

February 3, 2012

CORRECTIVE ACTION PLAN

Property Identification: 1630 Park Street Alameda, California

AEI Project No. 298931 ACEHD Fuel Leak Case No. RO0000008

Prepared for:

Foley Street Investments Attn: Mr. John Buestad 2533 Clement Avenue Alameda, CA 94501

Prepared by:

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000 RECEIVED

1:12 pm, Feb 21, 2012 Alameda County Environmental Health San Francisco HQ

Atlanta

Chicago

Costa Mesa

Dallas

Denver

Los Angeles

Miami

New York

Phoenix

Portland

San Jose

National Presence Regional Focus Local Solutions February 3, 2012

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Perjury Statement and Report Transmittal

1600 – 1630 Park Street Alameda, California 94501 AEI Project No. 298931 ACEH RO#0000008

Dear Ms. Detterman:

I declare under penalty of perjury, that the information and/or recommendations contained in the attached report for the above-referenced site are true and correct to the best of my knowledge.

If you have any questions or need additional information, please do not hesitate to call me at (510) 523-1925 or Mr. Peter McIntyre at AEI Consultants, (925) 746-6004.

Sincerely, 1 Af

John Buestad President

JB/pm

Attachment

cc: Mr. Peter McIntyre, AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597

TABLE OF CONTENTS

1.0	PROPERTY OVERVIEW	1
	Property Description Planned Development Project	
2.0	SITE HISTORY	2
2.1	Prior Environmental Work	2
3.0	CONCEPTUAL SITE MODEL	3
 3.2 3.3 3.4 3.5 3.6 3.7 	Geologic Setting and Hydrology. Release Occurrence Contaminants of Concern Soil Contamination Groundwater Contamination Well Search Preferential Pathway Study Receptors and Exposure Pathways	4 5 6 6
4.0	FEASIBILITY STUDY	8
4.2 4.3	Equipment Fieldwork Vapor Extraction Groundwater Extraction	8 8
5.0	CORRECTIVE ACTION1	0
5.2	Remedial Goals and Objectives	1
6.0	REMEDIAL ALTERNATIVES1	2
6.2 6.3	Soil Excavation 1 High Vacuum Dual Phase Extraction 1 In Situ Chemical Oxidation 1 Alternative Evaluation 1	3 5
7.0	RECOMMENDED METHOD1	7
	CONTINUED REMEDIAL ACTION1	
8.1	Additional Remediation Well Installation 1	8
9.0	REPORTING1	8
10.	REFERENCES1	9
11.	REPORT LIMITATIONS2	0

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE LAYOUT MAP
FIGURE 3	Site Map
FIGURE 4	Fence Diagram
FIGURE 5	A – A' Fence Diagram
FIGURE 6	B – B' Fence Diagram
FIGURE 7	TPH-G IN SOIL
FIGURE 8	TPH-G IN GROUNDWATER
FIGURE 9	Well Search Location Map
FIGURE 10	GROUNDWATER CAPTURE

TABLES

TABLE 1	SOIL SAMPLE ANALYTICAL DATA, TPH, MBTEX, AND POG
TABLE 2	Soil Sample Analytical Data, VOCs, Fuel Oxygenates, SVOCs, and PCBs
TABLE 3	GROUNDWATER SAMPLE ANALYTICAL DATA, TPH, MBTEX AND TRPH
TABLE 4	GROUNDWATER SAMPLE ANALYTICAL RESULTS 2011, VOCS, FUEL OXYGENATES, SVOCS, AND PCBS
TABLE 5	Soil Sample Analytical Data, Metals
TABLE 6	Groundwater Sample Analytical Data, Metals
TABLE 7	Well Construction Details
TABLE 8	GROUNDWATER ELEVATION DATA
TABLE 9	GROUNDWATER MONITORING ANALYTICAL DATA
TABLE 10	Hydrocarbon Mass Calculation (TPH-g)
TABLE 11	Well Search Table
TABLE 12	SUMMARY OF SELECT HVDPE EVENT DATA
TABLE 13	Vapor Radius of Influence
TABLE 14	Pore Exchange Volume Calculation
TABLE 15	Groundwater Radius of Influence
TABLE 16	Hydrocarbon Mass Removal in Groundwater

APPENDICES

APPENDIX A	Planned Development Layout
APPENDIX B	CALCLEAN REPORT
APPENDIX C	Remedial Cost Estimates

2500 Camino Diablo, Walnut Creek, CA 94597

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

February 3, 2012

Foley Street Investments Attn: Mr. John Buestad 2533 Clement Avenue Alameda, CA 94501

Subject: Corrective Action Plan 1630 Park Street Alameda, California AEI Project No. 298931 ACEHD Fuel Leak Case No. RO000008

Dear Mr. Buestad:

AEI Consultants (AEI) has prepared this Corrective Action Plan (CAP) on behalf of Foley Street Investments, developer of the subject site (Figures 1 and 2). The subject of this CAP is the leaking underground storage tank (LUST) case located at the property 1630 Park Street, known as the Good Chevrolet site. This property is part of a larger redevelopment site which also includes the property to the south with the address of 1600 to 1618 Park Street. Foley Street Investments plans to redevelop these properties with two commercial buildings and associated parking areas. This CAP has been prepared following discussion with the Alameda County Environmental Health Department (ACEHD) which is the agency with regulatory oversight of the LUST case.

1.0 Property Overview

1.1 **Property Description**

The development site consisting of 1600 to 1630 Park Street is an irregularly shaped property totaling approximately 1.46 acres, of which the northern portion is the 1630 Park Street site. The site is bound by Park Street to the northwest, 1650 Park Street to the northeast, Foley Street to the Southeast, and Tilden Way to the southwest in a mixed commercial and residential area of Alameda, California. Hereinafter, unless otherwise stated, the "site" will refer to the 1630 Park Street property.

The site is currently improved with a two-story showroom and office building totaling approximately 11,264 square feet and parking lot which was until approximately 2008 occupied by Good Chevrolet. Good Chevrolet also occupied the 1600 to 1618 property to the south, which is also vacant (Figures 2 and 3).

1.2 Planned Development Project

The developer plans to demolish the existing buildings and construct two commercial buildings. The northern building is planned for the area of the existing Good Chevrolet building along Park Street. The remainder of the development site will be improved with paved parking areas and landscaping. The development schedule calls for construction to begin no later than June 2012. Refer to Appendix A for the planned location of the buildings.

2.0 Site History

Based on historical research performed during a Phase I Environmental Site Assessment (ESA) conducted in June 2011 (AEI 2011a), the current building at the site was constructed in the 1940s for use as an auto garage and showroom. Good Chevrolet occupied the site from the early 1960s through 2008.

2.1 Prior Environmental Work

According to records on file with the ACEHD, one 300-gallon waste-oil underground storage tank (UST) and one 500-gallon gasoline UST were removed from adjacent to the northern side of the building in 1986 at which time a release of petroleum hydrocarbons, primarily gasoline, was discovered. Due to the discovery of a release, a case was opened with the ACEHD. The following is a summary of investigation activities that followed.

- In 1987, Groundwater Technologies installed three groundwater monitoring wells (MW-1 to MW-3) and drilled two soil borings (SB-4 and SB-5) to investigate soil and groundwater conditions around the former UST hold (GTI 1987).
- In October 1993, GeoPlexus collected and analyzed soil and groundwater samples from seven soil boring (EB1 to SB7) drilled around the UST hold along with up-gradient and down-gradient of the release (GeoPlexus 1993). It should be noted that documents indicate that two other borings (HP-1 and HP-2) were drilled up-gradient of the release area in April 1993, however details are not available. GeoPlexus installed monitoring wells MW-4 and MW-5 in April 1994 in Park Street to investigate the down-gradient extent of the hydrocarbon plume.
- In January 1997, GeoPlexus drilled an additional eight soil borings (EB8 to EB12 and P1 to P3) onsite around and down-gradient of the former UST hold (GeoPlexus 1997). Soil samples were analyzed from EB8 to EB12 and groundwater samples were analyzed for all eight borings.
- In November 1998, Geoplexus collected three soil gas samples from three borings (AGP-1 to AGP-3) in the release are and within the adjacent building (GeoPlexus 1998). GeoPlexus presented an argument for "low risk" closure however case closure was not granted.
- In April 2008, Blymer Engineers collected soil and groundwater samples from 24 soil borings (GP1 to GP24) on and offsite to characterize the extent of soil and groundwater pollution. It should be noted that AEI was not able to locate a formal report of these activities, only tables of soil and groundwater data and figures have been located.
- In June 2011, a Phase I ESA was conducted for the subject property as detailed in a report dated July 5, 2011 (AEI 2011a).

AEI Project No. 298931 February 3, 2012 Page 3 of 18

- In July 2011, a subsurface investigation was conducted at the property relating to potential environmental issues aside from the Good Chevrolet LUST case. The areas of concern investigated include five former and five existing underground hydraulic lifts, several floor drains, three existing USTs (1 550-gallon waste-oil UST, 1 10,000 gallon 1 4,000 gallon gasoline UST), and a former gasoline station identified on the southern end of the development site at the intersection of Park Street and Tilden Way. A total of 19 soil borings (AEI-1 to AEI-19) were drilled for soil and groundwater sampling. Results of the investigation are summarized in the August 16, 2011 *Phase II Subsurface Investigation Report* (AEI 2011b) prepared by AEI.
- An Interim Corrective Action Plan (ICAP) dated September 28, 2011 (AEI 2011c) was submitted and followed by an ICAP Comment Letter Response and Pilot Test Workplan Details dated November 14, 2011 (AEI 2011d). Both documents proposed the performance a high vacuum dual phase extraction (HVDPE) event at the site. A review of multiple remedial options for the site was discussed in these documents and a HVDPE event was considered the most feasible option for the site given the site conditions.
- In November 2011, extraction wells DPE-1 to DPE-3 and air sparge well AS-1 were installed. In early December, three vacuum monitoring points VP-1 to VP-3 were installed and pilot testing began. Results of the HVDPE event were preliminarily provided in the *Investigation and Remedial Action Workplan* dated January 12, 2012 (AEI 2012). The work plan also proposed the advancement of additional borings and the installation of extraction wells. In January 2012, borings AEI-20 through AEI-28 were advanced and wells DPE-4 through DPE-6, and DPE-8 through DPE-11 were installed. In addition, DPE-7 was advanced as a boring instead of being completed as a well. Information from these borings and wells is incorporated in this report. The data has helped to define the extent of impacted soil and groundwater and identify target areas for ongoing remedial action. The submittal of a formal investigation and well installation report under separate cover is planned.
- Groundwater monitoring and sampling was conducted approximately quarterly from 1992 through 1995, then sporadically through 2003, once in 2008, and in 2011 and 2012. Information from groundwater monitoring and sampling events in December 6, 2011 and January 24, 2012 is incorporated in this report. The submittal of groundwater monitoring and sampling reports for these events under separate cover is planned.

Site data is presented in Figures 3 through 8 and in Tables 1 through 9.

3.0 Conceptual Site Model

The following section presents a conceptual model of the release occurrence, including a discussion of the physical setting of the site, distribution of contaminants of concern (COCs), potential exposure pathways, and data gaps that may exist in the understanding of the release.

3.1 Geologic Setting and Hydrology

The site is located on Alameda Island. The near surface sediments of the area are mapped as Holocene and Pleistocene Merritt Sands (Qms) deposits (Helley, et al 1997). Depth to bedrock is

AEI Project No. 298931 February 3, 2012 Page 4 of 18

estimated at 300 to 800 feet below land surface (Norfleet Consultants 1998). According to information obtained from the U.S Geological Survey (USGS), the site is located at between 20 and 25 feet above mean sea level (amsl) with the local topography sloping gently to the northeast. The nearest surface water is a tidal canal connected to the San Francisco Bay located approximately 1,800 feet to the northeast of the site.

Based on previous investigations at the site, groundwater is first observed in the temporary direct push borings at depths of approximately 9 to 11 feet below ground surface (bgs) and stabilizes at between approximately 7.5 to 8.5 feet bgs. The depth to water in the groundwater monitoring wells has generally ranged from approximately 7.5 to 9.5 feet bgs since the wells were installed. Based on the groundwater monitoring conducted at the site, groundwater flows fairly consistently in a northwesterly direction at an approximate hydraulic gradient of 1×10^{-2} to 2×10^{-2} ft/ft and exists as an unconfined aquifer. Based on the logs of soil borings drilled at the site, sediments across the site are fairly consistent; consisting primarily of poorly graded fine to medium sand with varying clay and silt content. Refer to Figures 4 through 6 for fence diagrams, based on logs of borings at the site, which depict the sediments across the release area.

3.2 Release Occurrence

The release of gasoline constituents originated from the former 500 gallon gasoline UST system removed in 1986 from near the northern side of the existing building. The exact cause of the release is not known, though typically such releases occur from failures of the UST itself or the associated piping and pump system. The volume of fuel released or the duration and timing of the release is not known.

The source of the heavier range hydrocarbons present in samples recently collected within the building appears to have occurred from at least several of the five former hydraulic lifts at the northern end of the building. Again, the timing or duration of the oil release or total volume released is not known.

