×	₩ Y	N	☐ NE	□ N
1,2-Dichlorobenzene						× N	☐ NE	☐ NA	93	Trichlorofluoromethane						N	☐ NE	□ N
1,3-Dichlorobenzene						N.	☐ NE	□ NA		1,2,3-Trichloropropane					Y	z []	☐ NE	
1,4-Dichlorobenzene					ПΥ	N	□ NE	□ NA		1,2,4- Trimethylbenzene	N	×		×	XY	□N	□ NE	□N
Dichlorodifluoromethane					ПΥ	⋈ N	□ NE	□ NA		1,3,5- Trimethylbenzene	Z	×			Y	Z	□ NE	□N
1,1-Dichloroethane					□ Y	∠ N	☐ NE	□ NA		Vinyl chloride					☐ Y	N	☐ NE	
1,2-Dichloroethane					□ Y	⋈ N	☐ NE	□ NA	5.3	o-Xylene	X	~		P	× Y	Z	☐ NE	
1,1-Dichloroethene					ΠY	№ N	☐ NE	□ NA		m-Xylene	2	4			₩ Y	Z	☐ NE	
cis-1,2-Dichloroethene		×			XY	□N	☐ NE	□ NA		p-Xylene	V	X		K	N Y	□N	☐ NE	
trans-1,2-Dichloroethene					□ Y	₽ N	☐ NE	□NA	Jan 1	Methyl-t-butyl ether	X			X.	XY	□N	☐ NE	
1.2-Dichloropropane					ПΥ	N	□NE	□NA		Dichlorofluoromethane			П		ГΊΥ	N	□NE	\square N

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

LOW THREAT CLOSURE POLICY - CONCEPTUAL SITE MODEL

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water

MEANING COMMENTS OF STREET AND STREET AND STREET AND STREET ASSESSMENT OF STREET, AND STREET ASSESSMENT AND STREET, AND STREET				Section 1														
SEMI-VOLATILE OR	GAN	AIC C	OMP	DUNE	S													
Compound	S	SG	GW	SW				inelanieus		Compound	S	SG	SW	GW				
1,2-Dichlorobenzene	A		A		ΠY	\square N	□NE	MNA		Benzo(a)pyrene	A	П		K.	ΠY	Пи	□NE	PNA
1,2,4-Trichlorobenzene	T				ΠY	□N	□ NE	II NA		Benzo(b)fluoranthene	Ti	Ī		F.	ΠŸ	ΠN	□ NE	N/
1,3-Dichlorobenzene	T				ΠY	□N	□ NE	II NA		Benzo(g,h,i)perylene	Ħ	Ħ		Ħ	ΠY	ΠN	□NE	III N
1,4-Dichlorobenzene					ΠY	\square N	□ NE	I NA		Benzo(k)fluoranthene	T			Ħ	ΠŸ	ΠN	□ NE	I N
2-Chloronaphthalene	4		中		ПΥ	□N	□ NE	NA NA		bis(2-Chloroethoxy)- methane	中			4	ΠY	N	□ NE	□ N
2-Chlorophenol					ΠY	\square N	☐ NE	☐ NA		bis(2-Chloroethyl) ether					ПΥ	\square N	□NE	I N
2-Methylnaphthalene					DY	□N	☐ NE	☐ NA	= 14	bis(2-Ethylhexyl)phthalate					ΠY	ΠN	□ NE	I N
2-Methylphenol					□ Y	□N	☐ NE	☐ NA		Butylbenzylphthalate					ПΥ	ΠN	□ NE	T N
2-Nitroaniline					ΠY	□N	☐ NE	□ NA		Carbazole	Ħ				ПΥ	ΠN	□ NE	I N
2-Nitrophenol					□ Y	\square N	☐ NE	□ NA	1	Chrysene	T				ΠY	ΠN	□ NE	I N
2,2'-oxybis (1- Chloropropane)	P		P		ΠY	ПИ	□ NE	□ NA		Di-n-butylphthalate	F				ΠY	□N	□ NE	N.
2,4-Dichlorophenol					□ Y	\square N	☐ NE	□ NA		Di-n-octylphthalate					ΠY	□N	□NE	Пи
2,4-Dimethylphenol					□ Y	□N	☐ NE	□ NA	H	Dibenz(a,h)anthracene					ΠY	□ N	□ NE	IN
2,4-Dinitrophenol					□ Y	\square N	☐ NE	□ NA		Dibenzofuran				T	ПΥ	ΠN	□ NE	IN
2,4-Dinitrotoluene					□ Y	\square N	☐ NE	□ NA		Diethylphthalate					ΠY	ΠN	□ NE	□ N
2,4,5-Trichlorophenol					□ Y		☐ NE	□ NA		Dimethylphthalate					ΠY	ΠN	□ NE	ΠN
2,4,6-Trichlorophenol					ΠY	□N	☐ NE	□ NA		Fluoranthene				T	ΠY	ΠN	□ NE	
2,6-Dinitrotoluene					□ Y	\square N	☐ NE	□ NA		Fluorene					ΠY	□N	□ NE	ПП
3-Nitroaniline					ΠY	\square N	☐ NE	□ NA		Hexachlorobenzene					ΠY	□N	□ NE	IIN
3,3'-Dichlorobenzidine					□ Y	□N	☐ NE	☐ NA		Hexachlorobutadiene					ΠY	ΠN	□ NE	TAN
4-Bromophenyl-phenylether	P				ΠY	ПИ	□ NE	□ NA		Hexachlorocyclopentadie ne	P			P	Y	N	□ NE	N
4-Chloro-3-methylphenol						\square N	☐ NE	□ NA		Hexachloroethane					ΠY	\square N	□ NE	ΠN
4-Chloroaniline						□ N	☐ NE	□ NA		Indeno(1,2,3-cd)pyrene					□ Y	□N	□ NE	IIN
4-Chlorophenyl-phenyl ether	巾				□ Y	□N	☐ NE	□ NA		Isophorone					□ Y	□ N	□ NE	IN
4-Methylphenol	4		P		ΠY	□N	□ NE	□ NA		N-Nitroso-di-n- propylamine	P				Y	N	□ NE	₽N
4-Nitroaniline					ΠY	\square N	☐ NE	□ NA		N-nitrosodiphenylamine					ΠY	□N	□NE	IDN
4-Nitrophenol					ΠY	\square N	□ NE	□ NA	15	Naphthalene					ΠY	ΠN	□ NE	IN
4,6-Dinitro-2-methylphenol					ΠY	□N	☐ NE	□ NA		Nitrobenzene					ΠY	□ N	□ NE	□ N
Acenaphthene					ΠY	□N	□ NE	□ NA		Pentachlorophenol					Y	□ N	□ NE	I N
Acenaphthylene					☐ Y	□N	☐ NE	□ NA		Phenanthrene	T				ПΥ	ΠN	□ NE	IN
Anthracene					ΠY	□N	□ NE	□ NA		Phenol					ΠY	ΠN	□ NE	N
Benzo(a)anthracene	П				ПΥ	ΠN	□ NE	□ NA		Pyrene	T		Ħ	T	ΠY	ΠN	□ NE	I N

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

Notes:

CVOCS = Chlorinated Volatile Organic Compounds

DIPE = di-isopropyl either

EDC (ethylene dichloride) or 1,2-DCA (1,2-dichloroethane or ethylene dibromide)

EDB = 1,2-dibromomethane ETBE = ethyl tert butyl ether

MTBE = methyl tert butyl ether (banned in CA since 2004)

OCPs = Organochlorine Pesticides

PAH = Polycyclic Aromatic Hydrocarbons or Polynuclear Aromatic Hydrocarbons

PCPs = Pentachlorphenol (wood preservative)

TAME = tert amyl methyl ether

TBA = t-Butyl Alcohol TEL = tetra ethyl lead

TML = tetra methyl lead

SVOCs = Semi-volatile Organic Compounds

VOCs = Volatile Organic Compounds

- 1 = The analytes listed below are recommended in the CA LUFT Manual to ensure that site characterization is complete. Note that more analytes are recommended than are used as "criteria" chemicals in the LTCP for the various media.
- 2 = **CA LUFT Manual recommended analyses for gasoline releases** include BTEX, napthalene, and fuel oxygenates (MTBE and TBA) and/or lead scavengers if gasoline release was pre-1992.
- 3 = **CA LUFT Manual recommended analyses for fuel oil releases** include BTEX, and napthalene. Additionally, for heavy fuel oil such as bunker fuel the priority pollutant PAHs should be added to the list of analytes.
- 4 = **CA LUFT Manual recommended analyses for waste (used) motor oils** include BTEX, the 16 priority pollutant PAHs, chlorinated solvents (which will include EDB and EDC), and fuel oxygenates (MTBE and TBA). For soil only analysis for the five "wear metals" is also recommended.
- 5 = ACEH recommended analysis of all fuel oxygenates
- 6 = MTBE to be analyzed at all LUFT sites unless the tank contained only diesel or jet fuel per California Health and Safety Code 25296.15(a). MTBE was added to gasoline in California starting in approximately the late 1980's/early 1990's and was banned in 2004.
- 7 = Samples to be analyzed for tetra methyl lead
- 8 = Samples to be initially analyzed for lead scavengers EDC and EDB for all release sites and fuel oxygenates
- 9 = Use page b-8 to identify priority PAHs
- 10 = Wear metals need only be analyzed for soil
- 11 = Use page b-7 to identify specific VOCs
- 12 = Analyzed for dioxins and furans if PCBs and/or PCPs are detected
- 13 = Use page b-8 to identify specific SVOCs
- 14 = Use page b- to identify OCPs
- 15 = Use page b- to identify herbicides
- 16 = Use page b- to identify metals (in addition to the 5 wear metals)

ACEH LTCP DGIT_2013-03-25 b-10

eneral Crite as the Unau ystem been	uthorized (') Release	from the UST		□ Y	□N	□ N	E N	
nvironment (i	.e. the prima	ry source)	has been re	appurtenant s emoved, repaire estem to qualify fo	d or repl	laced. It is	not the			
uel Dispens	Contents (gas - (leaded, unleaded), diesel, waste oil, etc.)	Type (steel, fiberglass single-walled, double-walled)	Evidence of Release? (Y/N)	Closed in Place, Removed, or Upgraded?	Resp	oonsible Pa nization Na Type)	rty me,	Date	Date Removed	
Tank (capacity in gallons)	Tank capacity in									
Piping										
Dispensers										
Other Structures										
Is the site currently an operating fuel dispensing facility? Have there been multiple tank system locations at the site? Y N NE Have there been multiple releases at the site? Y N NE									□ NA □ NA	
Was there a previous/different regulatory case at this site? Identify previous case number:										
UST system				e sources beside es?	es the	□ Y □ Y	□ N	□ NE	□ NA	

General Criteria c:
Has the Unauthorized ("Primary") Release from the UST System been Stopped?
Case File Reference Documents:
Case File Reference Documents:
Attachments:
Case Notes:
ouse notes.

<u>G</u>	<u>ieneral Criteria d</u>						,	N DN	IE NA		
Н	las Free Product	been Removed to t		T	N L N	IE NA					
		"At petroleum unauthor removed to the maximal statement of the maximal statement of the maximal statement of the statement of							e product,		
	uncontaminate	hall be removed in a d zones by using reco	very and dispos	al technic	ques appropriate	to the hy	drogeolo	gic conditi	ons at the		
	· ·	roperly treats, discharg	·			-					
	system; and				·	_		·			
L	(c) Flammable pro	ducts shall be stored for	or disposal in a s	safe and	competent mann	er to prev	ent fires	or explosion	ons."		
	Has free product (r wells?	nigrating of mobile LN/	APL) been detec	cted in sit	e monitoring	□Y	□N	□ NE	□NA		
	MW ID	Date FP First Observed	Observed hickness	Date	e of Most F P Observa						
	Has a description of the standard operating procedures used to measure free										
	Has an adequate L	NAPL Conceptual Site	Model been de	veloped?		ΠY	□N	☐ NE	□NA		
	·	observed during tank				ΠY	□N	☐ NE	□NA		
	appropriateness of	of screen interval to de	tect free product	t been co	nducted?	ΠY	□N	☐ NE	□NA		
	observations duri	other indications of the ng tank removal, obseinase concentrations of andwater, etc.)	vations during e	explorato	y drilling, bore	□Y	□N	□ NE	□NA		
	free product enco	I pathway study been ountering geologic and can act as contaminar	anthropogenic p	referenti	al pathways	□Y	□N	□ NE	□NA		
		ody spatial distribution	`			ΠY	□N	□ NE	□NA		
		I exposure issues attrib n of whether free produ	· · · · · · · · · · · · · · · · · · ·			☐ Y	∐N	□ NE	□ NA		
		cription of the conditio				ΠY	□N	□ NE	□NA		
		ria e - Conceptual Si	•	Product)	sheets to supp	ort answe	er				
		emoval been implemen					□ N	☐ NE	□ NA		
		ethod (Absorbent Mate Skimmer, DPE, Excava		Gallons	Cumulative s/Volume/Mass R	Removed	Date	es Implem	ented		
	Does data indicate	rebound of free produ	ct subsequent to	product	removal?	□ Y	□N	☐ NE	☐ NA		

General Criteria d: Has Free Product been Removed to the Maximum Extent Practicable?	
nas Free Froduct been Removed to the Maximum Extent Fracticable:	
Case File Reference Documents:	
Attachments:	
Case Notes:	

Has a Conceptual Site Model that Assesses the Nature, Extent, and	Gen	<u>eral Criteria e</u> :								
investigation. The CSM establishes the source and attributes of the unauthorized release, describes all affected media (including soil, groundwater, and soil vapor as appropriate), describes local geology, hydrogeology and other physical site characteristics that affect contaminant environmental transport and fate, and identifies all confirmed and potential contaminant receptors (including water supply wells, surface water bodies, structures and their inhabitants). The CSM is relied upon by practitioners as a guide for investigative design and data collection. Petroleum release sites in California occur in a wide variety of hydrogeologic settings. As a result, contaminant fate and transport and mechanisms by which receptors may be impacted by contaminants vary greatly from location to location. Therefore, the CSM is unique to each individual release site. All relevant site characteristics identified by the CSM shall be assessed and supported by data so that the nature, extent and mobility of the release have been established to determine conformance with applicable criteria in this policy. The supporting data and analysis used to develop the CSM are not required to be contained in a single report and may be contained in multiple reports submitted to the regulatory agency over a period of time." Has a CSM been prepared that is representative of current site conditions? Document Title		ido a conceptadi one incaci tilat Accesses tile Natare, Extent, and								
investigation. The CSM establishes the source and attributes of the unauthorized release, describes all affected media (including soil, groundwater, and soil vapor as appropriate), describes local geology, hydrogeology and other physical site characteristics that affect contaminant environmental transport and fate, and identifies all confirmed and potential contaminant receptors (including water supply wells, surface water bodies, structures and their inhabitants). The CSM is relied upon by practitioners as a guide for investigative design and data collection. Petroleum release sites in California occur in a wide variety of hydrogeologic settings. As a result, contaminant fate and transport and mechanisms by which receptors may be impacted by contaminants vary greatly from location to location. Therefore, the CSM is unique to each individual release site. All relevant site characteristics identified by the CSM shall be assessed and supported by data so that the nature, extent and mobility of the release have been established to determine conformance with applicable criteria in this policy. The supporting data and analysis used to develop the CSM are not required to be contained in a single report and may be contained in multiple reports submitted to the regulatory agency over a period of time." Has a CSM been prepared that is representative of current site conditions? Document Title										
Document Title	inverse affective wat inverse hydrogen according to the contraction of	estigation. The CSM establishes the source are cted media (including soil, groundwater, and rogeology and other physical site characteristic, and identifies all confirmed and potential container bodies, structures and their inhabitants). The estigative design and data collection. Petroleur rogeologic settings. As a result, contaminant for be impacted by contaminants vary greatly frow hindividual release site. All relevant site characteristic ported by data so that the nature, extent and most formance with applicable criteria in this policy. We are not required to be contained in a single residual results.	and attributes of the unauthor soil vapor as appropriate cs that affect contaminant examinant receptors (including the CSM is relied upon by more release sites in California ate and transport and mechant location to location. Therefacteristics identified by the Cability of the release have be The supporting data and a	orized releand, describe environment water supported occur in a cocur in a co	se, descr s local g tal transp bly wells, s as a gu a wide va which re CSM is un be assess hed to deve	ibes all eology, ort and surface uide for riety of ceptors iique to ed and termine elop the				
Secondary source has been removed to the extent practicable Y N N Secondary source has been removed to the extent practicable Y N N N Secondary source has been tested for MTBE and results reported in accordance Y N N N N N N N N N	Has	a CSM been prepared that is representative of	current site conditions?		Y	□N				
Is the CSM comprehensive enough to show compliance with all the LTCP criteria and that final closure review is appropriate? General Criteria										
Is the CSM comprehensive enough to show compliance with all the LTCP criteria and that final closure review is appropriate? General Criteria		Document little Author Date								
Is the CSM comprehensive enough to show compliance with all the LTCP criteria and that final closure review is appropriate? General Criteria The unauthorized release is located within the service area of a public water Y N N system The unauthorized release consists only of petroleum Y N N N The unauthorized ("primary") release from the UST system has been stopped Y N N The unauthorized ("primary") release from the UST system has been stopped Y N N N The unauthorized ("primary") release from the UST system has been stopped Y N N N N N N N N N	If the	If the CSM is provided in multiple documents, provide additional document titles,								
General Criteria a The unauthorized release is located within the service area of a public water	aut	hors and dates in the Case File Reference do	ocument section on page e	-2						
a The unauthorized release is located within the service area of a public water system b The unauthorized release consists only of petroleum c The unauthorized ("primary") release from the UST system has been stopped			ance with all the LTCP criter	ia and that	□ Y	□N				
a The unauthorized release is located within the service area of a public water system b The unauthorized release consists only of petroleum c The unauthorized ("primary") release from the UST system has been stopped	G	eneral Criteria			_					
b The unauthorized release consists only of petroleum c The unauthorized ("primary") release from the UST system has been stopped		The unauthorized release is located within the	service area of a public wat	er	□ Y [□N				
d Free product has been removed to the maximum extent practicable e A CSM that assesses the nature, extent, and mobility of the release has been	b		oleum		□ Y [□N				
e A CSM that assesses the nature, extent, and mobility of the release has been	С	The unauthorized ("primary") release from the	UST system has been stopp	oed	□ Y [□ N				
developed	d	•	-		□ Y [N				
g Soil or groundwater has been tested for MTBE and results reported in accordance with Health and Safely Code section 25296.15 h Nuisance as defined by Water Code section 13050 does not exist at the site	е		nobility of the release has be	een	□ Y	□N				
with Health and Safely Code section 25296.15 h Nuisance as defined by Water Code section 13050 does not exist at the site	f									
Media-Specific Criteria Groundwater Vapor Intrusion to Indoor Air Direct Contact and Outdoor Air Exposure If the CSM is not comprehensive enough to show compliance with all the LTCP criteria, then Has a data gap investigation work plan been prepared that is guided by the CSM?	g	with Health and Safely Code section 25296.15								
Groundwater Vapor Intrusion to Indoor Air Direct Contact and Outdoor Air Exposure If the CSM is not comprehensive enough to show compliance with all the LTCP criteria, then Has a data gap investigation work plan been prepared that is guided by the CSM?		•	3050 does not exist at the si	te	□ Y [N				
Vapor Intrusion to Indoor Air Direct Contact and Outdoor Air Exposure If the CSM is not comprehensive enough to show compliance with all the LTCP criteria, then Has a data gap investigation work plan been prepared that is guided by the CSM?						_				
Direct Contact and Outdoor Air Exposure If the CSM is not comprehensive enough to show compliance with all the LTCP criteria, then Has a data gap investigation work plan been prepared that is guided by the CSM?					□ Y [
If the CSM is not comprehensive enough to show compliance with all the LTCP criteria, then Has a data gap investigation work plan been prepared that is guided by the CSM?		•								
Has a data gap investigation work plan been prepared that is guided by the CSM?		rect Contact and Outdoor Air Exposure			∐ Y	N				
	If th	e CSM is <u>not comprehensive</u> enough to show c	ompliance with all the LTCP	criteria, the	en					
	На	as a data gap investigation work plan been prepa	ared that is guided by the CS	SM?	□ Y] N				
Has a path to closure plan been prepared that is guided by the CSM?	На	Has a path to closure plan been prepared that is guided by the CSM?								

General Criteria e: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

<u>General Criteria f</u> : Use Secondary Source been Removed to	the Extent Prosticable?			_ Y	/	□ NE
Has Secondary Source been Removed to	the Extent Practicable?					
LTCP Statement: "Secondary source" is deimmediately beneath the point of release from source removal (e.g. physical or infrastruct technically or economically infeasible), petro removal to the extent practicable as described effective corrective action which removes or darea mass. It is expected that most secondal Following removal or destruction of the second to the required by regulatory agencies unless or (2) the groundwater plume does not meet to	In the primary source. Unless ural constraints exist whose leum-release sites are required herein. "To the extent practical estroys-in-place the most reading mass removal efforts will budary source, additional removals (1) necessary to abate a dem	site remed to able" dily respectory al or nonsi	attriboval ounce mea	outes properties or relocation of relocation of the contraction of the	revent servection whecondary dementing raction of cone year edial action to human	condary ould be source a cost- source- or less. ns shall
Has corrective action been implemented at th in-place the most readily recoverable fraction			Υ	□N	☐ NE	□NA
Soil remediation			Υ	□ N	☐ NE	□NA
Method	Mass/Volume Removed		Dat	es of In	nplement	ation
If soil remediation is currently being conducted	d, then is it progressing		Υ	□N	□NE	□NA
adequately? If soil remediation is no longer being conducted sampling results confirmed that additional contact additional contact and a			Y	□N	□ NE	□NA
necessary? Are additional soil remedial actions necessary criteria of the Policy or to abate a demonstrate			Y	□N	□ NE	□NA
Groundwater Remediation	sa unoat to naman noatur.		Υ	□N	☐ NE	□NA
Method	Mass/Volume Removed		Dat	es of In	nplement	ation
If groundwater remediation is currently being progressing adequately?	conducted, then is it		Υ	□N	☐ NE	□NA
If groundwater remediation is no longer being verification monitoring confirmed that addition necessary?		Y	□N	□ NE	□NA	
Are additional groundwater remedial actions r specific criteria of the Policy or to abate a den health?			Υ	□N	□ NE	□NA
Use sheet f-2 - Maximum Detected Contamin support your answers	ant Concentrations Before a	nd A	After	Correc	tive Acti	on to

<u>General Criteria f</u>: Maximum Documented Contaminant Concentrations Before and After Correction Action

0 1 1 1	Soil ((ppm)	Water Historical Maximum	(ppb)
Contaminant	Historical Maximum	Current Maximum	Historical Maximum	Current Maximum

eneral Criteria f: Case Notes	
Case File Reference Documents:	
Attachments:	
Case Notes:	

General Criteria g:				
Has Soil or Groundwater been Tested for MTBE and Results Reported in Accordance with Health and Safety Code Section 25296.15?	□ Y	□N	□ NE	□NA
LTCP Statement: "Health and Safety Code section 25296.15 prohibits closing groundwater, or both, as applicable have been tested for MTBE and the results Regional Water Board. The exception to this requirement is where a regulatory that leaked has only contained diesel or jet fuel. Before closing a UST case purequirements of section 25296.15, if applicable, shall be satisfied."	s of that to agency	esting aı determir	e known the that the	o the
Exemption - Has sufficient data been presented to determine that the UST that leaked has only contained diesel or jet fuel?	ΔΑ	□N	□ NE	□NA
If the site does not qualify for the exemption then				
Has sufficient data been presented to assess whether MTBE is or was present in soil at or in the vicinity of the site?	ПΥ	□N	□ NE [□ NA
Has sufficient data been presented to assess whether MTBE is or was present in groundwater at or in the vicinity of the site?	ПΥ	□N	□ NE □	NA NA
Have all results been verified by the appropriate analytical laboratory method?	☐ Y	□ N	□ NE [□ NA
Use General Criteria b pages b-3 and General Criteria e – Conceptual Site answer	e Model s	sheets t	o support	t e
Case File Reference Documents: Attachments:				
Case Notes:				
Case Notes.				

General Criteria h:							
Does a Nuisance as Defined by Water Code Section 13050 Exist a Site?	t the		□N	☐ NE			
 LTCP Statement: "Water Code section 13050 defines "nuisance" as anything which meets <u>all</u> of the follow requirements: (1) Is injurious to health, <u>or</u> is indecent or offensive to the senses, <u>or</u> an obstruction to the free use of propers or as to interfere with the comfortable enjoyment of life or property. (2) Affects at the same time an entire community or neighborhood, <u>or</u> any considerable number of persalthough the extent of the annoyance or damage inflicted upon individuals may be unequal. (3) Occurs during, <u>or</u> as a result of, the treatment <u>or</u> disposal of wastes. For the purpose of this policy, waste means a petroleum release." 							
Does a nuisance condition currently exist (or potentially could exist) that meets all of the following criteria?	☐ Y [□N□] NE	□NA			
Is injurious to health? -OR- Is indecent or offensive to the senses? -OR- Is an obstruction to the free use of property so as to interfere with the comfortable enjoyment of life or property?	Y	N N N	NE [] NE [] NE [□ NA □ NA □ NA			
Affects at the same time an entire community, although the extent of the annoyance or damage inflicted upon individuals may be unequal? -OR-Affects at the same time an entire neighborhood, although the extent of the annoyance or damage inflicted upon individuals may be unequal? -OR-Affects at the same time any considerable number of persons, although the extent of the annoyance or damage inflicted upon individuals may be unequal?	Y [N] NE [NA NA NA			
Occurs during the treatment of waste? -OR- Occurs during the disposal of waste? -OR- Occurs as a result of the treatment of waste? -OR- Occurs as a result of the disposal of waste?	Y	N [] N [] N [NE [] NE [] NE [] NE [NA NA NA NA			
Has an evaluation of whether site contamination is present in locations that have the potential to pose nuisance conditions during common or reasonably expected site activities been conducted?	Y [N [] NE	□NA			
Surface soils? Utility corridors? Groundwater? Surface water? Soil gas? Basements or other subsurface structures? Use the following to support your answer: General Criteria a (site located within a service area of a public water supply system) General Criteria b (identified chemicals of concern and potential chemicals of concern General Criteria d (free product evaluation) General Criteria e (results of preferential pathway and sensitive receptor survey) Media Specific Criteria for Groundwater Media Specific Criteria for Vapor Intrusion to Indoor Air Media Specific Criteria for Direct Contact and Outdoor Air Exposure		N	NE C NE C NE C NE C	NA NA NA NA NA NA			

General Criteria h: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

Does the site qualify for the Soil Only Case exemption? -OR-	ПΥ	□ N	□ NE			
Does the site satisfy the Media-Specific Criteria for Groundwater?	□ Y	□ N	□ NE			
LTCP Statement: "This policy describes criteria on which to base a determination that threats to existing and anticipated beneficial uses of groundwater have been mitigated or are de minimis, including cases that have not affected groundwater. State Water Board Resolution 92-49, <i>Policies and Procedures for Investigation and Cleanup and Abatement</i>						
of Discharges Under Water Code Section 13304 is a state policy for water quality control and applies to petroleum UST cases. Resolution 92-49 directs that water affected by an unauthorized release attain either background water quality or the best water quality that is reasonable if background water quality cannot be restored. Any alternative level of water quality less stringent than background must be consistent with the maximum benefit to the people of the state, not unreasonably affect current and anticipated beneficial use of affected water, and not result in water quality less than that prescribed in the water quality control plan for the basin within which the site is located. Resolution No. 92-49 does not require that the requisite level of water quality be met at the time of case closure; it specifies compliance with cleanup goals and objectives within a reasonable time frame.						
Water quality control plans (Basin Plans) generally establish "background" water quality as a restorative endpoint. This policy recognizes the regulatory authority of the Basin Plans but underscores the flexibility contained in Resolution 92-49.						
It is a fundamental tenet of this low-threat closure policy that if the closure criteria described in this policy are satisfied at a petroleum unauthorized release site, attaining background water quality is not feasible, establishing an alternate level of water quality not to exceed that prescribed in the applicable Basin Plan is appropriate, and that water quality objectives will be attained through natural attenuation within a reasonable time, prior to the expected need for use of any affected groundwater.						
If groundwater with a designated beneficial use is affected by an unauthorized release, to satisfy the media- specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites listed below. A plume that is "stable or decreasing" is a contaminant mass that has expanded to its maximum extent: the distance from the release where attenuation exceeds migration."						
"Sites with Releases that Have Not Affected Groundwater - Sites with soil that does not contain sufficient mobile constituents [leachate, vapors, or light non-aqueous-phase liquids (LNAPL)] to cause groundwater to exceed the groundwater criteria in this policy shall be considered low-threat sites for the groundwater medium. Provided the general criteria and criteria for other media are also met, those sites are eligible for case closure. For older releases, the absence of current groundwater impact is often a good indication that residual concentrations present in the soil are not a source for groundwater pollution."						
Has adequate data been collected to demonstrate that soil does not contain sufficient mobile constituents to cause groundwater to exceed the groundwater criteria in this policy?	☐ Y	□N	□ NE			
Leachate? Y N NE NA Soil gas? Y N NE NA LNAPL? Y N NE NA						
If the site does not qualify for the soil only exemption, then Does groundwater in the vicinity of the site have beneficial use designations?	ΔΑ	□N	□ NE			
Use General Criteria e – Conceptual Site Model sheets to support answer						

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

GROUNDWATER PLUME STABILITY							
If the site does not qualify designated beneficial uses	for the soil only exemption, and groundwater has						
<u> </u>							
Is the contaminant plume	stable or decreasing in areal extent?		□N	□ NE	□ NA		
if a contaminant mass has exceeds migration. There a routinely observe non-dete way is to show stable or de should be noted that conce may be also attributed to m positive results, or laborato "Requiring that a plume mubecome in the future. Has the maximum stabilize	ust be stable or decreasing reduces uncertainty as to he	e release The first of the first of the dist variation ampling ow long t	where a common he secon al end of s. These technique he plum	attenuation way is to nd commo the plum e variation es, false e might	on ee. It s		
the distal end of the plume	r groundwater parameters in down-gradient wells at been routinely observed?	□ Y [_ N [] NE [□ NA		
MW ID's	Dates of GW Monitoring Events Demonstrating Non-	Detect Va	alues?				
	concentration levels in down-gradient wells at been routinely observed?	Y	1	NE	NA NA		
MW ID's	Dates of GW Monitoring Events Demonstrating Stabi	lity?					
		Y	N [N] N] N]	NE 🗌	NA NA NA NA NA		
Use Criteria e – Concept	ual Site Model sheets to support answers						

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

Site Does the contaminant plume that exceeds water quality objectives meet all of the characteristics of at least one of the five LTCP classes listed below? Y N 1a < 100 No >250 >250 Yes NA NA NA Y N 2b < 250 No >1,000 >1,000 Yes <3,000 <1,000 NA Y N 3c < 250 Yes >1,000 >1,000 >5 Years NA NA Yes Y N 4d <1,000 No >1,000 >1,000 Yes <1,000 NA Y N 5e A site-specific analysis determines that under current and reasonable anticipated near-term future scenarios, the contaminant Y N		Plume Length ¹ (feet)	Free Product Remaining 2 (Yes/No)	Distance of Nearest Water Supply Well from Plume Boundary ³ (feet)	Distance of Nearest Surface Water Body from Plume Boundary ⁴ (feet)	Stable or Decreasing Plume ⁵	Maximum Dissolved Benzene Concentration ⁶ (µg/L)	Maximum Dissolved MTBE Concentration ⁶ (µg/L)	Property Owner Willing to Accept Land Use Restriction ⁷			
classes listed below? 1a < 100 No >250 Yes NA Y N NA									<i>"</i> 1 TOD			
2b 100				hat exceeds water	er quality objectives	s meet all of the	e characteristics o	t at least one of th	e five LTCP		⊔N	□ N
3° <250 Yes >1,000 >1,000 > 5 Years NA NA Yes Y N 4° <1,000	7200 7200 100 100									ΠY	□N	□N
4 ^d <1,000	2 ^b <250 No >1,000 >1,000 Yes <3,000 <1,000 NA									Y	□N	□N
5° A site-specific analysis determines that under current and reasonable anticipated near-term future scenarios, the contaminant	-										□N	□ N
	-	<1,000 No >1,000 >1,000 Yes <1,000 <1,000 NA									□N	N
plume poses a low threat to human health and safety and to the environment and water quality objectives will be achieved within a reasonable period time frame.	5°	plume pos	ses a low threa	t to human health						∐ Y	∐N	N

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 gw-3

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

LTCP Groundwater Contaminant Plume Classification Characteristics

Notes (continued):

- 3 = See General Criteria Conceptual Site Model sheets to support distance to nearest water supply well.
- 4 = See General Criteria Conceptual Site Model sheets to support distance to nearest surface water body.
- 5 = The specified concentrations are maximums, and typically occur in source area monitoring wells. See General Criteria Conceptual Site Model sheets to support length of time plume has been stable or decreasing.
- 6 = The specified concentrations are maximums, and typically occur in source area monitoring wells. See General Criteria Conceptual Site Model sheets to support dissolved benzene and MTBE concentrations.
- 7 = See General Criteria Conceptual Site Model sheets to support Property Owner's willingness to accept Land Use Restrictions.
- a = Class 1: Represents a short, stabilized plume that is indicative of a small or depleted source and/or very high natural attenuation rate. (CA LUFT Manual)
- b = Class 2: Represents a moderate, stabilized plume length (plume boundary is <250 feet from point of release) that approximates the average benzene plume length from cited studies. The maximum concentration of benzene (3,000 µg/L) and MTBE (1,000 µg/L) in groundwater are conservative indicators that free product is not present. These concentrations are approximately 10% and 0.02%, respectively, of the typical effective solubility of benzene and MTBE in unweathered gasoline. (CA LUFT Manual)
- c = Class 3: Represents a moderate, stabilized plume length (plume boundary is <250 feet from point of release) that approximates the average benzene plume length from cited studies. The on-site free product and/or high dissolved concentrations in the plume remaining after secondary source removal to the maximum extent practicable as per the General Criteria in the Policy require that the plume has been stable or decreasing for a minimum of five years of monitoring to validate plume stability/natural attenuation (i.e., to confirm that the rate of natural attenuation exceeds the rate of LNAPL dissolution and dissolved-phase migration). (CA LUFT Manual)
- d = Class 4: Represents a long, stabilized plume length (plume boundary is <1,000 feet from point of release) that approximates the maximum MTBE plume length cited. (CA LUFT Manual)
- e = Class 5: For other low-threat site-specific scenarios not captured in Class 1 through 4, use a fate-and-transport model to evaluate the potential migration and attenuation of the chemicals using site-specific calibration data when available. It is important to use models that consider mass balance whenever possible. (CA LUFT Manual)

NA = Not applicable

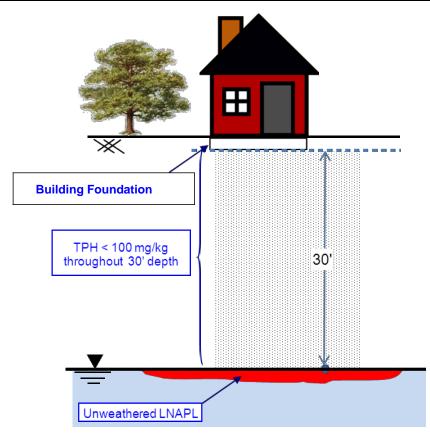
Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 gw-4

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

Groundwater: Case Notes
Case File References (Document File Names):
Technical References:
Case Notes:

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA


■ NA = Not Applicable

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: PETROLEUM VAPOR INTRUSION TO INDOOR AIR

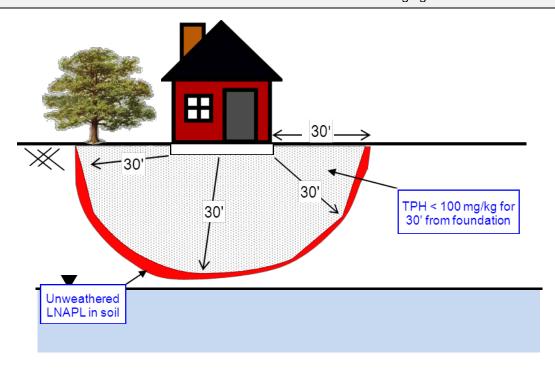
Does the site qualify for the active commercial fueling facility exemption? -OR-	' \ \ \ \ \	□N	□ NE				
Does the site meet <u>one of the three</u> petroleum vapor intrusion to indoor ai specific criteria (a, b, or c)?	Y	□N	□ NE				
LTCP Statement: "Exposure to petroleum vapors migrating from soil or groundwater to indoor air may pose unacceptable human health risks. This policy describes conditions, including bioattenuation zones, which if met will assure that exposure to petroleum vapors in indoor air will not pose unacceptable health risks. In many petroleum release cases, potential human exposures to vapors are mitigated by bioattenuation processes as vapors migrate toward the ground surface. For the purposes of this section, the term "bioattenuation zone" means an area of soil with conditions that support biodegradation of petroleum hydrocarbon vapors.							
The low-threat vapor-intrusion criteria described below apply to sites where the release originated and impacted or potentially impacted adjacent parcels when:							
(1) existing buildings are occupied or may be reasonably expected to be occupied in the future, or							
(2) buildings for human occupancy are reasonably expected to be constructed in the	future.						
Appendices 1 through 4 (attached) illustrate four potential exposure scenarios and describe characteristics ar criteria associated with each scenario. Petroleum release sites shall satisfy the media-specific criteria f petroleum vapor intrusion to indoor air and be considered low-threat for the vapor-intrusion-to-indoor-a pathway if:							
a. Site-specific conditions at the release site satisfy all of the characteristics and criteria of scenarios 1 through 3 as applicable, or all of the characteristics and criteria of scenario 4 as applicable; or							
 b. A site-specific risk assessment for the vapor intrusion pathway is conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency; or c. As a result of controlling exposure through the use of mitigation measures or through the use of institutiona or engineering controls, the regulatory agency determines that petroleum vapors migrating from soil or 							
groundwater will have no significant risk of adversely affecting human health. Exception: Exposures to petroleum vapors associated with historical fuel system releases are comparative insignificant relative to exposures from small surface spills and fugitive vapor releases that typically occur active fueling facilities. Therefore, satisfaction of the media-specific criteria for petroleum vapor intrusion indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk."							
Does the site qualify for an <u>exemption</u> from the Petroleum Vapor	□N	□ NE	□NA				
Is the site is an active commercial petroleum fueling facility?	□N	☐ NE	□NA				
Are release characteristics reasonably believed to pose an unacceptable health risk to facility users or nearby facilities?	N	☐ NE	□NA				
If the site does not qualify for an exemption, then							
 a. Do site-specific conditions at the release site satisfy all of the characteristics and criteria of scenarios 1 through 3 as applicable, or all of the characteristics and criteria of scenario 4? 	∐ N	□NE	□NA				
(Use page vi-2 through vi-10 to support answer)							
b. Has a site-specific risk assessment for the vapor intrusion pathway been conducted that demonstrates that human health is protected? -OR-	□N	□ NE	□ NA				
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	N	□ NE	□NA				
Use General Criteria e - Conceptual Site Model pages to support answer							

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: PETROLEUM VAPOR INTRUSION TO INDOOR AIR

SCENARIO 1 - UNWEATHERED LNAPL IN GROUNDWATER							
Do site specific conditions at the site satisfy all the characteristics of Scenario 1?							
Scenario 1 Existing Building or Potential Future Construction							
LNAPL Characteristics: Unweathered – petroleum product that has not been subjected to significant volatilization or solubilization, and therefore has not lost a significant portion of its volatile or soluble constituents (e.g., comparable to recently dispensed fuel)							
Bioattenuation Zone Required Characteristics: Minimum 30 foot vertical separation distance between the bottom of building foundati Total TPH concentrations in soil < 100 mg/kg	ons and I	_NAPL ii	n groundv	vater,			

Is the LNAPL unweathered?		Z	☐ NE	□ NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet vertically</u> between the LNAPL in groundwater and the foundation of existing buildings?; - <u>and</u> -	ΠY	□N	□NE	□NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet vertically</u> between the LNAPL in groundwater and the foundation of <u>potential buildings?</u> ; -and-	ΠY	□N	□NE	□NA
Are total TPH concentrations in soil less than 100 mg/kg throughout the entire vertical extent of the 30 foot bioattenuation zone?	ΠΥ	□N	□ NE	□NA

Use Criteria e – Conceptual Site Model sheets to support answers


Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 vi-2

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: PETROLEUM VAPOR INTRUSION TO INDOOR AIR

SCENARIO 2 - UNWEATHERED LNAPL IN SOIL Do site specific conditions at the site satisfy all the characteristics of Scenario 2? Scenario 2 Existing Building or Potential Future Construction LNAPL Characteristics: Unweathered – petroleum product that has not been subjected to significant volatilization or solubilization, and therefore has not lost a significant portion of its volatile or soluble constituents (e.g., comparable to recently dispensed fuel) Bioattenuation Zone Required Characteristics:

Minimum 30 foot vertical separation distance between the bottom of building foundations and LNAPL in soil, Total TPH concentrations in Soil < 100 mg/kg

Is the LNAPL unweathered?	Y	□N	☐ NE	□NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet both laterally and vertically</u> between the LNAPL in soil and the foundation of existing buildings?; - <u>and</u> -	□Y	□N	□NE	□NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet both laterally and vertically</u> between the LNAPL in soil and the foundation of <u>potential buildings?</u> ; - <u>and</u> -	□Y	□N	□NE	□NA
Are total TPH concentrations in soil less than 100 mg/kg throughout the entire lateral and vertical extent of the 30 foot bioattenuation zone?	ΠΥ	□N	□ NE	□NA

Use Criteria e - Conceptual Site Model sheets to support answers

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 vi-3

SCENARIO 3 – LOW CONCENTRATION GROUNDWATER SCENARIO (FIGURE A)					
Does the Site Satisfy all of the Characteristics and Requirements of Scenario 3 Figure A?					
Figure A Existing Building or Future Construction					
Dissolved Phase Benzene Concentrations in Groundwater F < 100 μg/L	Requirem	nents:			
Bioattenuation Zone Required Characteristics Minimum 5 Foot Vertical Separation Distance between Bottom of Building Fo No Soil Gas Oxygen Data or Measured Soil Gas Oxygen Conce Total TPH Concentrations in Soil < 100 mg/kg	undation		ater Table	2 ,	
	O₂ Data o <4%	r			
Are maximum dissolved benzene concentrations in groundwater < 100 μg/L? -and-	☐ Y	□N	☐ NE	□NA	
Is the bioattenuation zone a continuous zone that provides a separation of <u>at least 5 feet vertically</u> between the dissolved phase benzene and the foundation of <u>existing buildings?</u> - <u>and</u> -	□Y	□N	□NE	□NA	
Is the bioattenuation zone a continuous zone that provides a separation of <u>at least 5 feet vertically</u> between the dissolved phase benzene and the foundation of <u>potential buildings? -and-</u>	□Y	□N	□NE	□NA	
Has sufficient data been collected to determine that Total TPH (TPH-g and TPH-d combined) concentrations in soil are < 100 mg/kg throughout the entire depth of the 5 foot bioattenuation zone?	ПΥ	□N	□NE	□NA	
Use Criteria e – Conceptual Site Model sheets to support answers					

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 vi-4

	SCENARIO 3 – LOW CONCENTRATION GROUNDWATER SCENARIO (FIGURE B)						
	Does the Site Satisfy all of the Characteristics and Requirements of Scenario 3 - Figure B?						
	Figure B Existing Building or Future Construction						
	<u>Dissolved Phase Benzene Concentrations in Groundwater Requirements:</u> ≥ 100 μg/L but < 1,000 μg/L						
	Bioattenuation Zone Required Characteristics: Minimum 5 Foot Vertical Separation Distance between Bottom of Building Foundations and Water Table, Measured Soil Gas Oxygen Concentrations< 4%, Total TPH Concentrations in Soil < 100 mg/kg						
	Without O ₂ Data or O ₂ < 4% TPH < 100 mg/kg						
Г	Benzene ≥ 100 μg/L and < 1000 μg/L Are maximum dissolved benzene concentrations in groundwater ≥ 100 μg/L but						
<u>.</u> !	< 1,000 µg/L?; -and- Is the bioattenuation zone a continuous zone that provides a separation of at least 10 feet vertically between the dissolved phase benzene and the foundation of existing buildings?; -and-						
1	Is the bioattenuation zone a continuous zone that provides a separation of <u>at</u> Y						
(Has sufficient data been collected to determine that Total TPH (TPH-g and TPH-						
Us	se Criteria e – Conceptual Site Model sheets to support answers						

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

vi-5

ACEH LTCP DGIT_2013-03-25

SCENARIO 3 – LOW CONCENTRATION GROUNDWATER SCENARIO (FIGURE C)						
Does the Site Satisfy all of the Characteristics and Requirements of Scenario 3 - Figure C?						
Figure C Existing Building or Future Construction						
<u>Dissolved Phase Benzene Concentrations in Groundwater Requirements:</u> < 1,000 µg/L						
Bioattenuation Zone Required Characteristics: Minimum 5 Foot Vertical Separation Distance between Bottom of Building Foundations and Water Table, Measured Soil Gas Oxygen Concentrations ≥ 4%, Total TPH Concentrations in Soil < 100 mg/kg						
TPH < 100 mg/kg 5' Benzene < 1000 μg/L						
Are maximum dissolved benzene concentrations in groundwater $\geq 100 \mu\text{g/L}$ but $\Box Y \Box N \Box NE \Box NA < 1,000 \mu\text{g/L}$?; -and- $\Box Y \Box N \Box NE \Box NA$ Is the bioattenuation zone a continuous zone that provides a separation of at $\Box Y \Box N \Box NE \Box NA$						
Is the bioattenuation zone a continuous zone that provides a separation of <u>at least 10 feet vertically</u> between the dissolved phase benzene and the foundation of <u>existing buildings</u> ?; - <u>and</u> -						
Is the bioattenuation zone a continuous zone that provides a separation of at least 10 feet vertically between the dissolved phase benzene and the foundation of potential buildings?; -and-						
Has sufficient data been collected to determine that Total TPH (TPH-g and TPH-d combined) concentrations in soil are < 100 mg/kg throughout the entire depth of the 10 foot bioattenuation zone?						
Use Criteria e – Conceptual Site Model sheets to support answers						

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS

(WITH A BIOATTENUATION ZONE) Does the Site Satisfy all of the Characteristics and Requirements of $\prod Y$ \square N **□** NE **□** NA Scenario 4 - With Bioattenuation Zone? Soil Gas Sampling – With Bioattenuation Zone **Existing Building or Future Construction** Bioattenuation Zone Required Characteristics: Minimum 5 foot vertical feet of soil between the soil vapor measurement and the foundation of an existing building or ground surface of future construction; Total TPH concentrations in soil < 100 mg/kg (measured in at least two depths within the five-foot zone); Soil gas oxygen concentrations ≥ 4% at the bottom of the five-foot bioattenuation zone **Soil Gas Sample Location Requirements:** Existing Buildings - At least five feet below the bottom of the building foundation Future Construction - The soil gas sample shall be collected from at least five feet below ground surface **Future Construction Existing Building** TPH < 100 TPH < 100 mg/kg mg/kg sample location sample location Oxygen ≥ 4% at lower end of zone Oxygen ≥ 4% at lower end of zone Are the required bioattenuation zone characteristics satisfied? NE NA Is there a minimum 5 foot vertical feet of soil between the soil vapor measurement and \square N □NE \square NA the foundation of existing buildings? Is there a minimum 5 foot vertical feet of soil between the soil vapor measurement and Πи □ NE \square NA the ground surface of future construction? Has sufficient data been collected to determine that total TPH concentrations in soil are < $\prod Y$ \square N ☐ NE □ NA 100 mg/kg (measured in at least two depths within the five-foot zone)? Has sufficient data been collected to determine that soil gas oxygen concentrations are ≥ $\prod Y$ \square N □ NE □NA 4% at the bottom of the five-foot bioattenuation zone?