3.3 Contaminants of Concern

The primary contaminants of concern at the site consist of gasoline range hydrocarbons and gasoline constituents and oil range hydrocarbons released from the former hydraulic lifts in the northeastern area of the existing building. The following exhibit presents a summary of the maximum concentrations of the more significant contaminants of concern in soil and groundwater.

AEI Project No. 298931 February 3, 2012 Page 5 of 18

Contaminant	Maximum Concentration in Soil			Maximum Concentration in Groundwater		
	mg/kg	Date	Sample ID	µg/l	Date	Sample ID
TPH-g	15,000	10/15/1993	EB2-2S	200,000	7/25/2011	AEI-4-W
Benzene	84	10/15/1993	EB2-2S	21,000	7/25/2011	AEI-4-W
Toluene	710	10/15/1993	EB2-2S	30,000	7/25/2011	AEI-4-W
Ethyl benzene	260	10/15/1993	EB2-2S	4,400	1/17/2012	AEI-20
Xylenes	1,400	10/15/1993	EB2-2S	21,000	5/1/2008	GP8W
MTBE	9.3	1/21/1997	EB10-S1	110	1/21/1997	EB12-WS1
TPH-d	10,000	7/25/2011	AEI-6-7′	120,000	7/25/2011	AEI-6-W
TPH-mo	24,000	7/25/2011	AEI-6-7'	300,000	7/25/2011	AEI-6-W

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

TPH-mo = Total petroleum hydrocarbons as motor oil

MTBE = Methyl tertiary butyl ether

3.4 Soil Contamination

Gasoline impacted soil is centered on the former UST hold and extends laterally in each direction, primarily toward the north and northwest to beneath Park Street. To the east, south, and east, impacted soil extends approximately 20 to 40 feet from the former UST hold and approximately 100 feet to the north. The lateral extent of gasoline impacted soil is reasonably well defined in each direction (Figure 7). Based on the results of previous investigations including a subsurface investigation in July 2011 (AEI 2011b), it appears that oil impacts to the subsurface are localized around the former piston areas.

The vertical extent of impacted soil has been generally well defined by past investigations. Vertically, the top of the impacted zone is at approximately 7 to 8 feet bgs and ends between approximately 12 to 14 feet bgs. The impacted thickness of the approximately 4 to 8 feet corresponds to just above the water table (capillary fringe) to several feet below the average water table (Figures 4 through 6). At distance from the release area, the thickness of impacted soil generally decreases to approximately 3 to 4 feet, as observed in recent borings AEI-22, AEI-23, and AEI-28.

An estimate of the hydrocarbon mass in soil based the data from the site was performed (Table 10). This estimate is inherently inaccurate due to the limitations in estimating values within a complex geologic environmental. As such, this estimate is useful only as estimate of the order of magnitude of the hydrocarbon mass.

3.5 Groundwater Contamination

The dissolved phase plume is also centered on the former UST hold and spreads generally in a northwesterly direction (Figure 8). The higher concentrations of the dissolved phase plume are generally defined in each direction. Based on the dissolved-phase and groundwater sampling from the soil borings, it appears that the length of the plume at this site is no more than approximately 200 feet in length. Based on groundwater monitoring data, concentrations have generally decreased over the last 10 years.

An estimate of the hydrocarbon mass in groundwater based the data from the site was performed (Table 10). This estimate is inherently inaccurate due to the limitations in estimating values within a complex geologic environmental. As such, this estimate is useful only as estimate of the order of magnitude of the hydrocarbon mass.

3.6 Well Search

In January 2012, a 2,000-foot radius well search was requested and received from the Alameda County Department of Public Works (ACDPW). The results of the well search were reviewed and wells which appeared to be associated with monitoring or remediation at other sites or soil borings were excluded from the review. According to the results of the well search, ten (10) wells are located within 2,000 feet of the property (Figure 9 and Table 11).

Based on the dissolved-phase and groundwater sampling from the soil borings, it appears that the length of the plume at the site is no more than approximately 200 feet in length. None of the wells noted in this well search are located within the expected plume length for this site. As such, none of the listed wells are expected to be impacted by the hydrocarbons at the site.

3.7 Preferential Pathway Study

A preferential pathway study is currently underway for the site. A review of a previous utility map for the site was completed along with field work to identify significant utilities in the area of the site. The results of this study will be presented under separate cover.

3.8 Receptors and Exposure Pathways

Potential exposure pathways and receptors were evaluated based on the current site usage. Potentially complete exposure pathways and receptors are identified based on the following criteria:

- A source and mechanism of chemical release;
- One or more retention or transport media;
- A potential exposure point with the media; and
- An exposure route at the point of contact.

The site is currently improved with a two-story showroom and office building. The developer plans to demolish the existing buildings and construct two commercial buildings. The remainder

AEI Project No. 298931 February 3, 2012 Page 7 of 19

of the development site will be improved with paved parking areas and landscaping. As such, the potential exposure pathways and receptors were evaluated for the following:

- Commercial workers
- Construction workers
- Sensitive receptors

Soil (Near or Subsurface)

The site has a paved surface. The direct exposure pathway for near surface soil is considered incomplete for commercial workers and potentially complete for construction workers. Commercial workers are not expected to come into contact with subsurface soils whereas construction workers may contact these soils if excavation at the site is performed.

Air (Indoor and Outdoor)

The vapor intrusion pathway from impacted soil and/or groundwater to indoor or outdoor air is potentially complete where volatile contaminants are present in shallow soils beneath a structure which can be occupied.

Groundwater

The direct exposure pathway for impacted groundwater is considered incomplete for commercial workers. According to the East Bay Municipal Utility District (EBMUD) *2010 Annual Water Quality Report*, drinking water is supplied by the EBMUD and the source of the water is the Mokelumne River watershed in the Sierra Nevada.

The direct exposure pathway for impacted groundwater is considered potentially complete for construction workers. Construction workers may contact with groundwater if excavation at the site is performed.

The direct exposure pathway for nearby wells is considered incomplete. None of the nearby wells are expected to be impacted by the site according to the well search (Section 3.6) considering the length of plume discussed in Section 3.5.

Surface Water

The direct exposure pathway from impacted groundwater to surface water is considered incomplete. The nearest surface water is a tidal canal connected to the San Francisco Bay located approximately 1,800 feet to the northeast of the site. Based on the dissolved-phase and groundwater sampling from the soil borings, it appears that the length of the plume at the site is no more than approximately 200 feet in length. Based on the distance to the nearest water body, surface water is not expected to be impacted by the concentrations of hydrocarbons at the site.

4.0 Feasibility Study

From December 5, 2011 to January 9, 2012, CalClean, Inc. (CalClean) of Tustin, California performed a HVDPE event under the oversight of AEI. The work performed was proposed as part of an interim corrective action and feasibility study which was previously proposed (AEI 2011c and AEI 2011d). Preliminary results of this work were previously submitted (AEI 2012). A report from CalClean is included as Appendix B.

DPE is a technique of applying a high vacuum or negative pressure on an extraction well and the formation in order to enhance the liquid recovery of that well and while also increasing the mass removal of volatile and semi volatile contaminants by maximizing dewatering and facilitating volatilization from previously saturated sediments via the increased air movement.

4.1 Equipment

The event was performed using a low-noise truck-mounted 450-CFM high vacuum liquid ring blower and a propane-fired thermal oxidizer. The thermal oxidizer was permitted with the Bay Area Air Quality Management District with a various locations permit.

The extracted groundwater was treated through two 500-pound vessels in series filled with granular activated carbon. The treated groundwater was discharged to the onsite sewer system in accordance with a Special Discharge Permit from the EBMUD.

A Horibia organic vapor analyzer was used to measure the system influent concentrations of hydrocarbons in the field. Vapor samples were collected from the individual extraction wells and from the system inlet and submitted for laboratory analysis. Magnahelic vacuum gauges were used to measure the vacuum readings for the system and for the extraction and observation wells. A totalizer water meter was used to measure the amount of water extracted.

4.2 Fieldwork

During the event, the DPE system was connected to extraction wells DPE-1, DPE-2, DPE-3, and MW-2 individually or in combination. Wells which were not used for extraction were instead used for observation. Additional observation wells included wells MW-1 through MW-3, and VP1 through VP3. Well MW-3 was temporarily connected as an extraction well and well AS-1 was temporarily connected as a sparging well. The DPE activities were conducted for a total of 35 days.

Baseline depth-to-water measurements were obtained from wells AS-1, DPE-1, DPE-2, DPE-3, and MW-1 through MW-3 prior to the event (Table 12).

4.3 Vapor Extraction

During the event, the system parameters were collected and included in the report by CalClean (Appendix B). These system parameters were the system vacuum in inches of Hg, the total system inlet flow in standard cubic feet per minute (scfm), and the influent concentrations in parts per million by volume (ppmv).

AEI Project No. 298931 February 3, 2012 Page 9 of 20

The average unit vacuum ranged from 15 to 22 inches of mercury (inches of Hg) and the average total system inlet flow ranged from 89 to 177 scfm (Appendix B, Table 2).

The extraction casing vacuum(s) in inches of Hg were also measured along with the induced vacuum measurements in the observation wells in inches of H_2O . Field data from the event is included with the report by CalClean (Appendix B). Data from the end of an operation of one or more extraction wells and used for data analysis is summarized in Table 12.

The vapor extraction radius of influence (ROI) is typically defined as the distance corresponding to an induced vacuum of 0.1 inches of H_2O (EPA 2004). An ROI is estimated as the intersection at 0.1 inches of H_2O of the line created by the linear regression of the induced vacuum of the observation wells versus the log of the distances from an extraction well to the observation wells. The observed induced vacuum in vapor probes VP-1 through VP-3 and all other observation wells were used separately to calculate the ROIs for the extraction wells. The average of the calculated ROIs for the extraction wells was 19 feet using the vapor probes as observation wells and as 30 feet using all other wells (Table 13).

A pore volume exchange volume calculation was performed based on the information from the event. The exchange rate is calculated by dividing the soil pore space within the treatment zone by the design vapor extraction rate (EPA 2004). The average number of pore volumes exchanged per day was calculated as 10.12 (Table 14). An exchange rate of at least one pore volume per day is considered a minimum for vapor extraction.

The maximum vapor concentrations based on laboratory data in wells DPE-1 through DPE-3 and MW2 were 7,500 ppmv, 4,000 ppmv, 15,000 ppmv, and 1,000 ppmv, respectively. The maximum system inlet vapor concentration based on laboratory data was 7,400 ppmv. The total equivalent amount of hydrocarbons recovered through vapor extraction during the event was 6,422.16 pounds based on laboratory data and 4,274.15 pounds based on the Horiba field organic vapor analyzer data with an average of 5,348.16 pounds (approximately 891 gallons assuming a density of 6 pounds per gallon) (Appendix B, Table 1).

4.4 Groundwater Extraction

The quantity of groundwater extracted was measured at various times during the event. The rate of groundwater extraction was calculated as 0.60 gpm from DPE-1, 0.24 gpm from DPE-2, 0.43 gpm from DPE-3, 0.36 gpm from MW-2, and 0.94 gpm from a combination of wells DPE-1 through DPE-3 (Table 12).

The depth to water level measurements in the observation wells were collected. Data loggers also collected data from the wells. Field data from the event is included with the report by CalClean (Appendix B). Data from the end of an operation of one or more extraction wells and used for data analysis is summarized in Table 12.

The groundwater extraction radius of influence is estimated by examining the depth to water levels in the observation wells during the event. The longest duration extraction occurred when wells DPE-1 through DPE-3 were extracted for a period of 20.8 days which resulted in

AEI Project No. 298931 February 3, 2012 Page 10 of 20

drawdowns of 1.22, 1.04, and 0.87 feet, respectively, in wells MW-1 through MW-3 (Table 15). It is clear that the operation of the system at extraction wells DPE-1 through DPE-3 is at least effective in influencing the water levels in wells MW-1 through MW-3. Since well MW-2 is the well which is closest to an extraction well (DPE-1), the distance between MW-2 and DPE-1 of 13 feet is used as an estimate of the ROI for groundwater extraction (Figure 10).

Groundwater sampling of all extraction wells was conducted on December 6, 2011 which was at the beginning of the event and on January 24, 2012 which was after the event. A decrease in the concentrations of TPH-g and benzene in groundwater from the extraction wells was noted after the event (Table 9).

The total volume of groundwater extracted from the event was 43,530 gallons. Using this data, an average concentration and the mass of hydrocarbons removed from the event was estimated. An estimated total of 2.48 pounds of TPH-g, 0.30 pounds of benzene, 0.25 pounds of toluene, 0.10 pounds of ethylbenzene, and 0.39 pounds of xylenes were removed (Table 16).

5.0 Corrective Action

5.1 Remedial Goals and Objectives

Based on the California Code of Regulations, Title 23, Division 3, Chapter 16, Section 2725(g)(1), for waters with current or potential beneficial uses for which numerical objectives have been designated in water quality control plans, the responsible party shall propose at least two alternatives to achieve these objectives. The experience of the environmental industry during cleanup efforts has shown that numerical objectives may not be economically or technically attainable with the technology currently available. Typically, mass removal rates of groundwater remediation reach asymptotic levels prior to reaching numerical objectives. If asymptotic levels are reached during remedial efforts, further active remediation may not significantly reduce groundwater concentrations at rates any greater than natural processes. The reduction of petroleum hydrocarbon contaminants in the subsurface by natural processes is well documented and widely accepted. It is anticipated that following active remedial efforts that remove a large fraction of the source hydrocarbons, that residual contaminants will be monitored to demonstrate that the site will meet the numeric goals and remedial objectives within a reasonable time frame as a result of natural attenuation processes.

The San Francisco Bay Region (Region 2) Water Quality Control Plan (Basin Plan) dated December 31, 2010 was reviewed. According to the Basin Plan, the site lies within Basin 2-9.04 which is identified as the Santa Clara Valley Basin, East Bay Plain Sub-basin which is identified with the following existing beneficial uses: Municipal and domestic water supply; industrial process and service water supply; and agricultural water supply. The Maximum Contaminant Levels (MCLs) as specified in the California Code of Regulations are proposed as the numerical objectives for the cleanup of BTEX and MTBE in groundwater. The Environmental Screening Levels (ESLs) issued by the Regional Water Quality Control Board (RWQCB) may be used for chemicals commonly found in groundwater at sites where releases of hazardous chemicals have occurred. The final groundwater ESLs for sites where groundwater is a current or potential

AEI Project No. 298931 February 3, 2012 Page 11 of 20

drinking water resource water resource (Table F-1a) are proposed as the numerical objectives for the cleanup of TPH-g and TPH-d in groundwater. The proposed cleanup goals are summarized below:

- TPH-g 100 μg/l
- TPH-d 100 µg/l
- Benzene 1 µg/l
- Toluene 150 µg/l
- Ethylbenzene 300 µg/l
- Xylenes 1,750 μg/l
- MTBE 5 μg/l

The ultimate remedial objectives for the site are to be protective of groundwater quality and human health. Interim corrective action was previously proposed (AEI 2011c and AEI 2011d) and implemented (AEI 2012) in order to begin to remove remaining source material present in the soil both above and below the water table around the former tank hold and to reduce the most significant concentrations of dissolved-phase contaminants.

The primary objective of the interim action is to remove source mass that may pose a threat to human health and act as a source for further groundwater impact. A secondary objective is to reduce the impact to groundwater and control migration of the dissolved-phase petroleum hydrocarbon plume. By limiting further impact to groundwater and treating significantly impacted groundwater around the release area, natural attenuation processes of residual dissolved phase contaminants is more likely to proceed.

5.2 Screening Criteria for Corrective Action Alternatives

The selection of an appropriate remedial alternative for corrective action at the site is based on evaluation of the following criteria:

Reduction of Mass: This criterion establishes preference for an alternative that will produce permanent and significant mass reductions. The evaluation focuses on the amount of chemicals to be destroyed or treated, the type and quantity of residual chemicals that will remain after treatment, and the effectiveness of the remedial alternatives.

Feasibility: The evaluation focuses on the possibility of implementation given site constraints, reliability of the technology, and the ability to monitor the performance of an alternative. Each alternative requires evaluation against site-specific hydrogeologic conditions.

Cost: This criterion is used to assess capital and operation and maintenance (O&M) costs on a conceptual level only. Capital costs include direct costs, such as equipment purchase and site construction/development, and indirect costs, including fees for engineering design and permitting, and startup expenses. O&M costs include ongoing labor, materials, repairs, administrative fees, and reporting costs during the operating and monitoring period.

5.3 Planned Site Development

The developer plans to demolish the existing buildings and construct two commercial buildings. The northern building is planned for the area of the existing Good Chevrolet building along Park Street. The remainder of the development site will be improved with paved parking areas and landscaping. The development schedule calls for construction to begin no later than June 2012. Refer to Appendix A for the planned location of the buildings.

The development schedule does not include post remediation monitoring, the need for postremediation natural attenuation, or obtaining final case closure but does anticipate major onsite activities being completed so that construction of the proposed commercial building can begin. Based on this schedule, the active remedial options considered in detail below were selected because they could reasonably be expected to either be completed prior to the beginning of construction or because installation could occur prior to construction and implementation occur with minimal disruption during and following development. These options were selected with the understanding that ongoing natural attenuation monitoring would be required prior to case closure once the development project has been completed.

6.0 Remedial Alternatives

A discussion and evaluation of potentially feasible and effective remedial alternatives considered for interim corrective action is presented in this section. The methods presented below include the following:

- Excavation and disposal of impacted soils with dewatering and on-site treatment and disposal (sewer or storm discharge) of contaminated groundwater;
- HVDPE extraction; and
- Installation of in situ chemical oxidation (ISCO) system via ozone spaging coupled with vacuum vapor control system prior to construction of the commercial building to operate during and following construction of the commercial building.

6.1 Soil Excavation

Soil excavation consists of the physical removal or excavation of impacted soil to the water table, but can often extend below the water table if soil conditions allow. This option was selected for consideration since it has a high degree of certainty of removal and, given the clients time constraints on the project, is one of the more expedient remedial options. Once above ground, soils can either be treated onsite (if space and time allow) or transported offsite to an appropriate disposal facility. Soil excavation can be accomplished in all fine- and coarse-grained soil types.

Reduction of Mass:

A relatively significant amount of soil beneath the site is impacted by the petroleum hydrocarbons from the gasoline release as well as in the lift area. An excavation area of approximately 5,225 square feet to a depth of 12 to 14 feet would remove the majority of

AEI Project No. 298931 February 3, 2012 Page 13 of 20

significant onsite impacted soil. It is expected that the top 5 to 7 feet of soil may be clean and possibly suitable for reuse. Based on this approximately 2515 cubic yards (cy) of soil would be excavation, approximately 40% of which is expected to be clean overburden (approximately 1,005 cy) and 1,510 cy would require disposal. This corresponds to approximately 2,200 tons of soil (assuming a density of 1.45 tons/cy).

Feasibility:

The following project-specific conditions impact the cost and feasibility of this approach:

- Much of the impacted soil is within the capillary fringe and beneath the water table. Dewatering efforts may be significant, the costs of which are difficult to estimate as no study has been performed on hydraulic properties of the aquifer. Excavation of saturated sediments can result in increase soil weight, due to water content, and can slow excavating, soil handling, and backfilling.
- The sediments beneath the site are primarily sandy; therefore, shoring is expected to be required along the northwestern edge of the excavation at the sidewalk and property lines. Other walls of the excavation could likely be sloped to provide adequate safety and stability.
- Some of the onsite wells would need to be properly decommissioned prior to excavation and additional wells reinstalled at a later time.
- Impacted soil beneath the sidewalk or street would remain. Although this limitation is common, the residual soil could increase the natural attenuation and case closure timeframe.
- The volume of soil to be removed are based on available data, however typically field observations and screening are utilized to determine excavation boundaries; therefore the final volume of soil removed may be more (or less) than estimated.

Cost:

Based on the scope of excavation outlined above, the cost for remedial action is estimated at \$491,325 and the total cost to closure is estimated at \$596,355 (Appendix C).

6.2 High Vacuum Dual Phase Extraction

HVDPE utilizes vacuum pumps capable of achieving relatively high applied vacuum to the subsurface via extraction wells. This approach is a commonly applied variant on traditional soil vapor extraction (SVE) with the added advantage of extracting groundwater and lowering the water table to allow for removal of adsorbed or "trapped" volatile organics from beneath the water table. Water is treated with an air-stripper and/or activated carbon prior to discharge to the sewer or storm drain and vapor phase contaminants typically burned in a thermal or catalytic oxidizer. HVDPE can be supplemented with air sparging (injection of air below the contaminant mass below the water table) to mobilize sorbed contaminants below the water table and transfer dissolved phase contaminants to the vapor phase for removal. HVDPE is a well proven approach for removal of volatile contaminants including gasoline and under some conditions heavier range petroleum. HVDPE can be implemented by installing fixed equipment

AEI Project No. 298931 February 3, 2012 Page 14 of 20

or utilizing mobile equipment. HVDPE is more successful in relatively course soils where acceptable air and water flow rates can be achieved.

Reduction of Mass:

In December 2011 and January 2012, a 35-day HVDPE event was performed as noted in Section 4.0. During the event, the HVDPE was connected to wells DPE-1, DPE-2, DPE-3, and MW-2 individually or in combination. These wells are located within area of greatest soil and groundwater impacts at the site (Figures 7 and 8). Additional nearby observation wells included wells MW-1 through MW-3, and VP1 through VP3.

The operation of HVDPE at the extraction wells was effective in influencing the vacuum levels and groundwater levels of the nearby observation wells at the site. The maximum system inlet vapor concentration based on laboratory data was 7,400 ppmv. The total equivalent amount of hydrocarbons recovered through vapor extraction during the event was an average of 5,348.16 pounds.

While HVDPE was effective in removing hydrocarbons from the vapor stream, it was less effective at removing hydrocarbons from the groundwater stream. The total volume of groundwater extracted from the event was 43,530 gallons. An estimated total of 2.48 pounds of TPH-g and 0.30 pounds of benzene were removed. A decrease in the concentrations of TPH-g and benzene in groundwater from the extraction wells was noted after the event.

Feasibility:

Given the time constraints on implementing remedial action as well as the field-flexibility and lower capital costs of mobile equipment, the implementation of HVDPE is considered more feasible with mobile equipment rather than with a fixed-based system.

Interim corrective action was proposed (AEI 2011c and AEI 2011d) and implemented (AEI 2012) in order to begin to remove a significant portion of the remaining source material present in the soil both above and below the water table that is present around the former tank hold and to reduce the most significant concentrations of dissolved phase contaminants. In December 2011 and January 2012, wells DPE-1 through DPE-6 and DPE-8 through DPE-11 were installed at the site. These wells are designed as part of a network of remediation wells to treat the larger source area.

It should be noted that HVDPE may be less effective at removing heavier range oils, therefore if sufficient heavier range petroleum cannot be removed and/or the concentrations remaining are not able to meet risk-based objectives, excavation or an alternative method may be required. For the purpose of estimating remedial costs, the excavation and disposal of approximately 355 cy (515 tons) is included in the estimate for HVDPE.

AEI Project No. 298931 February 3, 2012 Page 15 of 21

Cost:

The total cost of HVDPE is estimated at \$476,090. This includes the cost to closure, including excavation and disposal of approximately 515 tons of soil from the hydraulic lift release area (Appendix C).

6.3 In Situ Chemical Oxidation

ISCO involves the use of an oxidant such as permanganate, ozone, hydrogen peroxide, or the hydroxyl radical (Fenton's reagent) to chemically destroy the hydrocarbons. The selected oxidant must be injected into the impacted soils and groundwater to be in direct contact with the contaminant. The effectiveness of chemical oxidation is dependent on the nature of the contaminants, soil type, permeability, organic carbon and mineral content, heterogeneity or homogeneity of the soil matrix, distribution of contaminants, and the presence of free product. ISCO utilizing ozone sparging is considered a potentially viable option for this site. Ozone, with an electrochemical potential of 2.07V, is one of the most powerful oxidants available for ISCO and has become a widely used method for hydrocarbon treatment. Ozone sparging involves the injection of highly concentrated ozone (up to 6% by weight) blended with air below the water table using sparge wells. In addition to direct oxidation of hydrocarbons, ozone sparging shares many similarities with air sparging by increasing volatilization, supplying oxygen for aerobic biodegradation, and promoting some degree of groundwater mixing.

Reduction of Mass:

The gasoline contaminants at the site are highly favorable to ozone sparging and oil range hydrocarbons are moderately favorable to such treatment. An ozone system has the advantage of relatively low operation and maintenance costs compared to other fixed equipment remediation system (such as SVE and groundwater pump and treat) if treatment must continue for longer than estimated.

Feasibility:

Several project specific conditions are considered during the evaluation of this approach:

- Pilot testing of ISCO methods, including ozone sparging would be required to evaluate the radius of influence of sparge wells (for optimum well network design) and to assess whether problematic reaction by-products, such as chromium VI, would be produced.
- Ozone treatment would be expected to require 18 to 36 months to treat the source area and adequately reduce dissolved contaminant conversation. This would require installation of sparge points and conduit during redevelopment of the property, with operation of treatment system to continue after development completion.
- Operation of a sparging system beneath and around a commercial building would require vapor control to mitigate risk of increased vapor intrusion. A vapor control system would consist of horizontal piping beneath the structure connected to a small blower and appropriate abatement devise (likely activated carbon). Such a system would be designed to maintain a negative pressure gradient beneath the structure to remove and treat any fugitive created by the sparging process rather than as a mass removal system (as would be the design of traditional SVE system).

Cost:

Estimated costs for installation and operation of an ozone sparging system for 30 months is \$365,050 and total cost to closure estimated at \$518,450 (Appendix C).