Use Criteria e – Conceptual Site Model sheets to support answers

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS ZONE)	(WITH	A BIO	ATTENU	JATION
If the required bioattenuation zone characteristics have been met then,				
Have soil gas samples been collected in accordance with required protocols?		□ N	☐ NE	□ NA
For existing buildings, were soil gas samples collected from at least five feet below the bottom of building foundations?	Υ	□N	☐ NE	□NA
For sites where future construction is planned, were soil gas samples collected from at least five feet below ground surface within the footprints of future buildings?	ΠY	□N	☐ NE	□NA
Were samples collected in accordance with the guidance provided in the CA LUFT Manual?	ΠΥ	□N	☐ NE	□NA
Has sufficient data been collected to determine that soil gas concentrations for benzene, ethylbenzene, and napthalene are below the specified <u>residential</u>	☐ Y	□N	☐ NE	□NA
screening levels?				
Benzene < 85,000 μg/m ³	□ Y	□N	☐ NE	□NA
Ethylbenzene < 1,100,000 μg/m ³	□ Y	\square N	☐ NE	□NA
Napthalene $< 93,000 \mu\text{g/m}^3$	Y	N	☐ NE	□NA
Has sufficient data been collected to determine that soil gas concentrations for		□N	☐ NE	□ NA
benzene, ethylbenzene, and napthalene are below the specified commercial				
screening levels?				
Benzene < 280,000 μg/m ³	ПΥ	ПΝ	□NE	□ NA
Ethylbenzene < 3,600,000 μg/m ³	ПΥ	ΠN	□ NE	NA NA
Napthalene < 310,000 μg/m ³	□ Y	□N	☐ NE	□ NA
Use Criteria e – Conceptual Site Model sheets to support answers				

If the required bioattenuation zone characteristics have not been satisfied then use Scenario 4 – No Bioattenuation Zone (pages vi-9 and vi-10)

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS (NO BIOATTENUATION ZONE)						
Does the Site Satisfy all of the Characteristics and Requirements of Scenario 4 – No Bioattenuation Zone?	□ Y	′	□ NE	□NA		
Soil Gas Sampling – No Bioattenuation Zo Existing Building or Future Construction						
Soil Gas Sample Location Requirements:						
Existing Buildings – At least five feet below the bottom of the building four Future Construction - The soil gas sample shall be collected from at least		below gro	ound surfac	ce		
Existing Building Future Con	nstruction	on				
Depth of Foundation a - sample location	b - sam	 nple locati	on			
Were appropriate protocols followed for collecting soil gas samples?		□N	NE [NA		
For existing buildings, were soil gas samples collected from at least five feet below the bottom of building foundations?	ΠY	□N	□ NE □] NA		
For sites where future construction is planned, were soil gas samples collected from at least five feet below ground surface within the footprints of future buildings?	ПΥ	□N	□ NE □] NA		
Were samples collected in accordance with the guidance provided in the CA LUFT Manual?	Υ	□N	□ NE □] NA		
Has sufficient data been collected to determine that soil gas concentrations for benzene, ethylbenzene, and napthalene are below the specified residential screening levels?	☐ Y	□N	□ NE [□ NA		
Benzene $< 85 \mu g/m^3$	☐ Y	□ N	NE [NA		
Ethylbenzene < 1,100 μg/m³ Napthalene < 93 μg/m³		□ N	NE [NA NA		
Has sufficient data been collected to determine that soil gas	Y	□ N	NE [NA NA		
concentrations for benzene, ethylbenzene, and napthalene are below the specified commercial screening levels?						
Benzene < 280 μg/m ³	ΠΥ	□N	□ NE [NA		
Ethylbenzene < 3,600 μg/m ³	□ Y	□N	□ NE [NA		
Napthalene < 310 μg/m ³	☐ Y	□ N	□ NE □	NA		
Use Criteria e – Conceptual Site Model sheets to support answers						

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS (NO BIOATTENUATION ZONE)

For the no bioattenuation zone scenario, the screening criteria provided in the table on the preceding page are the same as the California Human Health Screening Levels (CHSSLs) with engineered fill below sub-slab.

If building crawl space air samples were collected instead of soil gas samples to evaluate vapor intrusion into buildings, then

Were appropriate protocols followed for collecting the crawl space air samples?	□ Y	□N	□ NE	□NA
Were samples collected in accordance with the guidance provided in the CA LUFT Manual and referenced documents including the DTSC's Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air?	ΠΥ	□N	□ NE	□NA
Has sufficient data been collected to determine that crawl space air concentrations for benzene, ethylbenzene, and napthalene are below the appropriate <u>residential screening levels</u> (i.e., CHHSLs for Indoor Air)?	□ Y	□N	□ NE	□ NA
Benzene < 0.084 μg/m ³	☐ Y	□N	☐ NE	□NA
Ethylbenzene – No screening number currently available	□ Y	□N	☐ NE	☐ NA
Napthalene < 0.072 μg/m ³	□ Y	□N	☐ NE	☐ NA
Has sufficient data been collected to determine that crawl space air concentrations for benzene, ethylbenzene, and napthalene are below the appropriate commercial screening levels (i.e., CHHSLs for Indoor Air)?	□ Y	N	□ NE	□ NA
Benzene < 0.141 μg/m ³		N	□ NE	☐ NA
Ethylbenzene – No screening number currently available		N	☐ NE	☐ NA
Napthalene < 0.120 μg/m ³		N	☐ NE	☐ NA

Use Criteria e - Conceptual Site Model sheets to support answers

Case Notes
Case File Document References:
Technical References:
Case Notes:

(Case Notes	
	Case Notes (continued):	

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

Does the site qualify for an <u>exemption</u> from the media-specific criteria for Direct Contact and Outdoor Air Exposure? -OR-		☐ Yes] No	□ NE		
	oes the site meet the media-specific criteria for Direct Contact nd Outdoor Air Exposure?	·					
	LTCP Statement: "This policy describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses a low threat to human health. Release sites where human exposure may occur satisfy the media-specific criteria for direct contact and outdoor air exposure and shall be considered low-threat if they meet any of the following:						
	a. Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs). The concentration limits for 0 to 5 feet bgs protect from ingestion of soil, dermal contact with soil, and inhalation of volatile soil emissions and inhalation of particulate emissions. The 5 to 10 feet bgs concentration limits protect from inhalation of volatile soil emissions. Both the 0 to 5 feet bgs concentration limits and the 5 to 10 feet bgs concentration limits for the appropriate site classification (Residential or Commercial/Industrial) shall be satisfied. In addition, if exposure to construction workers or utility trench workers is reasonably anticipated, the concentration limits for Utility Worker shall also be satisfied; or						
	 Maximum concentration of petroleum constituents in soil are less than assessment demonstrates will have no significant risk of adversely affer 				risk		
	c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, the regulatory agency determines that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health."						
	Has adequate data been collected to demonstrate that the upper 10 feet of soil is free of petroleum contamination and therefore qualifies for the exemption?	Y	□ N	□ NE	. □ NA		
	If the site does not qualify for the exemption, then does the site satisfy the media-specific criteria (a, b, <u>or</u> c) for direct contact and outdoor air exposure?	Y	□ N	□ NE	. □ NA		
	a. Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth bgs?	ΠΥ	□N	☐ NE	□ NA		
	b. Are the maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will	ПΥ	□ N	□ NE	□ NA		
	have no significant risk of adversely affecting human health? c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	Υ	□N	□ NE	□ NA		
	Use General Criteria e – Conceptual Site Model sheets to support you	r answers	5	_			

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

Maximum Concentrations of Petroleum Constituents in Soil (Scenario a)

Table 1 – Concentrations of Petroleum Constituents in Soil That will Have No Significant Risk of Adversely Affecting Human Health

	Resid	dential	Commerci	Commercial/Industrial	
	0 to 5 ft bgs	5 to 10 ft bgs	0 to 5 ft bgs	5 to 10 ft bgs	0 to 10 ft bgs
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	1.9	2.8	8.2	12	14
Max Soil Conc ¹					
Ethylbenzene	21	32	89	134	314
Max Soil Conc ¹					
Napthalene	9.7	9.7	45	45	219
Max Soil Conc ¹					
PAH ²	0.063	NA	0.68	NA	4.5
Max Soil Conc ¹					

Notes:

- 1. The <u>maximum concentrations of petroleum constituents in soil</u> should be compared to those listed in Table 1 (Technical Justification for Soil Screening Levels for Direct Contact and Outdoor Air Exposure Pathways, SWRCB)
- 2. Based on the seven carcinogenic poly-aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent [BaPe]. Sampling and analysis for PAHs is only necessary where soil is affected by either waste oil or Bunker C oil.

Are all the concentration limits for <u>all</u> the appropriate site classification satisfied?	☐ Y	□ N	☐ NE	□NA
Residential: 0 to 5 feet bgs	□ Y	□N	☐ NE	□NA
Residential: 5 to 10 feet bgs	□ Y	□N	☐ NE	□NA
Commercial/Industrial: 0 to 5 feet bgs	□ Y	□N	☐ NE	□NA
Commercial/Industrial: 5 to 10 feet bgs	□ Y	N	☐ NE	□NA
Utility Worker: 0 to 10 feet bgs?	ΔΥ	Z	☐ NE	□NA
Have the requirements for using the screening levels in Table 1 been satisfied (i.e., have the model assumptions presented in the SWRCB document entitled "Technical Justification for Soil Screening Levels for Direct Contact and Outdoor Air Exposure Pathways" been met?		_	∐ NE	∐ NA
Is the area of impacted soil where a particular exposure occurs ≤ 82 feet by 82 feet?		□N	☐ NE	□NA
Is the receptor located at the downgradient edge for inhalation exposure?	□ Y	□N	☐ NE	□NA
Is the wind speed < 2.25 meters per second (7.38 feet per second) on average?	ΔΑ	z	☐ NE	□NA
Are there different exposure scenarios than residential, commercial/industrial, utility worker) at the site?	☐ Y	□N	☐ NE	□NA

LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

Direct Contact and Outdoor Air Exposure: Case Notes
Case File Reference Documents:
Technical References:
Case Notes:

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = No

■ NA = Not Applicable

CONCEPTUAL SITE MODEL AND DATA GAP IDENTIFICATION CHECKLIST

/ell Survey				
Are there existing water supply wells or other sources of water in	ПΥ	Пи	□ NE	
the vicinity of the site?]			
Has a recent well survey been conducted to identify all wells within 2,000 feet of the site?	ΔΑ	□N	□ NE	□ NA
Name, author, and date of survey document:				
Have Department of Water Resources records been reviewed?	ΠΥ	□N	□ NE	□ NA
Have Zone 7 Water Agency records been reviewed?	ΠΥ	N	□ NE	□ NA
Have Alameda County Public Works records been reviewed?	ПΥ	ΠN	□ NE	□ NA
Has a background study of the historical land uses of the site and	ΠÝ	ΠÑ	NE	□ NA
properties in the vicinity of the site been conducted to determine the]	ш.,		
existence of unrecorded/unknown (abandoned) wells?				
Has sufficient data been provided on all wells located within	ПΥ	\square N	□ NE	□ NA
2,000 feet of the site to identify sensitive receptors and determine	_			
potential contaminant migration pathways to and from the site?				
Has a figure (with rose diagram) identifying each well location been	ПΥ	ПИ	□ NE	□ NA
presented?				L IN/
Have DWR well logs (marked as confidential) been provided?	ПΥ	Пи	□NE	□ NA
Has a table with details of the well search been provided?	ΠΥ		□ NE	□ NA
Identification number (ID) corresponding to the well location on a	ΠY	□ N	□ NE	□ NA
` , '	⊔ т			I LINA
figure? State Well ID, Well Owner ID?	ПΥ	Пи	│	□ NA
Well location address?	ПΥ		□ NE	□ NA
Distance of well from the site?	<u> </u>	□N	□ NE	□ NA
Direction of well from the site (downgradient, upgradient, crossgradient)?	≻	□N	☐ NE	│
Type of well (monitoring, remediation, irrigation, water supply, industrial, livestock, dewatering, cathodic protection)?	☐ Y	□N	☐ NE	NA
Well status (active, inactive, decommissioned, unrecorded, and/or		□N	☐ NE	☐ NA
abandoned)?			<u> </u>	
Well installation date?	<u> </u>	∐ N	☐ NE	∐ NA
Well decommissioned date?	☐ Y	N	☐ NE	☐ NA
Total Well depth (feet bgs)?		∐ N	☐ NE	☐ NA
Well screen interval (feet bgs)?		∐ N	☐ NE	☐ NA
Well seal interval (feet bgs)?	□ Y	\square N	☐ NE	
Well diameter (inches)?		□N	☐ NE	☐ NA
Are these supply wells or other sources of water used by property owners/tenants in the vicinity of the site?	Y	□N	□ NE	□ NA
Has a neighborhood backyard domestic water/irrigation well	ПΥ	Пи	□ NE	□ NA
assessment been conducted?]			
Have wells been impacted by the release site?	ПΥ	□N	□ NE	□ NA
Have the wells been sampled for chemicals of concern associated	Η̈́	H N	□ NE	□ NA
with the release site and analytical results been provided?	' '		' ' ' '	۱۹/
Have impacted wells been decommissioned and well destruction	ΠΥ	□N	□ NE	□ NA
records provided?	'			۱۸/

LOW THREAT CLOSURE POLICY - CONCEPTUAL SITE MODEL

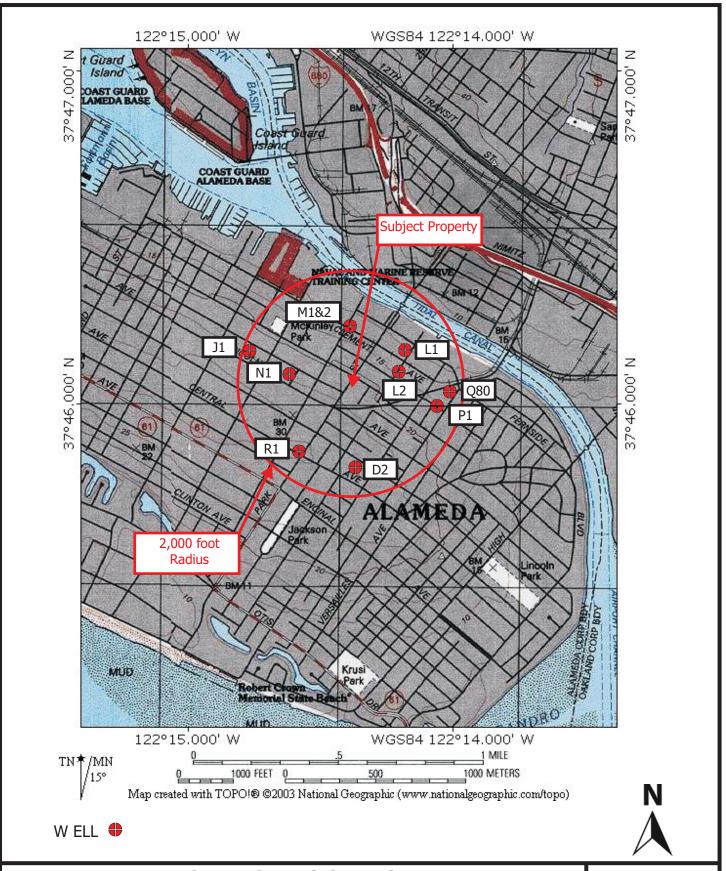
Site Well Construction Details

	Location (Onsite/Offsite,	Highest Meas	sured Depth to ater	Lowest Mea	asured Depth to Vater	Screen	Total	Submerged	Dry	Status (Active,
Well ID	Downgradient, Upgradient or Cross Gradient)	Date	Feet bgs	Date	Feet bgs	Interval (ft bgs)	Depth	(% of events)	Dry (% of Events)	Abandon ed, Lost)
		_		-		_				
										1

ACEH LTCP DGIT_2013-03-25 csm-2

DWR WELL SEARCH TABLE AEI Project No. 298931, 1620-1640 Park Street (Parcel A), Alameda, California

TOWNSHIP	RANGE	SECTION	WELL DESIGNATION	DIRECTION	DISTANCE (FEET)	ADDRESS	TOTAL (feet)	INDICATED USE	DRILL DATE
02 SOUTH	03 WEST	7							
02 SOUTH	03 WEST	7	M1	SOUTHEAST	4,600	3229 FERNSIDE BLVD	71	INDUSTRIAL	4/77
02 SOUTH	03 WEST	7	M2	SOUTHEAST	4,600	3229 FERNSIDE BLVD	80	INDUSTRIAL	4/77
02 SOUTH	03 WEST	7	P2	SOUTHEAST	1,100	2538 LINCOLN AVENUE	17	IRRIGATION	8/78
02 SOUTH	03 WEST	7	Q1	SOUTHEAST	2,100	1819 VERSAILLES AVENUE	22	IRRIGATION	10/77
02 SOUTH	03 WEST	7	Q1	SOUTHEAST	2,300	FERNSIDE BLVD AND VERSAILLES AVE	76	CATHODIC PROTECTION	11/76
02 SOUTH	03 WEST	7	Q8	SOUTHEAST	2,100	1708 VERSAILLES AVENUE	60	UNKNOWN	7/88
02 SOUTH	04 WEST	12							
02 SOUTH	04 WEST	12	D2	NORTHWEST	7,200	1521 BUENA VISTA	200	INDUSTRIAL	6/89
02 SOUTH	04 WEST	12	J1	NORTHWEST	2,000	2139 PACIFIC AVENUE	28.5	IRRIGATION	7/74
02 SOUTH	04 WEST	12	L1	NORTHWEST	4,400	1810 CENTRAL	67	IRRIGATION	7/77
02 SOUTH	04 WEST	12	M1	NORTHWEST	6,000	1401 F COTTAGE STREET	70	IRRIGATION	6/77
02 SOUTH	04 WEST	12	N1	SOUTHWEST	6,300	1622 DAYTON AVENUE	60	IRRIGATION	4/77
02 SOUTH	04 WEST	12	P1	SOUTHWEST	5,400	1016 GRAND STREET	60	IRRIGATION	2/77
02 SOUTH	04 WEST	12	P2	SOUTHWEST	5,400	1012 GRAND STREET	19	IRRIGATION	2/77
02 SOUTH	04 WEST	12	P3	NORTHWEST	3,700	1538 LAFAYETTE STREET	23	IRRIGATION	6/77
02 SOUTH	04 WEST	12	P4	SOUTHWEST	4,800	1820 SAN ANTONIO AVENUE	19	IRRIGATION	8/77
02 SOUTH	04 WEST	12	P6	SOUTHWEST	5,500	1000 GRAND STREET	70	IRRIGATION	9/77
02 SOUTH	04 WEST	12	Q2	SOUTHWEST	3,400	2037 ALAMEDA AVENUE	20	IRRIGATION	2/77
02 SOUTH	04 WEST	12	Q3	SOUTHWEST	3,700	2016 ALAMEDA AVENUE	50	IRRIGATION	7/77
02 SOUTH	04 WEST	12	Q4	SOUTHWEST	3,200	1215 WILLOW STREET	21.5	IRRIGATION	3/77
02 SOUTH	04 WEST	12	R2	SOUTHWEST	2,800	2121 ALAMEDA AVENUE	20	IRRIGATION	2/77
02 SOUTH	04 WEST	12	R3	SOUTHWEST	3,000	2120 ALAMEDA AVENUE	20	IRRIGATION	2/77
02 SOUTH	04 WEST	12	R4	SOUTHWEST	3,800	2060 SAN ANTONIO AVENUE	30	IRRIGATION	5/77
02 SOUTH	04 WEST	13							
N	O RECORDS -	-							
02 SOUTH	04 WEST	18							
02 SOUTH	03 WEST	18	B1	SOUTHEAST	2,500	2928 NORTHWOOD DRIVE	55	IRRIGATION	5/77
02 SOUTH	03 WEST	18	В3	SOUTHEAST	2,800	2936 GIBBONS DRIVE	40	IRRIGATION	8/77
02 SOUTH	03 WEST	18	D1	SOUTHWEST	2,200	2518 CHESTER STREET	20	IRRIGATION	5/77
02 SOUTH	03 WEST	18	F1	SOUTHEAST	2,715	2806 VAN BUREN STREET	20		5/77
02 SOUTH	03 WEST	18	J1	SOUTHEAST	6,000	1522 EASTSHORE DRIVE	17	IRRIGATION	5/77
02 SOUTH	03 WEST	18	M2	SOUTHWEST	4,000	1101 COLLEGE AVENUE	40	IRRIGATION	6/88
02 SOUTH	03 WEST	18	N3	SOUTHWEST	5,000	2812 OTIS DRIVE	40	IRRIGATION	10/77
02 SOUTH	03 WEST	18	P1	SOUTHEAST	5,200	1033 POST STREET	50	IRRIGATION	


NOTES:

⁻ Department of Water Resources (DWR) records provided on 1/30/2012.

Wells associated with groundwater monitoring or remediation were excluded.
 Wells which were unidentifiable were excluded.

ACDPW Well Search Table AEI Project No. 298931, 1620-1640 Park Street (Parcel A), Alameda, California

Well Designation	Township / Range	Section, Parcel and Number	Direction	Distance (feet)	Address	Total Depth (feet)	Reported Well Use	Drill Date
L1	2S/3W	7L1	Northeast	1,350	1915 EVERETT ST	90	Abandoned	Unknown
P1	2S/3W	7P1	East	1,750	2623 EAGLE AVE	120	Cathodic Protection	6/76
Q80	2S/3W	7Q80	East	1,900	1823 PEARL ST	11	Unknown	10/96
D2	2S/3W	18D2	South	1,400	EVERETT & ALAMEDA	120	Cathodic Protection	7/76
R1	2S/4W	12R1	Southwest	1,400	CENTRAL & OAK ST	325	Domestic	Unknown
M1	2S/3W	7M1	North	1,200	2307 CLEMENT AVE	72	Industrial	4/77
M2	2S/3W	7M2	North	1,200	2307 CLEMENT AVE	82	Industrial	4/77
L2	2S/3W	7L2	East	1,100	1819 EVERETT ST	Unknown	Irrigation	/06
N1	2S/3W	7N1	West	1,000	2235 LINCOLN AVE	206	Irrigation	/16
J1	2S/4W	12J1	West	1,950	2138 PACIFIC AVE	29	Irrigation	8/77

WELL SEARCH LOCATION MAP

1620-1640 Park Street, Alameda, California **FIGURE 9**

Project Number: 298931

SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Geology & Hydrogeology	Regional	The site is located on Alameda Island. The near surface sediments of the area are mapped as Holocene and Pleistocene Merritt Sands (Qms) deposits (Helley, et al). Depth to bedrock is estimated at 300 to 800 feet below land surface (Norfleet Consultants, 1998). According to information obtained from the U.S Geological Survey (USGS), the site is located at between 20 and 25 feet above mean sea level (amsl) with the local topography sloping gently to the northeast.	n/a	None	n/a
	Site	Geology: Based on the logs of soil borings drilled at the site by AEI, sediments across the site are fairly consistent; consisting primarily of poorly graded fine to medium sand with varying clay and silt content to a depth of at least 25 feet bgs, the maximum depth explored. Logs of borings for remediation wells installed in November 2011, and observations during the October 2012 excavation of the former UST-hold and hydraulic lifts were consistent with these prior observations. Hydrology: During the drilling conducted by AEI in 2011-12, groundwater was first observed in the temporary direct push borings at depths of approximately 7.5 to 12 feet bgs and stabilized at between approximately 7.5 to 8.5 feet bgs. The depth to water in the groundwater monitoring wells has generally ranged from approximately 6.55 to 10.19 feet bgs since the wells were installed. Based on the groundwater monitoring conducted at the site, groundwater flows fairly consistently in a northwesterly direction at an approximate hydraulic gradient of 1x10 ⁻² to 2x10 ⁻² ft/ft. and exists as an unconfined aquifer. Based upon observations made during excavations at the former UST-hold and hydraulic lifts, transitivity (T) and hydraulic conductivity (K) appear to be low. Excavations up to 15 feet bgs which were left open for several hours did not produce appreciable volumes water. Additional evidence for low T and K values is the small size of the hydrocarbon plume which has reached an apparent length of approximately 160 feet from the source since the conservative release date of 1986 (26 years).	Figures 5 and 6; Tables 1 and 11; Boring Logs.	None	n/a
Surface Water Bodies		The nearest surface water body is the tidal canal located approximately 1500 to 2000 feet to the northeast.	Figure 1	None	n/a
Nearby Wells		In January 2012, a 2,000-foot radius well search was requested and received from the Alameda County Department of Public Works (ACDPW) and the Department of Water Resources (DWR). The results of the well search were reviewed and wells which appeared to be associated with monitoring or remediation at other sites or soil borings were excluded from the review. According to the results of the DWR well search, two (2) wells are located within 2,000 feet of the site. One well was located approximately 1,100 feet to the southeast (upgradient) and one well was located approximately 2,000 feet to the northwest (downgradient). Both wells were reportedly used for irrigation and installed to a depth of less than 30 feet bgs. Based on the 2008 groundwater sampling from the soil borings and cumulative groundwater monitoring data, it appears that the length of the plume at the site is no more than approximately 160 feet in length. None of the wells noted in this well search are located within the expected plume length for this site. As such, none of the listed wells are expected to be impacted by the hydrocarbons at the site. According to the results of the ACDPW well search, ten (10) wells are located within 2,000 feet of the site. The nearest well was located approximately 1,000 feet to the west (cross-gradient). Each of the remaining wells were located at a distance further than 1,000 feet and none of the wells were located in the immediate downgradient direction (northwest). None of the wells noted in this well search are located within the expected plume length for this site. As such, none of the listed wells are expected to be impacted by the hydrocarbons at the site.	February 3, 2012 Corrective Action Plan: Section 3.6 March 30, 2012 Subsurface Investigation and Well Installation Report: Section 9.0.	None	n/a

Updated: April 2014 Page 1 of 6

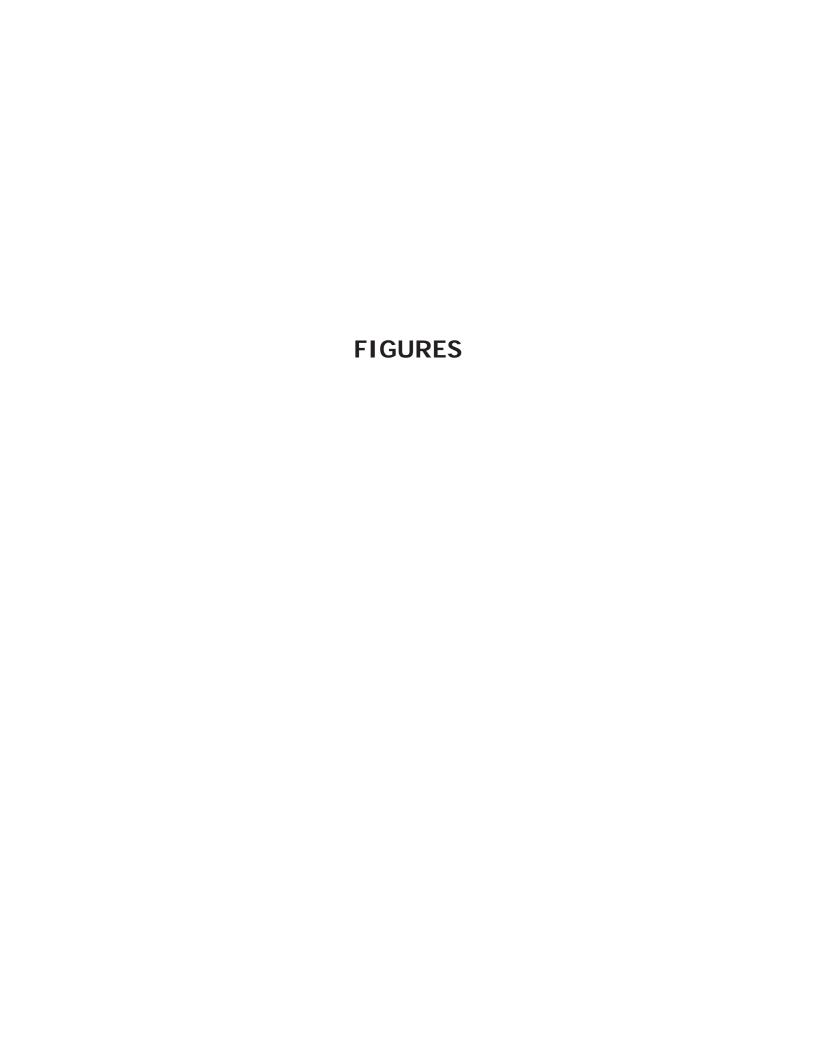
SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Potential Source(s)	On Site	Former USTs: One 300-gallon waste-oil underground storage tank (UST) and one 500-gallon gasoline UST were removed from adjacent to the northern side of the building in 1986 at which time a release of petroleum hydrocarbons, primarily gasoline, was discovered. Following excavation activities in October 2012, it was determined that the secondary source associated with these USTs had been removed. Hydraulic Lifts & Repair Area: A total of 6 former underground hydraulic lifts were identified within the building. Investigation of these lift locations and associated drain features in July 2011 identified releases of hydraulic oil range hydrocarbons near five (5) of the lifts in the northeastern end of the building. Source was removed from the area during excavation activities in October 2012 and October 2013. Former Paint Booth: A paint booth was identified in a 1950 Sanborn map. Soil boring AEI-27 was drilled in this location in Jan. 2012; no significant release was identified.	See Previous Reports	None	n/a
Potential Source(s)	Off Site	Former USTs (Parcel A): One 10,000-gallon gasoline UST, one 4,000-gallon gasoline UST, and one 550-gallon waste oil UST at the eastern portion of Parcel A were removed in November 2011. Based on soil and groundwater analytical data from samples collected in and near the UST at the time of removal, no significant release was identified and these former USTs are not a source of impact to the subject property. Hydraulic Lifts & Repair Area (Parcel A): A total of 4 former underground hydraulic lifts were identified within the building portion located on Parcel A. Investigation of these lift locations and associated drain features in July 2011 identified no significant releases of hydraulic oil near lifts on Parcel A. Potential Former USTs (Southwestern portion Parcel A): Historical Sanborn maps indicate that a gas and oil area was present in the southwestern portion of the site. A geophysical survey completed in July 2011 did not indicate the presence of the USTs, however construction activities in October 2013 discovered 1 400-gallon and 1 600-gallon UST in the southwestern portion of the site. Hydrocarbon impacted soil was discovered during the UST removal activities and subsequently removed. The impact was well delineated in all directions except the west (towards Park Street). Furthermore, three borings advanced in July 2011 (AEI-17 to AEI-19) were unknowingly placed to the north and south of the discovered USTs and significantly elevated concentrations of hydrocarbons were not detected in the samples collected. Based on this data, while additional contamination may be present in Park Street (which is being investigated under site activities associated with Parcel A), the contamination is not impacting the subject site. 1650 Park St: According to records on file with the ACEH, one 100-gallon waste oil UST and one 550-gallon gasoline UST were removed from the property in 1995 and 233 tons of soil were excavated and disposed at BFI Landfill in Livermore, California. Following soil removal and groundwater sampl	GeoTracker ACEH website	None	n/a

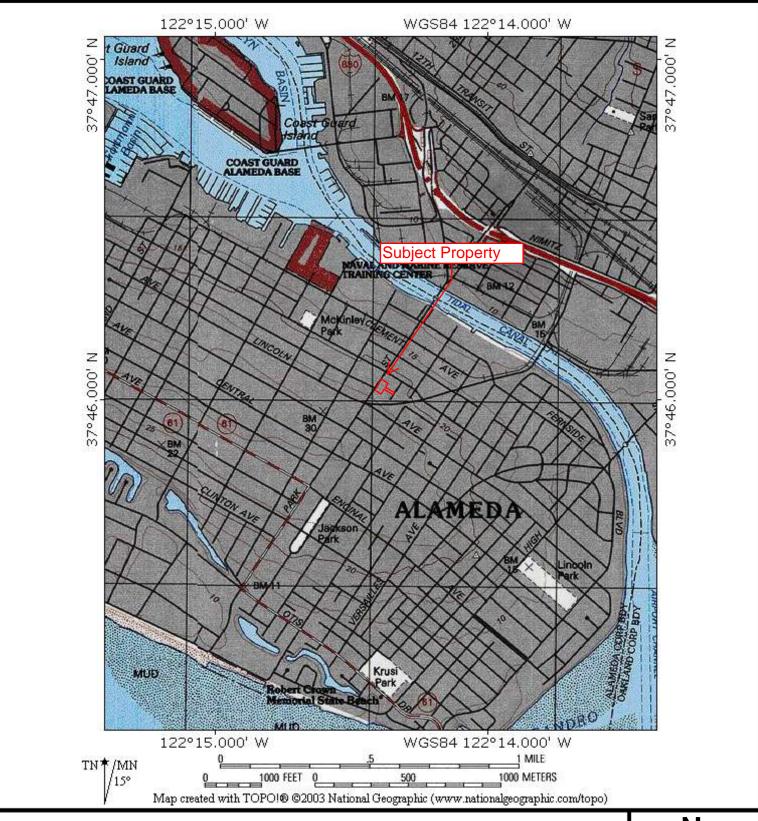
Updated: April 2014 Page 2 of 6

SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Release Occurrence	Gasoline UST	The release of TPH-g, BTEX, and other gasoline constituents originated from the former 500 gallon gasoline UST system removed in 1986 from near the northern side of the existing building. The exact cause of the release is not known, though typically such releases occur from failures of the UST itself or the associated piping and pump system.	See Previous Reports	None	n/a
	Waste-Oil UST	According to a report prepared by Groundwater Technology in April 1987, the 300-gallon waste oil tank was removed in 1986 and a soil sample collected from the waste oil UST tank pit at a depth 8 feet bgs contained 57 ppm TPH-mo. No further sampling for TPH-mo was performed during the investigation that followed in 1987 nor does it appear that ACEH requested further investigation of the waste oil UST at that time. TPH-mo, which was added to the analytical suite in the May 2012 groundwater monitoring, was not detected in any of the wells (refer to the June 11, 2012 Groundwater Monitoring Report). This information indicates that although the release from that waste oil UST was not significant, VOCs associated with the waste oil UST have been found in the soil vapor and groundwater at relatively low concentrations. Confirmation soil samples collected during excavation of the former UST-hold in October 2012, showed non-detectable concentrations of TPH-mo in the sidewalls and bottom samples. This information further indicates that a release from that waste oil UST was not significant.	Groundwater Technology, Inc., April 1987; AEI, June 11, 2012 Groundwater Monitoring Report.		n/a
	Hydraulic Lifts	The source of the heavier range hydrocarbons detected in samples collected within the former building appear to be from several of the five former hydraulic lifts at the northern end of the building. Again, the timing, duration and volume of the oil release are unknown. Based on confirmation sampling at the former UST-hold, it does not appear that the former waste-oil UST contributed to the heavier range petroleum detected within the former building.	See Previous Reports	None	n/a
Constituents of Concern		The primary contaminants of concern are gasoline and gasoline constituents [TPH-g, benzene, toluene, ethylbenzene, and xylenes (BTEX)] from the gasoline UST release. Naphthalene has been sampled for in the groundwater wells and is present at relatively low concentrations near the center of the plume, but was not present above the ESLs in downgradient wells MW-4 or MW-5. MTBE has not been detected during recent sample analyses nor have significant concentrations of fuel oxygenates been detected. VOCs, particularly PCE and TCE, have been detected in the soil vapor and groundwater at relatively low concentrations (below the aquatic receptor ESL). The aquatic receptor ESL for groundwater is used as the most likely exposure scenarios given the presence of the tidal canal. PCE has not been detected in the soil vapor above the commercial ESL and TCE has not been detected in the soil vapor above the residential ESL. Heavier hydrocarbons (reported as TPH-d and TPH-mo) have been detected in the area of the hydraulic lifts. No PCBs were detected in samples from near the lifts and no VOCs were detected in samples near the paint booth or drain features within the repair shop.	Tables 2, 3, 4, 5 (soil); Tables 6, 7, 8, 9 (water).	None	n/a (see above for discussion of waste-oil UST constituents)

Updated: April 2014 Page 3 of 6

SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Nature and Extent of Impacts	Impacts in Soil	Prior to interim remedial efforts, gasoline impacted soil was centered on the former UST and extended laterally in each direction, primarily to the north-northwest toward Park Street. The zone of impact was thickest at the UST pit and thins with distance from the pit. Examples include: DPE-1 located adjacent to and down gradient of the pit with approximately 5 feet of impact; AEI-28 located 45 feet west and down/cross gradient of the pit with approximately 2.5 feet of impact; and AEI-24 located 45 south up-cross gradient of the pit with no impacts. To the east, south, and west, impacted soil appears to extend approximately 20 to 50 feet from the former UST hold and approximately 100 feet to the north. It appears that the gasoline constituents travelled vertically from its source (the UST) then spread laterally along the groundwater surface. The lateral extent of gasoline impacted soil is reasonably well defined in each direction. Based on observations and excavation confirmation samples collected during October 2012 and October 2013 excavation of the former UST-hold and the hydraulic lifts, it appears that the bulk of gasoline impacts to soil have been removed in the core of the plume near the former UST. Oil impacted soil was identified adjacent to several former lifts in the northeastern corner of the former building. The lateral and vertical extent of oil impacted soil has been defined in all locations by past investigations and in general was located in areas of gasoline impact. With the completion of excavation activities in 2012 and 2013, the majority of oil-impacted soil has been removed. Vertically, the top of the impacted zone begins at approximately 7 to 8 feet bgs and ends between approximately 12 to 14 feet bgs. Figures 3 and 4 show the approximate extent of vertical impacts. The zone of impact is limited to approximately 4 to 8 feet in thickness, which corresponds to just above the water table (capillary fringe) to several feet below the average water table. Based on observations and excavation co	Figures 4, 6, and 7; Tables 2, 3, 4 and 5 Boring Logs	None	n/a
	Impacts in Groundwater	The dissolved phase gasoline-range plume is also centered on the former UST hold and spreads generally in a northwesterly direction. The extent of the gasoline-range impacts in groundwater have been defined to the south and southeast, as demonstrated by grab groundwater samples collected in January 2012, from borings AEI-24, AEI-25 and AEI-26 and to the east of the former tank pit as demonstrated by grab groundwater samples collected from borings GP3 (April 2008) and AEI-27 in (January 2012) (Tables 6 to 8). Gasoline-range groundwater impacts are also well defined to the northwest as demonstrated by analysis of groundwater samples collected from monitoring wells MW-4 and MW-5 and historical locations GP-18, GP-19, and GP-20 and to the west by groundwater samples collected from DPE-4 (Table 9). Recent sampling for VOCs in groundwater has shown low concentrations of PCE and TCE in the groundwater. Down-gradient wells MW-4 and MW-5 were reported to contain PCE and TCE up to 8.3 ug/L and 16 ug/L, respectively. These concentrations are very close to MCLs, and well below the aquatic receptor ESL of 120 ug/L for PCE and 360 ug/L for TCE. A TCE evaluation was performed to determine if the dissolved plume resulted in a potential vapor intrusion concern for residences in the area. Based on the evaluation, the dissolved TCE plume is expected to attenuate to below the ESL approximately 187 before reaching the nearest down-gradient residence. Therefore, the dissolved TCE plume is not expected to be a concern for vapor intrusion at the down-gradient residences.	Figure 8; Tables 6, 7, 8, and 9. TCE Evaluation report dated April 30, 2014	None	n/a


Updated: April 2014 Page 4 of 6


SCM Element SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Impacts in Vapor Phase	Soil vapor sample analysis from three soil gas probes (VP-1 to VP-3) located immediately adjacent to the release area at a depth of approximately 5 feet bgs did not detect volatile gasoline constituents (TPH-g, MTBE, BTEX) during routine quarterly sampling conducted between May 2012, and February 2013. It should be noted that PCE was also detected in monitoring points VP-1 to VP-3 at relatively low concentrations (up to 72 ug/m3), well below the ESL of 2,100 ug/m3 for PCE. Five additional soil vapor sampling points (SV-3 through SV-7) were installed to a depth of 5 feet bgs to further investigate vapor concentrations in the area of the proposed building at the site. The samples collected in April/May 2013 did not indicate that hydrocarbons were present at or above the laboratory detection limit. It should be noted that Nylaflo tubing used in these samples, which although an acceptable material for sampling hydrocarbons as recommended by the DTSC, has been known to adsorb naphthalene resulting in a lower result than what actually may be present. However, due to the lack of detections of naphthalene in any of the samples, the worst-case estimated concentrations of naphthalene using a conservative adsorption factor based on the published data, are well below the ESL. Additional soil vapor probes (SV-8 to SV-12) were installed in August 2013 to investigate the extent of VOCs in the northeast corner of the property and near DPE-5. Low concentrations of VOCs including BTEX, PCE and TCE were detected in soil gas samples from these probes, however with the exception of benzene and ethylbenzene in SV-11 and PCE in SV-10 and SV-11, all detections were well below their respective ESLs. Soil around SV-10 and SV-11 was subsequently removed during 2013 excavation activities. Following the October 2013 excavation activities, three additional vapor probes (SV-13 to SV-15) were installed. A full round of vapor sampling completed in October 2013 did not indicate that hydrocarbons or VOCs were present above the ESLs. Samples co	Figure 5; Table 10	None	n/a

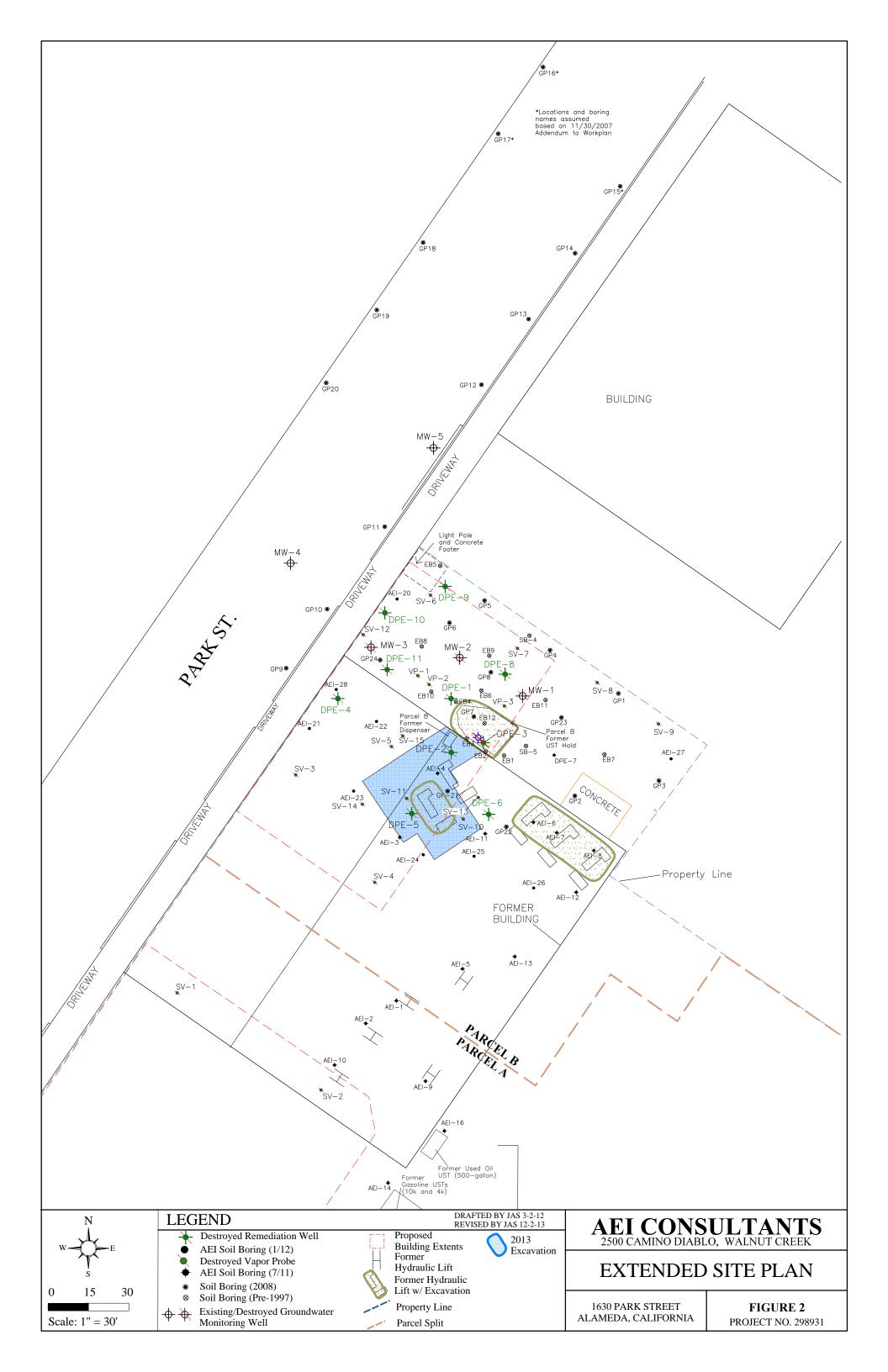
Updated: April 2014 Page 5 of 6

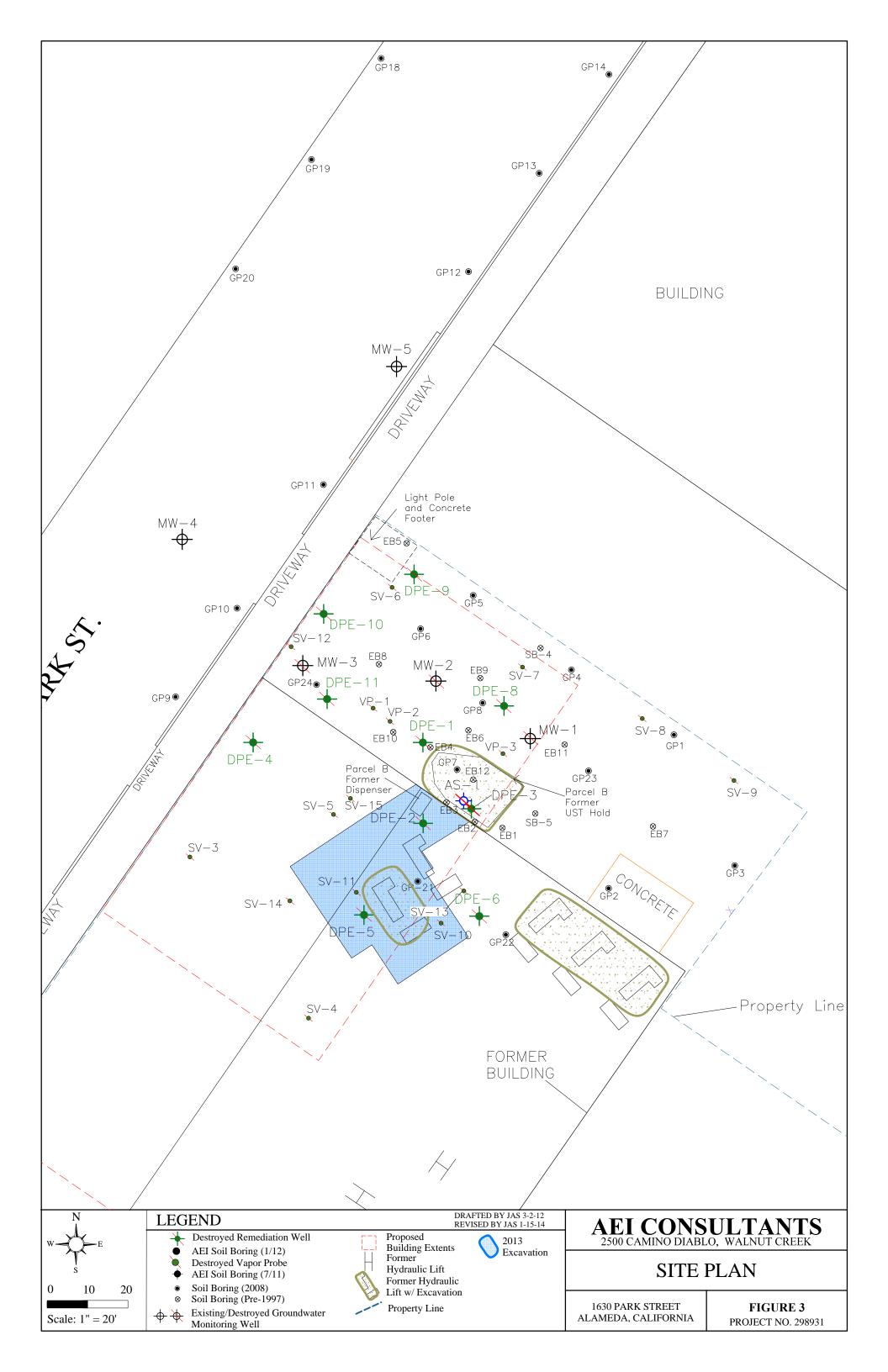
SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Migration Pathways	Preferential Pathways / Conduits	A conduit study was conducted for the major underground utilities near the site (See Subsurface Investigation and Well Installation Report, 3/30/12) and a previous but incomplete study was provided in a correspondence dated June 6, 2008 from Blymyer Engineers, Inc. Information regarding the utilities was obtained from multiple sources. With the exception of the sanitary sewer in the center of Park St, all other underground utilities (water, gas, and electric) did not intersect the water table and are not preferential conduits to dissolved phase plume migration. All existing onsite utilities have been recently removed or will be removed prior to development. Information about the sanitary sewer lines was provided by the APWD. The maps provided by the APWD indicate that a 10-inch sanitary sewer line runs along the middle of Park Street and that the line is between 10.3 and 11.3 feet deep. The depth to water in the groundwater monitoring wells has generally ranged from approximately 6.5 to 10 feet bgs. As such, it appears that the 10-inch sanitary sewer line intersects groundwater near the site. However, during recent construction activities at the site the sewer line within Park Street was exposed. Based on construction foreman observations and pictures taken, the sewer line within Park Street was backfilled with native sand; therefore, a preferential pathway associated with this utility line is not considered likely. New utilities proposed at the site (Figure 5) will not be installed to depths at or below groundwater, with the exception of the sanitary sewer line which may potentially be installed below groundwater. However, due to the permeable sand present at the site, newly installed utility lines are not expected to create a preferential pathway.	March 30, 2012 Subsurface Investigation and Well Installation Report: Section 8.0; Figure 6	None	n/a
Potential Receptors & Risks	On Site	Potable water is and will be provided by municipal sources for the foreseeable future, therefore direct contact with groundwater is not considered. Potential receptors at the site could include: -future construction workers via direct contact with soil or groundwater. A Site Management Plan which addresses how to deal with the potential contact of hydrocarbons or VOCs will be implemented during future construction activities at the site.	n/a	None	n/a
	Off Site	None identified.	n/a	None	n/a

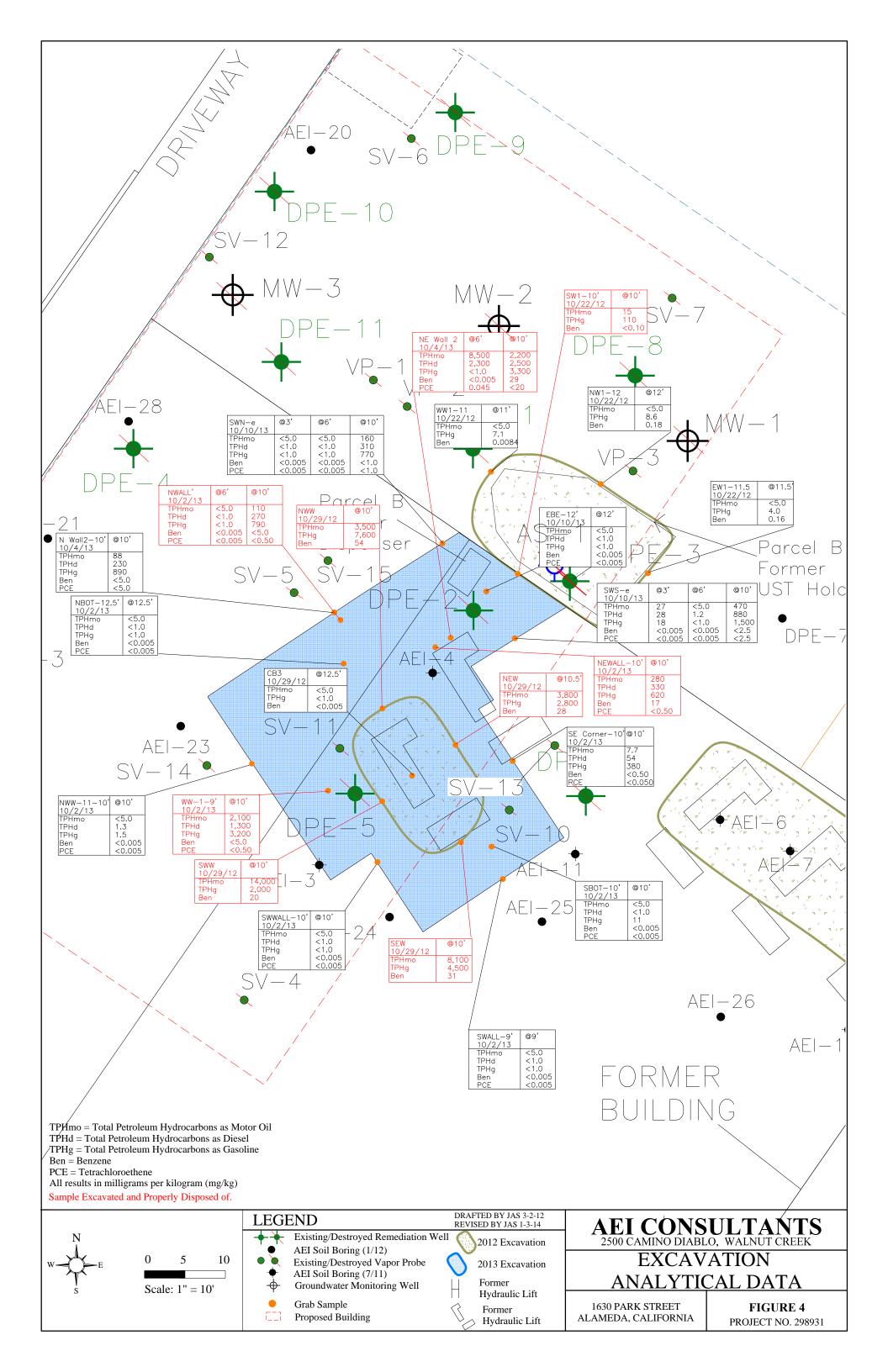
Updated: April 2014 Page 6 of 6

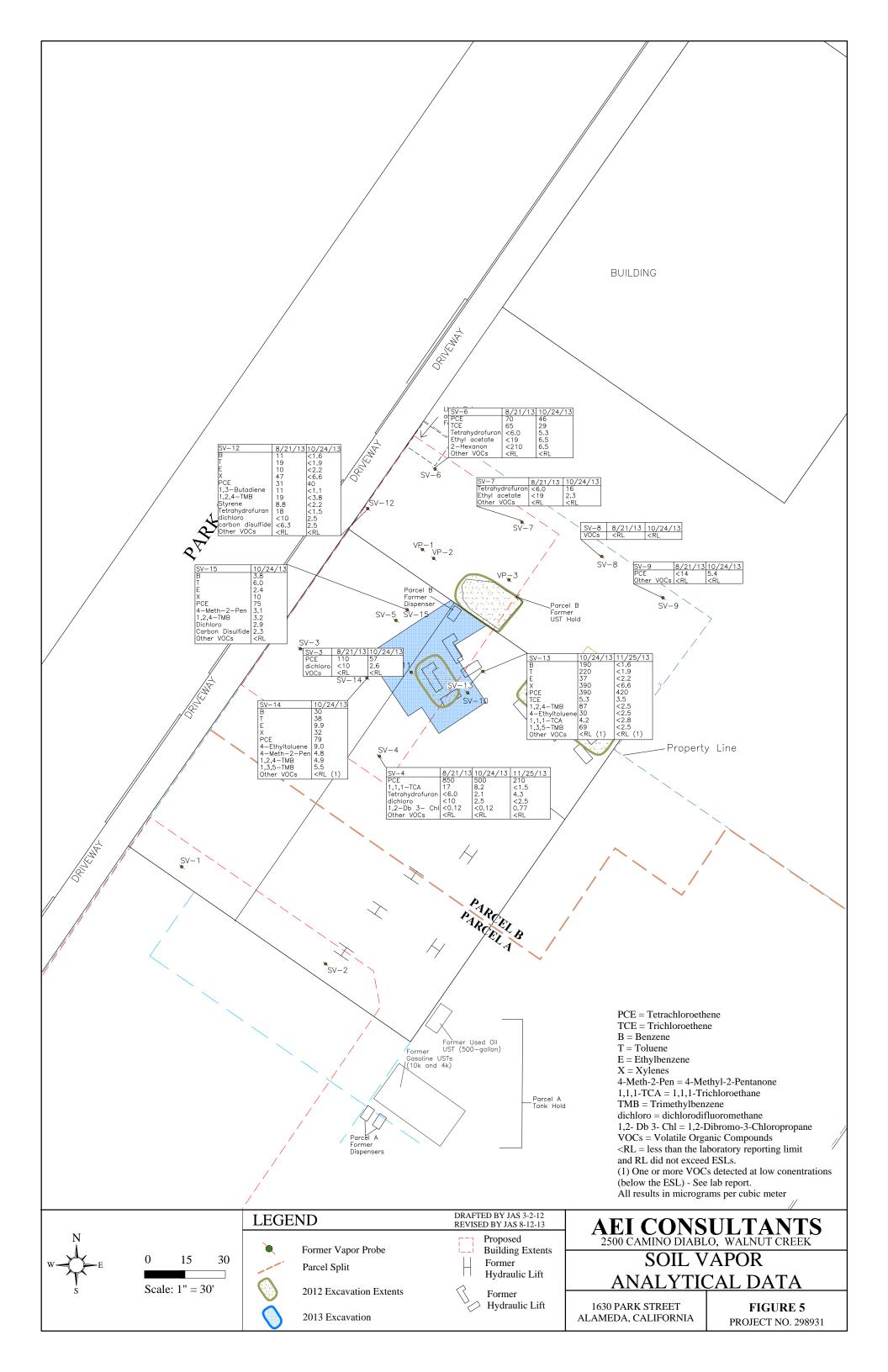
SITE LOCATION MAP

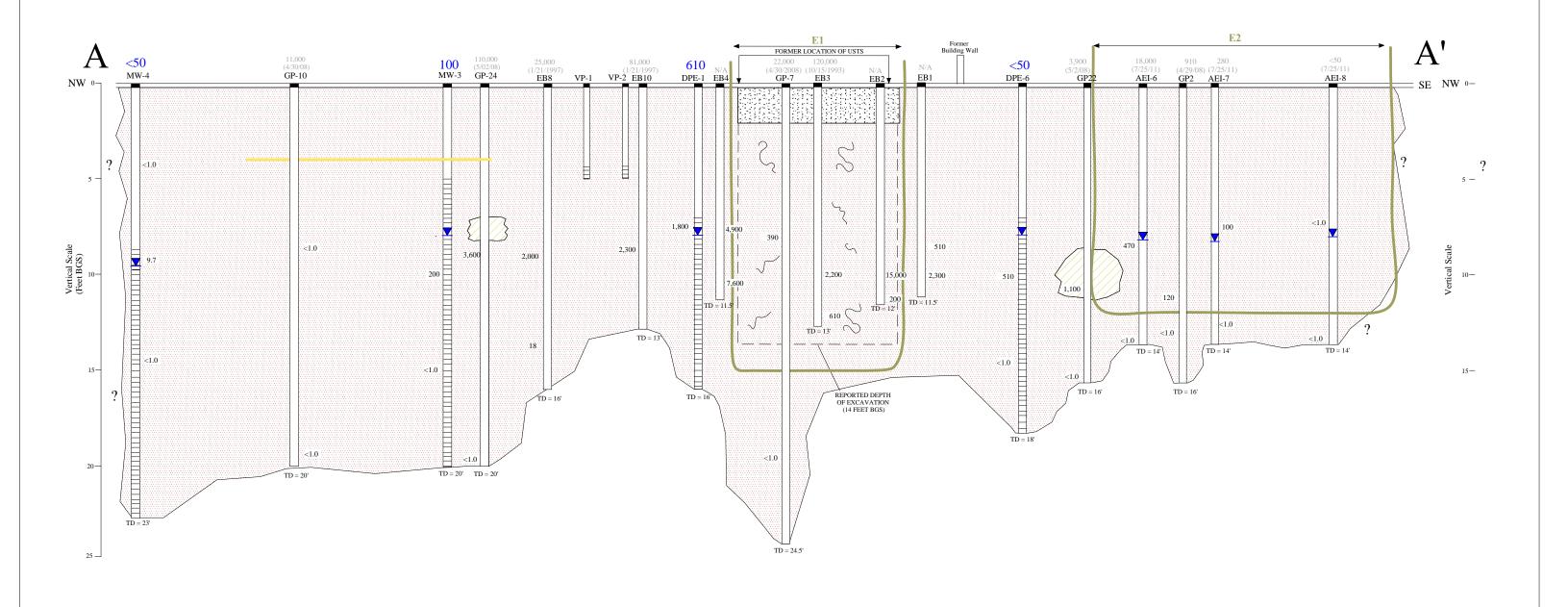
1600-1650 Park Street Alameda, California 94501