6.4 Alternative Evaluation

Reduction of Mass and Feasibility:

The excavation and disposal of soil is expected would be expected to be the option with the highest likelihood of directly reducing the hydrocarbon mass in the subsurface assuming that impacted soils do no extend beyond the known limits of the release. In the event that additional removal is needed, extending the excavation laterally is relatively simple, to the extent that such additional removal does not extend toward a property boundary of sidewalk. Complications caused by excessive water infiltration could be significant when excavating up to 7 feet below the water table including slope stability of unshored sidewalls, soft ground for equipment, and handling of saturated sandy soils.

The effectiveness of HVDPE and ozone sparging are highly dependent on the ability to move liquids and gas through the subsurface. The HVDPE event performed showed that HVDPE was effective in removing hydrocarbons from the vapor extraction portion of the event although the removal of hydrcarbons from the groundwater portion was lower. Ozone sparging is expected to be less effective than HVDPE or excavation and disposal due to the fact that it is an in-situ remedial option which does not involve the direct removal of hydrocarbons from the subsurface.

HVDPE utilizing mobile equipment includes the inherent flexibility to focus energy on well(s) that require additional treatment without the need for system redesign or additional installations. Installation of ozone sparging and vapor control system prior to construction of the building runs the risk of complicating construction and damage remediation system wells and piping during construction. HVDPE extraction well installation and operations face no significant feasibility limitations if implemented prior to or following demolition activities to avoid disruptions to operations or damage to wells.

Cost:

The cost estimates for each of the three options includes implementation of each option plus the costs of other tasks which may be expected to be necessary to achieve case closure, such as filling data gaps, groundwater monitoring, and closure tasks and decommissioning. However a contingency multiplier has not been applied.

Based on the costs estimated for these three options, the cost of HVDPE and ozone sparging have the lowest costs to achieve case closure while excavation and disposal has the highest estimated cost (Appendix C).

AEI Project No. 298931 February 3, 2012 Page 17 of 21

The most significant variable in the cost of HVDPE is the time necessary to perform adequate removal. This estimate is includes 4 months of extraction; based on an estimate prepared by CalClean, Inc. Each additional month of treatment could increase costs by approximately \$70,000, based on the CalClean estimate.

Ozone sparging has the lowest incremental cost if additional treatment is required of approximately \$3,100 per month. By installing ozone system for operation following construction of the planned development, if increase treatment times are required, operation and maintenance costs are relatively low and system operation can continue as needed for extended periods of time with little additional disruption to the property.

Excavation costs could increase if additional shoring is necessary or due to complications cased by shallow groundwater conditions. In addition, the cost estimate assumes that the top 40% of soils are suitable for reuse. If such soils cannot be reused due to the presence of contamination or its use is limited (reuse of soils within 5 feet of the water table can be limited by regulation), costs could increase for additional transportation and disposal and backfill material. In all cases, if upon filling the identified data gaps, additional areas require treatment, costs would likely increase.

7.0 Recommended Method

Based on the above discussion, all methods are technically feasible however HVDPE and excavation have the highest likelihood of success. Based on the required timing of remedial implementation and other factors outlined above, HVDPE has been selected as the remedial option for the site. Concurrence of HVDPE as the remedial method using a mobile treatment system is requested from the ACEHD.

8.0 Continued Remedial Action

Interim corrective action was proposed (AEI 2011c and AEI 2011d) and implemented (AEI 2012) in order to begin to remove a significant portion of the remaining source material present in the soil both above and below the water table that is present around the former tank hold and to reduce the most significant concentrations of dissolved phase contaminants. In January 2012, borings AEI-20 through AEI-28 were advanced and wells DPE-4 through DPE-6, and DPE-8 through DPE-11 were installed. In addition, DPE-7 was advanced as a boring instead of being completed as a well. The submittal of a formal investigation and well installation report under separate cover is planned.

The HVDPE system was remobilized to the site and operation restarted on January 25, 2012. It is expected that mobile treatment of the site using HVDPE will continue based on the results of the HVDPE event. The primary objective of resumed HVDPE will be to maximize hydrocarbon recovery rates and reduce the overall mass of petroleum in and around the release area. To maximize rates, the system will be operated on a set of 3 to 4 wells until rates decline, after which that set of wells will be allowed to rebound while a new set of wells will be used for extraction. All vapor and water discharge will be performed under permits obtained by CalClean. Routine data collection will include system and wellhead vacuums, system flow rates, individual and combined total hydrocarbon concentrations (Horiba field measurements and periodic

AEI Project No. 298931 February 3, 2012 Page 18 of 21

laboratory analyses), vacuum influence, and water flow rates. Water levels will be recorded in select wells. It is expected that HVDPE may run for 2 to 4 months following the recent remobilization. The ACEHD will be updated on the schedule and provided regular updates on the operations and progress.

8.1 Additional Remediation Well Installation

Based on the results of the HVDPE event, data obtained during recent soil borings and well installation work, the installation of additional extraction wells is proposed. The installation of 3 additional extraction wells is planned. The well locations have been selected to cover areas of documented significant remaining petroleum hydrocarbons (Figure 10).

Prior to mobilizing, well construction permits will be obtained from ACPWA, the site will be marked and underground service alert north will be notified, and a private utility locating service retained to clear the planned drilling locations.

The drilling and well installation will be performed with a hollow stem auger drilling rig. Borings will be cored to log soil and determine the interval of the well screens. It is planned that DPE wells will be screened from approximately 7 to 16 feet bgs, although exact screen intervals will be determined in the field; DPE wells will be constructed of 4" diameter flush threaded and factory slotted (0.010) well casing. The annulus of each well will be filled with sand to above the screen interval, with 1 to 2 feet of bentonite above the sand interval, and sealed to the surface with cement grout in accordance with ACPWA permitting conditions and remediation standard well construction practices. The tops of each well will be affixed with a locking, expanding well cap and a traffic-rated well box.

Soil samples may be collected during well installation and retained for analyses. It is expected that 1 to 2 soil samples may be analyzed for TPH as gasoline, diesel, or motor oil with silica gel cleanup (for diesel / motor oil analyses) by EPA Method 8015 and for MTBE and benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021.

Upon completion of the wells, Department of Water Resources (DWR) well registration forms (DWR 188 forms) will be filed. Each of the newly installed wells, along with recently installed DPE wells and monitoring points and existing groundwater monitoring wells, will be surveyed relative to each other, mean sea level, and major site features; survey data will be uploaded to the GeoTracker database.

9.0 Reporting

Subsurface investigation, well installation, and routine quarterly groundwater monitoring and remediation progress reports will be submitted. All work will be performed under the direction of and reports prepared under the seal of a California licensed professional geologist or engineer and reporting uploaded to the GeoTracker database and ACEHD electronic data portal.

AEI Project No. 298931 February 3, 2012 Page 19 of 21

10.0 References

AEI Consultants (AEI) 2011a. Phase I Environmental Site Assessment, 1600 – 1650 Park Street, 1600 – 1606 Foley Street, 2329 Pacific Avenue, Alameda, California. July 5, 2011.

AEI Consultants (AEI) 2011b. Phase II Subsurface Investigation, 1600 to 1630 Park Street, Alameda, California. August 16, 2011.

AEI Consultants (AEI) 2011c. Interim Corrective Action Plan, 1630 Park Street, Alameda, California. September 2011.

AEI Consultants (AEI) 2011d. ICAP Comment Letter Response and Pilot Test Workplan Details, 1630 Park Street, Alameda, California. November 2011.

AEI Consultants (AEI) 2012. Investigation and Remedial Action Workplan, 1630 Park Street, Alameda, California. January 12, 2012.

EPA (United States Environmental Protection Agency). 2004. How to Evaluate Alternative Cleanup Teclmologies for Underground Storage Tank Sites, A Guide for Corrective Action Plan Reviewers. May 2004.

GeoPlexus Incorporated (GeoPlexus) 1993. Supplemental Site Characterization, Good Chevrolet 1630 Park Street, Alameda, CA. October 28, 1993.

GeoPlexus Incorporated (GeoPlexus) 1997. Phase II Remedial Investigation Report, Good Chevrolet 1630 Park Street, Alameda, CA. April 30, 1997

GeoPlexus Incorporated (GeoPlexus) 1998. Preliminary Remedial Risk Assessment for Good Chevrolet 1630 Park Street, Alameda, CA. December 18, 1998.

Groundwater Technology, Inc. (GTI) 1987. Report Subsurface investigation Good Chevrolet 1630 Park Street, Alameda, CA. April 29, 1987.

Helley, E.J. and R.W. Graymer (Helley, et al) 1997. "Quaternary Geology of Alameda County and Surrounding Areas, California: Derived from the Digital Database Open-File 97-97", 1997

Norfleet Consultants 1998. "Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, California". Prepared for the Friends of the San Francisco Estuary, P.O. Box 791, Oakland, California. June 15, 1998.

11.0 Report Limitations

This report has been prepared by AEI Consultants relating to the property located at 1630 Park Street, in the City of Alameda, Alameda County, California. This report includes a summary of site conditions and relies heavily on information obtained from public records and other resources; AEI makes no warrantee that the information summarized in this report includes consideration of all possible resources or information available for the site, whether referenced on not. Material samples have been collected and analyzed, and where appropriate conclusions drawn and recommendations made based on these analyses and other observations. This report may not reflect subsurface variations that may exist between sampling points. These variations cannot be fully anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This document should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s) and petroleum products, the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. This document contains estimates of costs for various activities that could be implemented at the site. These estimates are based on reasonably expected costs for similar activities; however, AEI provides no guarantee implicit or explicit that costs will not be significantly higher or lower than those estimated. All specified work has been performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and performed under the direction of appropriate California registered professionals.

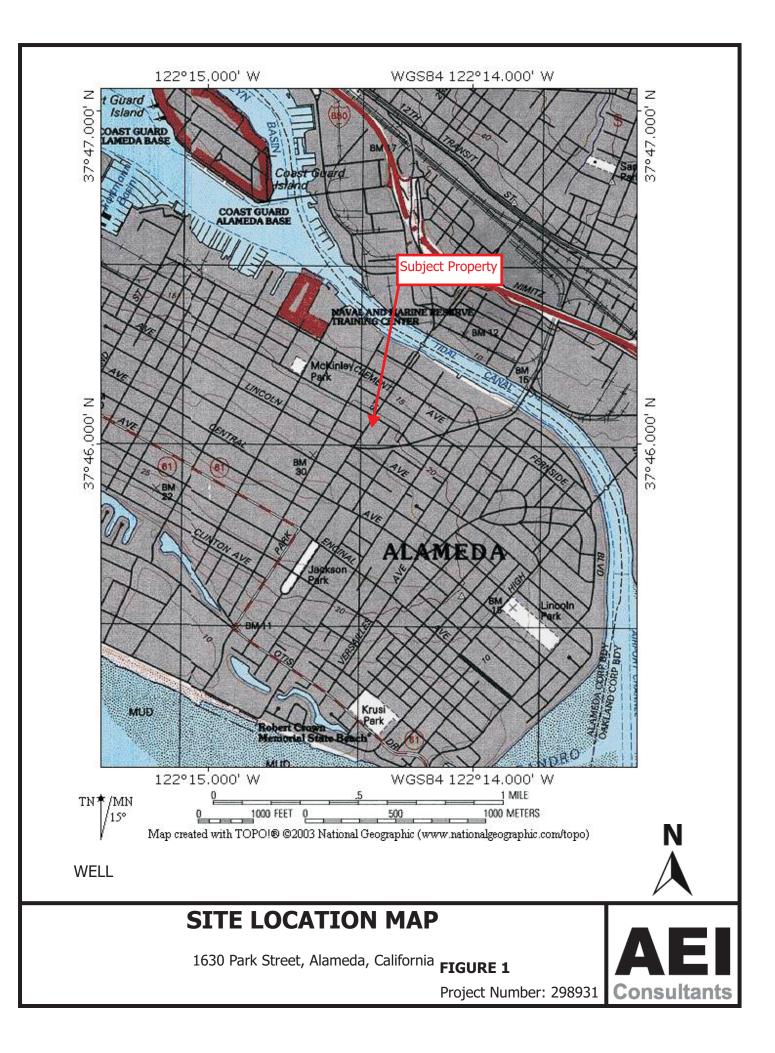
Should you have any questions, please contact us (925) 746-6000.