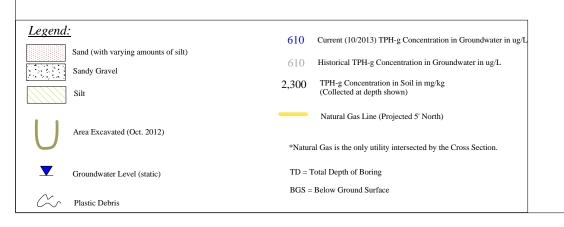


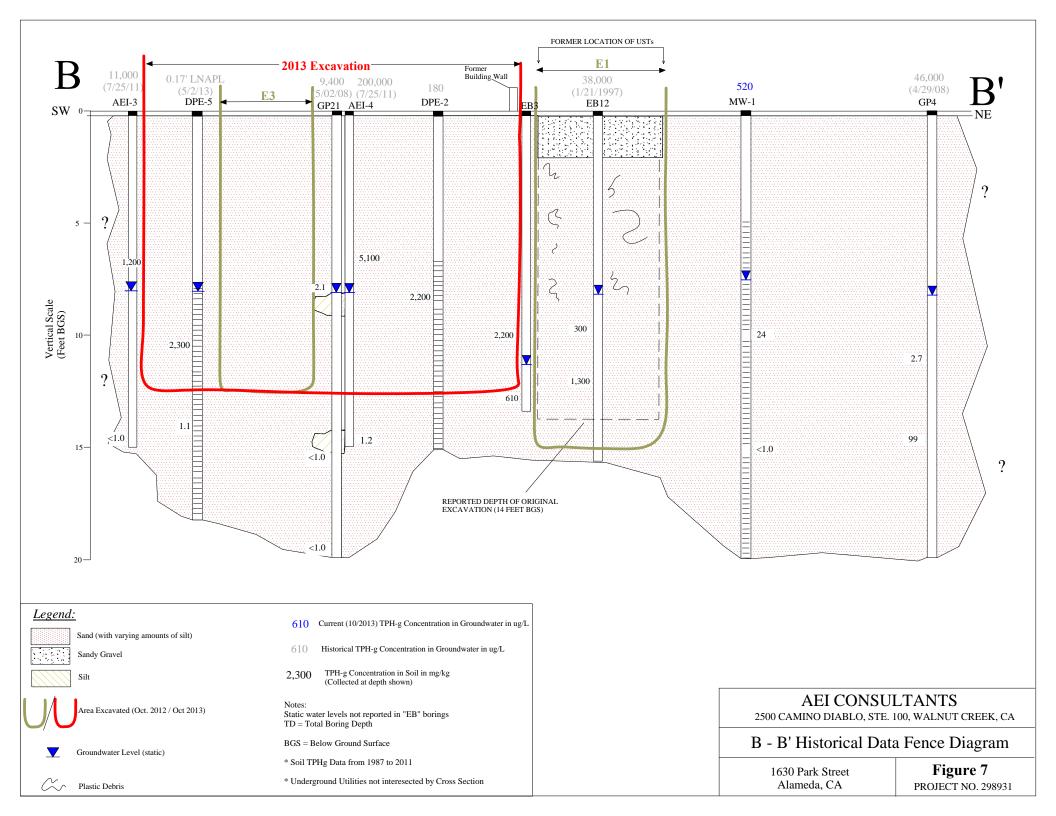

FIGURE 1

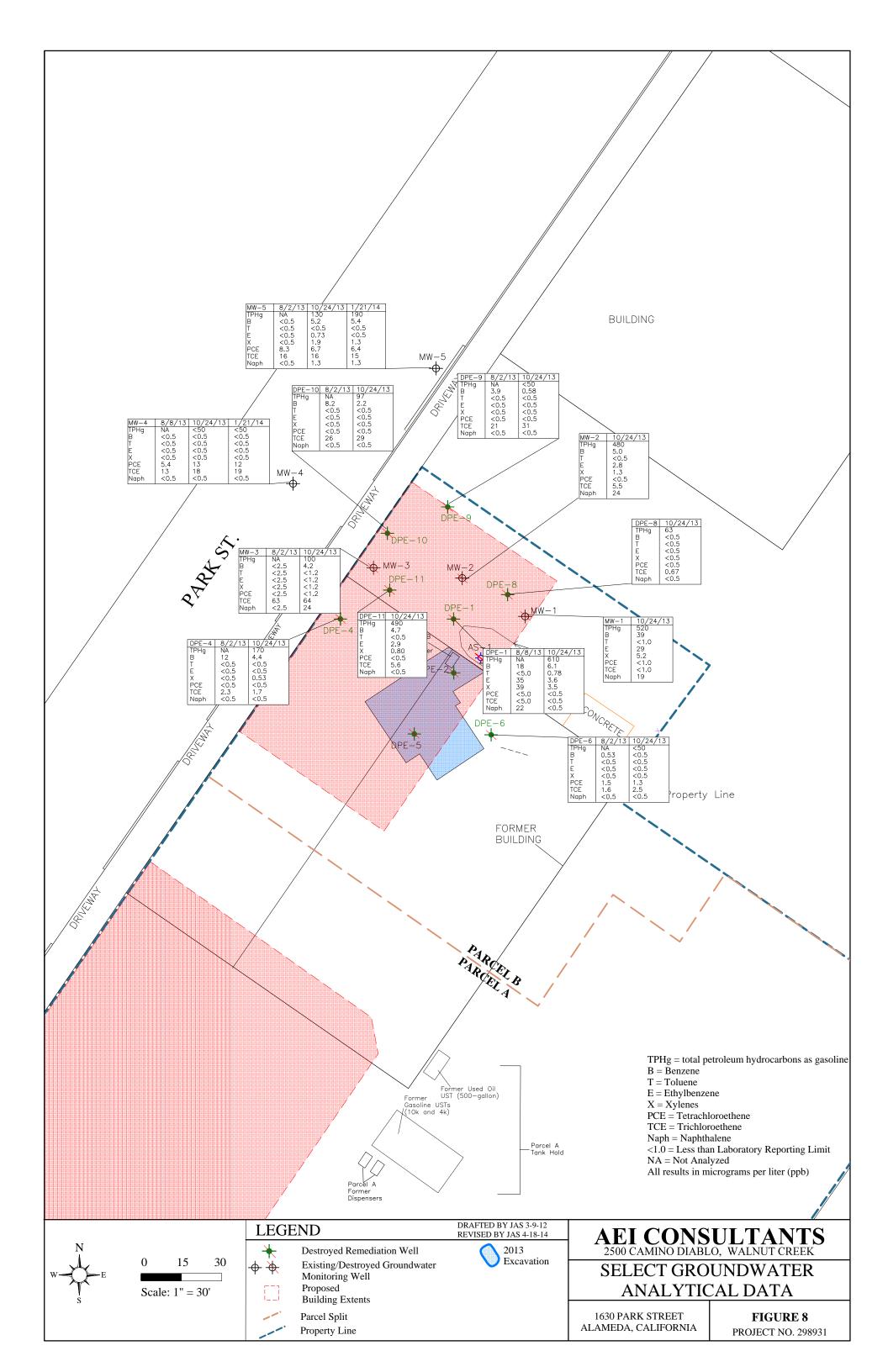

Project Number: 298931

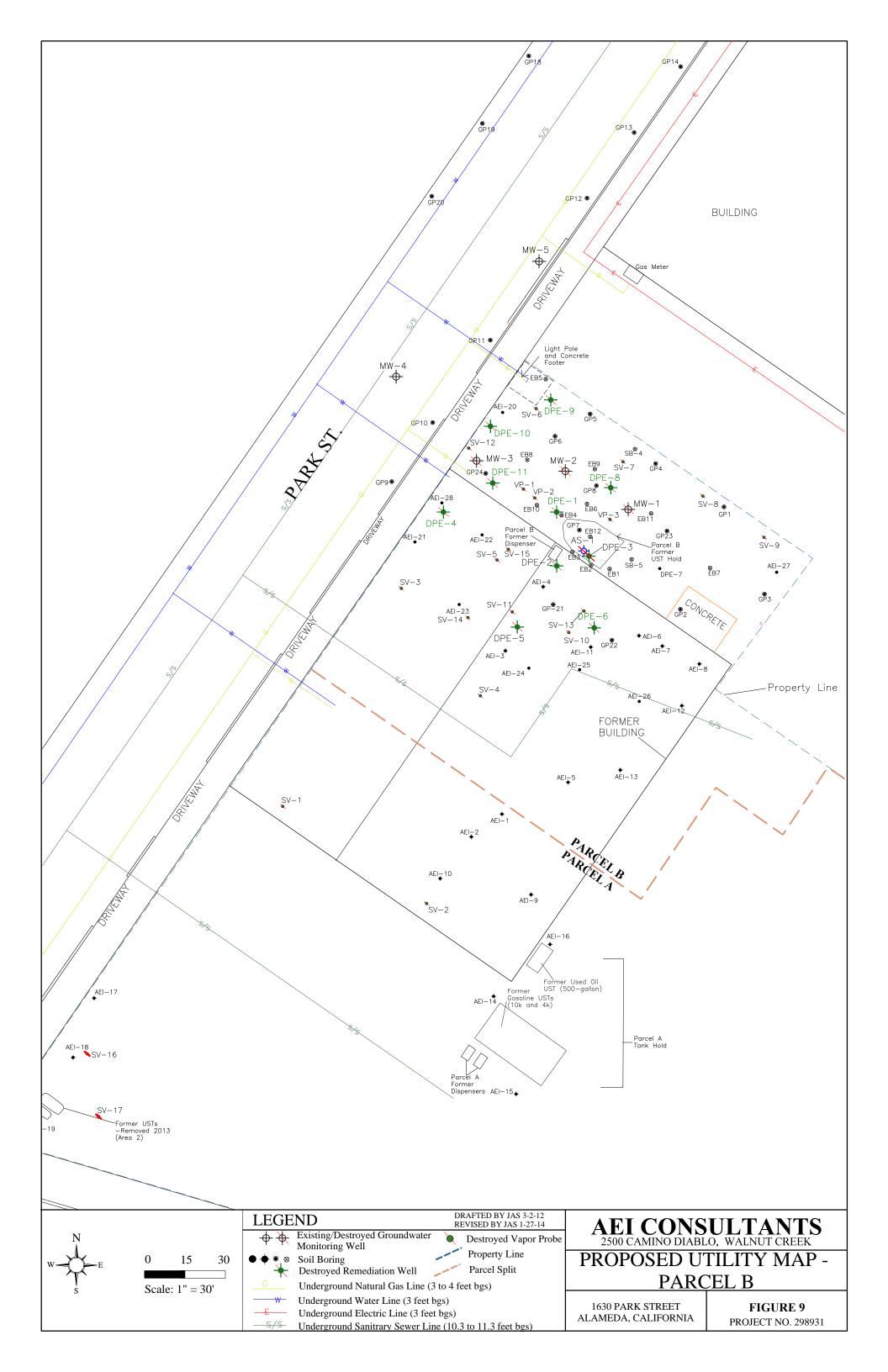


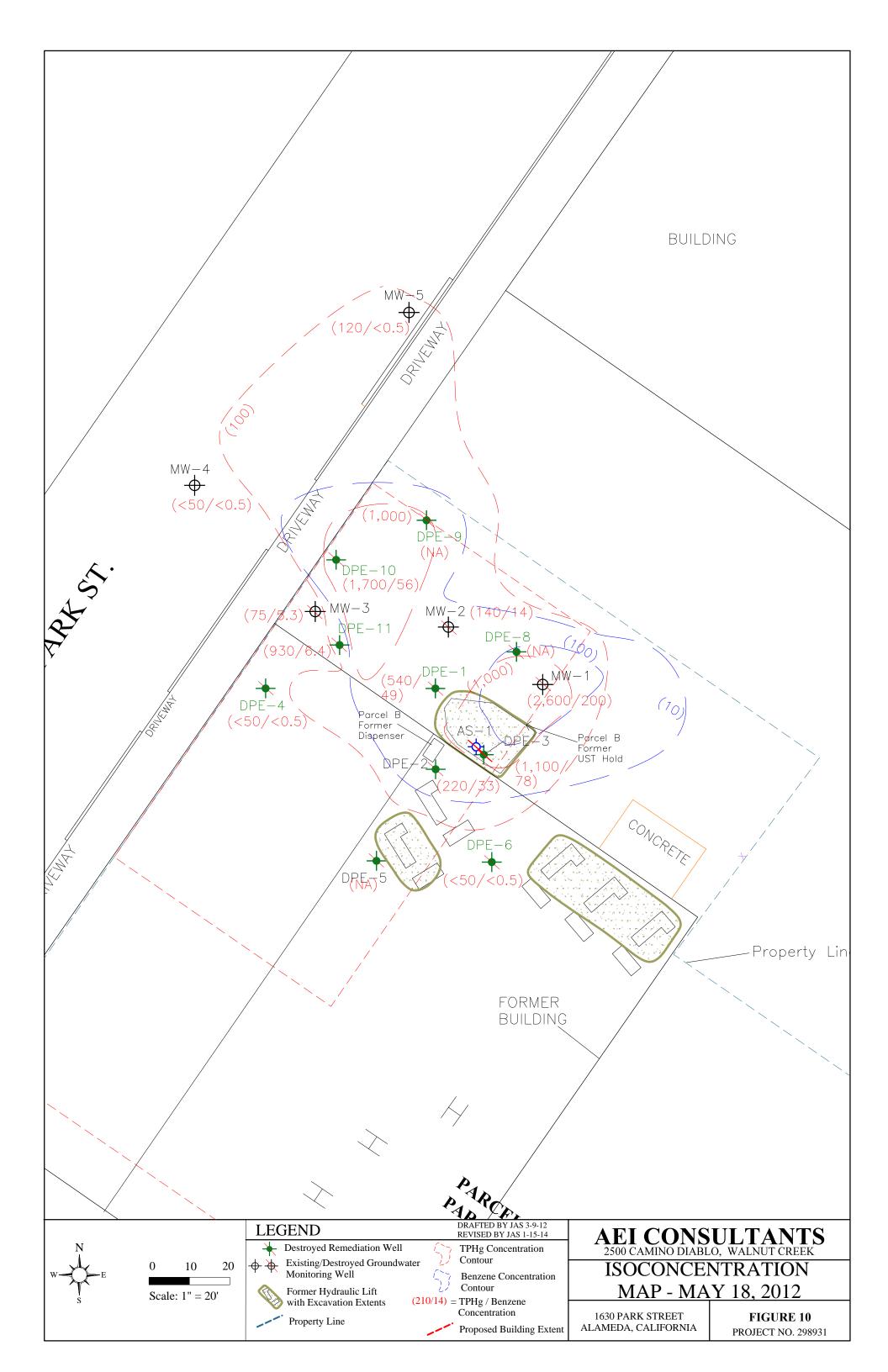

Source: USGS

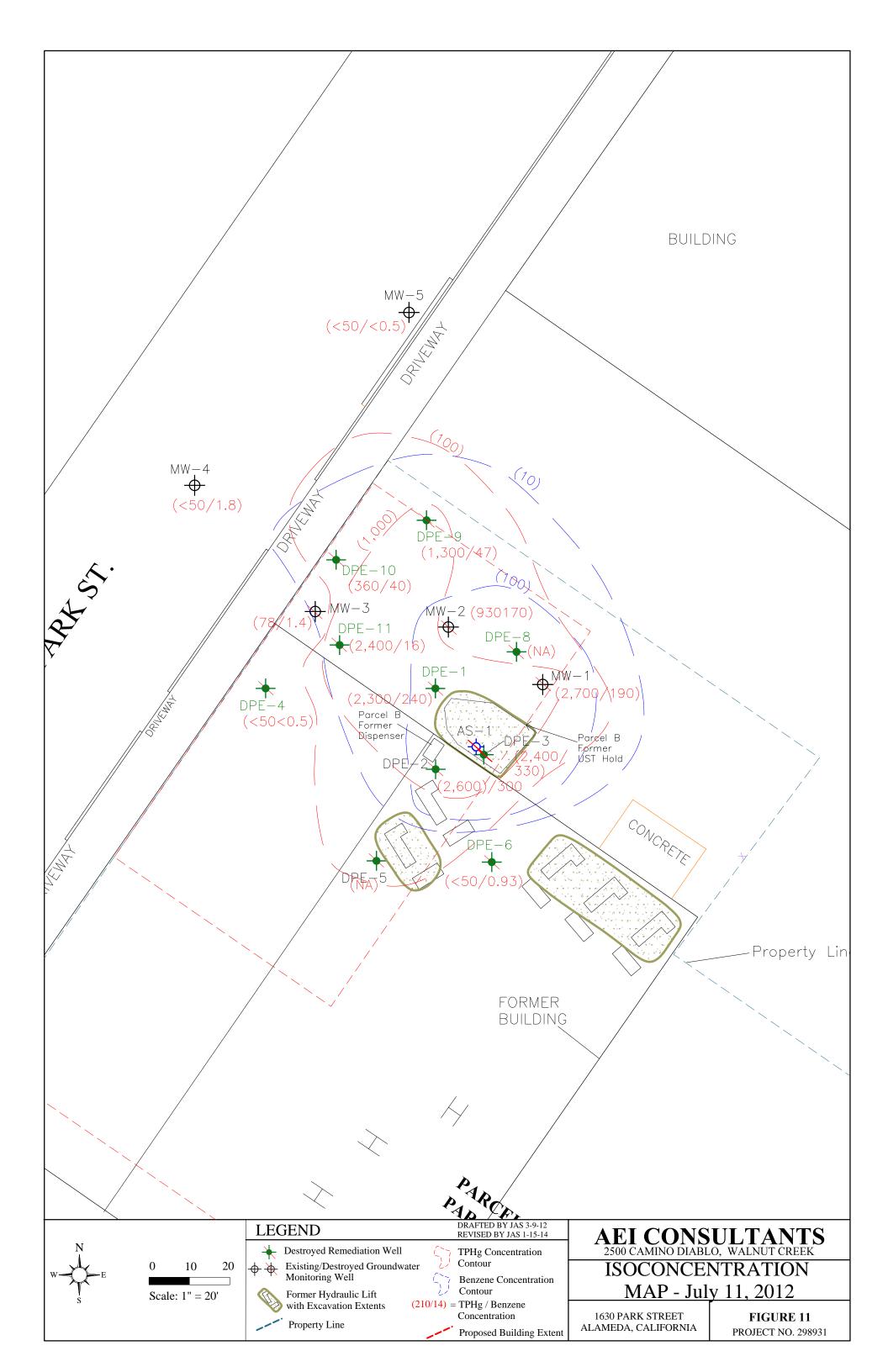


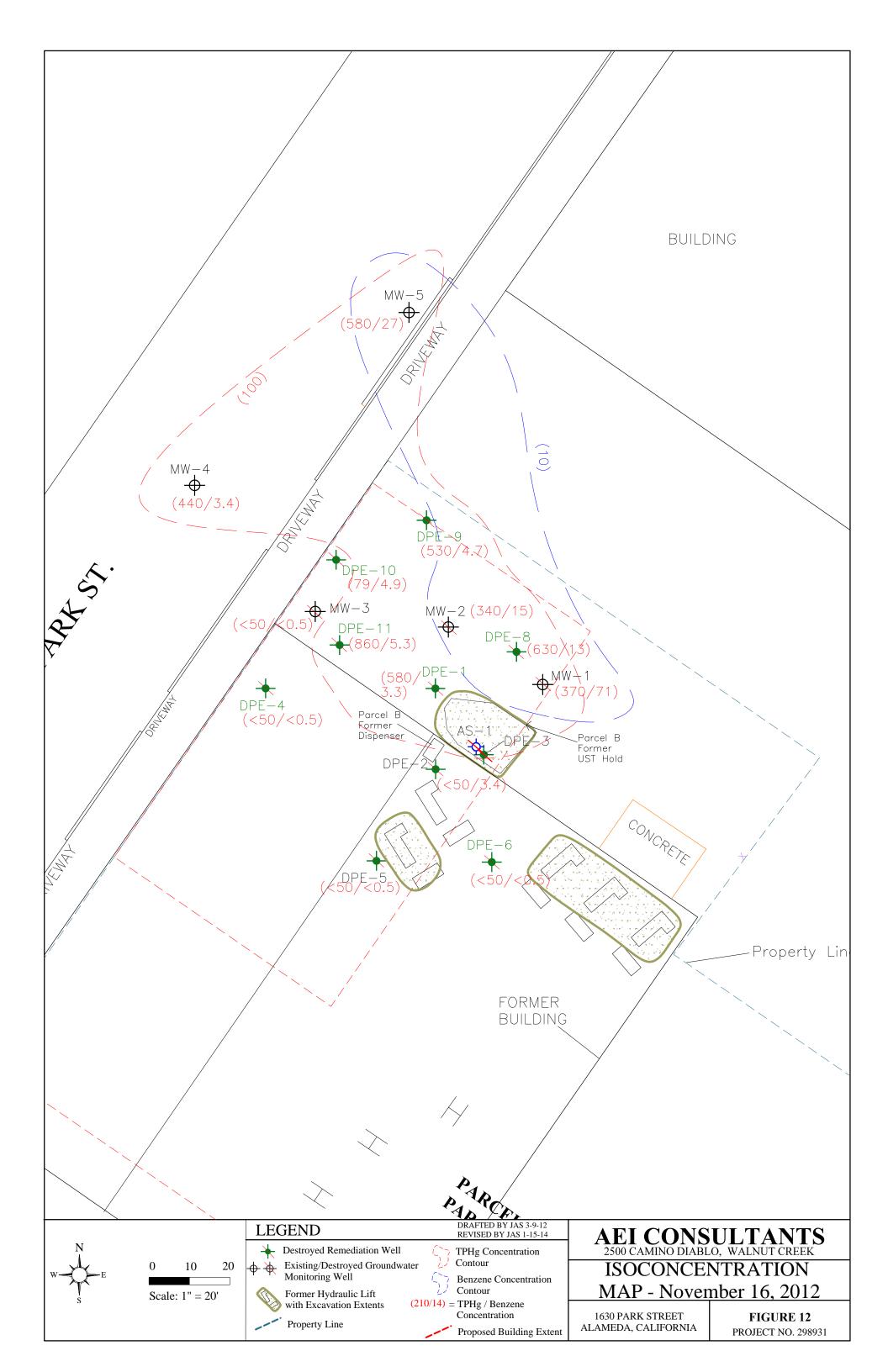


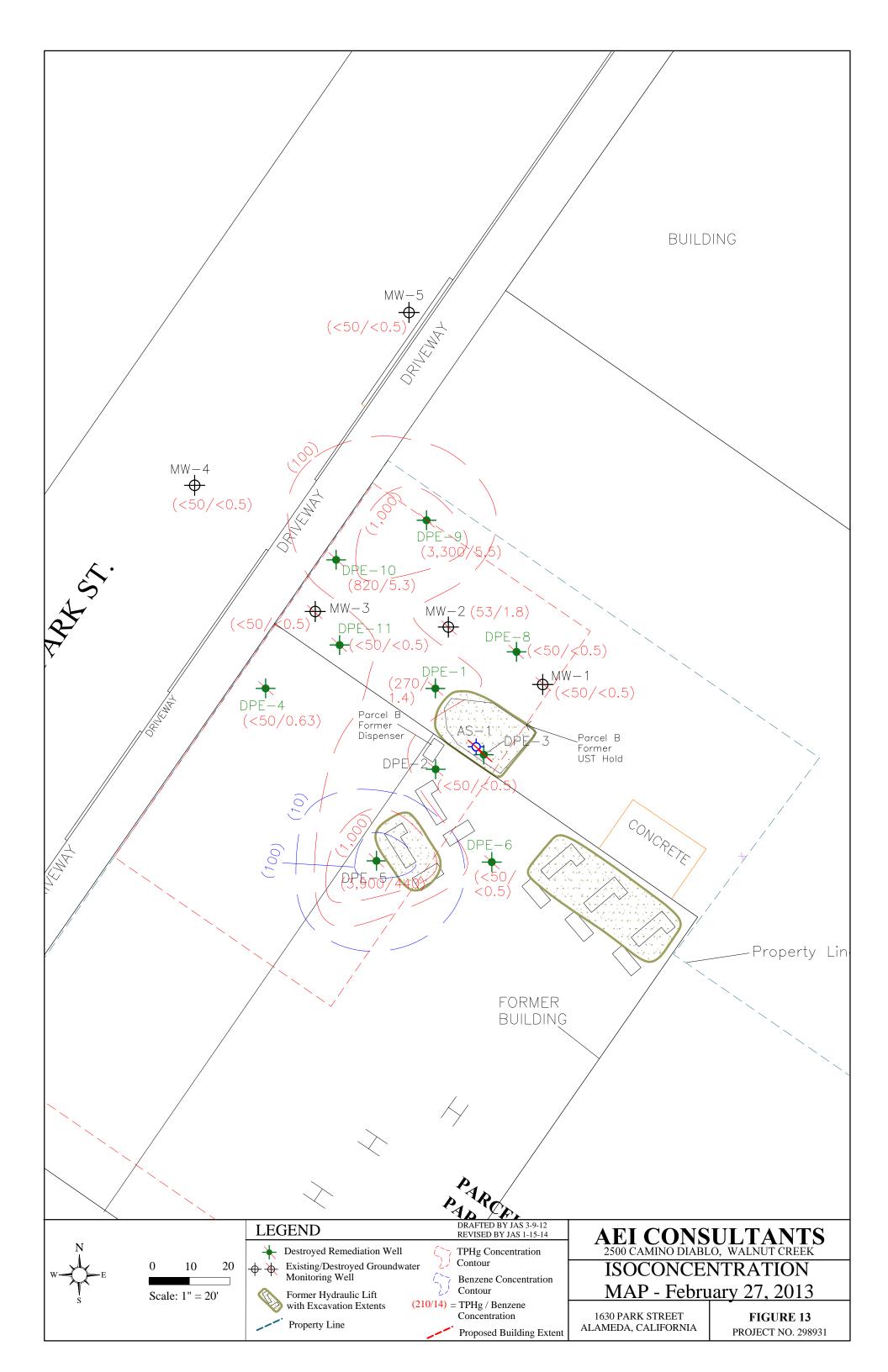


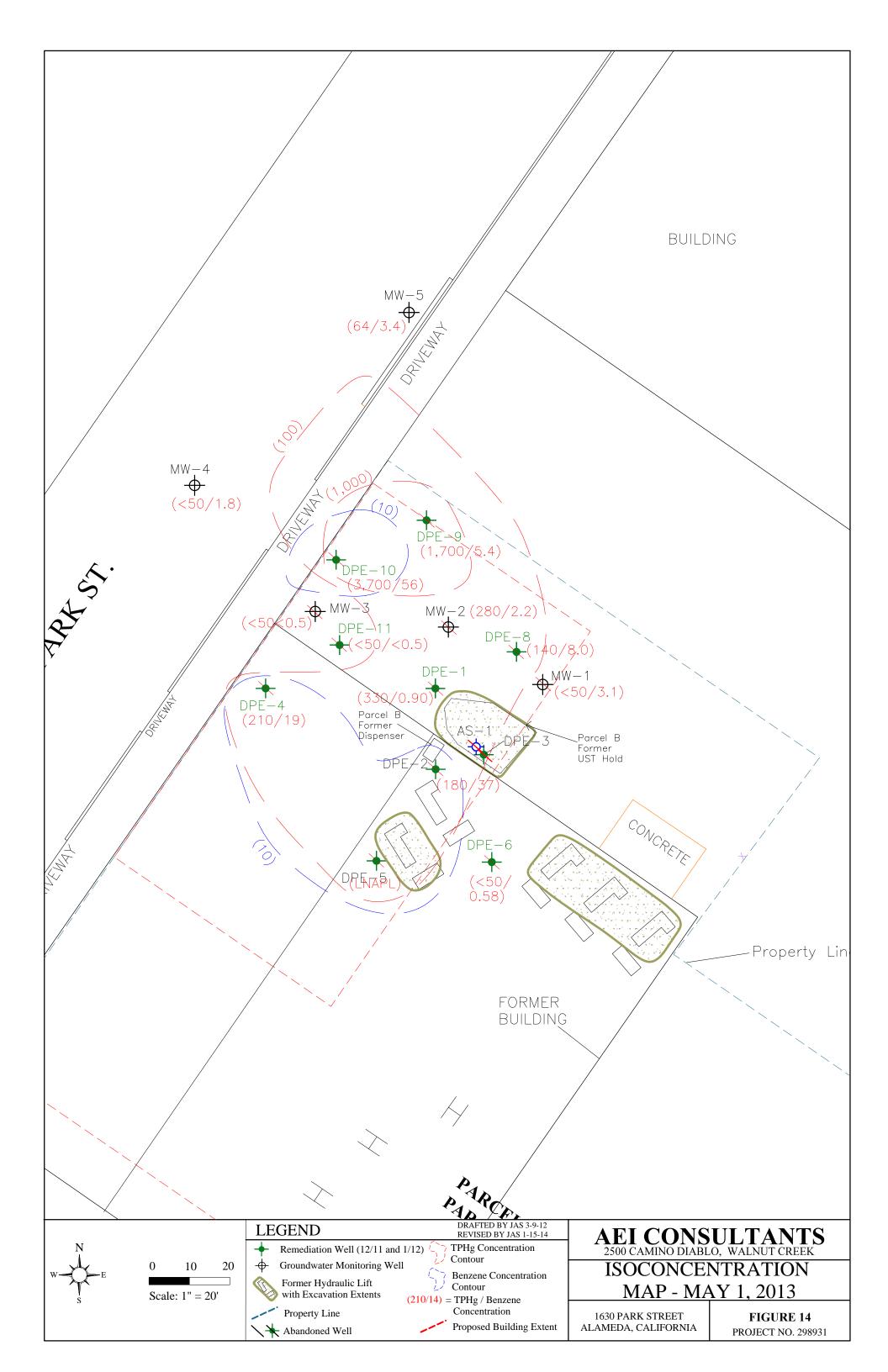

AEI CONSULTANTS 2500 CAMINO DIABLO, STE. 100, WALNUT CREEK, CA

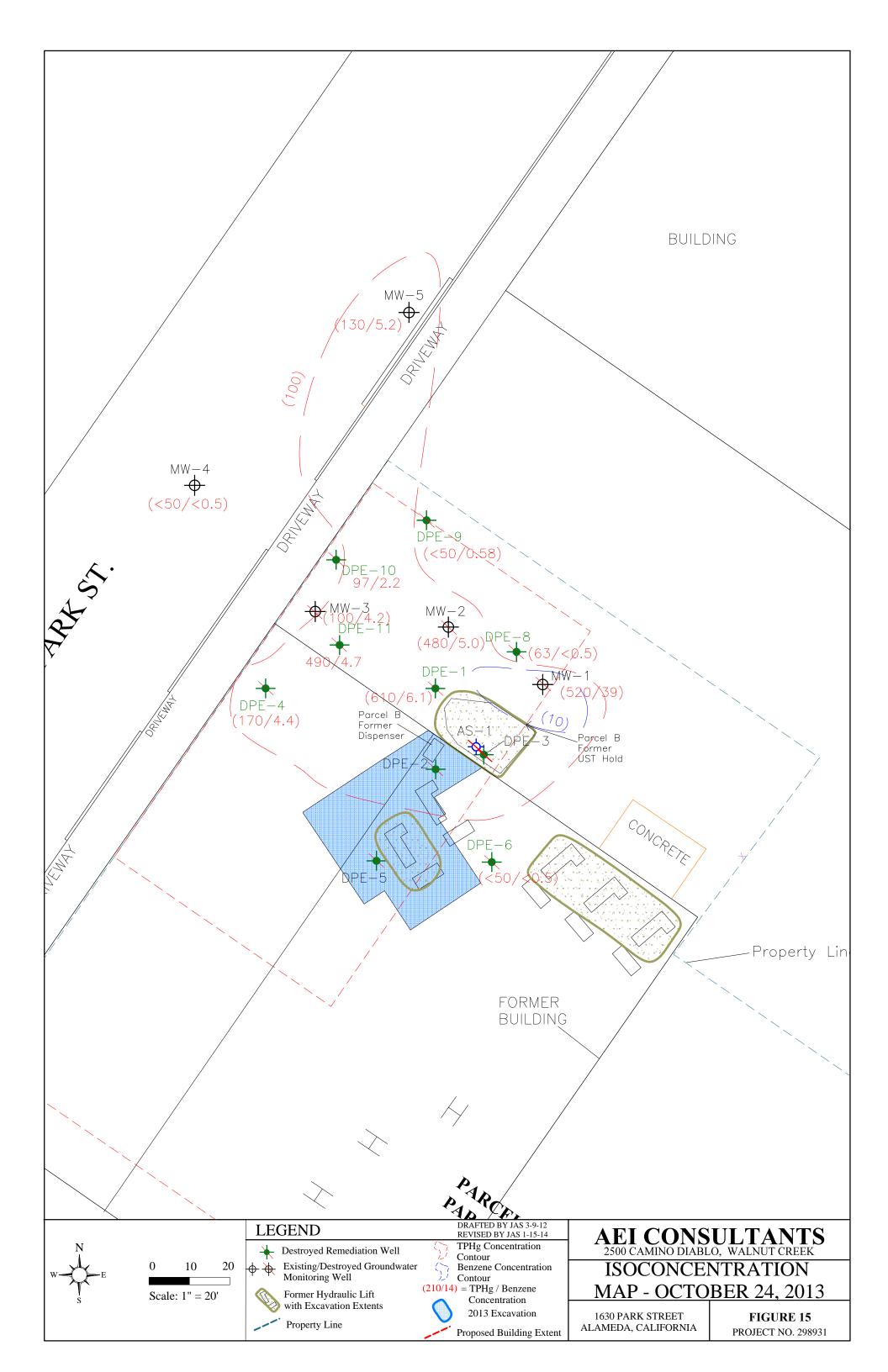

A - A' Historical Data Fence Diagram


1630 Park Street Alameda, CA **Figure 6** PROJECT NO. 298931









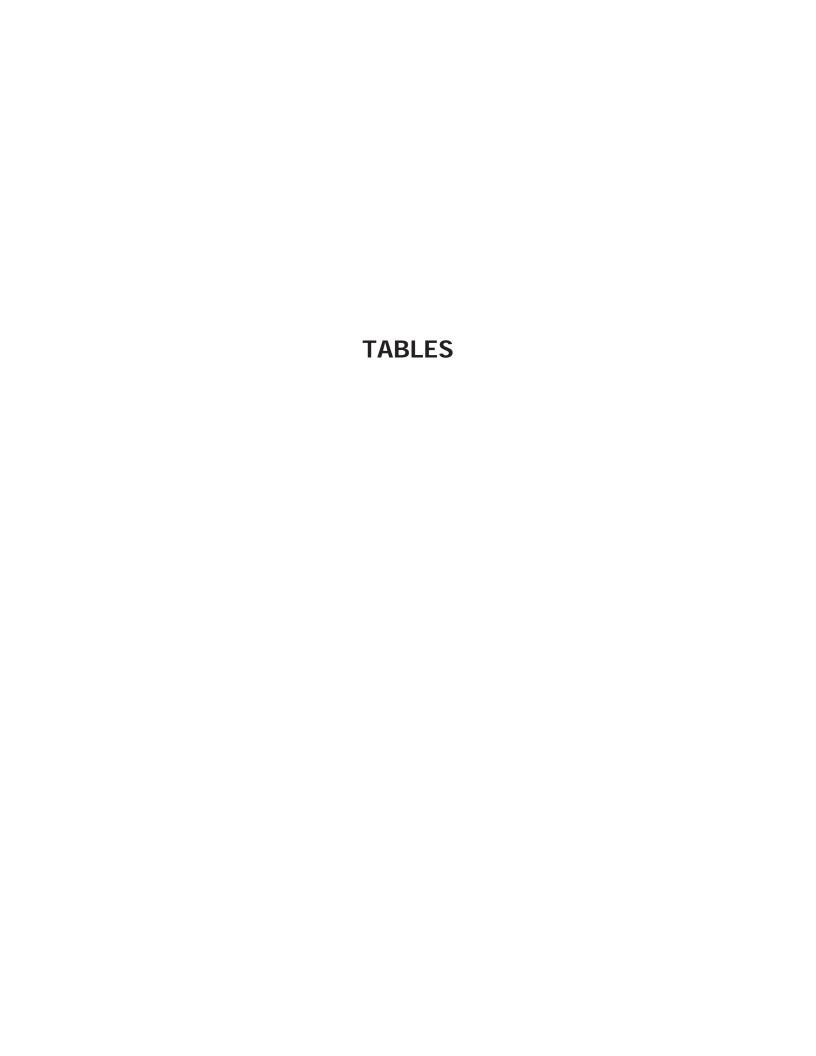


Table 1
Groundwater and Soil Vapor Well Inventory
AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Well ID	Well Installation	Well Destruction	Well Destruction	Elevation TOC	Casing Material	Total Depth	Well Depth	Borehole Diameter	Casing Diameter	Screened Interval	Slot Size	Filter Pack Interval	Filter Pack
Number	Date	Date	Method	(feet)		(feet)	(feet)	(inches)	(inches)	(feet)	(inches)	(feet)	Material
AS-1	11/14/2011	Oct-12	Excavated	-	PVC	25	25	8	2	20 - 25	0.02	20 - 25	#3 Sand
DPE-1	11/15/2011	11/21/2013	Pressure Grout	25.88	PVC	16	15	10	4	7 - 15	0.01	6.5 - 16	#2/12 Sand
DPE-2	11/15/2011	Oct-13	Excavated	26.22	PVC	16	15	10	4	7 - 15	0.01	6.5 - 16	#2/12 Sand
DPE-3	11/14/2011	Oct-12	Excavated	25.27	PVC	16	14	10	4	7 - 14	0.01	6.5 - 16	#2/12 Sand
DPE-4	1/19/2012	11/21/2013	Pressure Grout	26.06	PVC	17	17	10	4	8 - 17	0.01	7.5 - 17	#2/12 Sand
DPE-5	1/20/2012	9/18/2013	Pressure Grout	26.25	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-6	1/20/2012	11/21/2013	Pressure Grout	26.13	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-8	1/20/2012	11/21/2013	Pressure Grout	25.36	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-9	1/20/2012	11/21/2013	Pressure Grout	25.09	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-10	1/20/2012	11/21/2013	Pressure Grout	25.14	PVC	17	17	10	4	8 - 17	0.01	7.5 - 17	#2/12 Sand
DPE-11	1/20/2012	11/21/2013	Pressure Grout	25.57	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
MW-1	1/15/1987	11/21/2013	Pressure Grout	25.37	PVC	-	20	8	2	5 - 20	-	-	-
MW-2	1/15/1987	11/21/2013	Pressure Grout	25.48	PVC	-	20	8	2	5 - 20	-	-	-
MW-3	1/15/1987	11/21/2013	Pressure Grout	25.13	PVC	-	20	8	2	5 - 20	-	-	-
MW-4	4/20/1994	Active	N/A	25.58	PVC	-	23	8	2	8 - 23	-	-	-
MW-5	4/20/1994	Active	N/A	24.31	PVC	-	22	8	2	7 - 22	-	-	-
VP-1	12/6/2011	11/21/2013	Remove & Grout	-	Nyla/SS	6	6	1.25	1/4	5.1 - 5.6	Mesh	4.7 - 6	#30 Mesh Sand
VP-2	12/6/2011	11/21/2013	Remove & Grout	-	Nyla/SS	5.9	5.9	1.25	1/4	5.1-5.6	Mesh	4.7-5.9	#30 Mesh Sand
VP-3	12/6/2011	11/21/2013	Remove & Grout	-	Nyla/SS	5.75	5.75	1.25	1/4	5.1-5.6	Mesh	4.7-5.75	#30 Mesh Sand
SV-3	4/18/2013	11/21/2013	Remove & Grout	-	Nyla/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-4	4/19/2013	11/25/2013	Remove & Grout	-	Nyla/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-5	4/20/2013	9/18/2013	Remove & Grout	-	Nyla/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-6	4/21/2013	11/21/2013	Remove & Grout	-	Nyla/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-7	4/22/2013	11/21/2013	Remove & Grout	-	Nyla/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand

Table 1 **Groundwater and Soil Vapor Well Inventory**

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Well	Well	Well	Well	Elevation	Casing	Total	Well	Borehole	Casing	Screened	Slot	Filter Pack	Filter
ID	Installation	Destruction	Destruction	TOC	Material	Depth	Depth	Diameter	Diameter	Interval	Size	Interval	Pack
Number	Date	Date	Method	(feet)		(feet)	(feet)	(inches)	(inches)	(feet)	(inches)	(feet)	Material
SV-8	8/5/2013	11/21/2013	Remove & Grout	-	Teflon/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-9	8/5/2013	11/21/2013	Remove & Grout	-	Teflon/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-10	8/5/2013	9/18/2013	Remove & Grout	-	Teflon/SS	5.0	5.0	2.0	1/4	4.6-4.5	Mesh	5.0-4.0	#30 Mesh Sand
SV-11	8/21/2013	9/18/2013	Remove & Grout	=	Teflon/SS	6.5	6.5	2.0	1/4	6.0-5.9	Mesh	6.5-5.5	#30 Mesh Sand
SV-12	8/21/2013	11/21/2013	Remove & Grout	-	Teflon/SS	6.5	6.5	2.0	1/4	6.0-5.9	Mesh	6.5-5.5	#30 Mesh Sand
SV-13	10/24/2013	11/25/2013	Remove & Grout	-	Teflon/SS	6.1	6.1	1.5	1/4	6.0-5.9	Mesh	6.1-5.1	#30 Mesh Sand
SV-14	10/24/2013	11/21/2013	Remove & Grout	-	Teflon/SS	6.1	6.1	1.5	1/4	6.0-5.9	Mesh	6.1-5.1	#30 Mesh Sand
SV-15	10/24/2013	11/21/2013	Remove & Grout	-	Teflon/SS	6.1	6.1	1.5	1/4	6.0-5.9	Mesh	6.1-5.1	#30 Mesh Sand

PVC = polyvinyl chloride Nyla/SS = Nylaflow tubing with stainless-steel tip TOC = top of casing "-" = not available

Sample ID	Date Collected	Approx. Depth (feet)	TPH-g (mg/kg)	TPH-d* (mg/kg)	TPH-mo* (mg/kg)	MTBE (mg/kg) EPA Method SW	Benzene (mg/kg) /8021B/8015B/m	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)
MW-1-10 MW-1-15	1/15/1987 1/15/1987	10 15	24 <1.0	- -	- -	- -	2.9 <0.1	3.6 <0.1	- -	1.8 <0.1
MW-2-5 MW-2-10	1/15/1987 1/15/1987	5 10	<1.0 350	-	-	-	<0.1 14	<0.1 22	-	<0.1 23
MW-3-10 MW-3-15	1/15/1987 1/15/1987	10 15	200 <1.0	-	- -	-	9.8 <0.1	16 <0.1	-	16 <0.1
SB-5-10	1/15/1987	10	6.5	-	-	-	<0.1	0.22	-	<0.1
EB1-S2 EB1-S3	10/15/1993 10/15/1993	8.5 11	510 2,300	-	-	-	0.89 22	10 190	5.8 57	41 280
EB2-2S EB2-S3	10/15/1993 10/15/1993	10 11.5	15,000 200	-	-	-	84 4.3	710 15	260 3.9	1,400 20
EB3-S2 EB3-S3	10/15/1993 10/15/1993	10 12.5	2,200 610	-	- -	- -	9.4 1.2	71 3.2	42 4.5	200 2.9
EB4-S2 EB4-S3	10/15/1993 10/15/1993	8 10.5	4,900 7,600	-	-	-	32 60	230 390	84 130	440 630
EB5-S2 EB5-S3	10/15/1993 10/15/1993	9 11.5	1,800 14	-	- -	- -	<2.5 0.021	22 1.5	27 0.49	140 2.5
EB6-S2	10/15/1993	8.5	6,800	-	-	-	20	230	100	590
EB7-S2 EB7-S3	10/15/1993 10/15/1993	6.5 8.5	<1.0 1,000	-	- -	- -	<0.005 3.8	<0.005 45	<0.005 21	<0.005 110
MW4-S1 MW4-S2 MW4-S3	4/20/1994 4/20/1994 4/20/1994	4.5 9 14	<1.0 9.7 <1.0	- - -	- - -	- - -	<0.005 1.1 <0.005	<0.005 0.82 0.008	<0.005 0.42 <0.005	0.013 1.3 0.022
MW5-S1 MW5-S2	4/20/1994 4/20/1994	4.5 9	<1.0 1,100	- -	- -	- -	<0.005 12 0.033	<0.005 43	<0.005 20	<0.5 93
MW5-S3 EB8-S2 EB8-S3	4/20/1994 1/21/1997 1/21/1997	14 9.5 13.5	1.1 2,000 18	- - -	- - -	- <4 0.10	8.4 3.2	0.17 83 1.2	0.044 44 0.47	0.22 210 1.7
EB9-S1 EB9-S2	1/21/1997 1/21/1997	6.5 9.5	1.8 1,300	- -	- -	<5 <4	0.071 7.1	0.052 54	0.026 29	0.074 130
EB10-S1	1/21/1997	8.5	2,300	-	-	9.3	9.1	100	50	190
EB11-S1 EB11-S2	1/21/1997 1/21/1997	9.5 12	3,800 13	- -	- -	<9 <0.1	8.8 1.1	190 1.6	97 0.47	510 1.4
EB12-S1 EB12-S2	1/21/1997 1/21/1997	9.5 12	300 1,300	-		<0.6 6.2	0.95 9.4	0.59 23	3.5 35	18 130

Sample ID	Date Collected	Approx. Depth (feet)	TPH-g (mg/kg)	TPH-d* (mg/kg)	TPH-mo* (mg/kg)	MTBE (mg/kg) EPA Method SW	Benzene (mg/kg) /8021B/8015B/m	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)
GP1-11.5	4/29/2008	11.5	130	-	-	<0.005	<0.10	0.29	<0.10	0.42
GP1-15	4/29/2008	15	<1.0	-		<0.005	<0.005	0.0081	0.0065	0.028
GP2-11	4/29/2008	11	120	-	-	<0.010	<0.050	0.87	0.43	1.2
GP2-13.5	4/29/2008	13.5	<1.0		-	<0.005	<0.005	<0.005	<0.005	<0.005
GP3-6.75	4/29/2008	6.75	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP3-11.5	4/29/2008	11.5	<1.0	-		<0.005	<0.005	<0.005	<0.005	<0.005
GP4-11.5	4/29/2008	11.5	2.7	-	-	<0.005	0.14	0.052	0.072	0.17
GP4-14.5	4/29/2008	14.5	99	-	-	<0.020	0.48	1.4	1.0	4.5
GP5-11.5	4/29/2008	11.5	4.6	-	-	<0.005	0.12	0.078	0.14	0.48
GP5-19	4/29/2008	19	1.5	-	-	<0.005	<0.005	0.022	0.0069	0.032
GP6-11	4/29/2008	11	130	-	-	<0.10	0.11	1.0	1.1	5.4
GP7-8	4/30/2008	8	390	-	-	< 0.050	0.84	2.2	4.3	18
GP7-19.5	4/30/2008	19.5	<1.0	-	-	< 0.005	< 0.005	<0.005	<0.005	<0.005
GP8-8.5	5/1/2008	8.5	1,100	-	-	<0.050	<0.10	3.2	7.3	45
GP8-19.5	5/1/2008	19.5	5.8	-		<0.005	0.0091	0.067	0.048	0.21
GP9-7.5 GP9-11.25	5/1/2008 5/1/2008	7.5 11.25	<1.0 <1.0	-	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
GP10-7.5	4/30/2008	7.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP10-19.5	4/30/2008	19.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP11-6 GP11-15.5	4/30/2008 4/30/2008	6 15.5	<1.0 2,100 87	- -	- -	<0.005 <0.10 <0.020	<0.005 5.7 0.059	0.011 71 0.93	0.0053 38 0.67	0.026 180
GP11-18	4/30/2008	18		-	-					4.2
GP12-7.5	4/30/2008	7.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP12-11	4/30/2008	11	4.7	-	-	<0.005	0.015	0.21	0.067	0.32
GP12-15.5	4/30/2008	15.5	<1.0	-	-	<0.005	<0.005	0.0071	0.0051	0.025
GP13-7.25	4/30/2008	7.25	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP13-11	4/30/2008	11	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP13-14	4/30/2008	14	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP14-7.5 GP14-11	4/30/2008 4/30/2008	7.5 11	<1.0 <1.0	-	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
GP14-11 GP15-7.5	4/30/2008	7.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP16-7.5	5/1/2008	7.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005
GP16-10.5	5/1/2008	10.5	<1.0	-		<0.005	<0.005	<0.005	<0.005	<0.005
GP17-7.5 GP17-11.5	5/1/2008 5/1/2008	7.5 11.5	<1.0 <1.0	-	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg) 8021B/8015B/m	(mg/kg)	(mg/kg)	(mg/kg)
GP18-7.5	5/1/2008	7.5	<1.0	-	-	<0.005	< 0.005	<0.005	< 0.005	< 0.005
GP18-10	5/1/2008	10	<1.0	-	-	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
GP19-7	5/1/2008	7	<1.0	-	-	< 0.005	<0.005	< 0.005	<0.005	<0.005
GP20-8	5/1/2008	8	<1.0	-	-	< 0.005	<0.005	< 0.005	<0.005	<0.005
GP21-7.5	5/2/2008	7.5	2.1	-	-	< 0.005	0.006	0.028	0.012	0.065
GP21-15.5	5/2/2008	15.5	<1.0	-	-	< 0.005	0.0064	0.022	0.0057	0.027
GP21-19.5	5/2/2008	19.5	<1.0	-	-	< 0.005	< 0.005	0.0092	<0.005	0.023
GP22-10.5	5/2/2008	10.5	1,100	_	_	< 0.20	0.67	13	15	70
GP22-15.5	5/2/2008	15.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
	5. 5. 5. 5. 5. 5.									
GP23-7.5	5/2/2008	7.5	53	-	-	< 0.005	< 0.050	0.13	< 0.050	0.37
GP23-11.5	5/2/2008	11.5	1.9	-	-	< 0.005	0.062	0.041	0.043	0.18
GP23-16	5/2/2008	16	2	-	-	< 0.005	<0.005	0.027	0.018	0.099
GP24-8.5	5/2/2008	8.5	3,600	_	_	<1.0	1.2	32	62	410
GP24-19.5	5/2/2008	19.5	<1.0	-	- -	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
AEI-3-7'	7/25/2011	7	1,200	1,700	4,000	<10	2.6	25	10	48
AEI-3-15'	7/25/2011	15	<1.0	1.6	<5.0	<10	< 0.005	< 0.005	< 0.005	< 0.005
AEI-4-7'	7/25/2011	7	5,100	2,100	710	<50	6.2	83.0	54.0	280.0
AEI-4-15'	7/25/2011	15	1.2	1.3	<5.0	<0.05	0.029	0.071	0.031	0.17
7.2	772072011				10.0	10.00	0.027	0.07.	0.001	0
AEI-6-7'	7/25/2011	7	470	10,000	24,000	<5.0	< 0.50	< 0.50	< 0.50	< 0.50
AEI-6-14'	7/25/2011	14	<1.0	1.4	< 5.0	<5.0	< 0.50	< 0.50	< 0.50	< 0.50
AEI-7-7'	7/25/2011	7	100	6,300	14,000		-	-		-
AEI-7-13'	7/25/2011	13	<1.0	3.7	7.4	<5.0	< 0.50	< 0.50	< 0.50	<0.50
AEI-8-7'	7/25/2011	7	<1.0	720	2,900			-		
AEI-8-14'	7/25/2011	14	<1.0	<1.0	<5.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
AEI-11-3'	7/26/2011	3	<1.0	2.2	8.5	_	_	_	_	_
ALI-TI-5	772072011	3	V1.0	2.2	0.5					
AEI-12-3'	7/26/2011	3	<1.0	2.6	< 5.0	-	-	-	-	-
AEI-13-3'	7/26/2011	3	<1.0	4.2	< 5.0	-	-	-	-	-
AEI-20-7.5'	1/17/2012	7.5	8.4			< 0.05	0.0071	0.084	0.069	0.38
AEI-20-7.5 AEI-20-11'	1/17/2012	7.5 11	600	-	-	< 0.50	0.89	2.9	10	39
AEI-20-11'	1/17/2012	15	3.3	<u>-</u>	<u>-</u>	< 0.05	< 0.005	0.028	< 0.005	0.017
7121 20 10	17 1772012	10	5.5			νο.σσ	10.000	0.020	10.000	0.017
AEI-21-7'	1/17/2012	7	<1.0	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEI-21-11'	1/17/2012	11	46	-	-	< 0.05	0.020	0.42	0.27	0.60
AEI-21-14'	1/17/2012	14	<1.0	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEL 22 0'	1/17/2012	9	3,100			-O OF	2.2	46	40	400
AEI-22-9' AEI-22-11'	1/17/2012 1/17/2012		3,100 8.6	-	-	< 0.05	3.2	46 0.77	62 0.31	400 1.3
AEI-22-11 AEI-22-14'	1/17/2012	11 14	8.6 3,300	-	-	<0.10 <0.05	0.71 8.3	0.77 84	0.31 61	370
ML1-22-14	1/11/2012	14	3,300	-	-	<0.05	0.3	04	UI	370

Sample ID	Date Collected	Approx. Depth (feet)	TPH-g (mg/kg)	TPH-d* (mg/kg)	TPH-mo* (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)
						EPA Method SW	8021B/8015B/m			
AEI-23-6'	1/17/2012	6	<1.0	<1.0	<5.0	< 0.05	< 0.005	<0.005	< 0.005	< 0.005
AEI-23-9.5'	1/17/2012	9.5	7.5	100	180	< 0.05	<0.005	0.027	< 0.005	0.0055
AEI-23-12.5'	1/17/2012	12.5	460	360	270	< 5.0	< 0.50	1.4	< 0.50	0.80
AEI-24-7'	1/17/2012	7	<1.0	<1.0	<5.0	< 0.05	< 0.005	<0.005	<0.005	< 0.005
AEI-24-7 AEI-24-10.5'	1/17/2012	10.5	< 1.0 < 1.0	<1.0 <1.0	<5.0 <5.0	<0.05 <0.05	<0.005 <0.005	< 0.005	< 0.005	< 0.005
AEI-24-10.5 AEI-24-13'	1/17/2012	13	<1.0	<1.0	<5.0 <5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
	4.47.4004.0									
AEI-25-7.5'	1/17/2012	7.5	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEI-25-10' AEI-25-14'	1/17/2012 1/17/2012	10	<1.0 <1.0	<1.0	< 5.0	<0.05 <0.05	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	< 0.005
AEI-25-14	1/1//2012	14	< 1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	< 0.005
AEI-26-7.5'	1/17/2012	7.5	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEI-26-10.5'	1/17/2012	10.5	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEI-26-14'	1/17/2012	14	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEI-27-3'	1/17/2012	3	<1.0	3.2	7.9	< 0.05	< 0.005	<0.005	<0.005	0.013
AEI-28-7'	1/17/2012	7	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
AEI-28-11'	1/17/2012	11	12,000	2,100	44	<10	21	210	210	1,000
AEI-28-13'	1/17/2012	13	7.8	2.0	< 5.0	< 0.05	0.050	0.29	0.31	1.4
DPE-1, 7-7.5'	11/15/2011	7	1,800	330	46	<50	9.7	64	29	150
DPE-2, 8-8.5'	11/15/2011	8	2,200	280	140	<15	7.6	57	34	170
DPE-3, 8-8.5'	11/14/2011	8	2,000	1,000	58	<50	6.7	48	47	240
DPE-5, 11'	1/20/2012	11	2,300	-	-	<10	15	99	33	140
DPE-5, 14'	1/20/2012	14	1.1	-	-	< 0.05	<0.005	0.17	< 0.005	0.016
DDE / 10'	1/20/2012	10	F10			.1.0	.0.10	0.14	0.47	0.96
DPE-6, 10' DPE-6, 14'	1/20/2012 1/20/2012	10 14	510 <1.0	-	-	<1.0 <0.05	<0.10 <0.005	0.14 <0.005	< 0.005	< 0.005
•										
DPE-7, 10'	1/19/2012	10	2,200	-	-	< 5.0	< 5.0	16	47	240
DPE-7, 14.5'	1/19/2012	14.5	610	-	-	<5.0	< 5.0	3.9	9.5	55
October 2012 Exc	cavation Activitie	<u>es</u>								
EB1-15'	10/22/2012	15	<1.0	-	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
SW1-10'	10/22/2012	10	110	-	15	<1.0	<0.10	<0.10	<0.10	4.1
WW1-11'	10/22/2012	11	7.1	-	< 5.0	< 0.05	0.0084	< 0.005	0.013	0.17
EW1-11.5'	10/22/2012	11.5	4.0	-	< 5.0	< 0.05	0.16	0.22	0.21	0.71
NW1-12'	10/22/2012	12	8.6	-	<5.0	< 0.05	0.18	0.40	0.35	1.5
SEW2-9'	10/23/2012	9'	<1.0	_	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
EB2-11.5'	10/23/2012	11.5'	<1.0	-	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
EW2-9.5'	10/23/2012	9.5'	<1.0	-	23	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
NEW2-9.5'	10/23/2012	9.5'	<1.0	-	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
CB2-11.5'	10/23/2012	11.5'	<1.0	-	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
CSW2-9.5'	10/23/2012	9.5'	<1.0	-	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
WB2-11.5'	10/23/2012	11.5'	<1.0	-	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
l	' <u></u>	<u> </u>				EPA Method SW8				
SWW2-9.5'	10/23/2012	9.5'	<1.0	-	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
WW2-9.5'	10/23/2012	9.5'	1,400	-	3,400	< 5.0	< 0.50	< 0.50	42	180
WW2-6.5'	10/23/2012	6.5'	<1.0	-	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
NWW2-9.5'	10/23/2012	9.5'	<1.0	-	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
CNW2-9.5'	10/23/2012	9.5'	<1.0	-	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
	- · · -		-		-					
CB3-12.5'	10/29/2012	12.5'	<1.0		< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
SEW-10'	10/29/2012	10'	4,500		8,100	<25	31	270	100	460
NWW-10'	10/29/2012	10'	7,600		3,500	<50	54	410	150	680
NEW-10.5'	10/29/2012	10.5'	2,800		3,800	<5.0	28	180	65	290
SWW-10'	10/29/2012	10'	2,000		14,000	<5.0	20	110	33	100
October 2013 Exca	avation Activitie	? <u>s</u>								
SE Corner-10'	10/2/2013	10'	380	54	7.7	< 0.50	< 0.50	1.1	2.1	10
NWW-11-10'	10/2/2013	10'	1.5	1.3	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	0.024
WW-1-9'	10/2/2013	9'	3,200	1,300	2,100	<5.0	< 5.0	80	55	230
NWALL-6'	10/2/2013	6'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NWALL-10'	10/2/2013	10'	790	270	110	<5.0	< 5.0	22	27	110
NBOT-12.5	10/2/2013	12.5'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SBOT-10	10/2/2013	10'	11	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SWALL-9'	10/2/2013	9'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SWWALL-10'	10/2/2013	10'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NEWALL-10'	10/2/2013	10'	620	330	280	<5.0	17	94	39	170
N Wall2-10'	10/4/2013	10'	890	230	88	<5.0	<5.0	17	25	110
NE Wall2-10'	10/4/2013	10'	3,300	2,500	2,200	<20	29	350	150	680
NE Wall2-6'	10/4/2013	6'	<1.0	2,300	8,500	< 0.005	< 0.005	< 0.005	< 0.005	0.0062
EBE-12'	10/10/2013	12'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	0.0065	< 0.005	0.018
SWN-e-3'	10/10/2013	3'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SWN-e-6'	10/10/2013	6'	<1.0	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SWN-e-10'	10/10/2013	10'	770	310	160	<1.0	<1.0	<1.0	3.6	34
SWS-e-3'	10/10/2013	3'	18	28	27	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SWS-e-6'	10/10/2013	6'	<1.0	1.2	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SWS-e-10'	10/10/2013	10'	1,500	880	470	<2.5	<2.5	17	16	100
			-							

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit

TPH = total petroleum hydrocarbons MTBE = methyl butyl tertiary ethyl

TPH-g = TPH as gasoline "<" = less than

TPH-d = TPH as diesel "*" = with silica gel cleanup

TPH-mo = TPH as motor oil "-" = not available

BTEX/MTBE data from October 2013 analyzed using EPA Method 8260B Soil Sample was over-excavated during source removal activities

Table 3
Soil Sample Analytical Data
VOCs

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	PCE (mg/kg)	n-Butyl- benzene (mg/kg)	Naphthalene (mg/kg)	1,2,4- Trimethyl benzene (mg/kg)	1,3,5- Trimethyl benzene (mg/kg) EPA Method	sec-Butyl benzene (mg/kg) d SW8260B	n-Propyl benzene (mg/kg)	Isopropyl- benzene (mg/kg)	4-Isopropyl toluene (mg/kg)	Remaining VOCs (mg/kg)
AEI-11-3'	7/26/2011	3	< 0.005	< 0.005	< 0.005	<0.005	< 0.005		< 0.005	<0.005	< 0.005	<mdl< td=""></mdl<>
AEI-12-3'	7/26/2011	3	<0.005	<0.005	< 0.005	<0.005	<0.005		< 0.005	<0.005	< 0.005	<mdl< td=""></mdl<>
AEI-13-3'	7/26/2011	3	<0.005	<0.005	< 0.005	<0.005	<0.005		< 0.005	<0.005	< 0.005	<mdl< td=""></mdl<>
AEI-27-3'	1/17/2012	3	< 0.005	< 0.005	< 0.005	<0.005	< 0.005		<0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
October 2013 Exc	avation Activitie	<u>es</u>										
NWW-11-10'	10/2/2013	10	< 0.005	0.020	0.025	0.14	0.036	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SE Corner-10'	10/2/2013	10	< 0.05	1.3	1.2	7.8	2.2	< 0.5	1.2	< 0.5	< 0.5	<mdl<sup>1</mdl<sup>
WW-1-9'	10/2/2013	9	< 0.50	15	19	110	30	<5.0	17	5.7	5.1	<mdl<sup>1</mdl<sup>
NWALL-6'	10/2/2013	6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
NWALL-10'	10/2/2013	10	< 0.50	8.3	6.4	54	16	< 5.0	11	< 5.0	<5.0	<mdl<sup>1</mdl<sup>
NBOT-12.5	10/2/2013	12.5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SBOT-10	10/2/2013	10	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWALL-9'	10/2/2013	9	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWWALL-10'	10/2/2013	10	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
NEWALL-10'	10/2/2013	10	< 0.50	9.3	10	74	22	< 5.0	14	< 5.0	< 5.0	<mdl<sup>1</mdl<sup>
N Wall2-10'	10/4/2013	10	< 5.0	9.1	12	66	20	< 5.0	9.8	< 5.0	< 5.0	<mdl<sup>1</mdl<sup>
NE Wall2-10'	10/4/2013	10	<20	37	59	270	85	<20	45	<20	<20	<mdl<sup>1</mdl<sup>
NE Wall2-6'	10/4/2013	6	0.045	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
EBE-12'	10/10/2013	12	< 0.005	< 0.005	< 0.005	0.0096	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWN-e-3'	10/10/2013	3	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWN-e-6'	10/10/2013	6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWN-e-10'	10/10/2013	10	<1.0	7.2	9.7	38	13	1.1	3.0	<1.0	<1.0	<mdl<sup>1</mdl<sup>
SWS-e-3'	10/10/2013	3	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWS-e-6'	10/10/2013	6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<mdl< td=""></mdl<>
SWS-e-10'	10/10/2013	10	<2.5	17	22	91	28	2.7	11	2.9	4.8	<mdl<sup>1</mdl<sup>

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit; MDLs are below the established ESLs.

MDL¹ = method detection limit; Reporting limit of select compounds are above the established ESLs.

PCE = tetrachloroethene

VOCs = volatile organic compounds

"<" = less than

Soil Sample was over-excavated during source removal activities

Table 4 Soil Sample Analytical Data Fuel Oxygenates, and PCBs AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	Fuel Oxygenates^ (mg/kg) EPA Method SW8260B	All other target PCBs (mg/kg) EPA Method SW8082
GP1-11.5	4/29/2008	11.5	<mdl< td=""><td>-</td></mdl<>	-
GP1-15	4/29/2008	15	<mdl< td=""><td></td></mdl<>	
GP2-11	4/29/2008	11	<mdl< td=""><td>-</td></mdl<>	-
GP2-13.5	4/29/2008	13.5	<mdl< td=""><td></td></mdl<>	
GP3-6.75	4/29/2008	6.75	<mdl< td=""><td>-</td></mdl<>	-
GP3-11.5	4/29/2008	11.5	<mdl< td=""><td></td></mdl<>	
GP4-11.5	4/29/2008	11.5	<mdl< td=""><td>-</td></mdl<>	-
GP4-14.5	4/29/2008	14.5	<mdl< td=""><td>-</td></mdl<>	-
GP5-11.5	4/29/2008	11.5	<mdl< td=""><td>-</td></mdl<>	-
GP5-19	4/29/2008	19	<mdl< td=""><td></td></mdl<>	
GP6-11	4/29/2008	11	<mdl< td=""><td>-</td></mdl<>	-
GP7-8	4/30/2008	8	<mdl< td=""><td>-</td></mdl<>	-
GP7-19.5	4/30/2008	19.5	<mdl< td=""><td></td></mdl<>	
GP8-8.5	5/1/2008	8.5	<mdl< td=""><td>-</td></mdl<>	-
GP8-19.5	5/1/2008	19.5	<mdl< td=""><td>-</td></mdl<>	-
GP9-7.5	5/1/2008	7.5	<mdl< td=""><td>-</td></mdl<>	-
GP9-11.25	5/1/2008	11.25	<mdl< td=""><td></td></mdl<>	
GP10-7.5	4/30/2008	7.5	<mdl< td=""><td>-</td></mdl<>	-
GP10-19.5	4/30/2008	19.5	<mdl< td=""><td></td></mdl<>	
GP11-6	4/30/2008	6	<mdl< td=""><td>-</td></mdl<>	-
GP11-15.5	4/30/2008	15.5	<mdl< td=""><td>-</td></mdl<>	-
GP11-18	4/30/2008	18	<mdl< td=""><td>-</td></mdl<>	-
GP12-7.5	4/30/2008	7.5	<mdl< td=""><td>-</td></mdl<>	-
GP12-11	4/30/2008	11	<mdl< td=""><td>-</td></mdl<>	-
GP12-15.5	4/30/2008	15.5	<mdl< td=""><td>-</td></mdl<>	-
GP13-7.25	4/30/2008	7.25	<mdl< td=""><td>-</td></mdl<>	-
GP13-11	4/30/2008	11	<mdl< td=""><td></td></mdl<>	
GP13-14	4/30/2008	14	<mdl< td=""><td></td></mdl<>	
GP14-7.5 GP14-11	4/30/2008 4/30/2008 4/30/2008	7.5 11	<mdl <mdl< td=""><td>- -</td></mdl<></mdl 	- -
GP15-7.5	4/30/2008	7.5	<mdl< td=""><td>-</td></mdl<>	-
GP16-7.5	5/1/2008	7.5	<mdl< td=""><td>-</td></mdl<>	-
GP16-10.5	5/1/2008	10.5	<mdl< td=""><td></td></mdl<>	
GP17-7.5	5/1/2008	7.5	<mdl< td=""><td></td></mdl<>	
GP17-11.5	5/1/2008	11.5	<mdl< td=""><td></td></mdl<>	

Table 4

Soil Sample Analytical Data Fuel Oxygenates, and PCBs

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	Fuel Oxygenates^ (mg/kg) EPA Method SW8260B	All other target PCBs (mg/kg) EPA Method SW8082
GP18-7.5 GP18-10	5/1/2008 5/1/2008	7.5 10	<mdl <mdl< td=""><td>-</td></mdl<></mdl 	-
GP19-7	5/1/2008	7	<mdl< td=""><td>-</td></mdl<>	-
GP20-8	5/1/2008	8	<mdl< td=""><td>-</td></mdl<>	-
GP21-7.5 GP21-15.5 GP21-19.5	5/2/2008 5/2/2008 5/2/2008	7.5 15.5 19.5	<mdl <mdl <mdl< td=""><td>- - -</td></mdl<></mdl </mdl 	- - -
GP22-10.5 GP22-15.5	5/2/2008 5/2/2008	10.5 15.5	<mdl <mdl< td=""><td>-</td></mdl<></mdl 	-
GP23-7.5 GP23-11.5 GP23-16	5/2/2008 5/2/2008 5/2/2008	7.5 11.5 16	<mdl <mdl <mdl< td=""><td>- - -</td></mdl<></mdl </mdl 	- - -
GP24-8.5 GP24-19.5	5/2/2008 5/2/2008	8.5 19.5	<mdl <mdl< td=""><td>-</td></mdl<></mdl 	-
AEI-3-10'	7/25/2011	10	-	<1.0
AEI-4-10'	7/25/2011	10	-	<0.25
AEI-6-10'	7/25/2011	10	-	< 0.05
AEI-7-11'	7/25/2011	11	-	< 0.50
AEI-8-11'	7/25/2011	11	-	< 0.05

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit; MDLs assumed to be below the established ESLs; work done by previous consultant and analytical reports are not available to AEI.