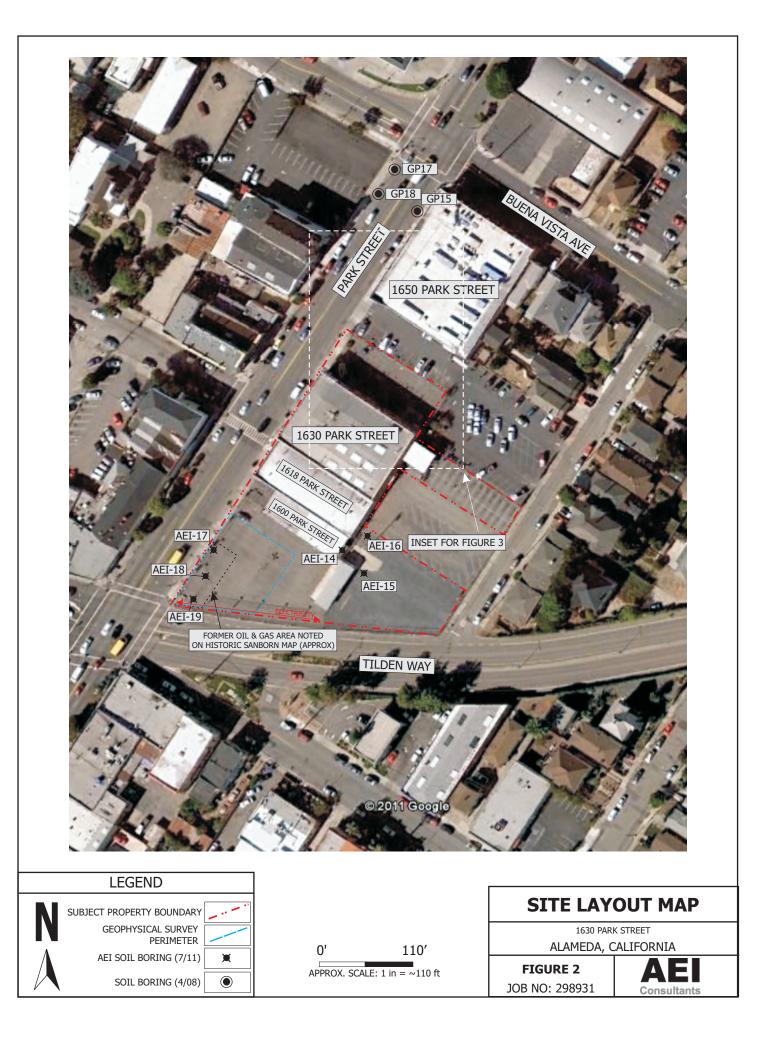
Sincerely, **AEI Consultants**

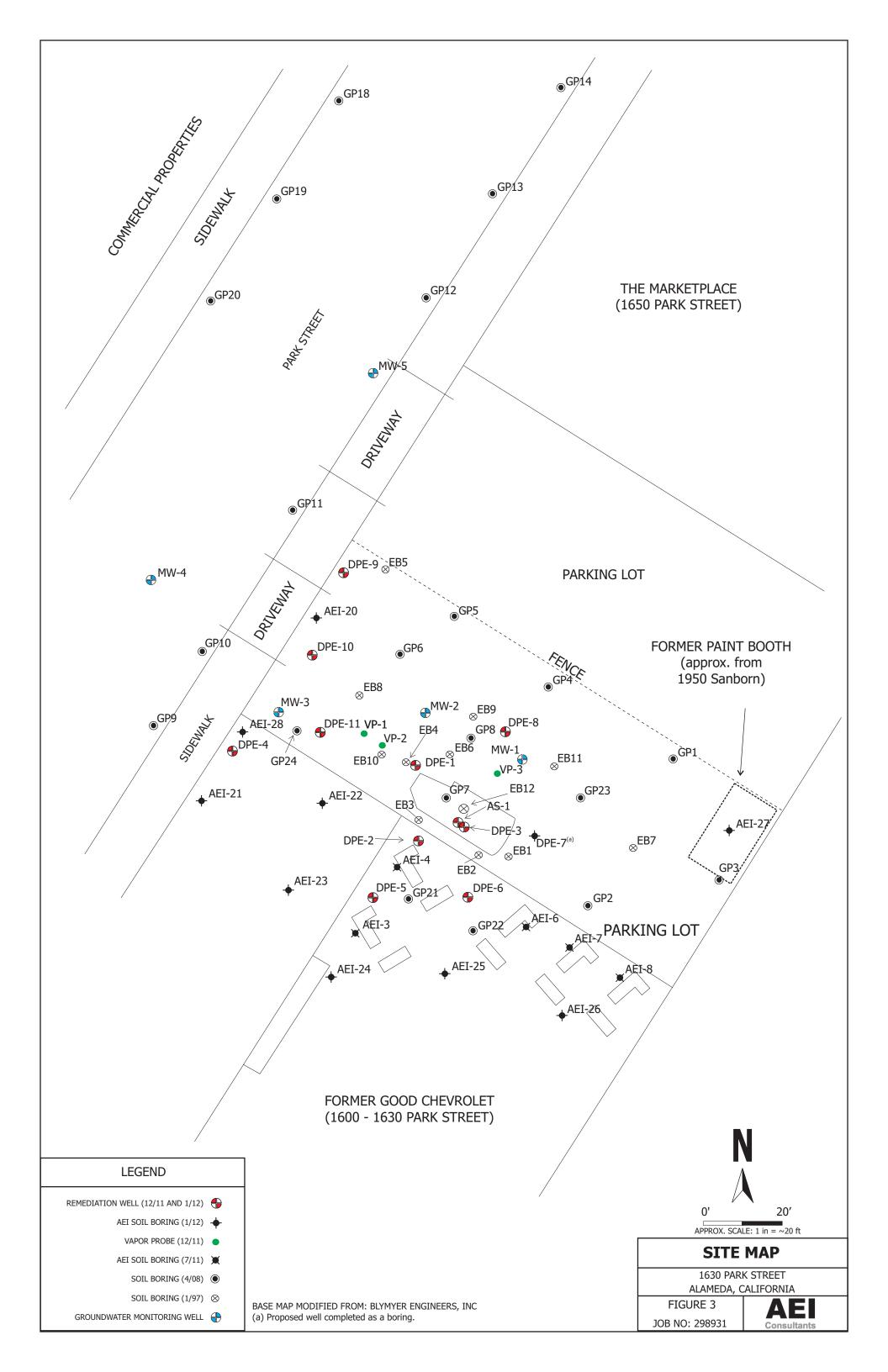
Bryan Campbell, PG Program Manager

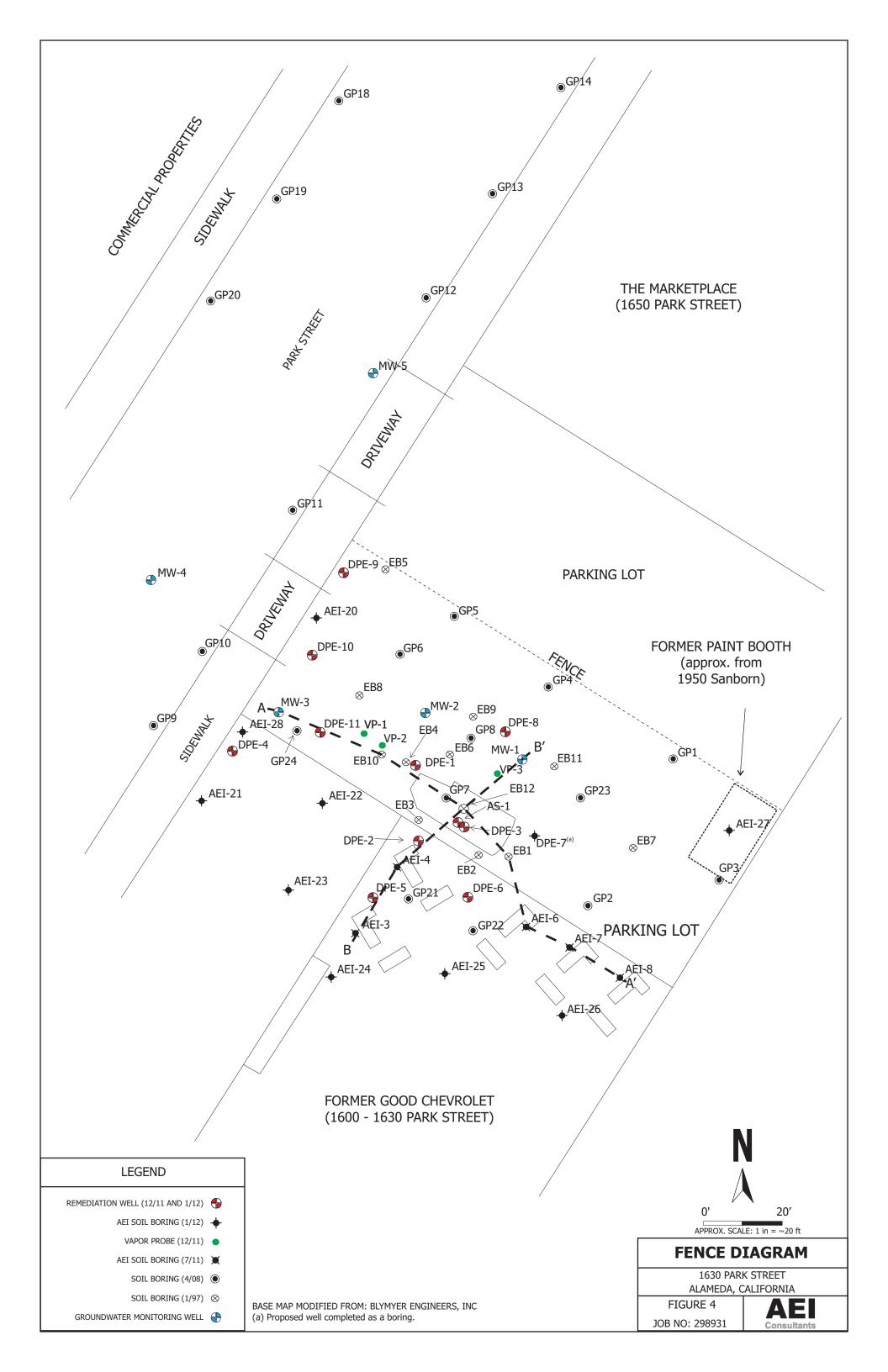
OF CALIF Peter J. McIntyre/PG, REA Sr. Vice President, Geologist

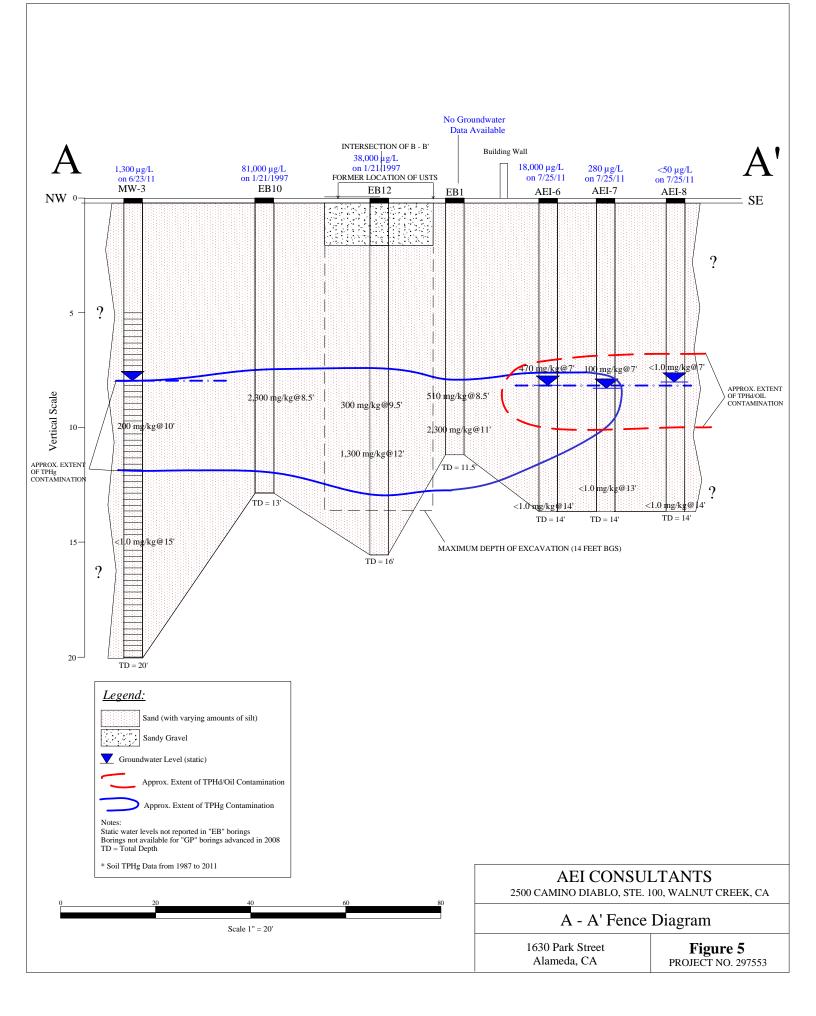
ED GEO

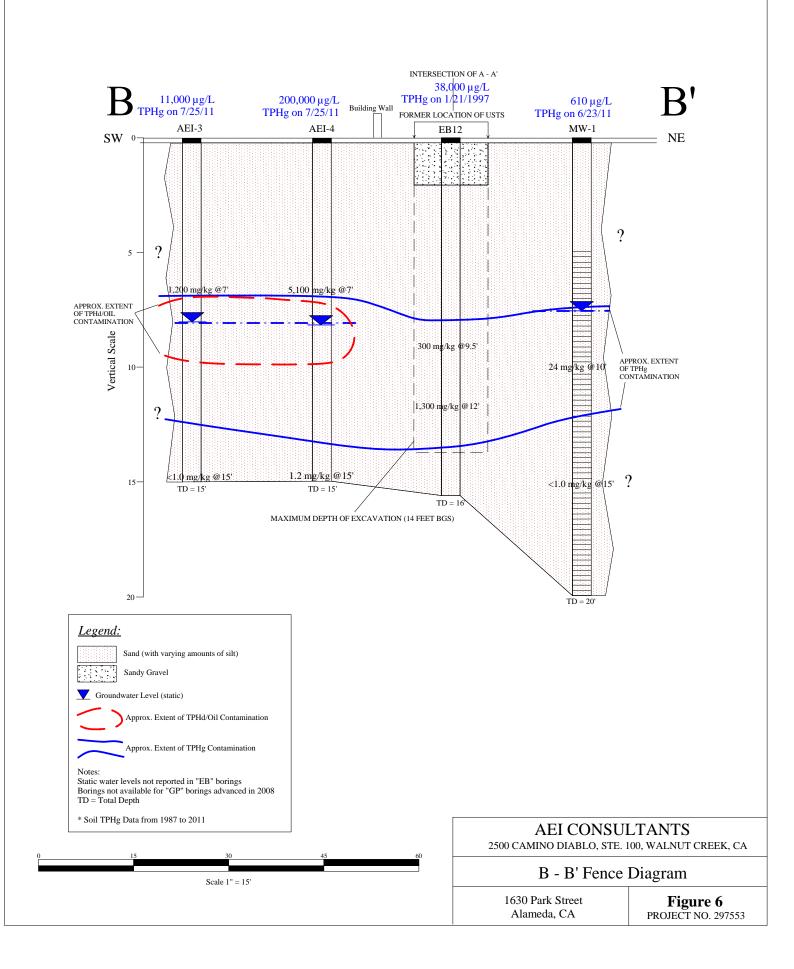

PETER J. MCINTYRA

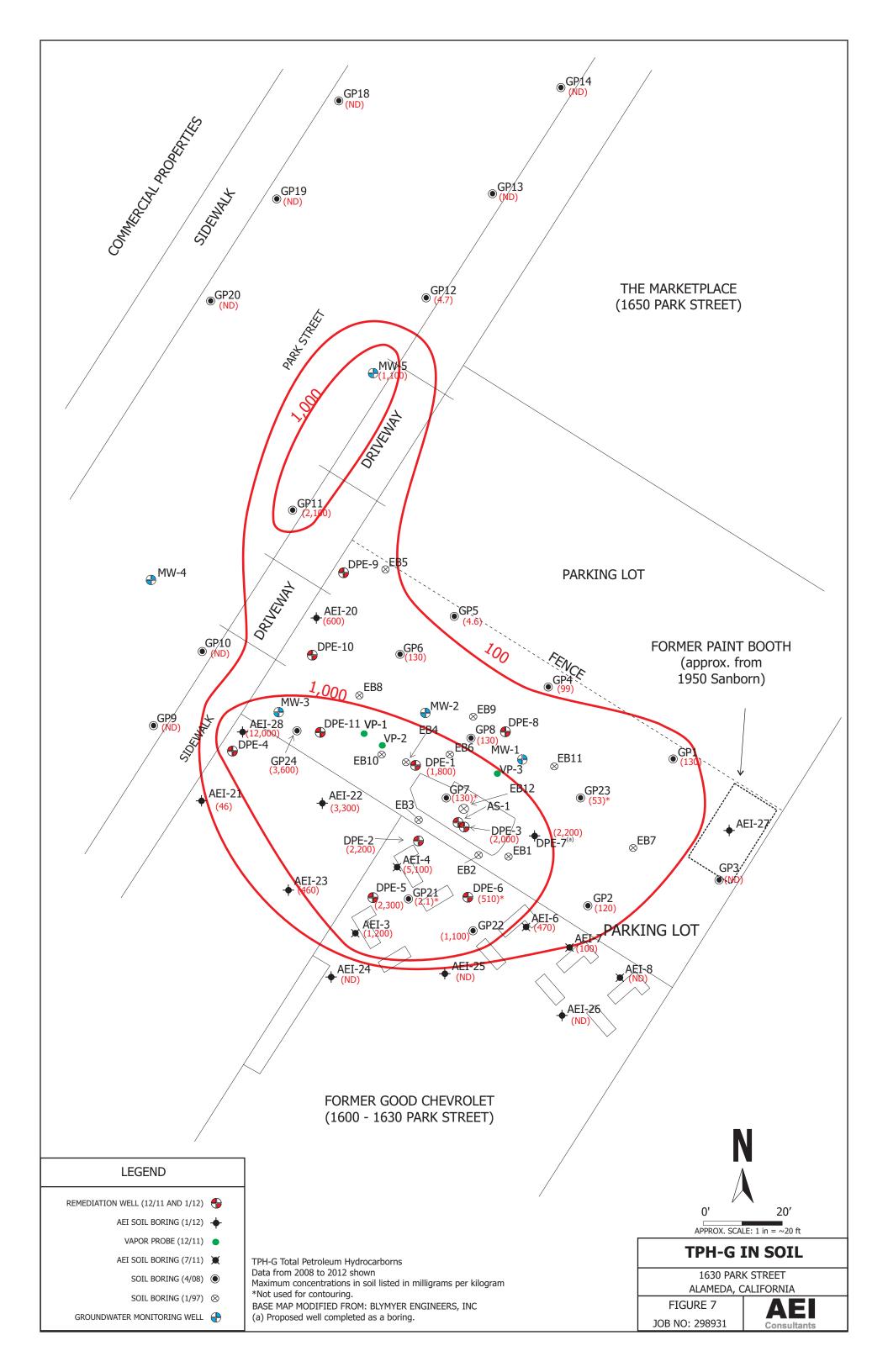

No 7703

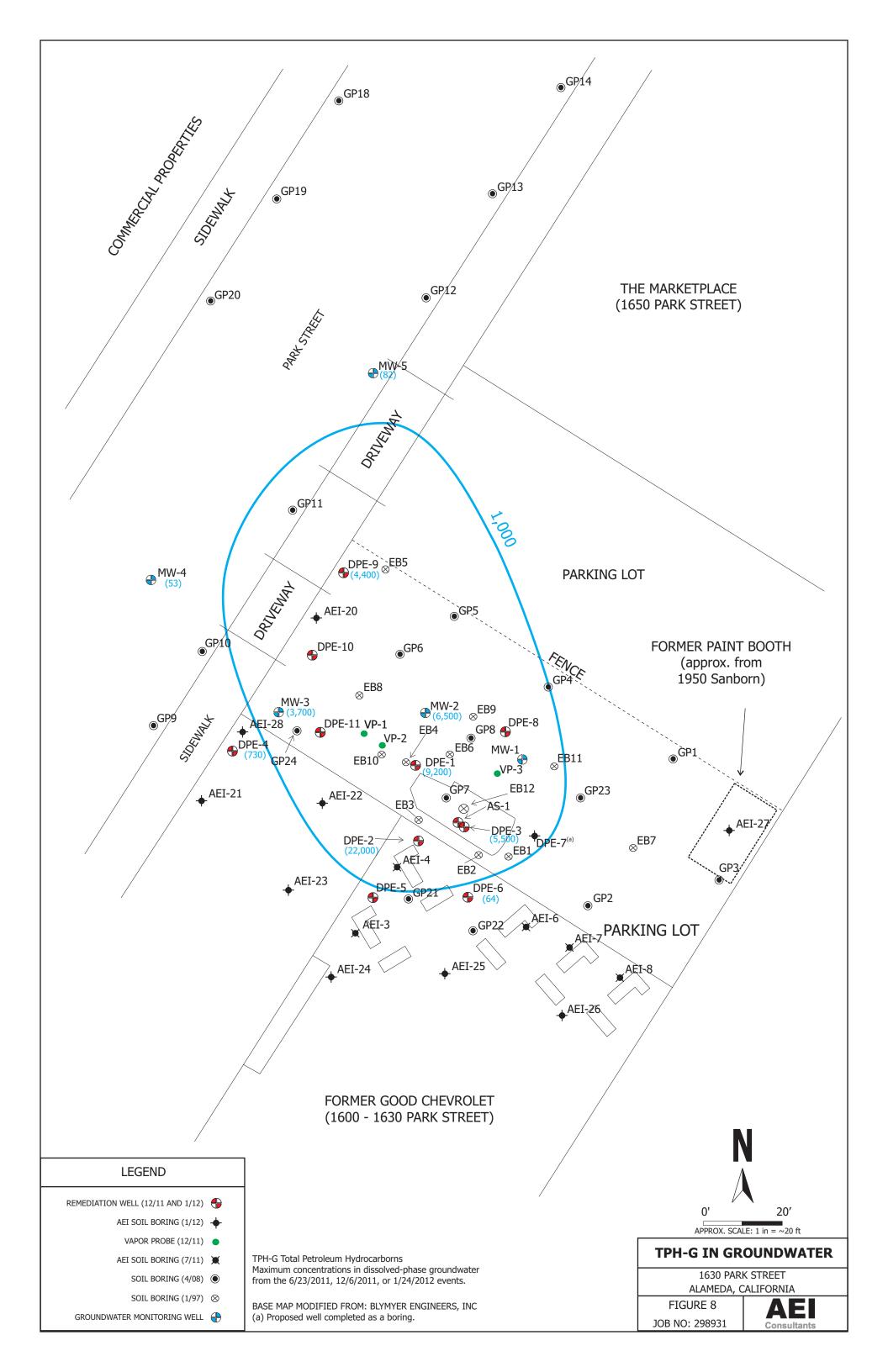

Distribution:

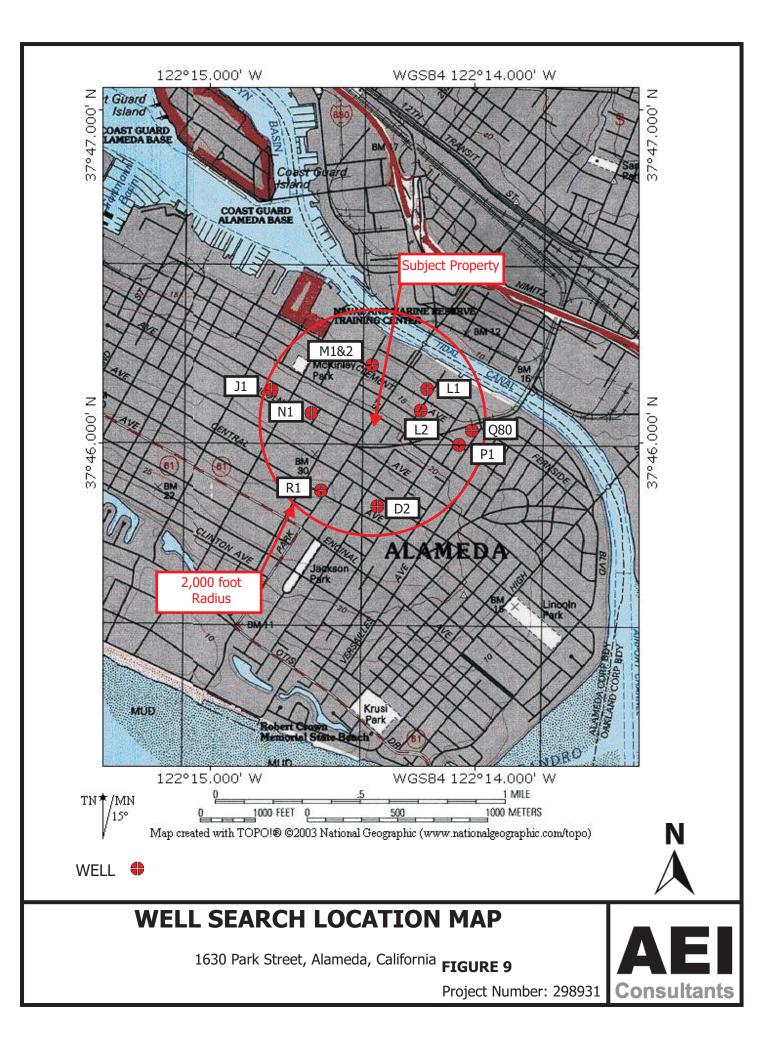

John Buestad, Foley Street Investments Karel Detterman, Alameda County Environmental Health Department GeoTracker FIGURES