PCBs = polychlorinated biphenyls

[&]quot;<" = less than
"-" = not available

[&]quot;^" = fuel oxygenates tert-amyl methyl ether (TAME), t-butyl alcohol (TBA),

^{1,2-}dibromomethane (EDB), 1,2-dichloroethane (1,2-DCA), diisopropyl ether (DIPE), methanol, ethanol, ethyl tert-butyl ether (ETBE), methyl tert-butyl ether (MTBE), and 1,2-Dichloroethane (EDC)

Table 5
Soil Sample Analytical Data
Metals

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	Cd mg/kg	Cr (total)* mg/kg EPA	Pb mg/kg Method SW6010E	Ni mg/kg 3	Zn mg/kg
AEI-11-3'	7/26/2011	3	<1.5	60	<5.0	24	16
AEI-12-3'	7/26/2011	3	<1.5	31	< 5.0	15	10
AEI-13-3'	7/26/2011	3	<1.5	29	< 5.0	14	9.7
*AEI-27-3'	1/17/2012	3	<0.25	38	140	17	140

Notes:

mg/kg = milligrams per kilogram

"-" = not available

Cd = Cadmium

Cr = Chromium

Pb = Lead

Ni = Nickel

Zn = Zinc

*AEI-27-3' = Antimony - 1.2 mg/kg, Arsenic - 4.0 mg/kg, Barium - 130 mg/kg, Cobalt - 3.7 mg/kg, Copper - 18 mg/kg, Mercury - 0.32 mg/kg and Vanadium - 28 mg/kg by CAM 17 EPA Method SW3050B.

Table 6 Groundwater Analytical Data - Grab Samples TPH and MBTEX AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	TPH-g (μg/L)	TPH-d* (μg/L)	TPH-mo* (μg/L)	MTBE (µg/L) EPA Method SW	Benzene (µg/L) V8021B/8015Bm	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)
HP-1	4/23/1993	<50	-	-	-	<0.5	<0.5	<0.5	<0.5
HP-2	4/23/1993	<50	-	-	-	<0.5	<0.5	<0.5	< 0.5
EB3-WSIA	10/15/1993	120,000	-	-	-	9,600	20,000	3,400	14,000
EB5-WSIA	10/15/1993	83,000	-	-	-	3,900	15,000	3,100	13,000
EB8-WS1	1/21/1997	25,000	-	-	<80	2,600	3,200	780	3,600
EB10-WS1	1/21/1997	81,000	-	-	<370	13,000	12,000	3,300	8,000
EB11-WS1	1/21/1997	49,000	-	-	<180	6,900	6,000	2,100	4,600
EB12-WS1	1/21/1997	38,000	-	-	110	1,400	1,400	1,800	7,400
P1-WS1	1/21/1997	74,000	-	-	<78	1,100	5,800	3,800	18,000
P2-WS1	1/21/1997	6,800	-		<10	2,200	290	310	560
P3-WS1	1/21/1997	220	-	-	<5.0	1.9	17	10	49
GP1W	4/29/2008	70,000	-	-	<500	6,800	6,600	2,300	12,000
GP2W	4/29/2008	910	-	-	<5.0	0.69	2.9	30	64
GP3W	4/29/2008	<50	-	-	< 5.0	<0.5	<0.5	<0.5	<0.5
GP4W	4/29/2008	46,000	-		<500	570	3,200	1,500	7,500
GP5W	4/29/2008	12,000	-	-	<60	140	480	270	1,100
GP6W	4/29/2008	22,000	-		<170	920	1,600	900	3,500
GP7W	4/30/2008	22,000	-		<180	2,600	320	810	2,600
GP8W	5/1/2008	140,000	-		<650	9,000	20,000	4,300	21,000
GP9W	5/1/2008	550	-	-	<5.0	53	0.52	2.1	25
GP10W	4/30/2008	11,000	-	-	<100	1,900	490	480	770
GP11W	4/30/2008	42,000	-		<452	1,900	4,200	1,700	7,600
GP12W	4/30/2008	61,000	-	-	<500	4,500	11,000	1,700	7,700
GP13W	4/30/2008	6,200	-	-	<10	220	53	150	440
GP14W	4/30/2008	300	-	-	< 5.0	46	1.9	19	11
GP15W	4/30/2008	<50	-	-	< 5.0	<0.5	0.69	<0.5	1.1
GP16W	5/1/2008	<50	-	-	< 5.0	<0.5	<0.5	<0.5	<0.5
GP17W	5/1/2008	<50	-	-	< 5.0	<0.5	1.7	<0.5	2
GP18W	5/1/2008	<50	-	-	< 5.0	<0.5	2.1	0.79	4
GP19W	5/1/2008	85	-	-	< 5.0	<0.5	0.80	<0.5	<0.5
GP20W	5/1/2008	<50	-	-	< 5.0	<0.5	<0.5	<0.5	<0.5
GP21W	5/2/2008	9,400	-	-	<50	560	1,400	260	1,300
GP22W	5/2/2008	3,900	-	-	<25	36	160	120	610
GP23W	5/2/2008	16,000	-	-	<90	830	1,900	540	2,600
GP24W	5/2/2008	110,000	-	-	<450	6,500	4,200	3,100	13,000

Table 6

Groundwater Analytical Data - Grab Samples TPH and MBTEX

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	TPH-g (µg/L)	TPH-d* (μg/L)	TPH-mo* (μg/L)	MTBE (μg/L) EPA Method SW	Benzene (µg/L) /8021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)
AEI-3-W	7/25/2011	11,000	12,000	29,000	<50	1,100	1,900	210	860
AEI-4-W	7/25/2011	200,000	25,000	19,000	<500	21,000	30,000	3,600	16,000
AEI-5-W	7/25/2011	<50	<50	<250	-	-	-	-	-
AEI-6-W	7/25/2011	18,000	120,000	300,000	<50	<5.0	7.7	<5.0	28
AEI-7-W	7/25/2011	280	11,000	28,000	-	-	-	-	-
AEI-8-W	7/25/2011	<50	1,600	3,800	-	-	-	-	-
AEI-20	1/17/2012	130,000	-	-	< 500	1,200	2,200	4,400	20,000
AEI-21	1/17/2012	110,000	-	-	<500	160	520	1,200	3,300
AEI-22	1/17/2012	61,000	-	-	< 500	790	4,400	1,500	7,200
AEI-23	1/17/2012	9,000	8,400	1,500	<50	<5.0	16	12	< 5.0
AEI-24	1/17/2012	<50	<50	<250	< 0.5	< 0.5	< 0.5	<0.5	<0.5
AEI-25	1/17/2012	<50	<50	<250	< 0.5	< 0.5	< 0.5	<0.5	<0.5
AEI-26	1/17/2012	<50	<50	<250	< 0.5	< 0.5	< 0.5	<0.5	<0.5
AEI-27	1/17/2012	<50	<100	<500	<5.0	< 0.5	< 0.5	<0.5	<0.5
AEI-28	1/17/2012	16,000	4,500	<250	<100	160	690	540	2,500

"<" = less than

µg/L = micrograms per liter
TPH = total petroleum hydrocarbons
TPH-g = TPH as gasoline
TPH-d = TPH as diesel
TPH-mo = TPH as motor oil
MTBE = methyl tertiary butyl ether
"*" = with silica gel cleanup
"-" = not available

Page 2 of 2

Table 7
Groundwater Analytical Data - Grab Samples
VOCs, Fuel Oxygenates, and PCBs

Sample ID	Date Collected	1,4-Dioxane (μg/L)	TBA (µg/L)	EDB (µg/L)	EDC (µg/L) EPA Method	MTBE (µg/L) SW8260B	Fuel Oxygenates^ (µg/L)	All Target VOCs (µg/L)
GP1W	4/29/2008	-	<20	< 5.0	<5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP2W	4/29/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP3W	4/29/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP4W	4/29/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP5W	4/29/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP6W	4/29/2008	-	24	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP7W	4/30/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP8W	5/1/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP9W	5/1/2008	-	7.7	< 0.5	1.1	1.2	<mdl< td=""><td>-</td></mdl<>	-
GP10W	4/30/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP11W	4/30/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP12W	4/30/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP13W	4/30/2008	-	8.9	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP14W	4/30/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP15W	4/30/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP16W	5/1/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP17W	5/1/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP18W	5/1/2008	-	<2.0	<0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP19W	5/1/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-
GP20W	5/1/2008	-	<2.0	< 0.5	< 0.5	< 0.5	<mdl< td=""><td>-</td></mdl<>	-

Table 7 Groundwater Analytical Data - Grab Samples VOCs, Fuel Oxygenates, and PCBs

AEI Project No. 298931, 1620-1640 Park Street, Alameda, California

Sample ID	Date Collected	1,4-Dioxane (μg/L)	TBA (µg/L)	EDB (µg/L)	EDC (µg/L) EPA Method	MTBE (μg/L) SW8260B	Fuel Oxygenates^ (µg/L)	All Target VOCs (µg/L)
GP21W	5/2/2008	-	<2.0	0.65	<0.5	<0.5	<mdl< td=""><td>-</td></mdl<>	-
GP22W	5/2/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td></mdl<>	-
GP23W	5/2/2008	-	<20	< 5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
GP24W	5/2/2008	-	75	<5.0	< 5.0	< 5.0	<mdl< td=""><td>-</td></mdl<>	-
AEI-27	1/17/2012	-	-	-	-	-	-	<mdl<sup>1</mdl<sup>

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit; MDLs are below the ESL if one is established.

MDL = method detection limit; MDLs assumed to be below the established ESLs; work done by previous consultant and analytical reports are not available to AEI.

MDL¹ = method detection limit; MDLs at standard dilution and below the respective ESLs.

VOCs = volatile organic compounds

TBA = t-butyl alcohol

EDB = 1,2-dibromomethane

EDC = 1,2-dichloroethane

MTBE = methyl tert-butyl ether

"-" = not available

"<" = less than

"^" = fuel oxygenates tert-amyl methyl ether (TAME),

1,2-dichloroethane (1,2-DCA), diisopropyl ether (DIPE), methanol, ethanol, and ethyl tert-butyl ether (ETBE)

Table 8

Groundwater Monitoring Analytical Data (TPHs, BTEX, MTBE & Lead) - Monitoring Wells
AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

	Date	Notes	TPH-d	TPH-mo	TPH-g		Toluene		Xylenes	MTBE	Lead
ID			(µg/L)	(µg/L)	y EPA Met (µg/L)	hods 8020 (µg/L)	, 8021B, 0 (µg/L)	r 8260Β (μg/L)	(µg/L)	(µg/L)	EPA 200.8 (μg/L)
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/ L)	(µg/L)	(µg/L)	(µg/L)
MW-1	1/21/1987		_	_	21,020	1,148	8,627	1,792	6,012	_	_
	1/11/1989		_	-	1,400	74	10	13	5.0	-	-
	7/12/1989		-	-	1,200	470	49	45	33	-	-
	4/9/1991		-	-	850	260	10	15	12	-	-
	7/14/1992		-	-	13,000	2,300	1,200	1,200	1,200	-	-
	10/7/1992		-	-	3,600	1,600	80	120	120	-	-
	1/11/1993		-	-	1,200	410	16	23	19	-	-
	4/23/1993	а	-	-	2,200	720	180	82	150	-	-
	7/8/1993	а	-	-	3,200	1,200	110	97	100	-	-
	10/15/1993	а	-	-	3,700	1,400	43	94	36	-	-
	1/25/1994	а	-	-	1,600	680	16	41	35	-	-
	4/28/1994	а	-	-	6,100	1,900	380	250	340	-	-
	7/27/1994	а	-	-	6,000	1,800	510	220	450	-	-
	10/27/1994	а	-	-	3,000	1,100	79	82	87	-	-
	1/26/1995	а	-	-	1,600	660	100	82	87	-	-
	4/13/1995	а	-	-	3,800	1,200	270	120	260	-	-
	7/21/1995	а	-	-	5,200	1,500	450	190	400	-	-
	10/25/1995	а	-	-	5,900	1,800	450	210	400	-	-
	1/21/1997	а	-	-	3,100	1,100	87	160	180	< 7.3	-
	11/12/1998	а	-	-	1,000	280	3	3.3	7.9	< 30	-
	1/16/2001	а	-	-	4,700	1,20	18	150	49	<5	-
	6/27/2002	а	-	-	5,900	230	7.7	<5	1,500	<5	-
	11/18/2002	а	-	-	3,100	890	12	310	28	< 2.5	-
	2/20/2003	d	-	-	260	100	0.72	< 0.5	< 0.5	< 0.5	-
	6/11/2003	а	-	-	3,100	480	6.7	220	420	< 2.5	-
	4/3/2008	а	-	-	2,700	280	21	130	230	<1.0	< 0.5
	6/23/2011	а	-	-	610	100	6.2	46	77	< 2.5	-
	12/6/2011	а	-	-	900	160	< 5.0	68	76	< 5.0	-
	1/24/2012	а	-	-	190	25	<1.0	1.4	4.6	<1.0	-
	5/18/2012	f	210	<250	2,600	200	51	93	610	< 5.0	-
	7/11/2012	а	700	<250	2,700	190	8.1	100	230	< 5.0	-
	11/16/2012	С	140	<250	370	71	<1.7	<1.7	<1.7	<1.7	-
	2/27/2013		< 50	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013		< 50	<250	< 50	3.1	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	a,g	230	<250	520	39	<1.0	29	5.2	<1.0	-

Table 8

Groundwater Monitoring Analytical Data (TPHs, BTEX, MTBE & Lead) - Monitoring Wells

AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g by EPA Met	Benzene hods 8020		Ethylbenzene or 8260B	Xylenes	MTBE	Lead EPA 200.8
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2	1/21/1987		-	-	5,018	386	1,981	285	1,432	-	-
	1/11/1989		-	-	10,000	3,000	410	240	190	-	-
	7/12/1989		-	-	7,600	2,700	540	250	320	-	-
	4/9/1991		-	-	4,900	910	210	130	200	-	-
	7/14/1992		-	-	13,000	4,400	1,500	610	1,100	-	-
	10/7/1992		-	-	11,000	5,200	1,500	500	1,200	-	-
	1/11/1993		-	-	17,000	940	1,100	480	930	-	-
	4/23/1993	а	-	-	52,000	13,000	8,400	1,700	5,300	-	-
	7/8/1993	а	-	-	6,400	2,500	470	280	530	-	-
	10/15/1993	а	-	-	17,000	3,900	870	500	940	-	-
	1/25/1994	а	-	-	16,000	5,400	1,140	640	1,500	-	-
	4/28/1994	а	-	-	15,000	4,00	910	480	1,200	-	-
	7/27/1994	а	-	-	18,000	6,000	760	630	1,600	-	-
	10/27/1994	а	-	-	9,500	2,700	230	320	640	-	-
	1/26/1995	а	-	-	5,900	1,900	290	230	500	-	-
	4/13/1995	а	-	-	10,000	3,300	620	360	930	-	-
	7/21/1995	а	-	-	9,900	3,300	320	390	830	-	-
	10/25/1995	а	-	-	13,000	4,900	400	580	990	-	-
	1/21/1997	а	-	-	7,600	2,600	310	330	660	< 20	-
	11/12/1998	а	-	-	31,000	11,000	750	1,500	2,300	<900	-
	1/16/2001	а	-	-	23,000	8,200	260	1,000	820	< 30	-
	6/27/2002	а	-	-	39,000	7,000	1,800	690	4,000	<5	-
	11/18/2002	а	-	-	15,000	5,700	76	1,000	150	<12	-
	2/20/2003	а	-	-	26,000	6,300	1,100	1,300	1,900	< 5.0	-
	6/11/2003	а	-	-	37,000	7,100	2,300	2,000	3,600	<25	-
	4/3/2008	а	-	-	4,100	760	96	250	130	< 2.5	< 0.5
	6/23/2011	а	-	-	6,500	2,100	210.0	560	310	< 50	-
	12/6/2011	а	-	-	4,800	1,600	< 50	260	< 50	< 50	-
	1/24/2012	а	-	-	2,500	100	22.0	< 5.0	410	< 5.0	-
	5/18/2012	f	68	<250	140	14	2.8	2.9	12	< 0.5	-
	7/11/2012	а	270	<250	930	170	< 5.0	24	9.3	< 5.0	-
	11/16/2012	С	200	<250	340	15	1.4	5.4	2.1	< 0.5	-
	2/27/2013	а	< 50	<250	53	1.8	< 0.5	< 0.5	1.4	< 0.5	-
	5/1/2013	a,c	190	<250	280	2.2	< 0.5	5.6	5.6	< 0.5	-
	10/24/2013	a,g	380	<250	480	5.0	< 0.5	2.8	1.3	< 0.5	-
	10/24/2013	a,g	380	<250	480	5.0	<0.5	2.8	1.3	<0.5	

Table 8

Groundwater Monitoring Analytical Data (TPHs, BTEX, MTBE & Lead) - Monitoring Wells

AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g	Benzene hods 8020,		Ethylbenzene r 8260B	Xylenes	MTBE	Lead EPA 200.8
15			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3	1/21/1987		-	-	10,287	1,428	3,281	610	2,761	-	-
	1/11/1989		-	-	5,300	1,800	340	150	160	-	-
	7/12/1989		-	-	7,800	3,100	900	300	480	-	-
	4/9/1991		-	-	9,400	1,400	730	200	510	-	-
	7/14/1992		-	-	17,000	3,500	390	390	260	-	-
	10/7/1992		-	-	9,200	4,300	470	390	610	-	-
	1/11/1993		-	-	2,000	740	29	58	28	-	-
	4/23/1993	а	-	-	6,500	2,600	280	260	190	-	-
	7/8/1993	а	-	-	5,200	2,100	260	250	180	-	-
	10/15/1993	а	-	-	11,000	3,500	580	430	370	-	-
	1/25/1994	а	-	-	6,200	2,500	270	160	28	-	-
	4/28/1994	а	-	-	5,300	1,700	190	210	180	-	-
	7/27/1994	а	-	-	5,900	2,000	360	260	330	-	-
	10/27/1994	а	-	-	8,000	2,200	580	260	170	-	-
	1/26/1995	а	-	-	3,700	1,200	150	150	190	-	-
	4/13/1995	а	-	-	4,000	1,400	200	180	210	-	-
	7/21/1995	а	-	-	5,700	2,000	280	270	280	-	-
	10/25/1995	а	-	-	11,000	3,500	1,100	460	680	-	-
	1/21/1997	а	-	-	2,200	860	63	71	80	< 5.0	-
	11/12/1998	d	-	-	180	44	0.51	< 0.5	0.92	< 20	-
	1/16/2001	а	-	-	64	11	0.77	< 0.5	< 0.5	< 5.0	-
	6/27/2002		-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	11/18/2002	а	-	-	110	21	1	< 0.5	< 0.5	< 0.5	-
	2/20/2003		-	-	< 50	2.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	6/11/2003		-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	4/3/2008	а	-	-	7,600	2,400	58	250	170	< 5.0	< 0.5
	6/23/2011	а	-	-	1,300	560	21	86	150	<12	-
	12/6/2011	а	-	-	1,800	620	28	22	46	<17	-
	1/24/2012	а	-	-	3,700	1,200	68	34	130	<25	-
	5/18/2012	f	< 50	<250	75	5.3	< 0.5	< 0.5	1.6	< 0.5	-
	7/11/2012	а	< 50	<250	78	1.4	0.66	< 0.5	5.5	< 0.5	-
	11/16/2012		< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	2/27/2013	g	< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013		< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	8/2/2013		-	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	-
	10/24/2013	a,g	100	<250	100	4.2	<1.2	<1.2	<1.2	<1.2	-

Table 8

Groundwater Monitoring Analytical Data (TPHs, BTEX, MTBE & Lead) - Monitoring Wells

AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g by EPA Met				Xylenes	MTBE	Lead EPA 200.8
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4	4/28/1994	b,c	-	-	190	3.8	2.9	2.1	3.1	-	-
	7/27/1994	а	-	-	180	15	9.2	7.6	28	-	-
	10/27/1994	а	-	-	130	8.6	6.6	4.5	17	-	-
	1/26/1995		-	-	110	6.5	1.2	1.8	11	-	-
	4/13/1995		-	-	82	3.9	< 0.5	< 0.5	2.5	-	-
	7/21/1995		-	-	130	8.8	1.3	4.5	7.6	-	-
	10/25/1995		-	-	95 120	6.6	1.7	4.3	7	-	- .0 F
	4/3/2008 6/23/2011		-	-	130 53	1.6 2.7	< 0.5	0.89 1.0	0.85	< 0.5	< 0.5
	5/23/2011	a f	- <50	- <250	>53 <50	<0.5	<0.5 <0.5	< 0.5	1.7 <0.5	<0.5 <0.5	-
	7/11/2012		<50 <50	<250 <250	<50 <50	<0.5 <0.5	<0.5 <0.5	< 0.5 < 0.5	<0.5 <0.5	< 0.5	-
	11/16/2012	g c	360	<250 <250	440	3.4	<0.5 <0.5	1.2	2.1	< 0.5	-
	2/27/2013	C	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013		<50	<250	<50	1.8	<0.5	<0.5	<0.5	< 0.5	_
	8/8/2013	g	-	-	-	< 0.5	<0.5	< 0.5	<0.5	<0.5	_
	10/24/2013	g	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	_
	1/21/2014	9	<50	<250	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	-
MW-5	4/28/1994	а	-	-	30,000	4,000	3,000	810	3,500	-	-
	7/27/1994	а	-	-	9,300	2,000	800	290	940	-	-
	10/27/1994	а	-	-	15,000	2,700	1,300	420	1,100	-	-
	1/26/1995	а	-	-	7,900	2,100	680	240	860	-	-
	4/13/1995	а	-	-	7,900	2,400	580	340	630	-	-
	7/21/1995	а	-	-	11,000	3,400	760	610	1,200	-	-
	10/25/1995	а	-	-	13,000	2,900	830	570	1,100	-	-
	1/21/1997	а	-	-	2,600	750	65	1,860	280	< 5.0	-
	11/12/1998		-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	-
	1/16/2001		-	-	<50	11	< 0.5	< 0.5	0.82	< 5.0	-
	6/27/2002		-	-	<50	<0.5 17	<0.5 3.8	< 0.5	< 0.5	< 0.5	-
	11/18/2002 2/20/2003	а	-	-	130 <50	5.6	ა.ი 0.51	2.1 <0.5	16 0.68	<0.5 <0.5	-
	6/11/2003	а	-	-	< 50 170	3.6 48	< 0.51	<0.5 <0.5	1.4	< 0.5	-
	4/3/2008	a a	-	-	31,000	490	3,400	1,600	5,300	<10.5	< 0.5
	6/23/2011	a	-	_	82	5.1	< 0.5	1,000	8.4	< 0.5	-
	5/18/2012	f a	<50	<250	120	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	_
	7/11/2012	g	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	_
	11/16/2012	G C	450	<250	580	27	1.7	6.7	7.1	< 0.5	_
	2/27/2013	Ĭ	<50	<250	<50	< 0.5	<0.5	<0.5	<0.5	< 0.5	_
	5/1/2013	а	<50	<250	64	3.4	< 0.5	< 0.5	< 0.5	< 0.5	-
	8/8/2013	g	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	a,g	< 50	<250	130	5.2	< 0.5	0.73	1.9	< 0.5	-
	1/21/2014	, 3	<50	<250	190	5.4	<0.5	<0.5	1.3	<0.5	-

Table 8

Groundwater Monitoring Analytical Data (TPHs, BTEX, MTBE & Lead) - Monitoring Wells

AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g by EPA Metl			Ethylbenzene 8260B	Xylenes	MTBE	Lead EPA 200.8
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DPE-1	12/6/2011	а	-	_	9,200	1,800	570	460	1,100	<50	-
	1/24/2012	а	-	-	3,200	170	58	< 5.0	620	< 5.0	-
	5/18/2012	f	280	<250	540	49	<1.0	<1.0	17	<1.0	-
	7/11/2012	а	860	<250	2,300	240	15	98	88	< 5.0	-
	11/16/2012	С	360	<250	580	3.3	< 0.5	2.2	2.8	< 0.5	-
	2/27/2013	a,c	110	<250	270	1.4	< 0.5	0.53	5.3	< 0.5	-
	5/1/2013	a,c	74	<250	330	0.90	< 0.5	1.9	10	< 0.5	-
	8/8/2013	g	-	-	-	18	< 5.0	35	39	< 5.0	-
	10/24/2013	a,g	530	<250	610	6.1	0.78	3.6	3.5	< 0.5	-
DPE-2	12/6/2011	а	-	-	22,000	2,100	3,300	650	3,300	<100	-
	1/24/2012	а	-	-	1,100	44	26	11	150	<2.5	-
	5/18/2012	f	< 50	<250	220	33	3.2	< 0.5	30	< 0.5	-
	7/11/2012	а	400	<250	2,600	300	12	45	390	<10	-
	11/16/2012		< 50	<250	< 50	3.4	< 0.5	< 0.5	< 0.5	< 0.5	-
	2/27/2013	h	99	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013	a,c	57	<250	180	37	1.3	3.1	3.2	< 0.5	-
	8/8/2013	g	-	-		360	< 5.0	30	11	< 5.0	-
		Well De	ecommiss	oned Prio	r to Excavat	ion - Octob	er 2013				
DPE-3	12/6/2011	а	-	-	6,400	550	560	180	1,000	<17	-
	1/24/2012	а	-	-	5,500	290	240	44	1,000	< 5.0	-
	5/18/2012	f	260	<250	1,100	78	37	11	89	<1.7	-
	7/11/2012	a Well De	720 ecommiss	<250 oned Prio	2,400 r to Excavat	330 ion - 2012	19	10	130	<10	-
DDE 4	4 /0 4 /0 04 0							7.4	00	0.5	
DPE-4	1/24/2012	a	-	-	730	66	6.0	7.1	83	2.5	-
	5/18/2012	f	< 50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	7/11/2012		<50	< 250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	11/16/2012 2/27/2013		<50 <50	<250 <250	<50 <50	<0.5 0.63	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-
	5/1/2013	a,h	53	<250	210	19	< 0.5	< 0.5	< 0.5	< 0.5	-
		۵,11	55								
	8/2/2013		-	-	-	12	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	а	76	<250	170	4.4	< 0.5	< 0.5	0.53	<0.5	-
DPE-5	11/16/2012	h	560	1,400	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	2/27/2013	a,c,h	1,200	2,600	3,900	440	370	120	570	<10	-
								kness of 0.17')			
	8/2/2013		•		ne presence r to Excavat	•	•	kness of 0.09')			
DPE-6	1/24/2012	а	_	_	64*	<0.5	<0.5	< 0.5	3.2	< 0.5	_
2 0	5/18/2012	f	< 50	<250	<50	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	_
	7/11/2012	g	<50	<250	<50	0.93	<0.5	< 0.5	< 0.5	< 0.5	-
	11/16/2012		<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	2/27/2013	h	160	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013	i	1,200	1,100	<50	0.58	< 0.5	< 0.5	< 0.5	< 0.5	-
	8/2/2013		-	-	-	0.53	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013		< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-

Table 8

Groundwater Monitoring Analytical Data (TPHs, BTEX, MTBE & Lead) - Monitoring Wells

AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g by EPA Met			Ethylbenzene or 8260B	Xylenes	MTBE	Lead EPA 200.8
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DPE-8	11/16/2012	С	460	<250	630	13	< 0.5	1.1	19	< 0.5	-
	2/27/2013		< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013	a,c	92	<250	140	8.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	а	<50	<250	63	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
DPE-9	1/24/2012	а	<50	<250	4,400	160	390	93	1,100	< 5.0	-
	7/11/2012	а	680	<250	1,300	47	3.1	4.0	100	<1.7	-
	11/16/2012	С	470	<250	530	4.7	< 0.5	0.78	2.3	< 0.5	-
	2/27/2013	b	2,200	<250	3,300	5.5	< 0.5	5.7	< 0.5	16	-
	5/1/2013	a,c	1,300	<250	1,700	5.4	< 0.5	5.6	11	< 0.5	-
	8/2/2013		-	-	-	3.9	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	g	<50	<250	<50	0.58	< 0.5	< 0.5	< 0.5	< 0.5	-
DPE-10	5/18/2012	f	420	<250	1,700	150	< 5.0	< 5.0	< 5.0	160	-
	7/11/2012	а	160	<250	360	40	<1.0	<1.0	<1.0	<1.0	-
	11/16/2012		< 50	<250	79	4.9	< 0.5	< 0.5	< 0.5	< 0.5	-
	2/27/2013	a	660	<250	820	5.3	< 0.5	6.0	< 0.5	4.4	-
	5/1/2013	a,c	2,600	<250	3,700	56	<1.7	95	82	<1.7	-
	8/2/2013		-	-	-	8.2	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	a,g	57	<250	97	2.2	< 0.5	< 0.5	< 0.5	< 0.5	-
DPE-11	5/18/2012	f	260	<250	930	6.4	4.6	4.6	160	<1.2	-
	7/11/2012	a	1,600	<250	2,400	16	<1.0	14	57	<1.0	-
	11/16/2012	С	540	<250	860	5.3	< 0.5	0.81	1.2	< 0.5	-
	2/27/2013		< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	5/1/2013		< 50	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
	10/24/2013	a,g	340	<250	490	4.7	< 0.5	2.9	0.80	<0.5	-
ESL			100	100	100	1.0	40	30	20	5.0	2.5

TPH-g= total petroleum hydrocarbons as gasoline

TPH-d= total petroleum hydrocarbons as diesel

TPH-mo= total petroleum hydrocarbons as motor oil

BTEX= Benzene, Toluene, Ethylbenzene, Xylenes

MTBE = Methyl tertiary butyl ether

"-" = Not analyzed or data not available

 μ g/L = micrograms per liter (ppb)

ESL = Environmental Screening Levels, Table F-1a, Groundwater, Potential Drinking Water, San Francisco Regional Water Quality Control Board, Revised December 2013

- a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.
- b = Laboratory note indicates heavier gasoline range compounds are significant (aged gas?).
- c = Laboratory note indicates gasoline range compounds are significant with no recognizable pattern.
- d = Laboratory note indicates that lighter gasoline range coounds (the most mobile fraction) are significant.
- e = Laboratory note indicates that one to a few isloated non-targed peaks are present.
- f = Laboratory note indicates that low surrogate due to matrix interference.
- g = Surrogate recovery exceeds the control limits due to dilution / matrix interference / coelution / presence of surrogate compound in the sample
- h = Laboratory note indicates that diesel & oil range compounds are significant
- i = Laboratory note indicates that aged diesel is significant
- * Total petroleum hydrocarbons as diesel = <50; Total petroleum hydrocarbons as motor oil = <250

Table 9 Groundwater Monitoring Analytical Data (VOCs) - Monitoring Wells AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample I.D.	Date	Notes	TAME	t-Butyl alcohol (TBA)	EDB	1,2-DCA	DIPE	Ethanol	ETBE	2-Butanone	py Butyl benzene A n-Butyl benzene	Menzene sec-Butyl benzene	(7/6π) sopropylbenzene	us-1,2-Dichloroethene	8 8 1,2,3-Trichloropropane 8	1,2,4-Trimethylbenzene	Naphthalene	n-Propyl benzene	Methanol	PCE	TCE	Chloroform	Other VOCs
MW-1	1/16/2001	а	< 5.0	<25	< 5.0	< 5.0	< 5.0	_	< 5.0	_	-	-	-	_	-	-	_	-	-	-	-	-	-
	6/27/2002	а	< 5.0	< 50	< 5.0	< 5.0	< 5.0	-	< 5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11/18/2002	а	-	-	< 2.5	< 2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2/20/2003	d	-	-	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6/11/2003	а	-	-	<2.5	<2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/3/2008	а	<1.0	<4.0	<1.0	<1.0	<1.0	<100	<1.0	-	-	-	-	-	-	-	-	-	<1,000	-	-	-	-
	6/23/2011	а	<2.5	<10	-	-	<2.5	-	<2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/6/2011	а	< 5.0	<20	-	-	< 5.0	-	< 5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/24/2013		<1.0	<4.0	<1.0	<1.0	<1.0	-	<1.0	<4.0	<1.0	1.3	3.6	<1.0	6.4	29	19	3.3	-	<1.0	<1.0	<1.0	<rl< td=""></rl<>
MW-2	1/16/2001	а	<30	<150	<30	<30	<30	-	<30	-	_	-	-	-	_	-	_	_	-	-	-	-	-
	6/27/2002	а	< 5.0	< 5.0	< 5.0	6.1	< 5.0	-	< 5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11/18/2002	а	-	-	<12	<12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2/20/2003	а	-	-	< 5.0	5.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6/11/2003	а	-	-	<25	<25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/3/2008	а	<2.5	<10	< 2.5	<2.5	< 2.5	<250	<2.5	-	-	-	-	-	-	-	-	-	<2,500	-	-	-	-
	6/23/2011	а	<50	<200	-	-	< 50	-	< 50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/6/2011	а	<50	<200	-	-	<50	-	< 50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/24/2013		<0.5	13	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	1.7	2.4	1.1	< 0.5	1.9	4.6	24	0.75	-	< 0.5	5.5	< 0.5	<rl<sup>h</rl<sup>
MW-3	1/16/2001	а	<1.0	< 5.0	<1.0	1.4	<1.0	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6/27/2002		< 0.5	< 5.0	< 0.5	< 0.5	< 0.5	-	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11/18/2002	а	-	-	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2/20/2003		-	-	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6/11/2003		-	-	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/3/2008	а	< 5.0	<20	< 5.0	< 5.0	< 5.0	< 500	< 5.0	-	-	-	-	-	-	-	-	-	<5,000	-	-	-	-
	6/23/2011	а	<12	<50	-	-	<12	-	<12	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/6/2011	а	<17	<67	-	-	<17	-	<17	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8/2/2013	g	<2.5	22	<2.5	<2.5	< 2.5	-	< 2.5	<10	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	-	< 2.5	63	<2.5	<rl< td=""></rl<>
	10/24/2013		<1.2	5.9	<1.2	<1.2	<1.2	-	<1.2	< 5.0	<1.2	<1.2	<1.2	1.3	<1.2	1.4	24	<1.2	-	<1.2	64	<1.2	<rl< td=""></rl<>
		g						-											-				

Table 9 Groundwater Monitoring Analytical Data (VOCs) - Monitoring Wells AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample I.D.	Date	Notes	TAME	t-Butyl alcohol (TBA)	EDB	1,2-DCA	DIPE	Ethanol	ETBE	2-Butanone	od Han n-Butyl benzene V	Mental penzene	8 8020, 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	05 g cis-1,2-Dichloroethene o	8 80 1,2,3-Trichloropropane 8	1,2,4-Trimethylbenzene	Naphthalene	n-Propyl benzene	Methanol	PCE	TCE	Chloroform	Other VOCs
MW-4	4/3/2008		< 0.5	<2.0	< 0.5	< 0.5	< 0.5	<50	< 0.5	-	-	-	-	-	-	-	-	-	< 500	-	-	-	-
	6/23/2011	а	< 0.5	<2.0	-	-	< 0.5	-	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8/8/2013	g	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	5.4	13	< 0.5	<rl< th=""></rl<>
	10/24/2013		< 0.5	<2.0	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	13	18	9.8	<rl< td=""></rl<>
	1/21/2014		< 0.5	<2.0	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	-	12	19	7.1	<rl< th=""></rl<>
MW-5	1/16/2001		<1.0	< 5.0	<1.0	<1.0	<1.0	_	<1.0	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	6/27/2002		< 0.5	< 5.0	<0.5	<0.5	< 0.5	_	<0.5	_	_	_	_	_	_	_	_	_	-	_	_	_	_
	11/18/2002	а	_	_	< 0.5	< 0.5	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
	2/20/2003		_	_	< 0.5	< 0.5	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	6/11/2003	а	-	-	< 0.5	< 0.5	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-
	4/3/2008	а	<10	<40	<10	<10	<10	<1,000	<10	-	-	-	-	-	-	-	-	-	<10,000	-	-	-	-
	6/23/2011	а	< 0.5	<2.0	-	-	< 0.5	-	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8/8/2013	g	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	8.3	16	7.4	<rl< td=""></rl<>
	10/24/2013		< 0.5	<2.0	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	0.59	< 0.5	8.0	1.3	< 0.5	-	6.7	16	< 0.5	<rl< td=""></rl<>
	1/21/2014		<0.5	<2.0	<0.5	<0.5	<0.5	-	<0.5	<2.0	<0.5	<0.5	<0.5	0.80	<0.5	5.6	1.3	<0.5	-	6.4	15	< 0.5	<rl< th=""></rl<>
DPE-1	12/6/2011	а	<50	<200	-	-	<50	-	<50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8/8/2013	g	< 5.0	<20	< 5.0	< 5.0	< 5.0	-	< 5.0	<20	< 5.0	< 5.0	12	< 5.0	< 5.0	140	22	20	-	< 5.0	< 5.0	< 5.0	<rl< td=""></rl<>
	10/24/2013		<0.5	9.5	<0.5	<0.5	<0.5	-	<0.5	<2.0	<0.5	1.9	3.5	< 0.5	<0.5	14	< 0.5	4.2	-	<0.5	<0.5	<0.5	<rl<sup>i</rl<sup>
DPE-2	12/6/2011	а	<100	<400	-	-	<100	-	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8/8/2013	g	<5.0	41	<5.0	< 5.0	<5.0	< 5.0	-	<20	< 5.0	< 5.0	8.9	< 5.0	< 5.0	87	8.7	6.6	-	11	< 5.0	<5.0	<rl< td=""></rl<>
		Well D	ecommi	ssioned P	rior to E	xcavatio	n - Octo	ber 2013															
DPE-3	12/6/2011	а	<17	<67	-	-	<17	-	<17	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Well E	ecommi	ssioned P	rior to E	xcavatio	n - 2012																
DPE-4	8/2/2013	g	< 0.5	13	< 0.5	2.6	< 0.5	-	< 0.5	2.7	0.59	3.7	0.55	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	2.3	< 0.5	<rl< td=""></rl<>
	10/24/2013		< 0.5	16	< 0.5	4.1	< 0.5	-	< 0.5	<2.0	< 0.5	2.1	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	1.7	< 0.5	$< RL^{j}$
DPE-5	5/1/2013 8/2/2013	Well n	ot sampl		o the pre	sence of	f free pro	oduct (Th oduct (Th ber 2013															

Table 9 Groundwater Monitoring Analytical Data (VOCs) - Monitoring Wells AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample I.D.	Date	Notes	TAME	t-Butyl alcohol (TBA)	EDB	1,2-DCA	DIPE	Ethanol	ETBE	2-Butanone	py PA PA Partyl benzene PA	epo po po po po po po po po po po po po p	(3 Sopropylbenzene 8 '0508' S	CO CO CO CO CO CO CO CO CO CO CO CO CO C	8 80 1,2,3-Trichloropropane 8	1,2,4-Trimethylbenzene	Naphthalene	n-Propyl benzene	Methanol	PCE	TCE	Chloroform	Other VOCs
DPE-6	8/2/2013	g	< 0.5	2.3	<0.5	<0.5	<0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	-	1.5	1.6	< 0.5	<rl< td=""></rl<>
	10/24/2013		<0.5	<2.0	<0.5	<0.5	<0.5	-	<0.5	<2.0	<0.5	< 0.5	< 0.5	0.73	< 0.5	< 0.5	< 0.5	< 0.5	-	1.3	2.5	< 0.5	$< RL^k$
DPE-8	10/24/2013		<0.5	<2.0	<0.5	<0.5	<0.5	-	<0.5	<2.0	<0.5	0.9	<0.5	<0.5	3.4	< 0.5	<0.5	<0.5	-	<0.5	0.67	<0.5	<rl< td=""></rl<>
DPE-9	8/2/2013	g	< 0.5	2.6	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	0.62	1.2	< 0.5	4.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	21	< 0.5	<rl< td=""></rl<>
	10/24/2013		< 0.5	<2.0	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	7.0	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	31	< 0.5	<rl< td=""></rl<>
DPE-10	8/2/2013	g	< 0.5	4.6	< 0.5	<0.5	<0.5	_	<0.5	<2.0	<0.5	0.86	<0.5	1.5	1.0	<0.5	<0.5	<0.5	_	< 0.5	26	< 0.5	<rl< td=""></rl<>
	10/24/2013		< 0.5	2.3	< 0.5	< 0.5	< 0.5	-	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	2.5	0.63	< 0.5	< 0.5	< 0.5	-	< 0.5	29	< 0.5	<rl< td=""></rl<>
DPE-11	10/24/2013		<0.5	10	<0.5	<0.5	<0.5	-	<0.5	<2.0	<0.5	5.1	3.6	0.73	<0.5	1.5	<0.5	1.9	-	<0.5	5.6	<0.5	<rl<sup>I</rl<sup>
ESL			NE	12	0.05	0.5	NE	NE	NE	NE	NE	NE	NE	6.0	NE	NE	6.1	NE	NE	5.0	5.0	80	

VOCs= Volatile Organic Compounds

PCE= Tetrachloroethene

 $\mathsf{TCE} \!=\! \mathsf{Trichloroethene}$

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Diisopropyl ether

ETBE = Ethyl tertiary butyl ether

 μ g/L = micrograms per liter (ppb)

<RL = Below the analytical laboratroy reporting limit unless otherwise noted. Reporting limits are below the ESL if applicable.</p>

"-" = Not analyzed or data not available

12 = Values in bold exceed the ESL

NE = No ESL value established

a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.

d = Laboratory note indicates that lighter gasoline range compounds (the most mobile fraction) are significant.

g = Surrogate recovery exceeds the control limits due to dilution / matrix interference / coelution / presence of surrogate compound in the sample

h = 4-Isopropyl toluene detected at 0.89 ug/L and 1,3,5-Trimethylbenzene detected at 1.7 ug/L - no ESLs established.

i = 4-Isopropyl toluene detected at 1.4 ug/L (no ESL). j = 4-Isopropyl toluene detected at 0.60 ug/L (no ESL).

k = 1,1-Dichloroethane detected at 0.77 ug/L (ESL =5.0 ug/L). I = 4-Isopropyl toluene detected at 1.5 ug/L (no ESL).

ESL = Environmental Screening Levels, Table F-1a, Groundwater, Potential Drinking Water, San Francisco Regional Water Quality Control Board, Revised December 2013

Table 10 Soil Vapor Analytical Data AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Oxygen Sample Date ID (µg/m³) (%) $(\mu g/m^3)$ $(\mu g$ $(\mu L/L)$ $(\mu L/L)$ $(\mu L/L)$ $(\mu L/L)$ VP-1 5/17/2012 < 1.800 < 6.5 < 7.7 < 8.8 <27 <62 na <8.5 <8.5 7/12/2012 < 50 na <1,800 < 6.5 <7.7 <8.8 <27 <62 <7.3 <8.5 <11 17,000 <1.0 160,000 11/16/2012 < 50 na <2,700 < 9.7 <11 <13 <40 <93 <11 <13 <13 <13 63 <16 <16 <15 <12 <16 <15 < 9.0 <15 25,000 <1.5 750,000 180,000 500^a 2/27/2013 < 50 <1,800 < 7.7 <8.8 <27 <7.3 <8.5 <8.5 <8.5 <11 <11 <10 <8.3 <11 <10 <6.0 <10 <RL 15,000 na < 6.5 <62 30 <1.0 710,000 180,000 VP-2 5/17/2012 < 50 na <1,800 < 6.5 <7.7 <8.8 <27 <62 <1,800 7/12/2012 < 50 < 7.7 <8.8 <27 230 <8.5 <8.5 <11 13,000 < 1.0 na < 6.5 <7.3 <8.5 - 160,000 230^a 11/16/2012 <27 95 72 23,000 <1.0 610,000 180,000 < 50 <1,800 < 7.7 <8.8 <7.3 <8.5 <8.5 < 8.5 <11 < 10 <11 <10 < 6.0 <10 < 6.5 <11 < 8.3 na 110^b 2/27/2013 <10 <RL < 50 na <2,700 <97 < 11 <13 < 40 < 93 <11 <13 <13 <13 28 <11 <16 < 10 < 8.3 <11 < 10 <6.0 13,000 <1.5 710.000 190.000 5/17/2012 < 50 na <1,800 < 6.5 < 7.7 <8.8 <27 <62 7/12/2012 290 <1,800 < 7.7 <8.8 <27 <8.5 <8.5 <11 24,000 160,000 < 6.5 <62 <7.3 <8.5 1.1 na 11/16/2012 < 50 <1,900 < 6.9 <8.2 < 9.3 <29 <7.7 < 9.0 < 9.0 < 9.0 ND<15 <12 <12 <11 <8.8 <12 <11 < 6.4 <11 260^a 8,500 1.5 630,000 210,000 na <66 2/27/2013 < 50 na <2,700 < 9.7 <11 <13 <40 <93 <13 <13 <13 ND<14 <11 <16 <10 <11 <10 < 6.0 <10 <RL 3,700 1.1 710,000 190,000 SV-1 4/16/2013 na 0.017 <2500 <25 <25 <25 <25 < 25 <25 <25 <RL 3,400 < 2.0 170,000 SV-2 4/16/2013 0.018 <RL 170,000 na <2500 <25 <25 <25 <25 <25 <25 <25 4,600 1.8 SV-3 4/16/2013 < 0.005 <2500 <25 <25 <25 <25 <25 <25 <25 <RL 160 < 2.0 170,000 < 50 <7.7 <27 < 8.5 <8.5 110 <11 <10 <10 <RL 8/21/2013 < 8.8 < 7.3 < 8.5 <11 < 10 < 8.3 <11 <6.0 na < 6.5 <62 0.12 <720 <2.1 <2.1 <2.1 57 < 2.5 < 2.8 < 3.8 3.5 2,300 10/24/2013 na <1.6 < 1.9 < 2.2 <6.6 <31 <1.8 <2.8 < 2.1 < 2.5 2.6^h <1.3 160,000 4/16/2013 <2500 170,000 SV-4 < 0.005 < 25 < 25 <25 <25 <25 <25 <RL <25 4,200 < 2.0 8/21/2013 370 na < 6.5 <7.7 <8.8 <27 < 6.2 <7.3 <8.5 <8.5 <8.5 850 <11 <11 <10 <8.3 17 <10 < 6.0 <10 <RL 10/24/2013 0.032 <720 <1.6 <1.9 <2.2 <6.6 <31 <1.8 < 2.1 < 2.1 <2.1 500 <2.8 < 2.5 < 2.1 8.2 < 3.8 2.1 < 2.5 2.5^h 2,500 <1.2 160,000 11/25/2013 0.051 <720 <1.6 < 1.9 < 2.2 <31 <1.8 <2.1 < 2.1 <2.1 210 <2.8 < 2.5 < 2.1 4.3 < 3.8 <1.5 < 2.5 1,700 150,000 na < 6.6 0.77° SV-5 5/3/2013 <2500 <25 <25 <25 <25 100 <25 <25 12,000 < 2.0 170,000 8/21/2013 < 50 na < 6.5 <7.7 <8.8 <27 <6.2 < 7.3 <8.5 < 8.5 <8.5 280 <11 <11 <10 <8.3 <11 <10 < 6.0 <10 <RL SV-6 <2500 <25 <RL 4/16/2013 na 0.081 <25 <25 <25 <25 <25 <25 260 1.2 18,000 8/21/2013 < 0.005 < 7.7 <8.8 <27 < 7.3 <8.5 < 8.5 <8.5 70 65 <11 <10 <8.3 <11 <10 < 6.0 <10 <RL na < 6.5 < 6.2 10/24/2013 na 0.084 880 <1.6 < 1.9 < 2.2 <6.6 <31 <1.8 <2.1 < 2.1 <2.1 46 29 < 2.5 <2.1 <2.8 <3.8 5.3 < 2.5 6.5^{i,j} 17,000 <1.0 150,000 4/16/2013 <2500 <25 <25 <25 <25 <25 <25 <25 10,000 160,000 0.013 <RL < 2.0 na 8/21/2013 0.012 < 6.5 <7.7 <8.8> <27 < 6.2 <7.3 < 8.5 <8.5 <8.5 <14 <11 <11 <10 <8.3 <11 <10 < 6.0 <10 <RL <1.3 <720 < 3.4 <2.8 < 2.5 < 2.8 <3.8 < 2.5 12,000 10/24/2013 na 0.022 < 1.6 < 19 < 2.2 < 6.6 < 31 < 1.8 < 2.1 < 2.1 < 2.1 < 2.1 16 160,000 8/5/2013 0.038 16 23 <8.8 42 < 6.2 <7.3 <8.5 <8.5 <8.5 <14 <11 <23 <10 23 <11 12 9.5 <10 18,000 160,000 <RL 8/21/2013 <27 < 0.005 <6.5 <7.7 <8.8> <6.2 <7.3 <8.5 < 8.5 <8.5 <14 <11 <11 <10 <8.3 <11 <10 < 6.0 <10 <RL na 10/24/2013 <720 <1.6 <1.9 <2.2 <31 <1.8 < 2.1 < 2.1 < 2.1 5.2 <2.8 < 2.5 < 2.1 < 2.8 <3.8 <1.5 < 2.5 <RL 29,000 < 1.2 130,000 <6.6 0.12 <10 8/5/2013 0.30 <6.5 10 <8.8 <27 < 6.2 <7.3 <8.5 <8.5 <8.5 <14 <11 < 6.2 <10 9.1 <11 < 6.0 <10 <RL 12,000 160,000 na <27 <7.3 <8.5 <8.5 <8.5 <14 <11 <10 <8.3 <11 <10 <10 8/21/2013 na 0.059 < 6.5 <7.7 <8.8 <6.2 <11 < 6.0 <RL 10/24/2013 0.019 < 720 < 2.2 <31 <1.8 < 2.1 < 2.1 <2.1 < 2.5 < 2.1 < 2.8 170,000 < 1.6 < 1.9 <6.6 5.4 <2.8 < 3.8 < 1.5 < 2.5 <RL 7.300 < 1.2 <RL^c 8/5/2013 0.011 27 110 <6.2 <7.3 <8.5 <8.5 <8.5 720 100 < 25 28 43 38 9.4 13 6,300 8/21/2013 <20,000 na 8.9 <7.7 <8.8 <27 <6.2 <7.3 <8.5 <8.5 <8.5 2,100 160 <11 <10 <8.3 <10 <6.0 <10 <RL^c

Table 10 Soil Vapor Analytical Data

AEI Project No. 298931, 1630 Park Street (Parcel B), Alameda, CA

Sample	Date	Isopropyl Alcohol*	Helium**	трн-д & тvн	Benzene	Toluene	Ethyl-benzene	Xylenes	ТВА	MTBE	TAME	DIPE	ETBE	PCE	TCE	Naphthalene (TO-17)	4-Ethyltoluene	4-Methyl-2-Pentanone	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	Tetrahydrofuran	1,3,5-Trimethylbenzene	Other VOCs	CO2	Methane	Nitrogen	Oxygen
ID		(µg/m³)	(%)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µL/L)	(µL/L)	(µL/L)	(µL/L)
SV-11	8/21/2013	na	0.013		7,500	4,300	5,700	17,000	<25	<29	<34	<34	<34	2,100	<44	<44	860	<33	130	1,500	<24	700	<rl<sup>a,f,g</rl<sup>			-	
SV-12	8/21/2013 10/24/2013	na na	0.056 0.072	- <720	11 <1.6	19 <1.9	10 <2.2	47 <6.6	<6.2 <31	<7.3 <1.8	<8.5 <2.1	<8.5 <2.1	<8.5 <2.1	31 40	<11 <2.8	<11 -	<10 <2.5	<8.3 <2.1	<11 <2.8	19 <3.8	18 <1.5	<10 <2.5	<rl<sup>d,e 2.5^{k,h}</rl<sup>	- 29,000	- <1.0	-	- 150,000
SV-13	10/24/13 11/25/13	na na	0.037 1.6	9,000 <720	190 <1.6	220 <1.9	37 <2.2	390 <6.6	<31 <31	<1.8 <1.8	<2.1 <2.1	<2.1 <2.1	<2.1 <2.1	390 420	5.3 3.5	-	30 <2.5	<2.1 <2.1	4.2 <2.8	87 <2.5	<1.5 <1.5	69 <2.5	<rl<sup>L 0.76°</rl<sup>	18,000 41000	2.2	-	150,000 100,000
SV-13 DUP	10/24/13	na	0.0091	9,300	190	200	35	370	<31	<1.8	<2.1	<2.1	<2.1	360	5.3	-	29	<2.1	5.0	79	<1.5	66	<rl<sup>n</rl<sup>	18,000	2.2	-	140,000
SV-14	10/24/13	na	0.013	2,400	30	38	9.9	32	<31	<1.8	<2.1	<2.1	<2.1	79	<2.8	-	9.0	4.8	<2.8	4.9	<1.5	5.5	$< RL^{m}$	3,000	1.5	-	150,000
SV-15	10/24/13	na	0.038	<720	3.8	6.0	2.4	10	<31	<1.8	<2.1	<2.1	<2.1	75	<2.8	-	<2.5	3.1	<2.8	3.2	<1.5	<2.5	2.3 ^k ,2.9 ^h	8,500	<1.0	-	140,000
	ESL	na	NA	2,500,000	420	1,300,000	4,900	440,000		47,000				2,100	3,000	360			22,000,000				na	na	na	na	na

Notes:

 μ g/m3 = micrograms per cubic meter (ppbv)

- * = Leak check compound
- <1.0 = Not detected above the laboratory reporting limit shown
- na = Not applicable
- = Not analyzed
- -- = No value established
- < RL = Below the analytical laboratroy reporting limit unless otherwise noted. Reporting limits are below the ESL if applicable.
- ESL = Environmental Screening Levels, Table E-2, San Francisco Regional Water Quality Control Board
- (Commercial/Industrial, Shallow Soil, Drinking Water Aguifer), Revised December 2013

- ^m = Following VOCs detected: Carbon Disulfide (6.7), Chloroform (3.9), Cyclohexane (93), Hexane (24), and Styrene (3.9).
- n = Following VOCs detected: Acetone (82), Bromomethane (10), Carbon Disulfide (12), Cyclohexane (110), 1,2-Dichloroethane (3.7), Ethyl Acetate (5.8), Heptane (55), Hexane (65), and Methylene chloride (3.6).

Soil Vapor Sample was over-excavated during source removal activities

TPH-g = total petroleum hydrocarbons as gasoline PCE = Tetrachloroethene TCE = Trichloroethene

a = Hexane detected (no ESL established)

b = Ethanol detected (no ESL established)

c = Acetone detected below ESL (1.4 E+08)

d = Styrene detected below ESL (3.9 E+06)

e = 1,3-Butadiene detected (no ESL established)

f = Heptane detected (no ESL established)

h = dichlorodifluoromethane detected (no ESL established)

g = 1,1,2,2-Tetrachloroethane detected below ESL (210 μ g/m³)

i= Ethyl acetate (no ESL established)

k= carbon disulfide (no ESL established)

o= 1,2-Dibromo-3-chloropropane (no ESL established)

j= 2-Hexanone (no ESL established

L = Following VOCs detected: Acetone (100), Bromomethane (9.5), Carbon Disulfide (14), Cyclohexane (110), 1,2-Dichloroethane (4.0), Ethyl Acetate (4.2), Heptane (57), Hexane (69), and Methylene chloride (3.5).

TBA = tert-Butyl-alchohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

MTBE = Methyl-tert-butyl ether

TAME = Tert-amyl methyl ether

TVH = Total volatile hydrocarbons -aliphatics

** = Leak check compound; <5% of Tracer Concentration is Acceptable; or 1% assuming a 20% atmosphere was maintained.

Table 11 Groundwater Elevation DataAEI Project No. 298931, 1620-1640 Park Street, Alameda, CA

Well ID (Screen Interval)	Date Collected	Well Elevation	Depth to Water	Groundwater Elevation
+		(ft amsl*)	(ft)	(ft amsl*)
MW-1	Jul-89	104.76	8.93	95.83
(5 - 20 feet bgs)	Apr-91	104.70	7.59	97.17
(5 Zo reet bys)	Jul-92		8.72	96.04
	Aug-92		9.09	95.67
	Sep-92		9.25	95.51
	Oct-92		9.34	95.42
	Nov-92		9.21	95.55
	Dec-92		9.26	95.50
	Jan-93		7.81	96.95
	Feb-93		7.32	97.44
	Mar-93		7.20	97.56
	Apr-93		7.20	97.45
	May-93		8.29	96.47
	Jul-93		8.30	96.46
	Oct-93		9.38	95.38
	Jan-94		8.80	95.96
	Apr-94		8.15	96.61
	Jul-94		8.70	96.06
	Oct-94		9.37	95.39
	Jan-94		7.18	97.58
	Apr-95		6.76	98.00
	Jan-97		7.03	97.73
	Nov-98		8.10	96.66
	Jan-01		7.70	97.06
	Jun-02		7.30	97.46
	Nov-02		8.14	96.62
	Feb-03		6.87	97.89
	Jun-03		7.05	97.71
	Apr-08	25.42	7.13	18.29
	Jun-11	25.42	7.54	17.88
	Dec-11	25.37	8.02	17.35
	Jan-12	25.37	8.08	17.29
	May-12	25.37	6.87	18.50
	Jul-12	25.37	7.34	18.03
	Nov-12	25.37	8.23	17.14
	Feb-13	25.37	6.55	18.82
	May-13	25.37	7.03	18.34
	Oct-13	25.37	9.10	16.27
MW-2	Jul-89	104.86	9.24	95.62
(5 - 20 feet bgs)	Apr-91		8.01	96.85
(5 20 1001 bgs)	Jul-92		9.03	95.83
	Aug-92		9.34	95.52
	Sep-92		9.46	95.40
	Oct-92		9.52	95.34
	Nov-92		9.42	95.44
	Dec-92		9.47	95.39
	Jan-93		8.25	96.61
	Feb-93		7.85	97.01
	Mar-93		7.77	
	Mar-93 Apr-93		7.77	97.09 97.00
			7.86 8.20	
	May-93		8.20 8.72	96.66 96.14
	Jul-93			
	Oct-93		9.64	95.22
	Jan-94		9.12	95.74
	Apr-94		8.56	96.30
	Jul-94		9.02	95.84
	Oct-94		9.59	95.27
	Jan-94		7.71	97.15
	Apr-95		7.40	97.46
	Jan-97		7.55	97.31
	Nov-98		8.49	96.37
	Jan-01		8.08	96.78
	Jun-02		7.77	97.09
	Nov-02		8.50	96.36
	Feb-03		7.38	97.48
	Jun-03		7.57	97.29
	Apr-08	25.52	7.67	17.85
	Jun-11	25.52	7.35	18.17
	Dec-11	25.48	8.41	17.07
	Jan-12	25.48	8.43	17.05
	May-12	25.48	7.41	18.07
	Jul-12	25.48	7.83	17.65
			8,51	16.97
	Nov-12	25.48	8.51 7.17	16.97 18.31
	Nov-12 Feb-13	25.48 25.48	7.17	18.31
	Nov-12	25.48		

Table 11 Groundwater Elevation DataAEI Project No. 298931, 1620-1640 Park Street, Alameda, CA

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation (ft amsl*)	Water (ft)	Elevation (ft ams/*)
MW-3	Jul-89	104.52	9.00	95.52
(5 - 20 feet bgs)	Apr-91 Jul-92		8.06 8.82	96.46 95.70
	Jul-92 Aug-92		9.05	95.70 95.47
	Sep-92		9.09	95.43
	Oct-92		9.15	95.37
	Nov-92		9.05	95.47
	Dec-92		9.12	95.40
	Jan-93		8.18	96.34
	Feb-93		7.98	96.54
	Mar-93		7.94	96.58
	Apr-93		8.02	96.50
	May-93 Jul-93		7.69 8.65	96.83 95.87
	Oct-93		9.32	NC
	Jan-94		8.93	NC
	Apr-94		8.52	96.00
	Jul-94		8.86	95.66
	Oct-94		9.25	95.27
	Jan-94		7.85	96.67
	Apr-95		7.64	96.88
	Jan-97		7.75	96.77
	Nov-98		8.38	96.14
	Jan-01		8.00	96.52
	Jun-02		7.81	96.71
	Nov-02		8.37	96.15 97.04
	Feb-03 Jun-03		7.48 7.67	97.04 96.85
	Apr-08	25.17	7.67	17.43
	Jun-11	25.17	7.50	17.67
	Dec-11	25.13	8.25	16.88
	Jan-12	25.13	8.25	16.88
	May-12	25.13	7.64	17.49
	Jul-12	25.13	7.97	17.16
	Nov-12	25.13	8.40	16.73
	Feb-13	25.13	7.49	17.64
	May-13	25.13	8.07	17.06
	Aug-13 Oct-13	25.13 25.13	8.68 9.25	16.45 15.88
	OCI-13	25.15	7.23	15.00
MW-4	Apr-94	104.86	9.29	95.57
(8 - 23 feet bgs)	Jul-94		9.55	95.31
	Oct-94		9.83	95.03
	Jan-94		8.88	95.98
	Apr-95		8.80	96.06
	Jan-97		-	-
	Nov-98 Jan-01		-	-
	Jun-02		-	-
	Nov-02		_	-
	Feb-03			-
	Jun-03		-	-
	Apr-08	25.53	8.73	16.80
	Jun-11	25.53	8.52	17.01
	Dec-11	25.58	-	-
	Jan-12	25.58	-	-
	May-12	25.58	8.96	16.62
	Jul-12 Nov-12	25.58	9.26 10.04	16.32 15.54
	Feb-13	25.58 25.58	9.15	15.54
	May-13	25.58	9.37	16.21
	Aug-13	25.58	9.71	15.87
	Oct-13	25.58	10.19	15.39
A 4) A 4 -	Apr-94	103.62	8.27	95.35
MW-5			8.50	95.12
MW-5 (7 - 22 feet bgs)	Jul-94			
	Oct-94		8.92	94.70
	Oct-94 Jan-95		8.92 7.61	96.01
	Oct-94 Jan-95 Apr-95		8.92 7.61 8.48	96.01 95.14
	Oct-94 Jan-95 Apr-95 Jan-97		8.92 7.61 8.48 6.79	96.01 95.14 96.83
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98		8.92 7.61 8.48 6.79 8.12	96.01 95.14 96.83 95.50
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01		8.92 7.61 8.48 6.79 8.12 7.67	96.01 95.14 96.83 95.50 95.95
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98		8.92 7.61 8.48 6.79 8.12	96.01 95.14 96.83 95.50
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02		8.92 7.61 8.48 6.79 8.12 7.67 7.61	96.01 95.14 96.83 95.50 95.95 96.01
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02		8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01	96.01 95.14 96.83 95.50 95.95 96.01 95.61
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03	24.31	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03	24.31 24.31	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11	24.31 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12	24.31 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95 16.88
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12 May-12	24.31 24.32 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95 16.88
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12 May-12 Jul-12	24.31 24.32 24.32 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43 -	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95 16.88
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12 May-12 Jul-12 Nov-12	24.31 24.32 24.32 24.32 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43 - - - 7.46 7.76 8.47	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.19 16.95 16.88
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12 May-12 Jul-12 Nov-12 Feb-13	24.31 24.32 24.32 24.32 24.32 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43 - - 7.46 7.76 8.47 7.59	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95 16.88
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12 May-12 Jul-12 Nov-12 Feb-13 May-13	24.31 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43 - - - 7.46 7.76 8.47 7.59 7.82	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95 16.88 - - 16.86 16.56 15.85 16.73 16.50
	Oct-94 Jan-95 Apr-95 Jan-97 Nov-98 Jan-01 Jun-02 Nov-02 Feb-03 Jun-03 Apr-08 Jun-11 Dec-11 Jan-12 May-12 Jul-12 Nov-12 Feb-13	24.31 24.32 24.32 24.32 24.32 24.32 24.32	8.92 7.61 8.48 6.79 8.12 7.67 7.61 8.01 7.22 7.43 7.36 7.43 - - 7.46 7.76 8.47 7.59	96.01 95.14 96.83 95.50 95.95 96.01 95.61 96.40 96.19 16.95 16.88

Table 11 **Groundwater Elevation Data**AEI Project No. 298931, 1620-1640 Park Street, Alameda, CA

Well ID (Screen Interval)	Date Collected	Well Elevation (ft ams/*)	Depth to Water (ft)	Groundwater Elevation (ft amsl*)
		,		
DPE-1	Dec-11	25.88	8.81	17.07
(7 - 15 feet bgs)	Jan-12	25.88	8.78	17.10
	May-12	25.88	7.72	18.16
	Jul-12 Nov-12	25.88 25.88	8.13 8.84	17.75 17.04
	Feb-13	25.88	7.36	18.52
	May-13	25.88	7.88	18.00
	Aug-13	25.88	8.83	17.05
	Oct-13	25.88	9.70	16.18
DPE-2	Dec-11	26.22	9.29	16.93
(7 - 15 feet bgs)	Jan-12	26.22	7.97	18.25
	May-12 Jul-12	26.22 26.22	7.89 8.26	18.33 17.96
	Nov-12	26.22	9.02	17.20
	Feb-13	26.22	7.50	18.72
	May-13	26.22	7.97	18.25
	Aug-13	26.22	8.99	17.23
DPE-3	Dec-11	25.27	7.92	17.35
(7 - 14 feet bgs)	Jan-12	25.27	8.98	16.29
	May-12	25.27	6.75	18.52
	Jul-12	25.27	7.20	18.07
	Nov-12	Abandoned	-	-
DPE-4	Jan-12	26.06	9.11	16.95
(8-17 feet bgs)	May-12	26.06	8.59	17.47
	Jul-12	26.06	8.84	17.22
	Nov-12 Feb-13	26.06 26.06	9.23 8.37	16.83 17.69
	May-13	26.06	8.37	17.69
	Aug-13	26.06	9.49	16.57
	Oct-13	26.06	10.01	16.05
DPE-5	Jan-12	26.25	_	_
(8-18 feet bgs)	Nov-12	26.25	9.94	16.31
(0 10 100t bgs)	Feb-13	26.25	7.72	18.53
	May-13	26.25	8.19	18.06
	Aug-13	26.25	8.99	17.26
DPE-6	Jan-12	26.13	8.58	17.55
(8-18 feet bgs)	May-12	26.13	7.43	18.70
	Jul-12	26.13	7.83	18.30
	Nov-12	26.13	8.71	17.42
	Feb-13	26.13	7.01	19.12
	May-13	26.13	7.49	18.64
	Aug-13 Oct-13	26.13 26.13	8.61 9.66	17.52 16.47
DDE 0				
DPE-8 (8-18 feet bgs)	Jan-12 Nov-12	25.36 25.36	- 8.31	- 17.05
(0-10 feet bgs)	Feb-13	25.36	6.69	18.67
	May-13	25.36	7.25	18.11
	Oct-13	25.36	9.18	16.18
DPE-9	Jan-12	25.09	8.12	16.97
(8-18 feet bgs)	Jul-12	25.09	7.81	17.28
,00, 290)	Nov-12	25.09	8.38	16.71
	Feb-13	25.09	7.27	17.82
	May-13	25.09	7.75	17.34
	Aug-13	25.09	8.54	16.55
	Oct-13	25.09	9.19	15.90
DPE-10	Jan-12	25.14	-	-
(8-17 feet bgs)	May-12	25.14	7.73	17.41
	Jul-12	25.14	8.09	17.05
	Nov-12	25.14	8.51	16.63
	Feb-13 Mav-13	25.14 25.14	7.64 8.21	17.50 16.93
	May-13 Aug-13	25.14 25.14	8.21	16.35
	Oct-13	25.14	9.34	15.80
DPE-11	Jan-12	25.57	_	_
(8-18 feet bgs)	May-12	25.57	7.90	17.67
	Jul-12	25.57	-	-
	Nov-12	25.57	8.74	16.83
	Feb-13	25.57	7.68	17.89
	May-13 Oct-13	25.57 25.57	7.24 9.58	18.33 15.99
Averes		•		
Average depth to water	Dec-11 Jan-12		8.45 8.48	17.11 17.15
GW elev	May-12		7.70	17.82
	Jul-12		8.03	17.45
	Nov-12		8.81	16.73
	Feb-13		7.51	18.03
L	May-13		7.92	17.62

ft amsl \star = feet above mean sea level. Note: Data before 2008 are based on a fictitous 100 ft datum. All water level depths are measured from the top of casing "-" = not measured bgs = below ground surface

APPENDIX A Soil Boring Logs

Owner	Good Chevrolet , Sketch Map								
Location 1630 Park St. Alameda 20-8208									
	20 ft. Diameter 7.5 inches								
ter Level, Initial .	14 ft, 24-hrs.								
Screen: Dia .020 Length 15 feet Slot Size .020									
Casing: Dia 2 inch Length 5 feet Type PVC									
Orilling Company Kvilhaug Orilling Method Hollowstem Auger Notes									
Driller C. Pruner Log by N. Farrar									
Sample Number Graphic Log	Description/Soil Classification								
5 Q 4 C SM	3 inches Asphalt 8 inches base course Black silty sand (loose, dry, no product odor) (grades light brown, medium dense) (strong product odor)								
049	Encountered water 1/15/87 (grades no product odor) Drilled to 20 feet, installed well								
	Alameda esta Depth of Hole ter Level Initial agth 5 fee or Drilling Log by Graphic Ion Drilling Log by 15 level								

Project Good Chevrolet Owner Good Chevrolet

Location 1630 Park St. Alameda 20-8208

Date Drilled 1/15/87 Total Depth of Hole 20 ft. Diameter 7.5 inches

Surface Elevation Water Level Initial 14 ft. 24-hrs.

Screen: Dia 020 Length 15 feet Slot Size 020

Casing: Dia 2 inch Length 5 feet Type PVC

Drilling Company Kvilhaug Drilling Method Hollowstem Auger

Driller C. Pruner Longth N. Farrar

Driller	<u> </u>	uner		Log by	N. Farrar
Depth (Feet)	Weil	Notes	Sample Number	Graphic Log	Description/Soil Classification
- 0 2 1 0 1 2 1 4 1 6 1 8 1 8 2 0 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 4 2 4 2 2 2 4 - 2 4			A 66 2 2 3 2 3 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4		3 inches Asphalt 8 inches base course Brown silty sand (medium dense, dry, no no product odor) (grades tan) (grades slight product odor) (grades dense) (strong product odor) (very slight product odor) ———————————————————————————————————

Project Good Chevrolet Owner Good Chevrolet

Location 1630 Park St. Alamedaec: Number 20-8208

Date Drilled 1/15/87 Total Depth of Hole 20 ft. Diameter 7.5 inches

Surface Elevation Water Level, Initial 14 ft. 24-hrs

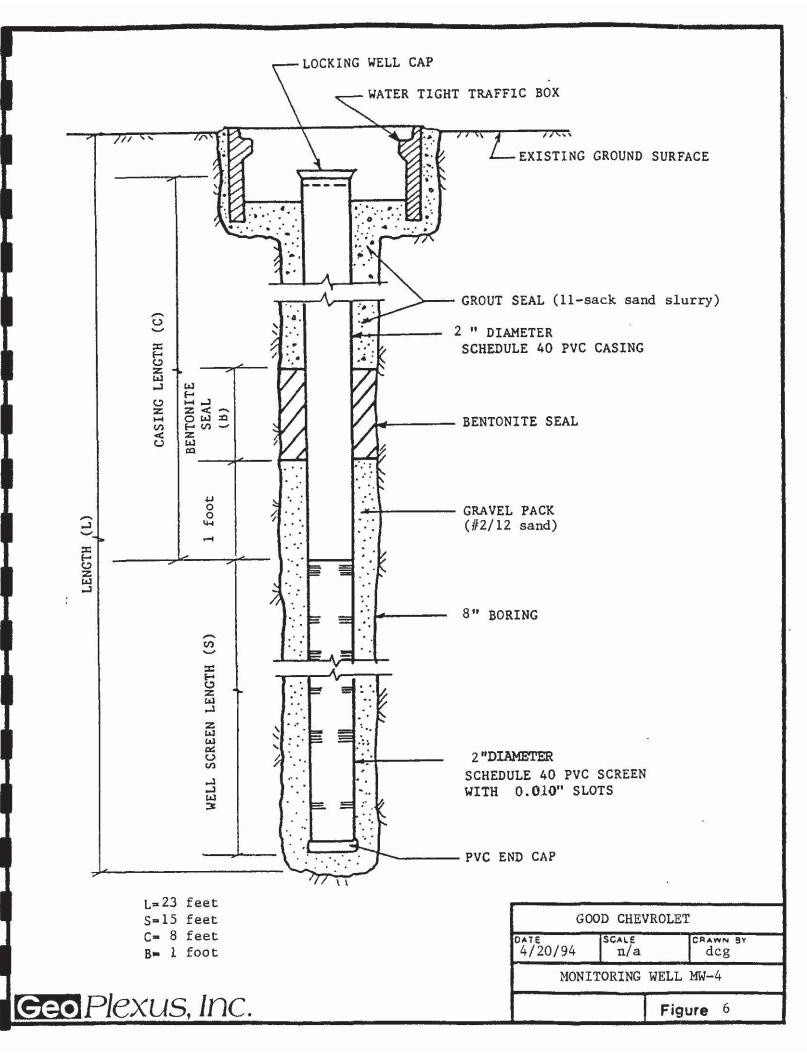
Screen: Dia _020 Length 15 feet Slot Size 020

Casing: Dia. 2 inch Length 5 feet Type PVC

Drilling Company Kyilhaug Drilling Method Hollowstem Auger

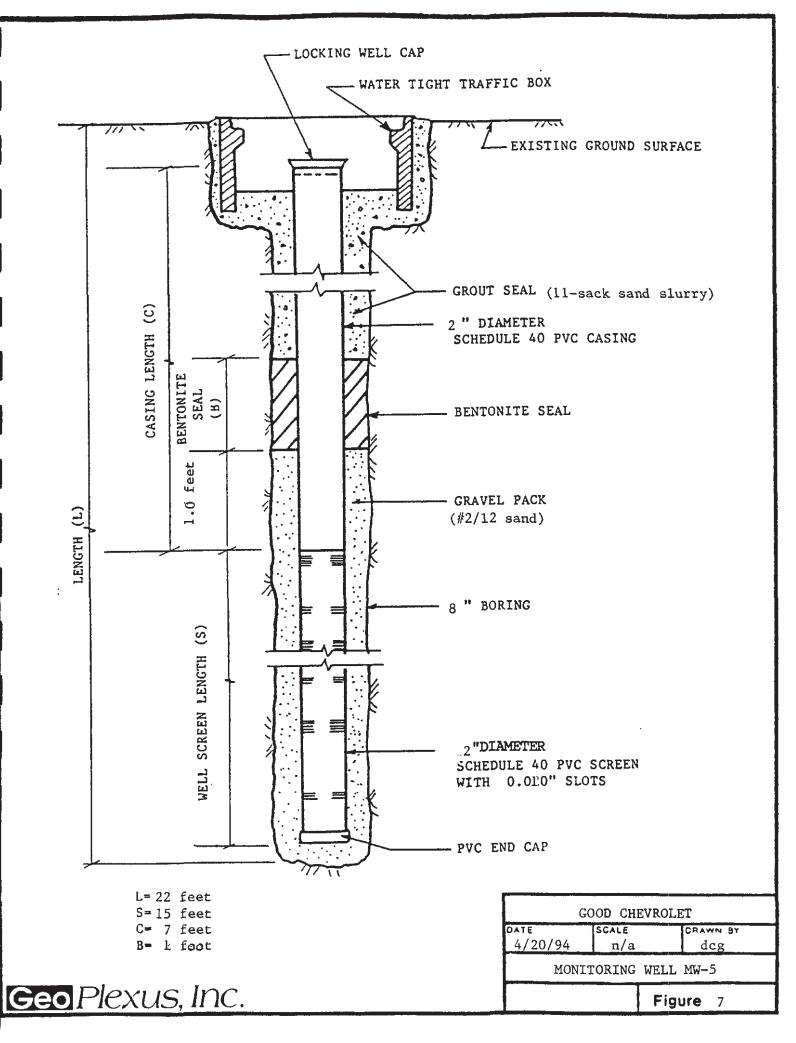
Notes

Driller C. Pruner Logby N. Farrar Well Construction Graphic Log Notes Description/Soil Classification 3 inches Asphalt 8 inches base course Tan silty sand (loose, dry, no product odor) (grades medium dense) Tan clayey sand (medium dense, dry, no product odor) (grades less clay, strong product B 10 r 10 15 24 Tan silty sand (dense, dry, slight product odor) -1 2-14 Encountered water 1/15/87 C 20 E 16 (grades no product odor) 1 8 -2 0-Drilled to 20 feet, installed well -2 2


02100144

24

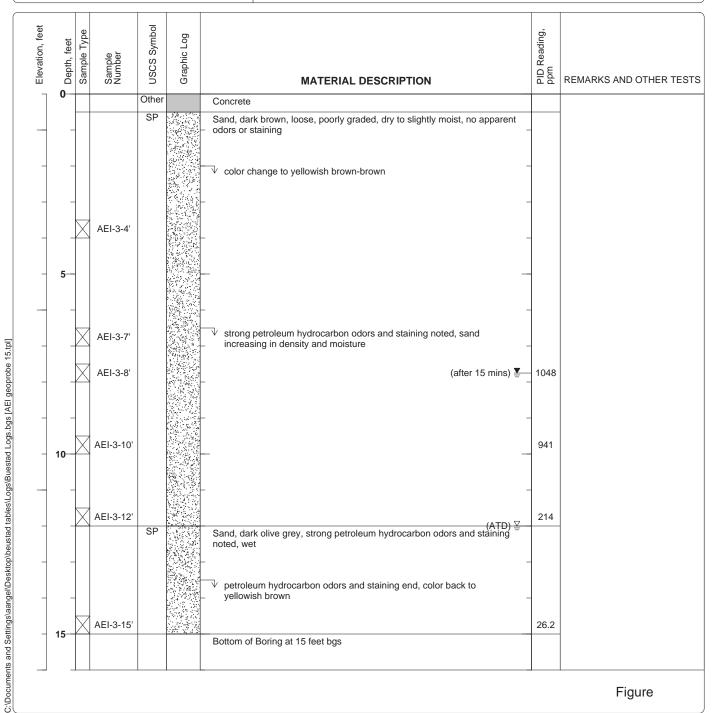
Page 1 of 1


SUBSURFACE DATA LOG

So # 10 10 10 10 10 10 10	WOSTY	1000 CP (C)	ON 11 10 10 10 10 10 10 10 10 10 10 10 10	Mide (udd)	SAMPLE TYPE	*	9/	LOG No. MW-4 DATE: 4/20/94 LOCATION: Good Chevrolet - Park Street EQUIPMENT: Exploration Geoservices PROJECT No
			:		_			A/C Pavement and Aggregate Base
		g	0.5	S 1	5 —		SM	SAND, fine to medium grained with some gravel, gray, moist, medium dense
					-	1		
		37	3.8	S 2	10 —		SM	SAND, fine to medium grained, gray, dense, wet
			<u> </u>		_		SM	SAND, fine to medium grained, red, wet, dense
		39	Q.8	S3	20		Sri	
					25 —			Boring terminated at 23.0 feet. Monitoring well constructed (2-inch). Ground water encountered at 11 feet.

SUBSURFACE DATA LOG

	002		
ORY CENSITY MOISTURE Non Sque (10 or y wy) (10 or y wy)	ONY RESPONSE	20 11 12 12 12 12 12 12 12 12 12 12 12 12	LOG No. MW-5 DATE: 4/20/94 LOCATION: Good Chevrolet - Park Street EQUIPMENT: Exploration Geoservices PROJECT No.
	,		A/C Pavement and Aggregate Base
		SM	SILTY SAND, redish-brown, moist, medium dense
12	0.8 S1	5 —	
			- grey staining of sand noted
29	25.8 \$2	10 —	
		_	- redish-brown
39	15.5 \$3	15	
		20 —	
		-	Boring terminated at 22 feet
		25	Monitoring well constructed (2-inch). Ground water encountered at 12 feet
		25 —	

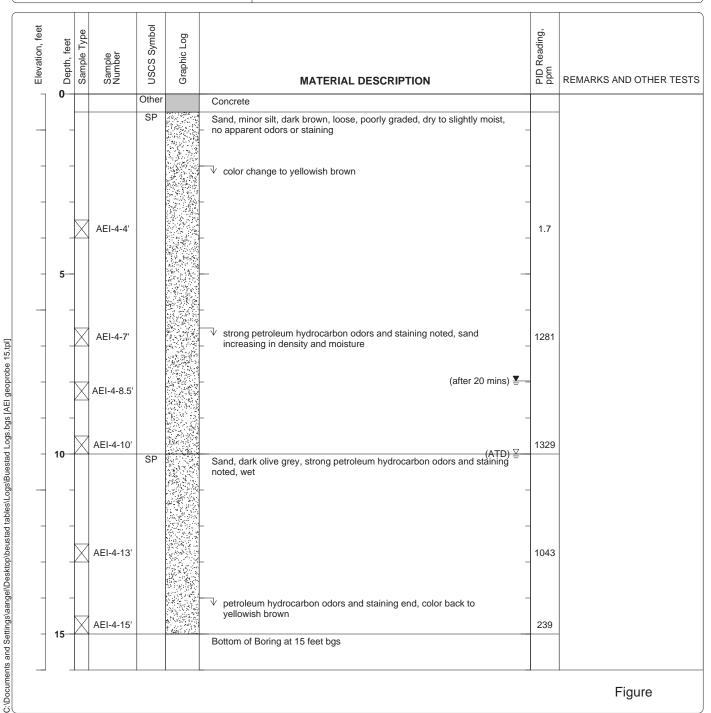


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-3

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 12 feet ATD, 7.75 feet after and Date Measured 15 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

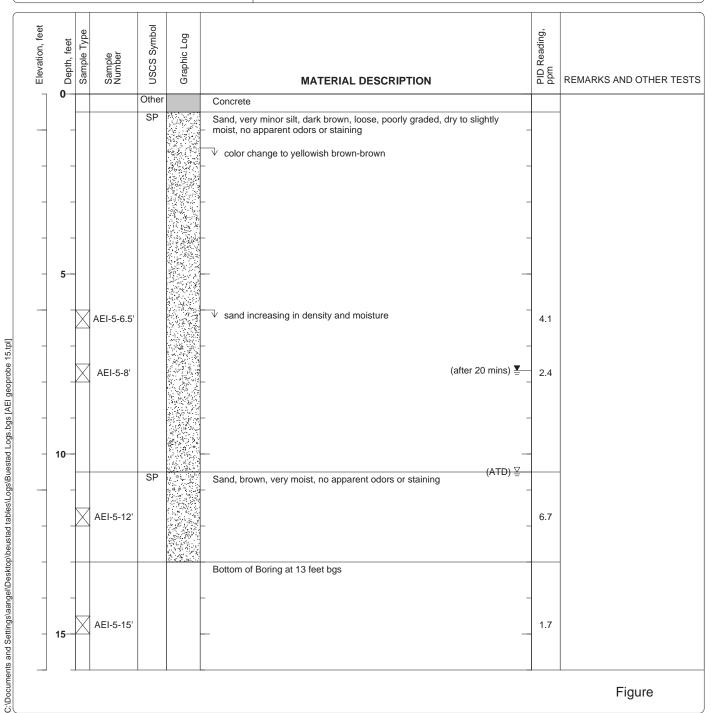


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-4

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10 feet ATD, 7.97 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

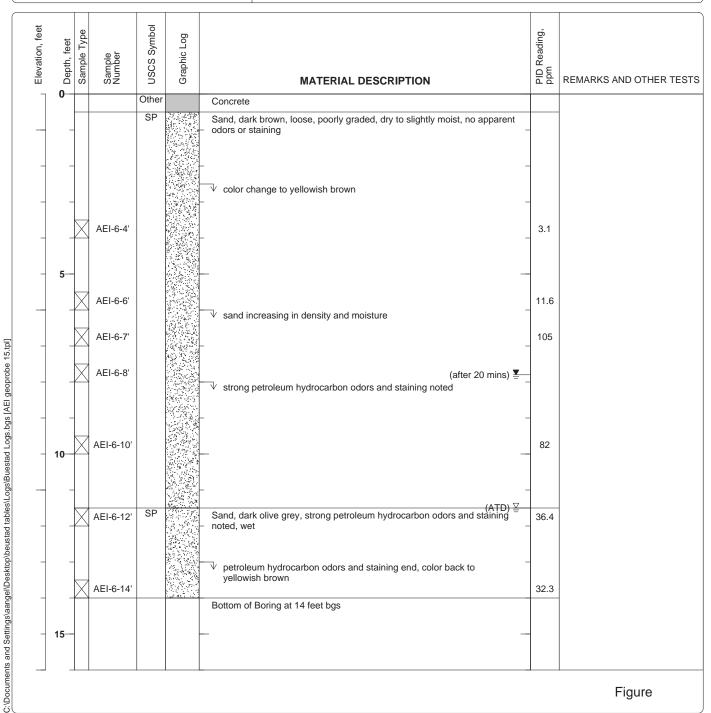


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-5

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
	Drill Bit Size/Type 3 inch	Total Depth of Borehole 13 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10.5 feet ATD, 7.68 feet and Date Measured after 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Hydraulic Lift	

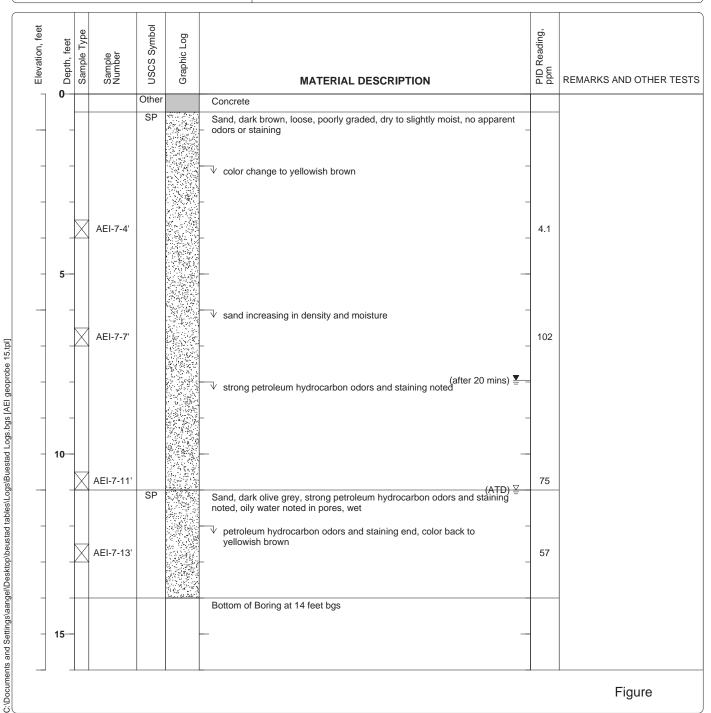


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-6

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11.5 feet ATD, 7.8 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

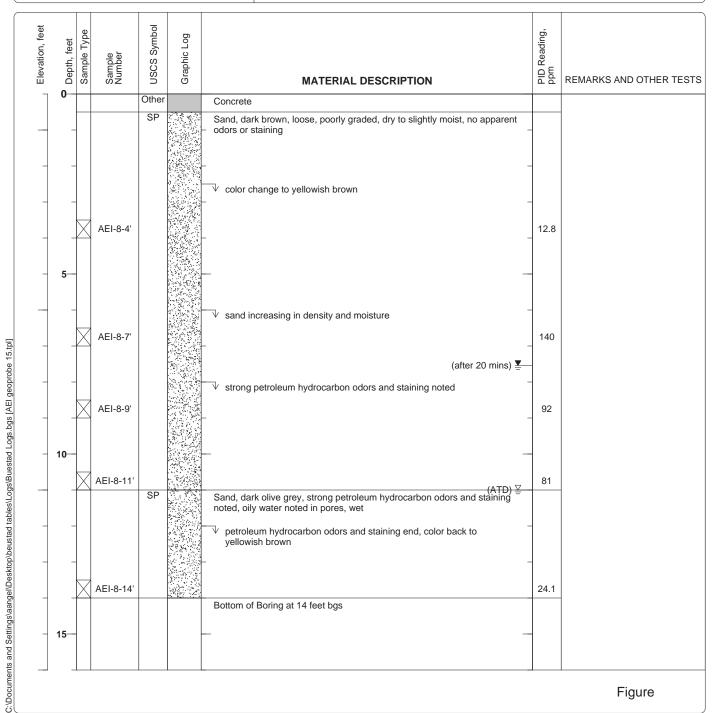


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-7

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11 feet ATD, 7.95 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

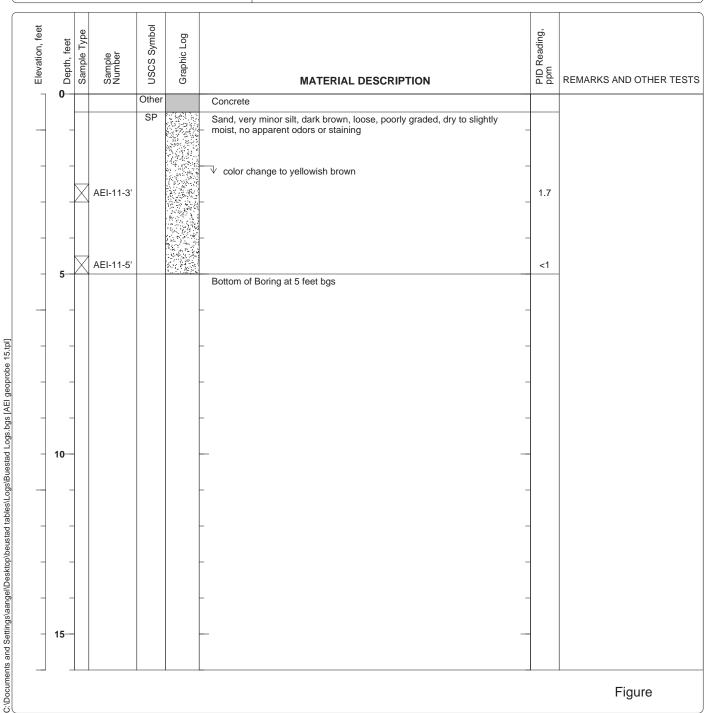


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-8

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11 feet ATD, 7.54 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