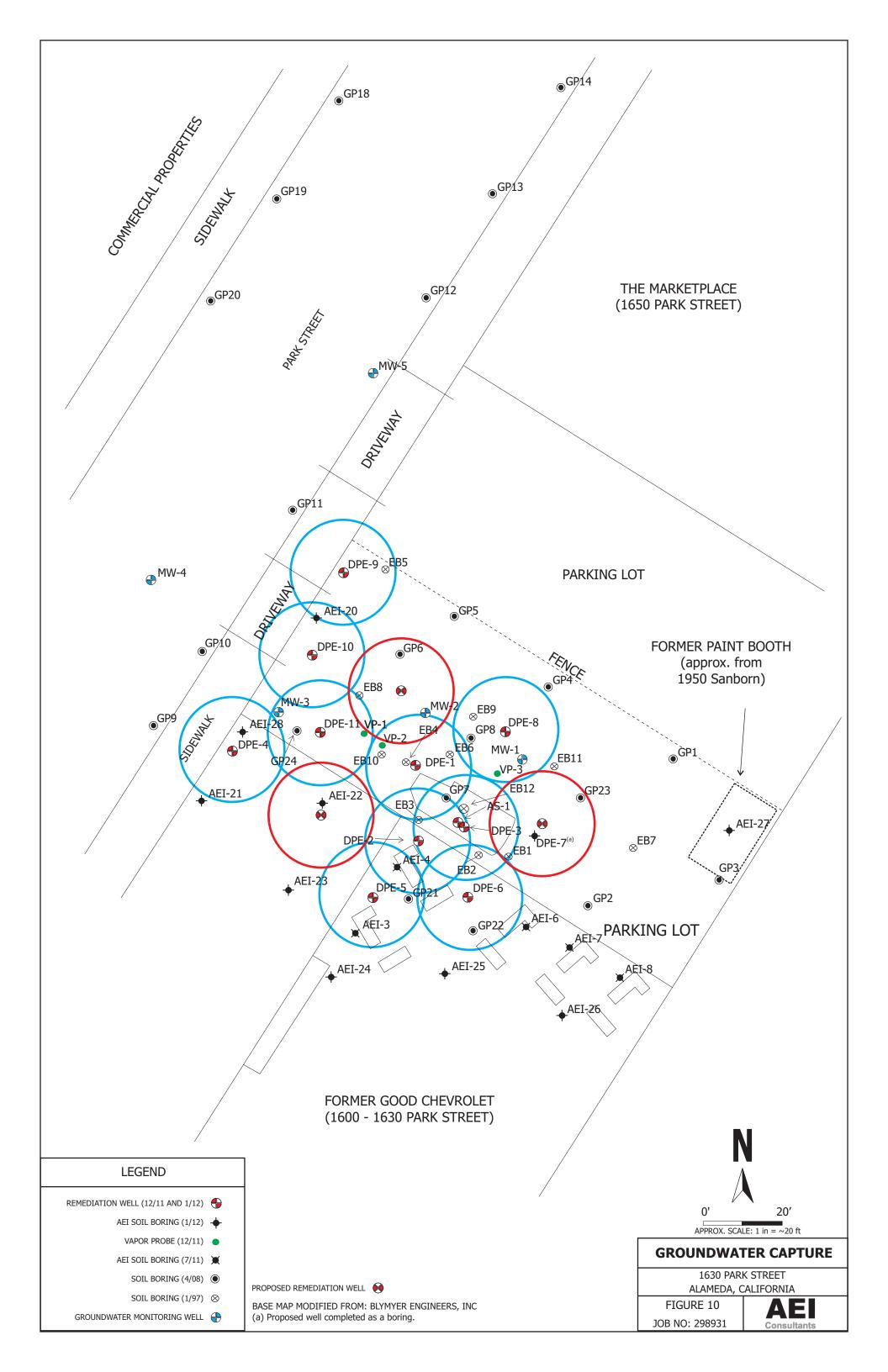












TABLES

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
						EPA Method S	W8021B/8015B/m	1			EPA Method SM5520E/F
MW-1-10	1/15/1987	10	24	-	-	-	2.9	3.6	-	1.8	-
MW-1-15	1/15/1987	15	<1.0	-	-	-	<0.1	<0.1	-	<0.1	-
		_								<i>.</i> .	
MW-2-5 MW-2-10	1/15/1987 1/15/1987	5 10	<1.0 350	-	-	-	<0.1 14	<0.1 22	-	<0.1 23	-
WIW-2-10	1/13/1987	10	330	-	-	-	14	22	-	25	-
MW-3-10	1/15/1987	10	200	-	-	-	9.8	16	-	16	-
MW-3-15	1/15/1987	15	<1.0	-	-	-	< 0.1	< 0.1	-	< 0.1	-
SB-5-10	1/15/1987	10	6.5				<0.1	0.22	-	<0.1	
SB-5-10	1/15/1987	10	0.5	-	-	-	<0.1	0.22	-	<0.1	-
EB1-S2	10/15/1993	8.5	510	-	-	-	0.89	10	5.8	41	-
EB1-S3	10/15/1993	11	2,300	-	-	-	22	190	57	280	-
ED2 29	10/15/1002	10	15 000				84	710	260	1 400	
EB2-2S EB2-S3	10/15/1993 10/15/1993	10 11.5	15,000 200	-	-	-	84 4.3	710 15	260 3.9	1,400 20	-
202 00	10/15/1995	11.5	200				1.5	15	5.9	20	
EB3-S2	10/15/1993	10	2,200	-	-	-	9.4	71	42	200	-
EB3-S3	10/15/1993	12.5	610	-	-	-	1.2	3.2	4.5	2.9	-
EB4-S2	10/15/1993	8	4,900	_	_	_	32	230	84	440	_
EB4-52 EB4-S3	10/15/1993	10.5	7,600	_	_	_	60	390	130	630	-
EB5-S2	10/15/1993	9	1,800	-	-	-	<2.5	22	27	140	-
EB5-S3	10/15/1993	11.5	14	-	-	-	0.021	1.5	0.49	2.5	-
EB6-S2	10/15/1993	8.5	6,800	-	-	-	20	230	100	590	-
			- ,								
EB7-S2	10/15/1993	6.5	<50	-	-	-	< 0.5	< 0.5	<0.5	<0.5	-
EB7-S3	10/15/1993	8.5	1,000	-	-	-	3.8	45	21	110	-
MW4-S1	4/20/1994	4.5	<50	-	-	-	<0.5	<0.5	<0.5	0.013	-
MW4-S2	4/20/1994	9	9.7	-	-	-	1.1	0.82	0.42	1.3	-
MW4-S3	4/20/1994	14	<50	-	-	-	<0.5	0.008	<0.5	0.022	-
MW5 01	4/20/1004	A 5	-50				-0 E	-0 E	-0 F	-0 F	
MW5-S1 MW5-S2	4/20/1994 4/20/1994	4.5 9	<50 1,100	-	-	-	<0.5 12	<0.5 43	<0.5 20	<0.5 93	-
MW5-S3	4/20/1994	14	1,100	-	-	-	0.033	0.17	0.044	0.22	-
EB8-S2	1/21/1997	9.5	2,000	-	-	<4	8.4	83	44	210	-
EB8-S3	1/21/1997	13.5	18	-	-	0.10	3.2	1.2	0.47	1.7	-
EB9-S1	1/21/1997	6.5	1.8	-	-	<5	0.071	0.052	0.026	0.074	-
EB9-S2	1/21/1997	9.5	1,300	-	-	<4	7.1	54	29	130	-
ED 10 01	1/01/1007	0.5	2 200			0.2	0.1	100	50	100	
EB10-S1	1/21/1997	8.5	2,300	-	-	9.3	9.1	100	50	190	-
EB11-S1	1/21/1997	9.5	3,800	-	-	<9	8.8	190	97	510	-
EB11-S2	1/21/1997	12	13	-	-	< 0.1	1.1	1.6	0.47	1.4	-

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
						EPA Method SV	V8021B/8015B/m	1			EPA Method SM5520E/F
EB12-S1	1/21/1997	9.5	300	-	-	<0.6	0.95	0.59	3.5	18	-
EB12-S2	1/21/1997	12	1,300	-	-	6.2	9.4	23	35	130	-
GP1-11.5	4/29/2008	11.5	130	_	_	< 0.005	< 0.10	0.29	<0.10	0.42	_
GP1-15	4/29/2008	15	<1.0	-	-	< 0.005	<0.005	0.0081	0.0065	0.028	-
GP2-11 GP2-13.5	4/29/2008 4/29/2008	11 13.5	120 <1.0	-	-	<0.010 <0.005	<0.050 <0.005	0.87 <0.005	0.43 <0.005	1.2 <0.005	-
GF2-13.5	4/29/2008	15.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP3-6.75	4/29/2008	6.75	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP3-11.5	4/29/2008	11.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP4-11.5	4/29/2008	11.5	2.7	-	-	< 0.005	0.14	0.052	0.072	0.17	-
GP4-14.5	4/29/2008	14.5	99	-	-	<0.020	0.48	1.4	1.0	4.5	-
GP5-11.5	4/20/2009	11.5	1.0			< 0.005	0.12	0.078	0.14	0.48	
GP5-11.5 GP5-19	4/29/2008 4/29/2008	11.5 19	4.6 1.5	-	-	< 0.005	<0.005	0.078	0.14	0.48	-
010 17			110			(01000	(01002	01022	0.0000	01002	
GP6-11	4/29/2008	11	130	-	-	< 0.10	0.11	1.0	1.1	5.4	-
GP7-8	4/30/2008	8	390	-	-	< 0.050	0.84	2.2	4.3	18	-
GP7-19.5	4/30/2008	19.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
CD9 9 5	5/1/2009	0 5	1 100			-0.050	-0.10	2.2	7.2	45	
GP8-8.5 GP8-19.5	5/1/2008 5/1/2008	8.5 19.5	1,100 5.8	-	-	<0.050 <0.005	<0.10 0.0091	3.2 0.067	7.3 0.048	45 0.21	-
GP9-7.5	5/1/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP9-11.25	5/1/2008	11.25	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP10-7.5	4/30/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP10-19.5	4/30/2008	19.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP11-6	4/30/2008	6	<1.0			< 0.005	< 0.005	0.011	0.0053	0.026	
GP11-15.5	4/30/2008	15.5	2,100	-	-	<0.10	5.7	71	38	180	-
GP11-18	4/30/2008	18	87	-	-	< 0.020	0.059	0.93	0.67	4.2	-
GP12-7.5	4/30/2008	7.5	<1.0			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
GP12-7.5 GP12-11	4/30/2008	1.5	<1.0 4.7	-	-	<0.005 <0.005	<0.005	<0.005 0.21	<0.005 0.067	<0.005 0.32	-
GP12-15.5	4/30/2008	15.5	<1.0	-	-	<0.005	<0.005	0.0071	0.0051	0.025	-
CD12 5 25	4/00/2000	7.05	.1.0			.0.007	.0.007	.0.007	.0.005	.0.005	
GP13-7.25 GP13-11	4/30/2008 4/30/2008	7.25 11	<1.0	-	-	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	-
GP13-11 GP13-14	4/30/2008	11 14	<1.0 <1.0	-	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	-
0115-14	Tr 50/2000	14	<1.U	-	-	<0.00J	<0.00J	<0.00J	~0.005	<0.00J	-
GP14-7.5	4/30/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP14-11	4/30/2008	11	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP15-7.5	4/30/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
0110 1.0		1.5					.0.005	.0.000			

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method S	(mg/kg) W8021B/8015B/m	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SM5520E/F
GP16-7.5	5/1/2008	7.5	<1.0	-	_	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP16-10.5	5/1/2008	10.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	< 0.005	-
GP17-7.5	5/1/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP17-11.5	5/1/2008	11.5	<1.0	-	-	<0.005	< 0.005	<0.005	< 0.005	< 0.005	-
GP18-7.5	5/1/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP18-10	5/1/2008	10	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP19-7	5/1/2008	7	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP20-8	5/1/2008	8	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP21-7.5	5/2/2008	7.5	2.1	-	-	< 0.005	0.006	0.028	0.012	0.065	-
GP21-15.5	5/2/2008	15.5	<1.0	-	-	< 0.005	0.0064	0.022	0.0057	0.027	-
GP21-19.5	5/2/2008	19.5	<1.0	-	-	< 0.005	< 0.005	0.0092	< 0.005	0.023	-
GP22-10.5	5/2/2008	10.5	1,100	-	-	< 0.20	0.67	13	15	70	-
GP22-15.5	5/2/2008	15.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP23-7.5	5/2/2008	7.5	53	-	-	< 0.005	< 0.050	0.13	< 0.050	0.37	-
GP23-11.5	5/2/2008	11.5	1.9	-	-	< 0.005	0.062	0.041	0.043	0.18	-
GP23-16	5/2/2008	16	2	-	-	< 0.005	< 0.005	0.027	0.018	0.099	-
GP24-8.5	5/2/2008	8.5	3,600	-	-	<1.0	1.2	32	62	410	-
GP24-19.5	5/2/2008	19.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-3-7'	7/25/2011	7	1,200	1,700	4,000	<10	2.6	25	10	48	-
AEI-3-15'	7/25/2011	15	<1.0	1.6	<5.0	<10	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-4-7'	7/25/2011	7	5,100	2,100	710	<50	6.2	83.0	54.0	280.0	-
AEI-4-15'	7/25/2011	15	1.2	1.3	<5.0	< 0.05	0.029	0.071	0.031	0.17	-
AEI-6-7'	7/25/2011	7	470	10,000	24,000	<5.0	< 0.50	< 0.50	< 0.50	< 0.50	-
AEI-6-14'	7/25/2011	14	<1.0	1.4	<5.0	<5.0	< 0.50	< 0.50	<0.50	<0.50	-
AEI-7-7'	7/25/2011	7	100	6,300	14,000	-	-	-	-	-	-
AEI-7-13'	7/25/2011	13	<1.0	3.7	7.4	<5.0	< 0.50	< 0.50	<0.50	< 0.50	-
AEI-8-7'	7/25/2011	7	<1.0	720	2,900	-	-	-	-	-	-
AEI-8-14'	7/25/2011	14	<1.0	<1.0	<5.0	<5.0	< 0.50	< 0.50	< 0.50	< 0.50	-
AEI-10-8'	7/26/2011	8	<1.0	1.2	<5.0	<5.0	<0.50	< 0.50	<0.50	<0.50	-
AEI-11-3'	7/26/2011	3	<1.0	2.2	8.5	-	-	-	-	-	-
AEI-12-3'	7/26/2011	3	<1.0	2.6	<5.0	-	-	-	-	-	-
AEI-13-3'	7/26/2011	3	<1.0	4.2	<5.0					_	
AEI-13-3	//20/2011	3	<1.0	4.2	<3.0	-	-	-	-	-	-