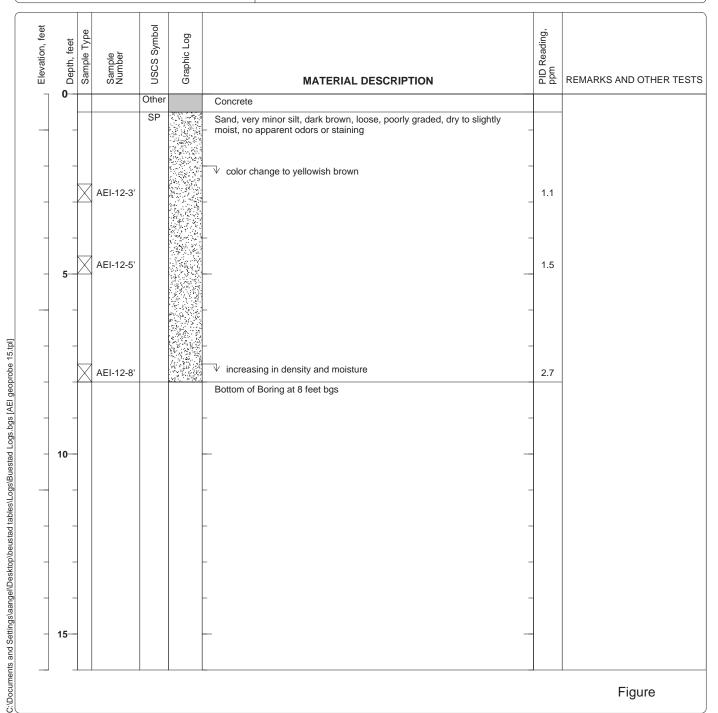


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-11

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 5 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Drain	

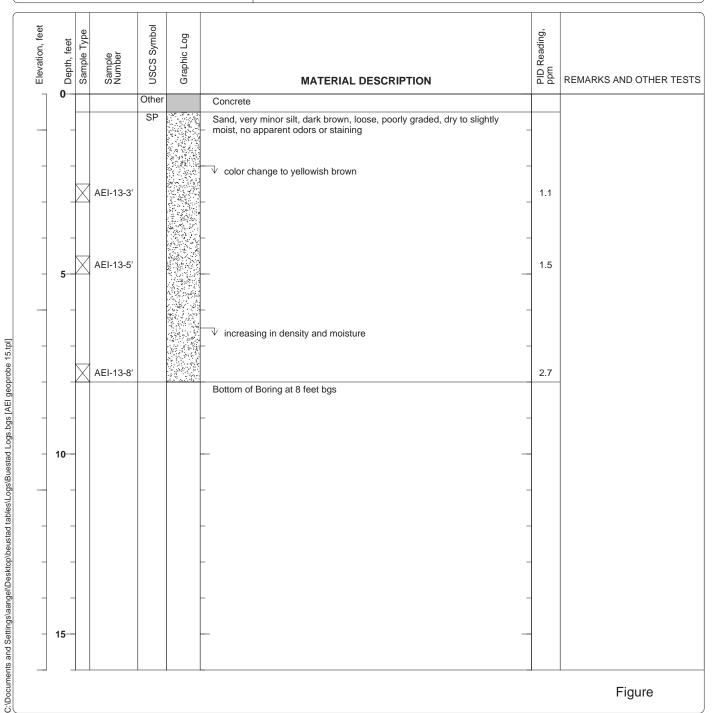


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-12

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 8 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Drain	

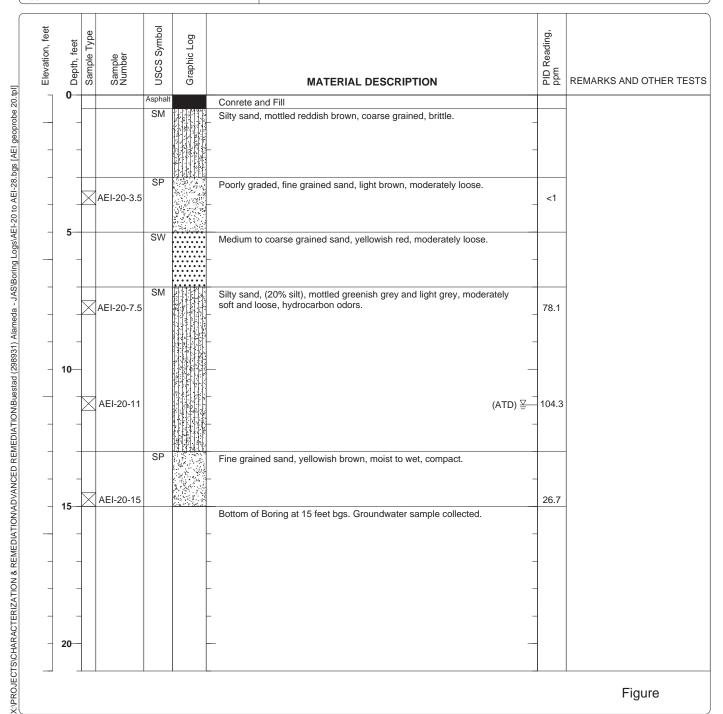


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-13

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 8 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Drain	



Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-20

Date(s) January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 11.3 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, (Location 1630 Park Street, Alameda, California	

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-21

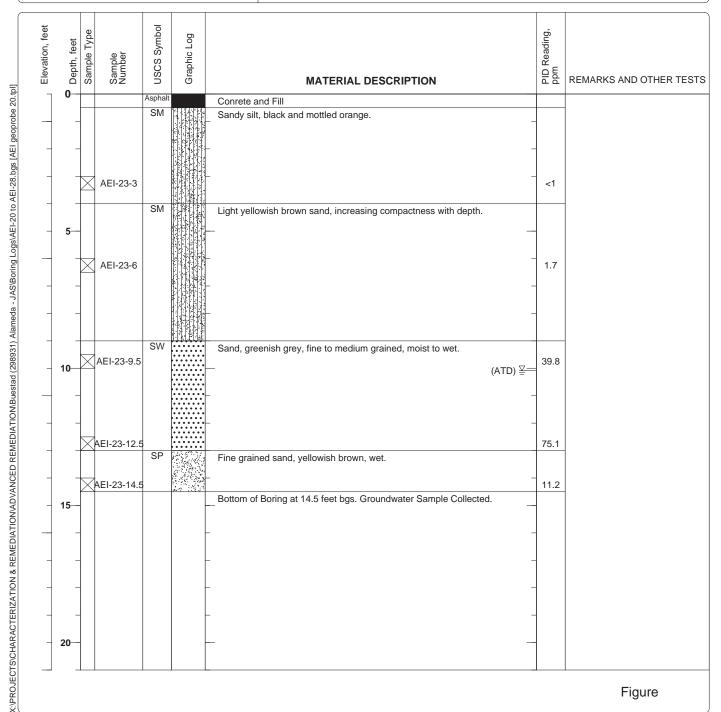
Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation
Groundwater Level and Date Measured 10.7 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, California	

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-22

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.9 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

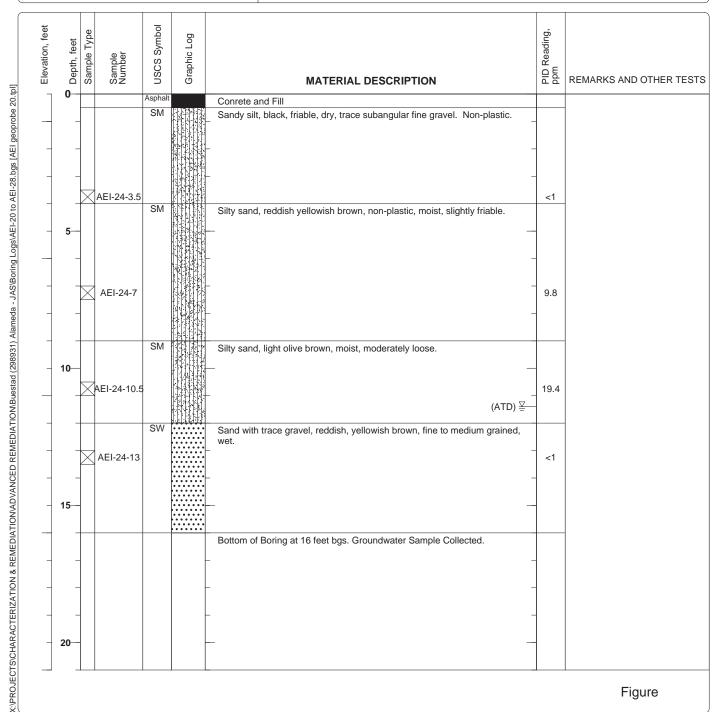

Depth, feet Sample Type	Sample Number	USCS Symbol	Graphic Cog MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0	77_	Asphalt	Conrete and Fill		
-		SM	Silty sand, dark brown and mottled reddish brown, hard, slightly friable.	-	
	AEI-22-4	SM	Silty sand, dark yellowish brown, fine to medium grained, moist, loose, friable.	_ <1	
5-					
<u> </u>	AEI-22-7			- <1	
		SM	Silty sand, yellowish red, fine grained sand, moderately loose.	-	-
10—	AEI-22-9	SM	Silty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet.	9.4	
	AEI-22-11		(ATD)	13.8	
15	AEI-22-14	SM	Silty sand, light yellowish brown, non-plastic.	5.4	
15			Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	-	
20-			-		
					Figure

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-23

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14.5 feet bgs
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation
Groundwater Level and Date Measured 10.09 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, California	

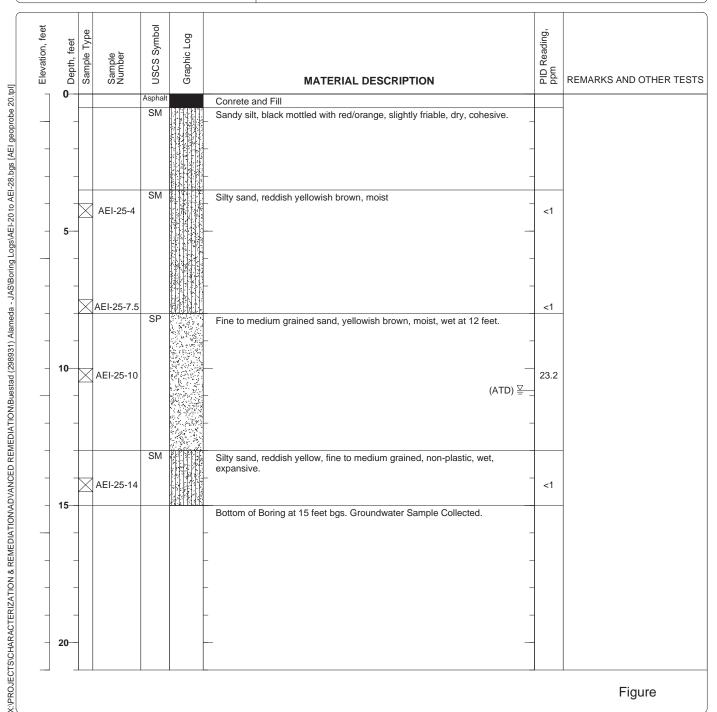


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-24

Date(s) Dateled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation
Groundwater Level and Date Measured 11.4 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, California	

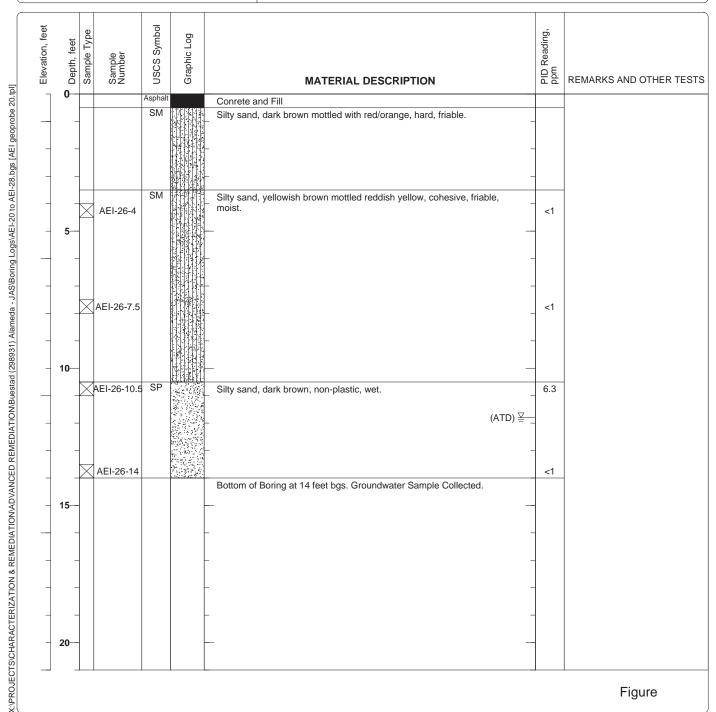


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-25

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.8 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

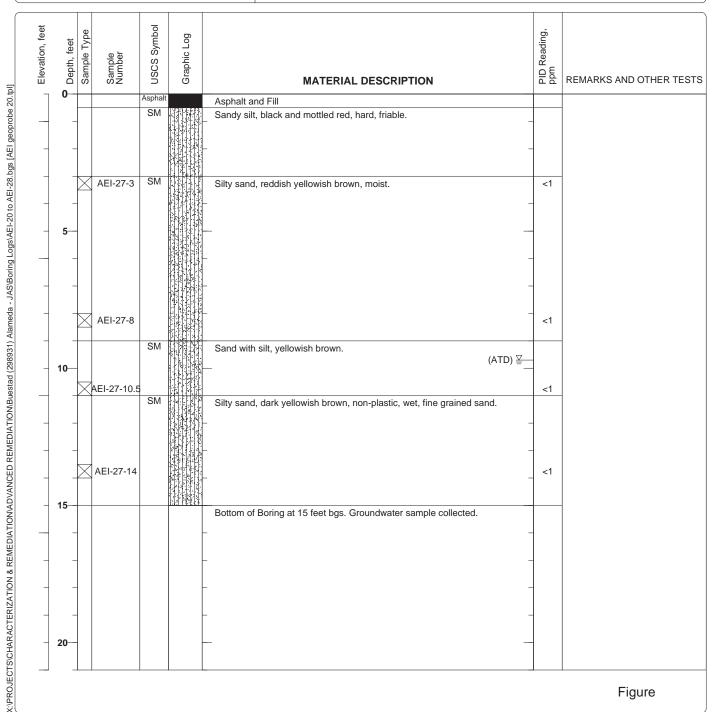


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-26

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 11.8 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

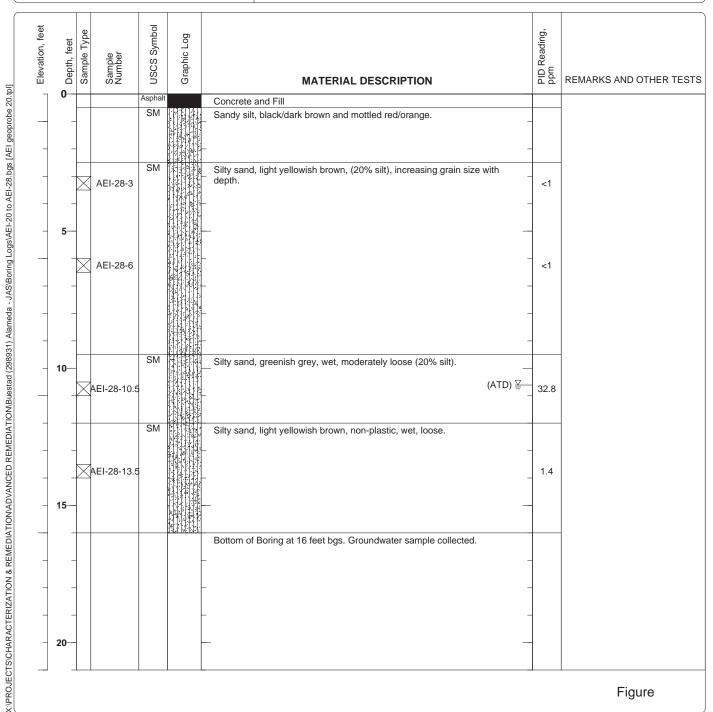


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-27

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 9.7 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

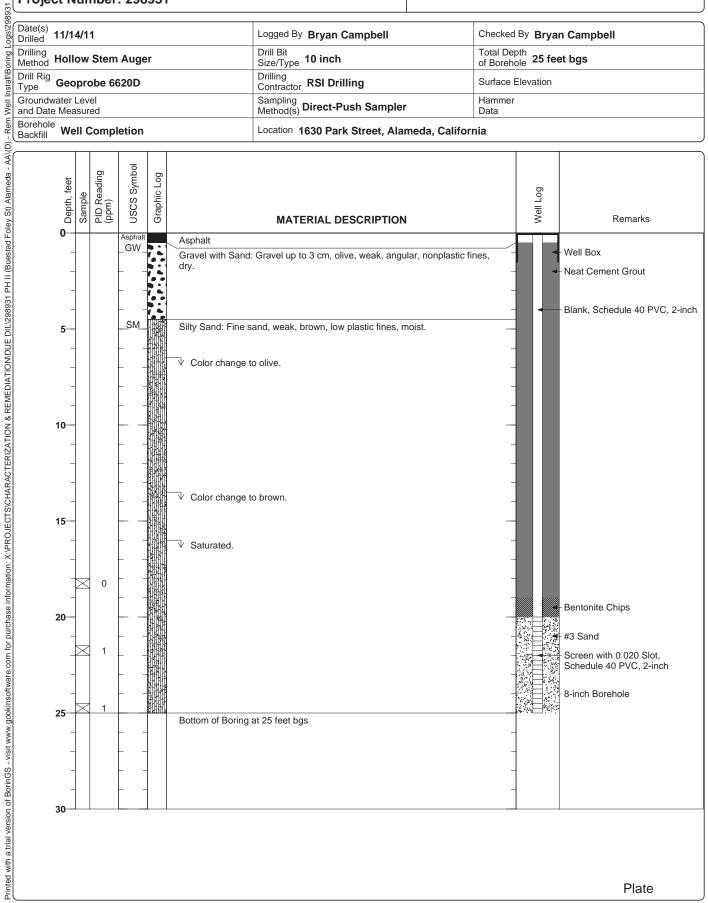


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-28

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.61 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

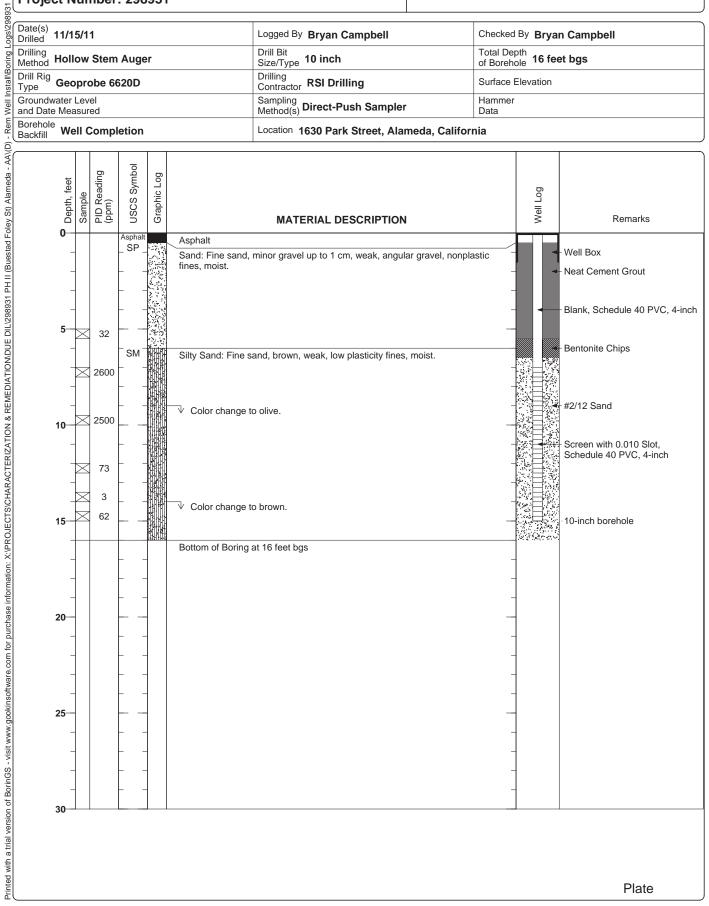


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AS-1

Date(s) 11/14/11	Logged By Bryan Campbell	Checked By Bryan Campbell
Daillia a	Drill Bit Size/Type 10 inch	Total Depth of Borehole 25 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

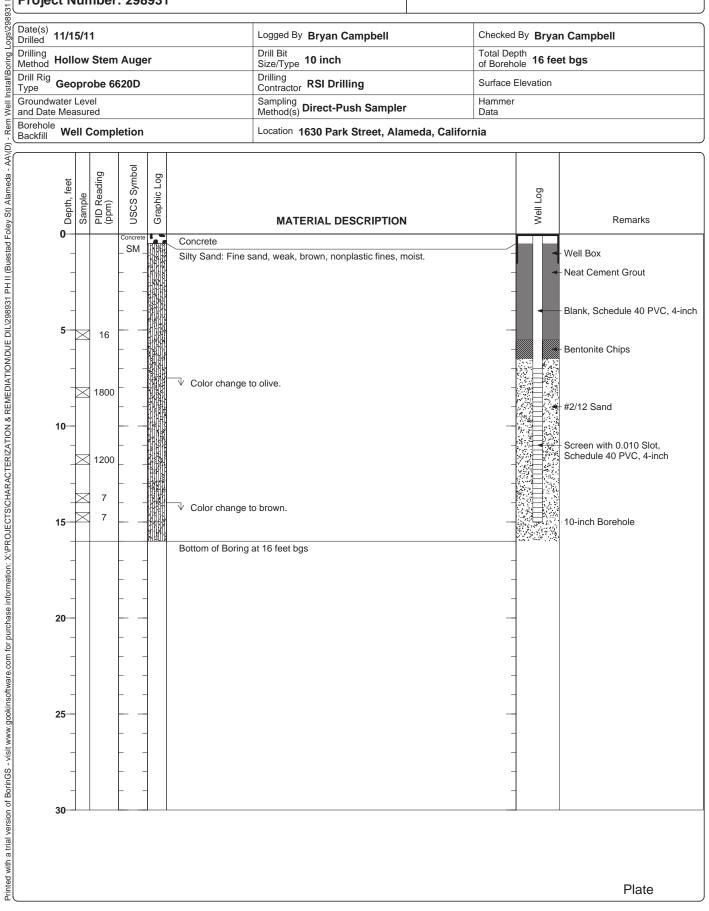


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-1

š		
Date(s) 11/15/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
T Daillia a	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

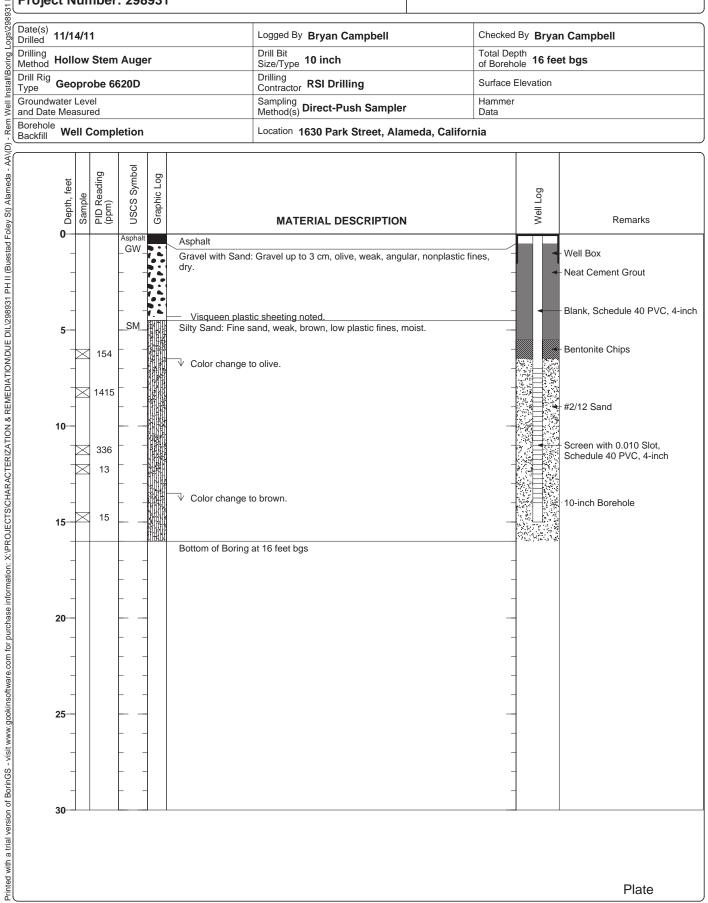


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-2

Date(s) 11/15/11	Logged By Bryan Campbell	Checked By Bryan Campbell
D 300	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

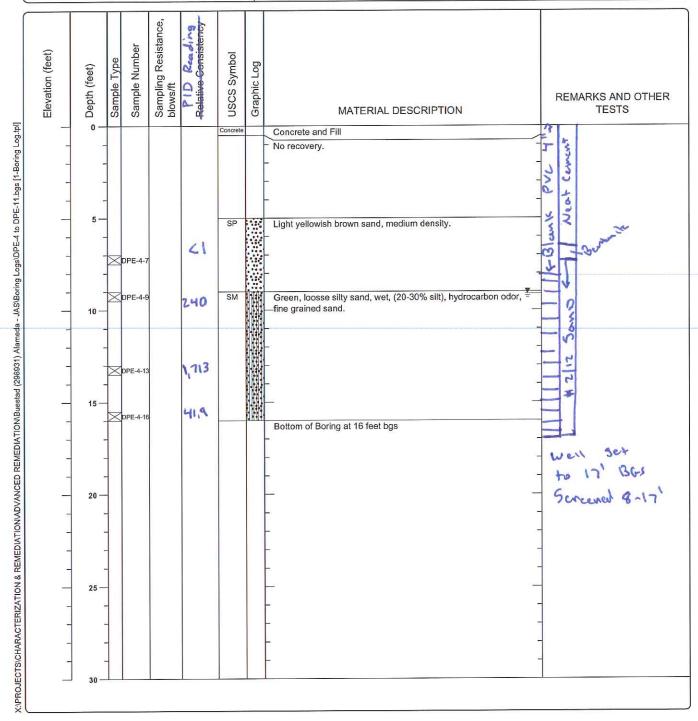


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-3

š		
Date(s) 11/14/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
T Daillia a	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, Californ	nia



Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-4 Sheet 1 of 1

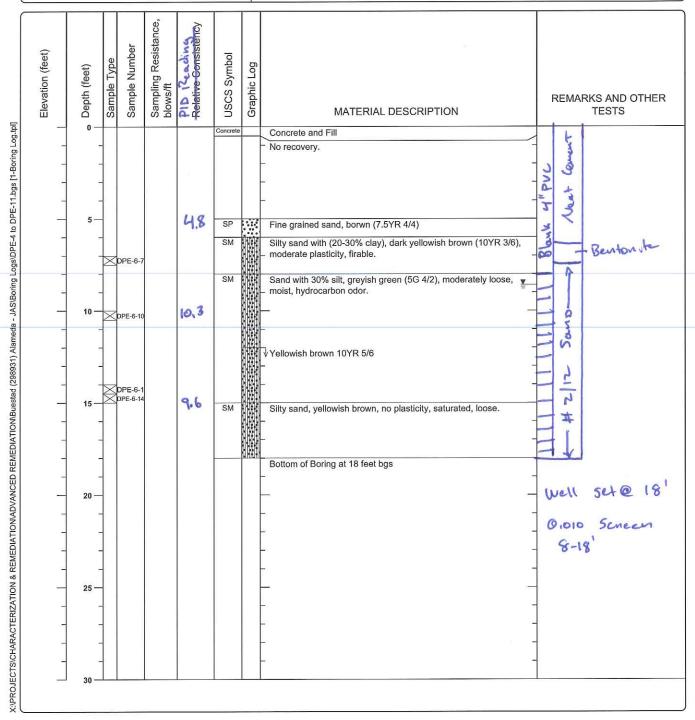
Date(s) Drilled January 19, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 17 feet bgs	
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation Hammer Data W2012-0055	
Groundwater Level 9.12 feet measured on 1/23/12	Sampling Method(s) Direct-Push Sampler		
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	1	

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-5 Sheet 1 of 1

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs	
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation	
Groundwater Level and Date Measured 8.85 feet measured on 1/23/12	Sampling Method(s) Direct-Push Sampler	Hammer Data W2012-0055	
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	1	


Elevation (feet)	Depth (feet) Sample Type Sample Number Sampling Resistance, blows/ft	Relative Consistency USCS Symbol Graphic Log	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
4 to DPE-11.bgs [1-Boring Log.tpl	5—	MA Concrete SM	Concrete and Fill Sandy silt, black/pale brown Silty sand, brown (7.5YR 4/4), moderately loose, 40% silt.	Blown 4" PVC
lameda - JAS\Boring Logs\DPE-4	DPE-5-8	SM	Sand with silt (30%), very dark greyish brown (5G 3/2), moderately loose, very moist to wet, hydrocarbon odor. Sheen observed	
EDIATION Buestad (298931) A	DPE-5-14	SM	silty, clayeye sand, yellowish brown, wet, no plasticity.	1
X:PROJECTS)CHARACTERIZATION & REMEDIATION/ADVANCED REMEDIATION/Buestad (298831) Alameda - JAS\Boring Logs\DPE-4 to DPE-11.bgs [1-Boring Log.tpl]	20 —		Bottom of Boring at 18 feet bgs	- Well set @ 18' Bus , suren 8-18'. (0.010)
MECTS/CHARACTERIZATION &	25 —			

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-6 Sheet 1 of 1

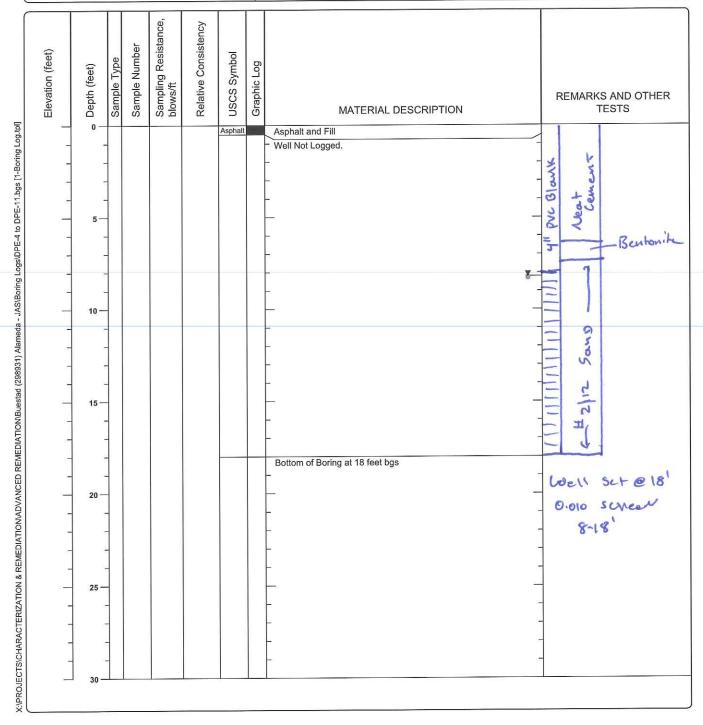
Date(s) Drilled January 19, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.59 feet measured on 1/23/12	Sampling Method(s) Direct-Push Sampler	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	i

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-7 Sheet 1 of 1

Date(s) Drilled January 19, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 14 feet ATD	Sampling Method(s) Direct-Push Sampler Hammer Data W2012-0055	
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	1

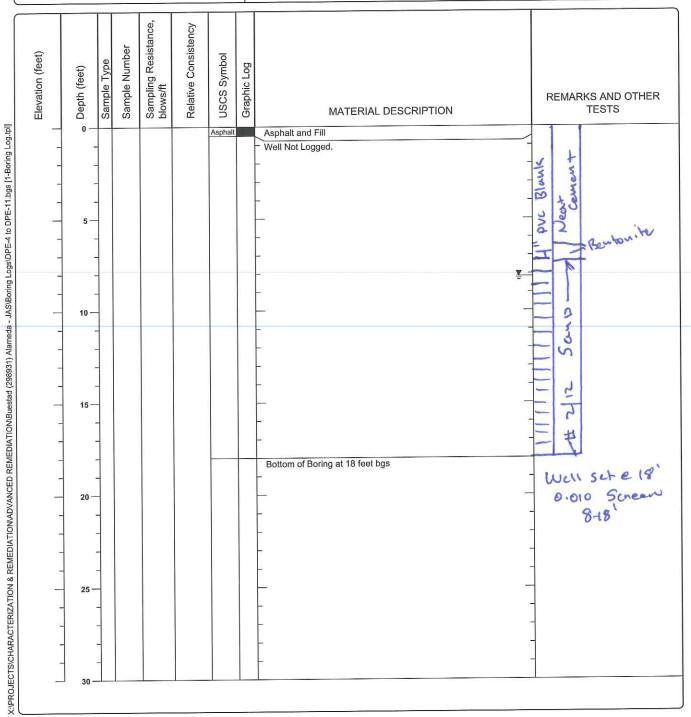

Elevation (feet)	Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	PID Reading Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
_	- U					Asphalt		Asphalt and Fill No recovery.	
- - - -	5	\times	DPE-7-6		۷۱	SM		Silty sand (20% silt), strong brown, moderately loose, slightly moist.	-
-	-					SP		Becomes mottled brown (10YR 5/3) and greenish grey (5GY 5/1), hydrocarbon odor.	A
_	10 —	×	DPE-7-10		5,000			Poorly graded sand, dark greenish grey (5G 4/1), medium density.	
			DPE-7-14.5		176	SM		Fine grained sand and silt, wet, very loose, non-cohesive. Bottom of Boring at 18 feet bgs. Well not set.	
	25 22							_	
	30 —								

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-8 Sheet 1 of 1

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.21 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, Calif	fornia

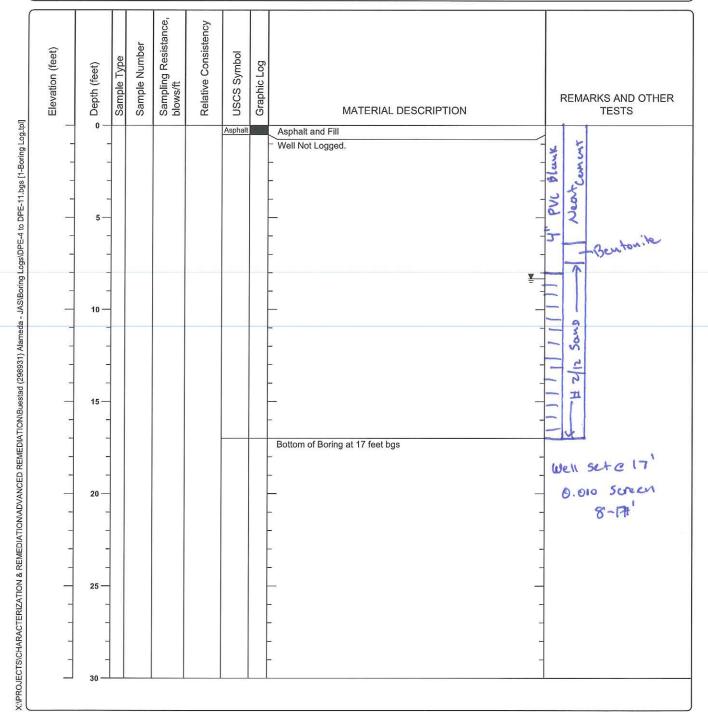


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-9 Sheet 1 of 1

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.16 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, Calif	fornia

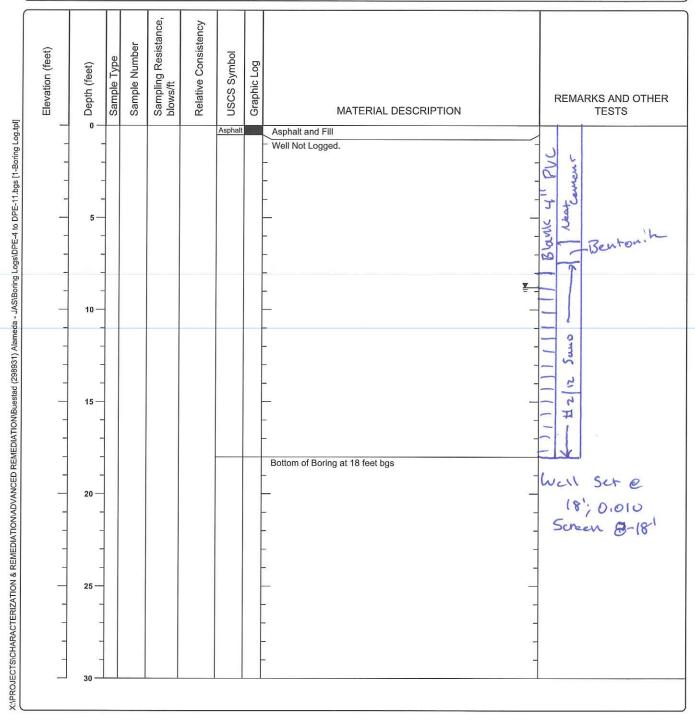


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-10 Sheet 1 of 1

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 17 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level 8.32 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	



Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-11 Sheet 1 of 1

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.79 feet measured on 1/23/12	Sampling Method(s) Hammer Data W2012-0055	
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, Calif	fornia

SUBSURFACE DATA LOG

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	LOG No. EB-1 DATE: 10/15/93 LOCATION: GOOD CHEVROLET EQUIPMENT: PROJECT No.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EQUIPMENT:
1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	EQUIPMENT: PROJECT No.
16-7-7-6-6	
	SAND, coarse-grained, red, damp (FILL)
	SAND, medium-grained, medium brown (FILL)
	SAND, medium- to coarse-grained, medium gray- brown, damp, loose
	5
	SAND, medium- to coarse-grained, yellow-brown moist, loose
	SAND, fine-grained, green, moist, dense
	10
	SAND, medium- to coarse-grained, orange-brown, moist to wet, dense
	gasoline vapors detected between 9 to 11.5 feet
	Bottom of Boring 11.5 feet
	15 Bottom of Botting 11.5 reet

(1) CAS (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Some Solves Solv	
		3" A/C and 6" Aggregate Base SAND, medium- to coarse-grained, dark gray, damp, loose, contains brick fragments (FILL)
	5 —	SAND, medium- to coarse-grained, yellow-brown, moist, loose
	10	SAND, medium- to coarse-grained, orange-brown moist, dense gasoline vapors detected between 9-12 feet
	1.5	Bottom of Boring 12 feet
		*
		•

18 CENSITY (18 CEN	LOG No. EB-3 DATE: 10/15/93 LOCATION: GOOD CHEVROLET EQUIPMENT: PROJECT No.
	2" A/C and 6" Aggregate Base SAND, medium- to coarse-grained, dark gray, damp contains brick fragments (FILL) SAND, medium- to coarse-grained, yellow-brown, moist, dense SAND, medium- to coarse-grained, orange-brown, moist, dense SAND, medium-grained, green, moist SAND, medium-grained, green, moist SAND, fine- to medium-grained, blue-gray, moist gasoline vapors between 9-12 feet SAND, medium- to coarse-grained, blue-gray, wet dense Bottom of Boring 13 feet

19 CENSITY	LOG No. EB-4 DATE: 10/15/93 LOCATION: GOOD CHEVROLET EQUIPMENT: PROJECT No.
	2" A/C and 6" Aggregate Base SAND, fine- to coarse-grained, dark gray, damp loose, contains brick fragments (FILL) SAND, medium-grained, orange-brown, moist, dense SAND, medium- to coarse-grained, greenish-brown, moist, dense gasoline vapors detected between 8-11.5' Bottom of Boring 11.5 feet

Geo Plexus, Inc.

LOG No. EB-5 DATE, 10/15/93 LOCATION: GOOD CHEVROLET EQUIPMENT: PROJECT No. 2" A/C and 5" Aggregate Base SAND, medium-grained, dark gray, brick fragments (FILL) SAND, medium-grained, yellow-brown, damp, loose SAND, medium-to coarse-grained, orange-brown, damp, dense greenish staining at 8 to 9 feet, gasoline vapors at 8.5.to 12 feet SAND, coarse-grained, orange-brown, wet, dense Bottom of Boring 12.5 feet		
SAND, medium-grained, dark gray, brick fragments (FILL) SAND, medium-grained, yellow-brown, damp, loose SAND, medium- to coarse-grained, orange-brown, damp, dense greenish staining at 8 to 9 feet, gasoline vapors at 8.5 to 12 feet SAND, coarse-grained, orange-brown, wet, dense Bottom of Boring 12.5 feet	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOCATION: GOOD CHEVROLET EQUIPMENT: PROJECT No.
		2" A/C and 5" Aggregate Base SAND, medium-grained, dark gray, brick fragments (FILL) SAND, medium-grained, yellow-brown, damp, loose SAND, medium- to coarse-grained, orange-brown, damp, dense greenish staining at 8 to 9 feet, gasoline vapo at 8.5 to 12 feet SAND, coarse-grained, orange-brown, wet, dense Bottom of Boring 12.5 feet

ĺ				,	7	7 7		
		信	/w 2/	/ /	/ & /	250 X X 250 X X 250 X X X X X X X X X X X X X X X X X X X	2/	LOG No. EB-6 DATE: 10/15/93
	1	15 (i) 15 (i) 15 (i) 15 (i) 15 (ii) 15	8 3/3	W Till State of the State of th	SAMP.	w/ 3	5/	LOCATION: GOOD CHEVROLET
	70	3. 5	2 2	5/2	B 2	15	9/	PROJECT No.
	18 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% * 3°	1 2 6	\$\\ \\$\/	8/	3/	SPROJECT No.
ſ			346 50 14 191 10 10 10 10 10 10 10 10 10 10 10 10 10 1					3" A/C and 6" Aggregate Base
	9	Į.						SAND, medium- to coarse-granied, gray-brown, damp, loose, contains brick fragments (FILL)
	il.							SAND, medium- to coarse-grained, yellow-brown, moist, dense
					5			
								SAND, medium- to coarse-grained, orange-brown, damp to moist, dense
							_	gasoline vapors at 9 feet
					10	-		Bottom of Boring 9 feet
					15	· —		
						7		·
						-		-
	100					7		
								!

GeoPlexus, Inc.

		S-2 30 10 10		
ORY DEWE	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Oliver Company of the	LOG No. EB-7 DATE: 10/15/93 LOCATION: GOOD CHEVROLET EQUIPMENT: PROJECT No.	
			SAND, medium-grained, dark gray, damp, brice fragments (FILL) SAND, medium- to coarse-grained, yellow-bromoist, dense SAND, medium- to coarse-grained, orange-brow	own,
			moist, dense gasoline vapors at 9 to 9.5 feet Boring terminated at 9.5 feet	

LOCATION Good Chevrolet, Alameda, CA

DATE _____1/21/97

DRILLER Precision Sampling, Inc.

DEPTH (fl.)	DESCRIPTION	U.S.C.	OI4/MVO	WELL DESIGN	SAMPLE	BLOW COUNT	COMMENTS
-	CLAYEY SAND, red-brown, moist, dense	sc					
5			120		S1		
10			950		S 2	;	strong gas odors
-	CLAYEY SAND, green (vapor stained) wet,	sc	970		an.		
15	CLAYEY SAND, brown, wet, dense	sc	120		S3		
-	Bottom of boring 16-feet					9	
20						5	
-							
-							
-							
1							

LOCATION Good Chevrolet, Alameda, CA

DATE 1/21/97

DRILLER_	Precision Sampling, Inc.	

DEPTH (ft.)	DESCRIPTION	U.S.C.	OVM/PID	WELL DESIGN	SAMPLE	BLOW COUNT	COMMENTS
-	SAND, medium-grained, dark-brown, moist, medium dense	SM				8	
5			90		S1		
10 -	-slight green coloration (staining)		340		S 2		
15 -	Bottom of boring 13-feet.						
20 _							
-							

LOCATION Good Chevrolet, Alameda, CA

DATE 1/21/97

DRILLER Precision Sampling, Inc.

DEPTH (ft.)	DESCRIPTION	U.S.C.	OVM/PID	WELL DESIGN	SAMPLE	BLOW COUNT	COMMENTS
-	SAND, medium-grained, brown, moist, dense	SM				•	
5_	SAND, medium-grained, orange-brown, moist, dense	SP/ SM	120				
10_	SAND, gray-brown, moist, dense	SM	850		S1		strong gas odor
-	SAND, red-bronw, wet, dense	SP/ SM	250				
15	Bottom of boring 13-feet.						
20 -	,						
-							
-							
- - - -							

LOCATION Good Chevrolet, Alameda, CA

DATE ________

DRILLER Precision Sampling, Inc.

DEPTH (ft.)	DESCRIPTION	U.S.C.	OVM/PID	WELL DESIGN	SAMPLE	BLOW COUNT	COMMENTS
	SANDY GRAVEL, dark brown, moist, dense	GM					
	SAND, tan, damp, dense	SP					
5 _	SAND, brown, moist, dense	SM	80				
	CLAYEY SAND, red-brown, moist, dense	SC					
10	CLAYEY SAND, mottled red-green (vapor stain) moist, dense	sc	160		S1		
	SAND, blue-green, wet, dense	SM	340		S2		
15 _	Bottom of boring 13-feet.						

LOCATION Good Chevrolet, Alameda, CA

DATE 1/21/97

DRILLER Precision Sampling, Inc.

DEPTH (ft.)	DESCRIPTION	U.S.C.	OVM/PID	WELL DESIGN	SAMPLE	BLOW COUNT	COMMENTS
-	SANDY GRAVEL, gray, moist, loose	GP					tank backfill
5	SAND, red-brown, moist, dense	SM					
	CLAYEY SAND, green, moist, dense (stained)	sc	340				native
10-	SAND, medium-grained, gray-green (vapor stained) wet, dense	SM	380		S1		
:			650		S2		
15-	SAND, brown, wet, dense	SP	40				
	Bottom of boring 16-feet.						
20							
-							

Ł	E		BL	-,,,	YER RS, INC.		Soil Bor	e Log	: GF	21
		1630		vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 29, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sai Soi Tot	mple M I Bore (Diameter : 1.75-inch ad Depth : 16.0 feet
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected sined lyzed	Water Level ▼ 7.5 feet	nscs	GRAPHIC	(Grouted upon completio
0-				Π	4-inch sect	ion asphalt		Asphal		
1-						ish brown (10YR 6	6/3) SILTY SAND, fine	SM		
2-				6	Yellowish b	rown (10YR 5/4) S	SILTY SAND, fine grained;			
3					damp.		,			
4-		0	Ш							
5-								SM		
6-										
0-										
7-		394								
8-			Ш	GP1-7.5 GP1-8		12 5V 5/3) C	LAYEY SAND; fine	sc	Щ	
9-			H	0.70	\grained; slig	ht petroleum odor	r; very moist to wet.	1 30	m	
					with 15% cla	ay; very moist to w	SILTY SAND; fine grained; /et.			
10-								SM		\bowtie
11-		630								\bowtie
12-				GP1-11.5	Grades pale	olive (5Y 6/3); m	oderate codor; tight; wet.			\bowtie
13-		247	Ш					SM		\bowtie
										\bowtie
14-					Yellow brow	n (10YR 5/4) SILT	Y SAND; fine grained; no			\bowtie
15-				GP1-15	odor; wet.			SM		\bowtie
16-				10 705	.					
17					Bottom of bo	ore: 16 feet	• • • • • • • • • • • • • • • • • • • •			CSIONAL GEO
17-										
18-									1	No. 1788
19-										CERTIFIED
20-									1	22/ EMOUNTERING
										GEOLOGIST GEOLOGIST OF CALIFORN

	£	2	Event		YNEE	YER rs. inc.		Soil Bor	e Log:	GP	2
			Good 1630 Alamed	Park :	Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 29, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Soil Tota	nple Me Bore D	Diameter : 1.75-inch d Depth : 16.0 feet
	Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected ained lyzed	Water Level _▼▽ 7.5 feet	nscs	GRAPHIC	(Grouted upon completion)
	0- 1- 2- 3- 4- 5- 6-					4-inch sect Dark yellow grained; da	ish brown (10YR	3/4) SILTY SAND, fine	Asphal		
	7 - ; 8		0		GP2-6.5	Yellowish b with clay; w	rown (10YR 5/6) S et.	SILTY SAND; fine grained;	SM		. ✓
re Legs/GP2.bor	9- 10-				,	with clay; w	et.	SILTY SAND; fine grained; / SAND; fine grained; very	SM		
ameda/Bo	11-		10		GP2-11	mosit to we	l.	SILTY SAND; fine grained;	SM 		
05-19-2008 H:\Biymyer_Jobs\2007\207055 Good Chevrolet Plume Define Alameda\Bore	13-		0		GP2-13	no odor; we	it.	ner i onto, ino granco,	SM		
Good Che	15-					As above			SM		
7207055	16			LIE	l	Bottom of b	ore: 16 feet				CIONAL GEO
Jobs/2007	17-									/	CERTIFIED CSIONAL GEORGE No. 1788 CERTIFIED
3lymyer.	18-										
2008 H:VE	20-									/	A ENGINEERING / W
05-19-	21-	\$-000 pt 100			311990719779 444804						GEOLOGIST SE STORY OF CALIFORNIE

£	2		BL.		YER rs, inc.		Soil Bo	ore Log:	GP:	3
		Good 1630 Alamed		Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 29, 2008 : Mark Dellerman : Precision Drilling, Inc. : Israel Ramirez	San Soil Tota	ing Equi nple Met Bore Di Il Drilled Angle	thod : Continuous sleeve lameter : 1.75-inch
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected ained lyzed	Water Level ▼ 7.0 feet	nscs	GRAPHIC	(Grouted upon completion)
90 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16-	880	0			Dark yellov grained; da Very dark y fine grained Dark yellov grained; da As above; Dark yellov grained; ma Dark yellov grained; ma	ion asphalt vish brown (10YR amp. vellowish brown (1 d; humus rich orga vish brown (10YR amp. hard / firm. vish brown (10YR th silt; moist. vish brown (10YR	3/4) SILTY SAND, fine 0YR 2/2) SILTY SAND,	Asphalt SM SM SM SM		CIONAL GEOL
17- 18- 19- 20-										No. 1788 CERTIFIED ENGINEERING GEOLOGIST OF ATTE OF CALIFORNIA

H			YV SINEE	YER rs. inc.		Soil Bo	re Log:	GP	4	
	1630		vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 29, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	San Soil Tota	nple Me Bore D	iameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20.0 feet : No
Depth in Feet Blow Count	DIG	Sample Recovery	Sample No.	Reta	ected nined lyzed	Water Level ▼ 7.0 feet IPTION	nscs	GRAPHIC	(Grout	ed upon completion)
0- 1- 2- 3- 4- 5- 6- 7- 8-	38		3P4-6.75	Dark yellow grained; da Very dark g grained; da Dark yellow grained; da	ellow (10YR 6/8) o rish brown (10YR mp. grayish brown (10Ymp. rish brown (10YR a mp.	rushed rock (FILL) 3/4) SILTY SAND, fine /R 2/2) SILTY SAND, fine 3/4) SILTY SAND, fine	SM SM		.▼	
9- 10- 11- 12- 13-	57		GP4-11.5	fine grained	; interbedded wet	EÝ SILT to SILTY SAND; ine grained, with traces of	SM			
14- 15- 16-			GP4-14.5	to flowing; w	et.	ined; with silt; very loose	SP			NAI
17- 18- 19-	8		GP4-17	Very loose to CLAYEY SA in place).	o flowing SAND, a ND (2 to 4 inch la	alternating with stiffer yers), wet (potentially not	SP			SOUNAL DET
197		1	1 1	As above; in	creased silt conte	nt: firmina.	SM		KXI	ENGINEE

120	BLYMY	ER
	ENGINEERS,	INC.

Soil Bore Log: GP5

			ENC		ERS, INC.						
		1630	Park	vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 29, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sa Sc To	imple M oil Bore I	Diameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20.0 feet : No
Depin in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected ained lyzed	Water Level ▼ 7.75 feet	nscs	GRAPHIC	(Grou	uted upon completion)
0-			П		4-inch sect	******************	***************************************	Aspha			K
1					(fragments	(FILL)	crushed rock and brick	GW			ď
2-					Dark yellow grained; da	vish brown (10YR i mp.	3/4) SILTY SAND, fine				
3								SM			×
4-		0									×
											×
5-	***************************************				Dark yellow grained; wit	ish brown (10YR : h silt; dense; dam	3/4) CLAYEY SAND, fine p.				
6-								sc			X .
7-		10									
-8			Ш	GP5-7.5	Light olive to	prown (2.5Y 5/3) S , with clay; very m	ANDY SILT; fine grained oist	ML			3
9-					Mottled ligh	t olive brown (2.5)	(5/3) and dark vellowish		9 6 6		
0-	i				brown (10Y	R 3/4) SILTY SAN	ID, fine grained, wet.	SM			
1-		652			Light olive b	orown (2.5Y 5/3) S	ILTY SAND; fine grained;			\otimes	
2-		052		GP5-11.						\otimes	
3-								SM		\otimes	
4-		424	Ш							\otimes	
										\otimes	
5-	***************************************				Dark yellowi grained; wel	sh brown (10YR 4	/4) SILTY SAND, fine	"		\times	
6-					#	33		SM		\otimes	No. 1788 CERTIFIED
7-						ery loose, to flowin	ng SILTY SAND, wet (in			\otimes	CSIONAL GO CSIONAL GO DETTES No. 1788 CERTIFIED
8-					place?)			SM		\otimes	CERTIFIED CERTIFIED
9-				GP5-19	As above in	creased silt conte	nt: firming				1 -12/ FINGUIAERINA
0-							mung.	SM		\boxtimes	/ CENTORIA
1-					Bottom of bo	ore: 20 feet					SATE OF CALL

£	2			YV SINE	YER ERS, INC.		Soil Bor	e Log	: GF	6	
		1630	Park	vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 29, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sa So Tol	mple Me Il Bore D	iameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20.0 feet : No
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected	Water Level ▼ .∇_ 7.75 feet	nscs	GRAPHIC	(Grou	ted upon completion)
1- 2- 3- 4- 5- 6- 7-		2.4			Very dark b damp. Yellowish bi damp.	ellow (10YR 6/8) o rown (10YR 2/2) s	crushed rock (FILL) SILTY SAND, fine grained; SILTY SAND, fine grained;	Asphal GW SM SM			
8- 9- 10-				GP6-7.5	Light olive b grained sand Light olive b wet.	d (50%); very moi rown (2.5Y 5/3) S	ILTY SAND, fine grained,	SC			
12-		808		GP6-11	Black stainin	g at 11 to 12 ft bg	gs.	SM			
15-		ALL CALLED			Yellowish bro	own (10YR 5/4) SI	LTY SAND, fine grained;	SM			SIONAL GA
17-			X			UFF: Olive (5Y 4	4/4) SILTY SAND, wet;	CM			SO E. DETTER

Bottom of bore: 20 feet

Depth interval for PID bag sample - uncertain.

No. 1788
CERTIFIED
ENGINEERING
GEOLOGIST
OF CALIFORNIA

SM

05-19-2008 H\IBIymyer_Jobs\2007\20705S Good Chevrolet Plume Define Alameda\Bore Logs\GP6.bor

18-

19-

20-

£	E	F F		YN SINEE	YER rs, inc.		Soil Bo	re Log:	: GP	7		
		Good 1630 Alamed		Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 30, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Soi Tot	nple Me I Bore C	lameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 24.5 feet : No	
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected ined lyzed	Water Level ▼ 7.75 feet IPTION	nscs	GRAPHIC	(Grou	ted upon completior	n)
0-					4-inch sect		3/4) SILTY SAND, fine to	Asphal		\boxtimes	\overline{A}	
1-					medium gra	ained; damp.	5/4) SILTY SAND, line to	SM			×	
2- 3-					Grades ligh	ter				\otimes		
4-												
5-								SM				
6-										\otimes		
7-											1	
8-		404	П	GP7-8	Dark yellow	ish brown (10YR :	3/4) CLAYEY SAND; fine	sc_		$\overline{\mathbf{v}}$		
9				GF 7-6	\grained sar Dark gray (nd (50%); very mo 5Y 4/1) SILTY SAI	st to wet. ND, fine grained, petroleu	/ m			1	
10-					odor; dark s	staining in top 1 to	2 ft; wet.			\otimes		
11-								3.5		\otimes		
12-								SM		\otimes		
13-												
14-										\otimes		
15~		493	円							\otimes		
16-					Yellowish bi	rown (10YR 5/4) S o flowing, wet.	ILTY SAND, fine grained;	SM SM		\otimes		
17-					Grades med wet,	dium to fine graine	d; flowing to very loose;	SM		\otimes		
18-	-				Firms at 17	ft. to flowing 18 to 20	ff			\otimes		
19-		3	Ш		, 5, , 10000		101	SM		\otimes	MAI	2
20-				GP7-19.6	Firms at 20	ft.		SM		\otimes	SONAL DETT	GEO
21-					Very loose t	o flowing 21 to 22	ft.	SM			9 No. 178	10
22-					Yellowish br	own (10YR 5/4) S	ILTY SAND, fine to				CERTIFI	EDI
23-		8			medium gra	ined; loose; wet.		SM			ENGINEE GEOLOG	RING
24-			H.	GP7-23.5		ore: 24.5 feet					STATE OF CA	ilST W

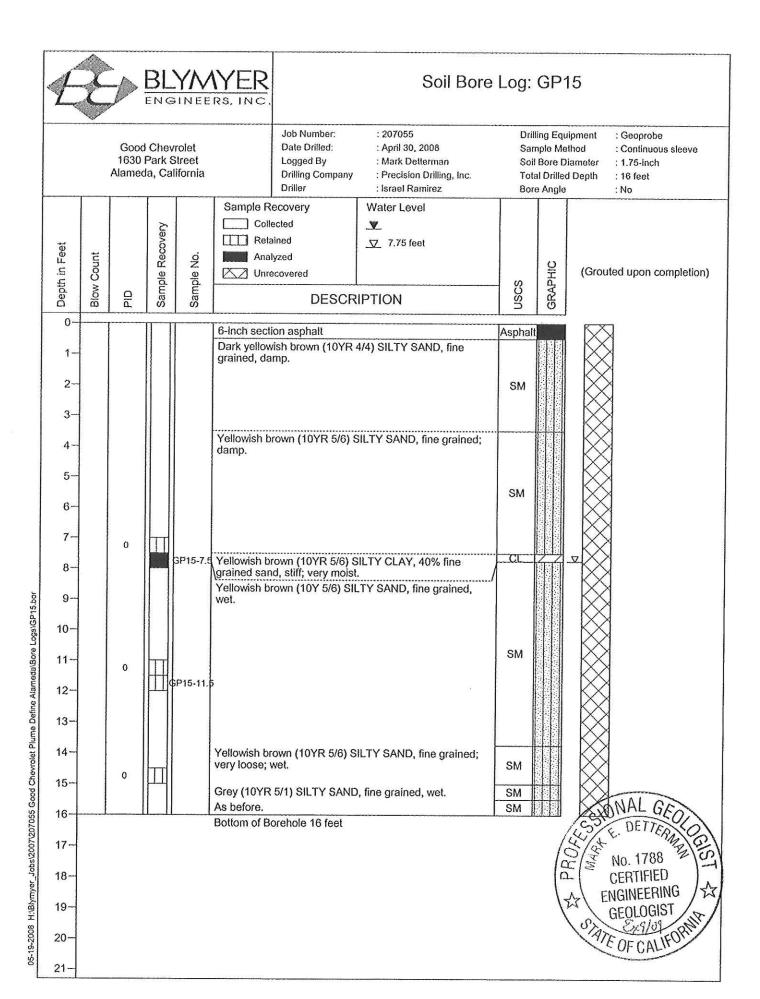
L	2		BL		RS, INC.		Soil Boi	re Log	: GP	'8	
iralalasıları				Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sai Soi Tot	nple Me I Bore D	Diameter : 1.75-inch ad Depth : 20 feet	
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected ined	Water Level _▼	USCS	GRAPHIC	(Grouted upon completion	1)
0- 1- 2-					4-inch secti Dark yellow grained; da	ish brown (10YR:	3/4) SILTY SAND, fine	Asphal			
3-					Grades yell	owish brown (10Y	R 5/4)	SM			
5- 6-								SM			
7- 8-		883			grained san Olive (5Y 4/	d (50%); moist.	ANDY CLAY; fine ine grained, petroleum	SC			
9-		403		GP8-8.5	wet.	own (10YR 5/4) S 3) SILTY SAND, f	ILTY SAND, fine grained; ine grained; wet.	/SM			
11-								SM			
12-		2,153									
14-					As above, fit (10% recoversample).	ne grained; flowing ery 12 to 16 ft; Und	g, wet certain depth for PID bag	SM			
16-			X					OW		SSIONAL DET	G/E
18-					Olive SILTY wet (in place?)	SAND, fine graine	ed; very loose to flowing;	SM		No. 178	./ 18 EC
19-		582		1	Firms at 19 I		, fine grained; wet; firmer.	SM SM		ENGINEER GEOLOG GEOLOG GEOLOG GEOLOG	311

£	E		BL	YN SINEE	YER rs, inc.		Soil Bo	re Log:	GP	9	
		1630	Park	vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	San Soil Tola	nple Me Bore D	iameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 16 feet : No
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected sined lyzed	Water Level ▼ 7.75 feet	USCS	GRAPHIC	(Grou	ted upon completion)
0- 1- 2- 3- 4- 5- 6-					6-inch secti Dark yellow medium gra depth.	ish brown (10YR:	3/4) SILTY SAND, fine to ncreasing moisture with	SM	Brownsky Bro		
7- 8- 9-		0		GP9-7.5	Dark yellow grained; with	ish brown (10YR 3 h silt; moist to very	8/4) CLAYEY SAND, fine / moist.	sc		▼	
11-		2		GP9-11.2	petroleum o	3) SILTY SAND, fi dor; wet.	ne grained, very slight	SM			
14-		0		GP9-15.5	Yellowish brwet.	own (10YR 5/4) S	ILTY SAND, fine grained;	SM			CIONAL CA
17-			11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1	Bollom of Bo	ore: 16 feet		<u> </u>	131	PROS	SCHONAL GEO S. DETTERM No. 1788 CERTIFIED
18-										123	ENGINEERING
20-										/	GEOLOGIST STEOF CALIFORN

£	2			YV	YER rs, inc.		Soil Bore	Log:	GP	10	
		1630		vrolet Street difornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 30, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sai Soi Tot	mple M I Bore I	Diameter ed Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20 feet : No
Depth in Feet	Blow Count	Pito	Sample Recovery	Sample No.	Reta	ected	Water Level ▼ ∇ 7.5 feet	nscs	GRAPHIC	(Grout	ed upon completion)
0- 1- 2-					6-inch secti Dark yellow grained; to		3/4) SILTY SAND, fine	SM			
3- · 4- 5- 6-		0			Grades yell	owish brown (10Y	R 5/4); damp.	SM			
7 8 9	The second state of the se	29	- Annual Control of the Control of t	GP10-7.5	Olive (5YR a with trace of wet.	4/3) SILTY SAND ay; strong petrole	, fine to medium grained; um odor; very moist to	SM		▼	
11-					Olive (5Y 4/ wet.		ined; with silt; strong odor;	SP			
12-					wet.	3) SILTY SAND, f	ine grained, strong odor;	SM			
13- 14-					wet		ILTY SAND, fine grained;	SM			
15-		10			grained; wet Olive (5Y 4/3	own (10YR 5/4) S 3) SILTY SAND, fi	ANDY CLAY; fine ne grained, wet.	SC SM			
16-			Щ	6P10-15.	(In place?) Yellowish brovery loose; v	own (10YR 5/4) S wet (mottled with c	ILTY SAND, fine grained; llive at top - may be sluff).				CSIONAL GEO
17- 18-								SM			No. 1788
19-		33	Ш		Firmer at 18	.5 ft.; in place.		SM			FNGINEERING
20-				6P10-19.	5					KXI	GEOLOGIST

Bottom of Borehole 20 feet

05-19-2008 H:\Biymyer_Jobs\2007\207055 Good Chevrolet Plume Deline Alameda\Bore Logs\GP10.bor


20-

			ENG	SINEE	RS, INC.		Soil Bore		0,		
		Good 1630 Alamed	Park :	Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 30, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Sol Tota	nple Mi Bore (Diameter ed Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20 feet : No
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Sample Ro	ected iined lyzed	Water Level ▼ 7.5 feet	nscs	GRAPHIC	(Grou	ted upon completion)
0-					6-inch secti				COM SEE COM		}
1-					medium gra	ained, damp.	SILTY SAND, fine to	SM			
2-					Dark yellow grained; wit	ish brown (10YR : h silt; damp.	3/4) CLAYEY SAND, fine	sc			
3-					Yellowish bi medium gra	rown (10YR 5/4) S ained; damp.	SILTY SAND, fine to				
4-								SM			
5-										$\mid \mid > >$	
6-				GP11-6	Olive (5YR damp.	4/3) SILTY SAND	, fine to medium grained;	SM			
7-					Olive (5Y 4/ with silt; mo		D, fine to medium grained;	SC	//		
8-		769	Щ	GP11-8			ine to medium grained; wet.), fine grained, strong	SM SC	ŢŊ,		
9-				GFT1-0	petroleum of Olive (5Y 4/	dor; wet. 3) SILTY SAND, f	ine to medium grained;	SM			
10-					Strong odor; Olive (5Y 4/), fine grained, wet,				
11-		746					ine to medium grained;	SC		\otimes	
12-			Ш	GP11-11.	strong odor; Olive (5YR	*************************	fine grained; wet.	SM			
13-					Ø.)		Ŭ	SM			
14-										\otimes	
15-	***************************************	1,282			Very loose t	o flowing between	14.5 and 15.5 ft.			\otimes	
16-		1,202		6P11-15.	i			SM			GIONAL GA
7-						own (10YR 5/4) S oflowing; wet.	ILTY SAND, fine grained;	SM			CO DETTA
18-	-	946		GP11 10	Stiffer; mino	S - W	,	SIVI			1.5 140, 110.
19-				OF 1 1-10	Suner, mino	г чау.		SM			CERTIFIED ENGINEERIN GEOLOGIST

Ł	\$			YV ∍INEE	YER RS, INC.		Soil Bore	e Log:	GP ⁻	12	
	1	1630	Park :	vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 30, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sai Soi Tot	mple Me I Bore C	thod liameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 16 feet : No
Depth in Feet	Blow Count	PiO	Sample Recovery	Sample No.	Reta	ecled sined lyzed	Water Level ▼ 7.75 feet	uscs	GRAPHIC	(Groute	ed upon completio
0-					6-inch sect	****					
1-					Dark yellow medium gra	rish brown (10YR : ained, damp.	3/4) SILTY SAND, fine to				
2~											
3-								SM			
4											
5-		0	H		Yellowish b	rown (10YR 5/4) S	SILTY SAND, fine to	-		\otimes	
					medium gra	ilned; damp.		SM			
6-								J			
7-					Yellowish b	rown (10YR 5/4) C ry moist to wet.	CLAYEY SAND, fine	sc	\mathcal{Y}	∇	
8-		1,864		GP12-7.	Olive (5Y 4	3) SILTY SAND, f	ine grained, strong			\otimes	
9-					petroleum o	dor; wet.					
10-								SM			
11-		206								\otimes	
12-				GP12-11	Olive (5Y 4/	3) SAND, fine to n	nedium grained, trace silt;	SP		\bowtie	
					wet. Very fine gr	ained; loose to flo	wing.	SP			
13-					As before. Sheen in wa	iter noticed at 13 f	ft; source uncertain.	SM		\bowtie	
14-							ILTY SAND, fine grained;			\otimes	
15-					1101.			SM			and the same
16-				\$P12-15.		orehole 16 feet		<u>J</u>		X	SIONAL GEO
17-										18%	No. 1788 CERTIFIED
18-										PR	No. 1788
19-										12	CERTIFIED ENGINEERING
										1 /	GEOLOGIST
20-										13	TE OF CALIFOR

£	3	- >		_YN GINEE	YER ERS, INC.		Soil Bore	Log:	GP	13
		1630	Park	evrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 30, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sai Sol Tot	mple Me I Bore E	Diameter : 1.75-inch ad Depth : 16 feet
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected nined lyzed	Water Level ▼ 7.75 feet	nscs	GRAPHIC	(Grouted upon completion
0-					6-inch secti					, I 🔯
2-			The state of the s		grained, da	nsh brown (10YR : mp.	3/4) SILTY SAND, fine	SM		
3-					Yellowish bi	rown (10YR 5/4) S	SILTY SAND, fine grained;			
5-					Camp.			SM		
6-										
7-		0			Olive brown	(2.5YR 4/3) SANI	D, fine to medium grained,	SC		
8-				6P13-7,2	10% clay; ve Olive (5Y 4/	ery moist to wet.	ine to medium grained, very			▼
9-					moist / wet.					
10-								SM		
11-		183		GP13-11						
12-					Yellowish brovery loose to	own (10YR 5/4) Si flowing; wet.	ILTY SAND, fine grained;			
13-		3.5				**				
14-		5.0		GP13-14				SP		\bowtie
15-										
16			L	L	Bottom of Bo	orehole 16 feet		L <u> </u>		SSIONAL GE
17-										No. 1788 CERTIFIED
18-										CERTIFIED
19-										ENGINEERING GEOLOGIST
20-										OF CALIFORN

Ł	2		BL	YNEE	YER RS, INC.		Soil Bo	re Log:	GP	14	
		1630		vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : April 30, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sa So To	mple Me il Bore D	Diameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 16 feet : No
Depth in Feet	Blow Count	PiO	Sample Recovery	Sample No.	Reta	ected ained lyzed	Water Level ▼ 7.75 feet IPTION	nscs	GRAPHIC	(Grou	ited upon completion)
0-			II		6-inch sect			Asphal	t Ball	, [X	\overline{A}
1-					Dark yellow medium gra	rish brown (10YR : ained, damp.	3/4) SILTY SAND, fine to				
2-								SM			*
3~											X
4					Yellowish b	rown (10YR 5/6) S	ILTY SAND, fine grained;				X
5-					damp.	*****	ILTY CLAY, 40% fine	SM			×.
					grained san	nd, stiff; moist.	Control of the Contro	CL		\otimes	
6-					Yellowish bi grained; mo	rown (10YR 5/6) Coist to wet.	LAYEY SAND, fine				
7-		0		GP14-7.5						∇	
8-				SF 14-7.0				sc		\times	
9-										\otimes	
10-											
11-		15		GP14-11	Olive (5Y 5/ odor, wet.	3) SILTY SAND, fi	ne grained, very loose,	SM			
12-				*	Yellowish br	own (10YR 5/4) S	ILTY SAND, fine grained;			\otimes	
13-					very loose to	o flowing; wet.	5000			\otimes	
14-		0						SM			
			W	GP14-14							
15-					No Recover	у			12-4-712-1		IONAL GEO
16-			LVZA	L	Bottom of Bo	orehole 16 feet					NONAL GEORGE DETTER
17-										PROFE	No. 1788
18-										Lader.	CERTIFIED ENGINEERING
19-										1.,1	AROLOGIOT /
20-										100	FOF CALIFORNIA
21-											. 0/1

E	E	EFF	BL	10 M W 150 0	YER		Soil Bor	e Log:	GP ⁻	16	
		Good 1630 Alamed		Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	San Soil Tota	ple Me Bore D	Diameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 16 feet : No
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected ained lyzed	Water Level ▼ ∇ 7.75 feet	USCS	GRAPHIC	(Grou	ted upon completion)
0-			ΠT		6-inch sect	ion asphalt		Asphalt			a
1-						ish brown (10YR	4/4) SILTY SAND, fine				
2					granica, ar	J.		SM			1
2~]								SIVI			¥
3-					Yellowish b	rown (10YR 5/6) S	SILTY SAND, 70% fine				1
4~					grained; da	mp.	edemoteration (data introducerational publica purillaporational publica steel	SM			1
5-					Decrease in	n sand content to a	ent to approximately 50%.				
6-						ease in saile content to approximately 55%.					
7-		3									
8-		3		GP16-7.5				SM		▼ 💢	
										$ \otimes $	
9-	ĺ										1
10-		0	Ш								
11-				P1610		several 2 - 3 inch ti	nick very loose to flowing				
12-					layers at 11	- 12 ft; wet.	enter with the tradestate and the Edition of			\otimes	
13-										\otimes	
	Ì							SM		\otimes	
14-		0								\bigotimes	
15-		,	Ш							\otimes	CONALO
16					Bottom of B	orehole 16 feet			11	\mathbb{X}	SIONAL GEO
17-										PROXX	No. 1788
18-										19 .	No. 1788 Z CERTIFIED
19-										14	ENGINEERING
										ſά	GEOLOGIST
20-										\	FOF CALIFORN

	£	2		BL ENG	YM	YER rs, inc.		Soil Bor	e Log:	GP1	17
				I Chev Park S Ia, Ca	Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Soi Tot	ling Equ nple Me I Bore D al Drillec e Angle	thod : Continuous sleeve lameter : 1.75-inch d Depth : 16 feet
	Depth in Feet	Sample No Count And Sample					ecovery ected ained lyzed ecovered DESCR	Water Level ▼	nscs	GRAPHIC	(Grouted upon completion)
	0 1 2						ion asphalt vish brown (10YR y.	Asphal	Mentalestrateraeus one anticheraeus describeraeus		
	3 4 5	Yellowish fine grains Yellowish grained sa					orown (10YR 5/6) \$ d; dry to damp. orown (10YR 5/6) \$ nd, damp.	SM			
	7- 8-						brown (2.5Y 5/3) S	SILTY SAND, fine grained,			. .
neda\Bore Logs\GP17.bor	9- 10- 11-	GP17-7.8 Light olive wet. 0							SM		
05-19-2008 HitBlymyer_Jobs/2007/207055 Good Chevrolet Plume Define Alameda/Bore	12- 13- 14- 15-			And the second s	7 7 7 7 1 1		y loose layers 2 -	3 inches thick.	SM		
207055 G	16-]	Bottom of B	Sorehole 16 feet				SONAL GEORGE DETTERMED
Tobs/2007\	17-										No. 1788 CERTIFIED
Blymyer_J	18-										A ENGINEERING / W
-2008 H.Y	20-										GEOLOGIST STORY OF CALIFORNIA
05-19	21-										01011

£	2		BL	YM	YER rs. inc.		Soil Bore	e Log:	GP1	18	
				Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramírez	San Soil Tola	ling Equ nple Me Bore D al Drillec e Angle	thod lameter I Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 16 feet : No
Depth in Feet	Blow Count	DIO	Sample Recovery	Sample No.	Reta	ected ained lyzed	Water Level ▼ □ 8.0 feet	nscs	GRAPHIC	(Grou	ited upon completion)
0-		 		Γ	6-inch sect	ion asphalt		Asphal		KX	a l
1-						vish brown (10YR	4/4) SILTY SAND, fine to	SM			×
3- 4- 5-					Yellowish b	orown (10YR 5/6) \$ d; dry.	SILTY SAND, 50% sand;	SM			×
6-		0						SM			× × ×
8-				GP18-7.5	Yellowish b grained; 30	ish brown (10YR 5/6) CLAYEY SAND, fine d; 30% clay; very moist to wet.				\neg	
9-		0			Light olive wet.	e brown (2.5Y 5/3) SILTY SAND, fine grained,					× × ×
10-				GP18-10							X
11-					Several ve	ry loose layers 2 -	3 inches thick.				
12-								SM			
14-					2 2					\otimes	
15				GP18-14	As above.			SM			
16-		L		<u> </u>	Bottom of 5	Borehole 16 feet		_L		1 X	ONAL GEO
17-					DOMORITOR D	POLOTIONS TO ICCI				13/	No. 1788
18-										PROFESSI MAD ESS	No. 1788 CERTIFIED
19-										12/2/	ENGINEERING /
20-										10	GEOLOGIST ATE OF CALIFORNIA
21-											

£	2		BL	YM	YER rs, inc.		Soil Bore	e Log:	GP1	19	
		Good 1630 Alamed	Park S	Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Soil Tota		thod iameter d Depth	: Geoprobe : Continuous sleeve : 1.75-Inch : 16 feet : No
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected nined lyzed	Water Level ▼. √. 7.75 feet IPTION	uscs	GRAPHIC	(Grout	ted upon completion)
0- 1- 2-					6-inch sect Dark yellow grained, 50	ish brown (10YR	4/4) SILTY SAND, fine	Asphal SM	Sear Baser de Company		
3- 4- 5-					Yellowish b	rown (10YR 5/6) 5 t; dry.	SILTY SAND, 50% sand;	SM			
6- 7- 8-		0		GP19-7	grained; 30	% clay; very mois	CLAYEY SAND, fine t to wet. SILTY SAND, fine grained,	sc		-▼	
9-		0			Very loose	9.5 to 15 ft.		SM			
11-	la la			SP19-11.	5			SM			
14-		0	П			ft; more silt.		SM			ONAL GEO
16-					Bottom of E	orehole 16 feet				PROFESS	No. 1788
19- 20- 21-										Total Control	ENGINEERING SE GEOLOGIST SE OF CALIFORNIA

	É				YN SINEE	YER rs, inc.		Soil Bore	e Log:	GP2	20			
			1630	Park .	vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 1, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Soil Tot	nple Me I Bore D	ethod : Plameter : d Depth :	Geoprobe Continuous sle 1.75-inch 16 feet No	éve	
	Depth in Feet	Blow Count Sample Recovery Sample No. G-inch se Dark yell					ecovery ected ained lyzed ecovered DESCR	Water Level ▼ ¬¬ 7.75 feet	nscs	GRAPHIC	(Grouted	1 upon compl	etion)	
	0- 1- 2- 3-					6-inch sect Dark yellow grained, 50	vish brown (10YR	4/4) SILTY SAND, fine	Asphal	CHARLES CONTRACTOR CON				
	4- 5- 6-					The state of the s	fine grained Yellowish b	i; dry.	SILTY SAND, 50% sand; CLAYEY SAND, fine t to wet.	SM				
	8-		0		GP20-8	wet.	rown (10YR 5/6) SILTY SAND, fine grained,				₽			
le Log	9-					Slightly gre	y between 8,5 - 9	π.	SM					
fine Alameda\Bo	11-					Multiple ver	y loose layers 2 -	3 inches.						
rolet Plume Del	13-								SM			120		
55 Good Chevr	15- 16-		0		GP20-15.							NAL C	_	
2007/2070	17-					Bottom of B	orehole 16 feet				(2)/4 (2)/4	No. 1788		
myer_Jobs	18-										1	No. 1788 CERTIFIED	- 11	
008 H:\Blyr	19-										☆/ E	MAINEEUM	r /	
05-19-20	20-										AI	Exilor FOF CALIF	ORIT	

£	2		BL	YN SINEE	YER rs, inc.		Soil Bore	e Log:	GP:	21	
		1630	Park	vrolet Street alifornia		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 2, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sai Soi Tol	mple Me Il Bore D	lameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20 feet : No
Depth in Feet	Blow Count Sample Recovery Sample No. 4-inch se				Reta	ected ained lyzed	Water Level ▼ .∇ 8.0 feet	USCS	GRAPHIC	(Grou	ted upon completion)
0 1 2 3						ion concrete. n (10YR 3/3) SILT	Y SAND, fine grained; dry.	SM	6, - 6,		
4 5	- La Carlo Car	0									
6- 7-		139			dry.		SILTY SAND, fine grained;	SM			
8 9	Cooks Cooks			3721-7.5	moist.	***********	30% fine sand; with clay; , fine grained, wet.	./ ML		7	
10- 11- 12-	WARRANGE A. T.	29		GP21-10.	5			SM			
13-					Olive (5Y 5/	3) SANDY SILT, f	ine grained; wet.				
15-		606		GP21-15.	wet.	own (10YR 5/6) S	ILTY SAND, fine grained,	ML SM			
17-					Grades into very loose to	Grey (10YR 5/1) of flowing; wet.	SILTY SAND, fine grained;	SM			SIONAL GEOVER DETTERMENT OF No. 1788
19-		30		SP21-19.	;firm; wet.		ILTY SAND, fine grained,	SM			CERTIFIED ENGINEERING GEOLOGIST
21-			- S		Bottom of Bo	orehole 20 feet				13	ATE OF CALIFORN

£	E		BL		YER rs, inc.		Soil Bore	e Log:	GP2	22
·			d Chev Park S da, Cal	Street		Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 2, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	Sar Soi Tot		sthod : Continuous sleeve liameter : 1.75-inch d Depth : 16 feet
Depth in Feet	Blow Count	PIO	Sample Recovery	Sample No.	Sample Ri Colle Reta Anal	ected ined yzed	Water Level _▼∇_ 7.75 feet	USCS	GRAPHIC	(Grouted upon completion)
0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10-		Dark yello grained, d Yellowish dry.				ish brown (10YR 4 rown (10YR 5/6) S	Y SAND, fine grained, dry. 4/4) SILTY SAND, fine SILTY SAND, fine grained; with 20% fine grained	SM SM		. y
12- 13- 14- 15-		Yellowish b SILT, 50% Olive SILTY wet.			Olive SILTY wet.	ne grained sand; v	e grained, loose (sluff?)	SM SM		SSIONAL GEO

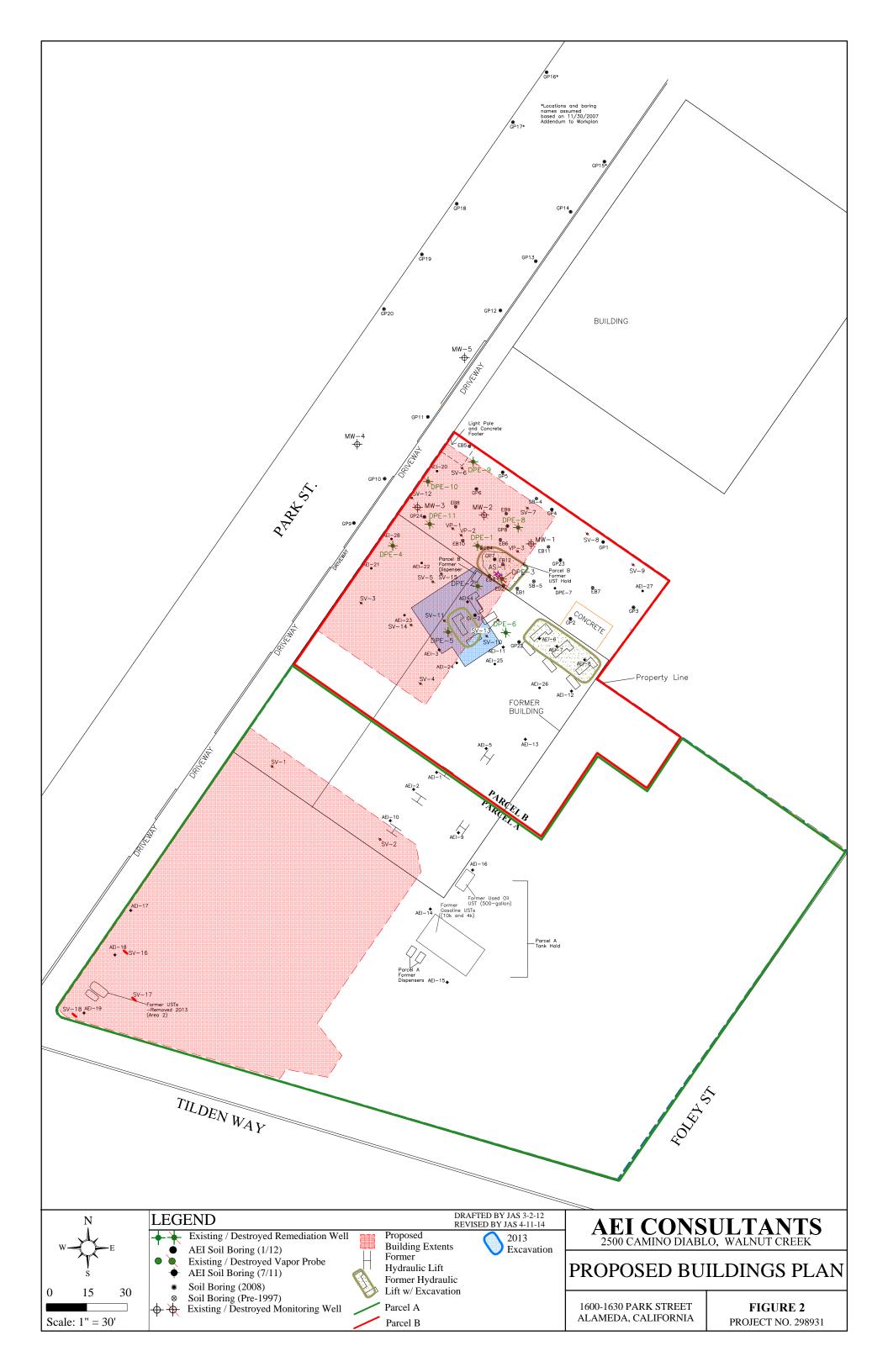
No. 1788
CERTIFIED
ENGINEERING
GEOLOGIST
E-9/01
FOF CALIFORNIA

05-19-2008 H:IBlymyer_Jobst2007/207055 Good Chevrolet Plume Define AlamedalBore Logs/GP22.bor

18-

19-

20-


L	C			GINE	ERS, INC		Soil Boi	e Log.	GF.	20	
	~	1630	Park	evrolet Street Salifornia	1	Job Number: Date Drilled: Logged By Drilling Company Driller	: 207055 : May 2, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Remirez	San Soil Tota	nple Me Bore C	Diameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20 feet : No
Depth in Feet	Blow Count PID Sample Recovery Sample No.			Ret	Recovery lected ained alyzed ecovered	Water Level _▼	nscs	GRAPHIC	(Grou	ted upon completion)	
0-	4-inch s					tion asphalt		Asphalt	e e		3
1-				-	Dark brown to damp.	n (10YR 3/3) SILT	Y SAND, fine grained, dry				
2-								SM		\otimes	
3-		0						0,111			
4-		Ü	Ш	GP23-0	3.5						
5-					Yellowish b	orown (10YR 5/6) S	SILTY SAND, fine grained;				
6-								SM		\otimes	
										\otimes	
7-			200	GP23-7	Yellowish b	rown (10YR 5/6) S	ANDY SILT, 20% fine	ML		\otimes	
8-		642			grained sai	nd, tight, very mois /3) SILTY SAND, v		SM	$\parallel \parallel$	$^{\checkmark}$	
9-					Approx 50%	6 fine sand.				\otimes	
10-								SM			
11-		255	Шт		2 inch CLA	YEY SILT, layer.					
12-	-			GP23-11	.5						
13-	ľ							SM		\otimes	
14										\otimes	
15-		28	Ш		wet.	rown (10YR 5/6) Si	ILTY SAND, fine grained,	SM			
16-								Sivi			
				GP23-1	Light olive b wet.	rown (2.5Y 5/4) SI	LTY SAND, fine grained,	SM		\otimes	SIONAL GE
17-					As above; v	ery loose to flowing	g.				1/st m
18-								SM			/ No. 1788 CERTIFIED
19-				1	Yellowish br	own (10YR 5/6) SI	LTY SAND, fine grained,	SM		核人	ENGINEERING GEOLOGIST

		<i>A</i>			· · · · · · · · · · · · · · · · · · ·				***************************************			
	£	E		-	YV ∍INEE	YER RS, INC.		Soil Bore	e Log:	GP2	24	
				Park :	vrolet Street alifornia		Job Number: Dale Drilled: Logged By Drilling Company Driller	: 207055 : May 2, 2008 : Mark Detterman : Precision Drilling, Inc. : Israel Ramirez	San Soil Tota	nple Me Bore D	lameter d Depth	: Geoprobe : Continuous sleeve : 1.75-inch : 20 feet : No
	Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Reta	ected sined lyzed	Water Level ▼ 7.0 feet	USCS	GRAPHIC	(Grout	ted upon completion)
	0 1 2 3 4	0.00				damp.		Y SAND, fine grained,	Asphalt SM			
	5-	5- Dark yello grained; d					ark yellowish brown (10YR 4/4) SILTY SAND, fine ained; damp.		SM			
	7-	i pro-				grained san Yellowish br grained san	d, wet. own (10YR 5/6) C d, tight, very mois		SM ML		▼	
Dor	9-				GP24-8.5	Dark greenis	3) SILTY SAND, v sh-gray (5GY 4/1) or; wet. Isolated	vef. SILTY SAND, fine blobs of dark free phase	SM			

05-19-2008 H: Blymyer_Jobs/2007/207055 Good Chevralet Plume Define Alameda/Bore Logs/GP24.1 between 8.5 and 9.0 ft. 10-Grades darker green at 10 - 11 ft. SM 11 Grades back to Olive. 12-13-SM 136 14-15-16-Rusty brown to yellowish brown (10YR 5/8) SILTY SAND, fine grained, very loose to flowing; wet. 136 17-18-SM 19-78 GP24-20 20-Bottom of Borehole 20 feet 21

No. 1788 CERTIFIED

APPENDIX B PROPOSED BUILDING PLAN