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SV	(mg/kg) V8021B/8015B/m	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SM5520E/F
AEI-14-7'	7/26/2011	7	<1.0	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-15-7'	7/26/2011	7	<1.0	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-16-7'	7/26/2011	7	<1.0	1.4	<5.0	-				-	<50
AEI-17-8'	7/26/2011	8	<1.0	1.1	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-18-8'	7/26/2011	8	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-19-8'	7/26/2011	8	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-20-7.5'	1/17/2012	7.5	8.4			<0.05	0.0071	0.084	0.069	0.38	
AEI-20-11'	1/17/2012	11	600	-	-	<0.50	0.89	2.9	10	39	-
AEI-20-15'	1/17/2012	15	3.3	-	-	<0.05	<0.005	0.028	<0.005	0.017	-
AEI-21-7'	1/17/2012	7	<1.0	-		<0.05	<0.005	<0.005	<0.005	<0.005	<u>.</u>
AEI-21-11'	1/17/2012	11	46	-	-	<0.05	0.020	0.42	0.27	0.60	-
AEI-21-14'	1/17/2012	14	<1.0	-	-	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-22-9'	1/17/2012	9	3,100	-	-	<0.05	3.2	46	62	400	
AEI-22-11'	1/17/2012	11	8.6	-	-	<0.10	0.71	0.77	0.31	1.3	-
AEI-22-14'	1/17/2012	14	3,300	-	-	<0.05	8.3	84	61	370	-
AEI-23-6'	1/17/2012	6	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-23-9.5'	1/17/2012	9.5	7.5	100	180	<0.05	<0.005	0.027	<0.005	0.0055	-
AEI-23-12.5'	1/17/2012	12.5	460	360	270	<5.0	<0.50	1.4	<0.50	0.80	-
AEI-24-7'	1/17/2012	7	<1.0	<1.0	<5.0	<0.05	< 0.005	<0.005	<0.005	<0.005	-
AEI-24-10.5'	1/17/2012	10.5	<1.0	<1.0	<5.0	<0.05	< 0.005	< 0.005	<0.005	< 0.005	-
AEI-24-13'	1/17/2012	13	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-25-7.5'	1/17/2012	7.5	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-25-10'	1/17/2012	10	<1.0	<1.0	<5.0	<0.05	< 0.005	< 0.005	<0.005	< 0.005	-
AEI-25-14'	1/17/2012	14	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-26-7.5'	1/17/2012	7.5	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-26-10.5'	1/17/2012	10.5	<1.0	<1.0	<5.0	< 0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-26-14'	1/17/2012	14	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-27-3'	1/17/2012	3	<1.0	3.2	7.9	<0.05	<0.005	<0.005	<0.005	0.013	-
AEI-28-7'	1/17/2012	7	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-28-11'	1/17/2012	11	12,000	2,100	44	<10	21	210	210	1,000	-
AEI-28-13'	1/17/2012	13	7.8	2.0	<5.0	<0.05	0.050	0.29	0.31	1.4	-
DPE-1, 7-7.5'	11/15/2011	7	1,800	330	46	<50	9.7	64	29	150	
DPE-2, 8-8.5'	11/15/2011	8	2,200	280	140	<15	7.6	57	34	170	-

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
						EPA Method SV	V8021B/8015B/m				EPA Method SM5520E/F
DPE-3, 8-8.5'	11/14/2011	8	2,000	1,000	58	<50	6.7	48	47	240	-
DPE-5, 11'	1/20/2012	11	2,300	-	-	<10	15	99	33	140	-
DPE-5, 14'	1/20/2012	14	1.1	-	-	<0.05	<0.005	0.17	<0.005	0.016	-
DPE-6, 10'	1/20/2012	10	510	-	-	<1.0	<0.10	0.14	0.47	0.96	-
DPE-6, 14'	1/20/2012	14	<1.0	-	-	<0.05	<0.005	<0.005	<0.005	<0.005	-
DPE-7, 10'	1/19/2012	10	2,200	-	-	<5.0	<5.0	16	47	240	
DPE-7, 14.5'	1/19/2012	14.5	610	-	-	<5.0	<5.0	3.9	9.5	55	-

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit POG = petroleum oil and grease

TPH = total petroleum hydrocarbons MTBE = methyl butyl tertiary ethyl

TPH-g = TPH as gasoline

TPH-d = TPH as diesel

"<" = less than "*" = with silica gel cleanup

TPH-mo = TPH as motor oil "-" = not available

Page 5 of 5

Table 2Soil Sample Analytical DataVOCs, Fuel Oxygenates, SVOCs, and PCBsAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample	Date	Approx. Depth	1,4-Dioxane	All target VOCs	Fuel Oxygenates^	All target SVOCs	All other target PCBs
ID	Collected	(feet)	(mg/kg) EPA Method SW8260	(mg/kg) EPA Method SW8260	(mg/kg) EPA Method SW8260B	(mg/kg) EPA Method 8270	(mg/kg) EPA Method SW8082
GP1-11.5	4/29/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP1-15	4/29/2008	15	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP2-11	4/29/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP2-13.5	4/29/2008	13.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP3-6.75	4/29/2008	6.75	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP3-11.5	4/29/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP4-11.5	4/29/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP4-14.5	4/29/2008	14.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP5-11.5	4/29/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP5-19	4/29/2008	19	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP6-11	4/29/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP7-8	4/30/2008	8	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP7-19.5	4/30/2008	19.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP8-8.5	5/1/2008	8.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP8-19.5	5/1/2008	19.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP9-7.5	5/1/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP9-11.25	5/1/2008	11.25	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP10-7.5	4/30/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP10-19.5	4/30/2008	19.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP11-6	4/30/2008	6	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP11-15.5 GP11-18	4/30/2008 4/30/2008	15.5 18	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GP12-7.5	4/30/2008	7.5			<mdl< td=""><td></td><td></td></mdl<>		
GP12-7.5 GP12-11	4/30/2008	7.5 11	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GP12-15.5	4/30/2008	15.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP13-7.25	4/30/2008	7.25	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP13-11	4/30/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP13-14	4/30/2008	14	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP14-7.5	4/30/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP14-11	4/30/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP15-7.5	4/30/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-

Table 2Soil Sample Analytical DataVOCs, Fuel Oxygenates, SVOCs, and PCBsAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	1,4-Dioxane (mg/kg) EPA Method SW8260	All target VOCs (mg/kg) EPA Method SW8260	Fuel Oxygenates^ (mg/kg) EPA Method SW8260B	All target SVOCs (mg/kg) EPA Method 8270	All other target PCBs (mg/kg) EPA Method SW8082
GP16-7.5	5/1/2008	7.5	-	_	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP16-10.5	5/1/2008	10.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP17-7.5	5/1/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP17-11.5	5/1/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP18-7.5	5/1/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP18-10	5/1/2008	10	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP19-7	5/1/2008	7	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP20-8	5/1/2008	8	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP21-7.5	5/2/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP21-15.5	5/2/2008	15.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP21-19.5	5/2/2008	19.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP22-10.5	5/2/2008	10.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP22-15.5	5/2/2008	15.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP23-7.5	5/2/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP23-11.5	5/2/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP23-16	5/2/2008	16	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP24-8.5	5/2/2008	8.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP24-19.5	5/2/2008	19.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
AEI-3-10'	7/25/2011	10	-	-	-	-	<1.0
AEI-4-10'	7/25/2011	10	-	-	-	-	<0.25
AEI-6-10'	7/25/2011	10	-	-	-	-	< 0.05
AEI-7-11'	7/25/2011	11	-	-	-	-	<0.50
AEI-8-11'	7/25/2011	11	-	-	-	-	<0.05
AEI-11-3'	7/26/2011	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-12-3'	7/26/2011	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-13-3'	7/26/2011	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-14-7'	7/26/2011	7	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-

Table 2 Soil Sample Analytical Data VOCs, Fuel Oxygenates, SVOCs, and PCBs AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	1,4-Dioxane (mg/kg) EPA Method SW8260	All target VOCs (mg/kg) EPA Method SW8260	Fuel Oxygenates^ (mg/kg) EPA Method SW8260B	All target SVOCs (mg/kg) EPA Method 8270	All other target PCBs (mg/kg) EPA Method SW8082
AEI-15-7'	7/26/2011	7	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
AEI-16-7'	7/26/2011	7	< 0.02	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>< 0.05</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>< 0.05</td></mdl<></td></mdl<>	<mdl< td=""><td>< 0.05</td></mdl<>	< 0.05
AEI-27-3'	1/17/2012	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit

VOCs = volatile organic compounds

SVOCs = semi-volatile organic compounds

PCBs = polychlorinated biphenyls

"<" = less than

"-" = not available

"^" = fuel oxygenates tert-amyl methyl ether (TAME), t-butyl alcohol (TBA),

1,2-dibromomethane (EDB), 1,2-dichloroethane (1,2-DCA), diisopropyl ether (DIPE), methanol, ethanol, ethyl tert-butyl ether (ETBE), methyl tert-butyl ether (MTBE), and 1,2-Dichloroethane (EDC)

Sample ID	Date Collected	TPH-g (μg/L)	TPH-d* (μg/L)	TPH-mo* (µg/L)	MTBE (μg/L) EPA Method SW	Benzene (μg/L) /8021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TRPH (µg/L) EPA Method E418.1
HP-1	4/23/1993	<50			EI A MELIOU SW	<0.5	<0.5	<0.5	<0.5	EFA Method E418.1
			-	-	-					-
HP-2	4/23/1993	<50	-	-	-	<0.5	<0.5	<0.5	<0.5	-
EB3-WSIA	10/15/1993	120,000	-	-	-	9,600	20,000	3,400	14,000	-
EB5-WSIA	10/15/1993	83,000	-	-	-	3,900	15,000	3,100	13,000	-
EB8-WS1	1/21/1997	25,000	-	-	<80	2,600	3,200	780	3,600	-
EB10-WS1	1/21/1997	81,000	-	-	<370	13,000	12,000	3,300	8,000	-
EB11-WS1	1/21/1997	49,000	-	-	<180	6,900	6,000	2,100	4,600	-
EB12-WS1	1/21/1997	38,000	-	-	110	1,400	1,400	1,800	7,400	-
P1-WS1	1/21/1997	74,000	-	-	<78	1,100	5,800	3,800	18,000	-
P2-WS1	1/21/1997	6,800	-	-	<10	2,200	290	310	560	-
P3-WS1	1/21/1997	220	-	-	<5.0	1.9	17	10	49	-
GP1W	4/29/2008	70,000	-	-	<500	6,800	6,600	2,300	12,000	-
GP2W	4/29/2008	910	-	-	<5.0	0.69	2.9	30	64	-
GP3W	4/29/2008	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
GP4W	4/29/2008	46,000	-	-	<500	570	3,200	1,500	7,500	-
GP5W	4/29/2008	12,000	-	-	<60	140	480	270	1,100	-
GP6W	4/29/2008	22,000	-	-	<170	920	1,600	900	3,500	-
GP7W	4/30/2008	22,000	-	-	<180	2,600	320	810	2,600	-
GP8W	5/1/2008	140,000	-	-	<650	9,000	20,000	4,300	21,000	-
GP9W	5/1/2008	550	-	-	<5.0	53	0.52	2.1	25	-
GP10W	4/30/2008	11,000	-	-	<100	1,900	490	480	770	-
GP11W	4/30/2008	42,000	-	-	<452	1,900	4,200	1,700	7,600	-

Sample ID	Date Collected	TPH-g (μg/L)	TPH-d* (µg/L)	TPH-mo* (µg/L)	MTBE (μg/L) EPA Method SW	Benzene (μg/L) V8021B/8015Bm	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TRPH (μg/L) EPA Method E418.1
GP12W	4/30/2008	61,000	-	-	<500	4,500	11,000	1,700	7,700	-
GP13W	4/30/2008	6,200	-	-	<10	220	53	150	440	-
GP14W	4/30/2008	300	-	-	<5.0	46	1.9	19	11	-
GP15W	4/30/2008	<50	-	-	<5.0	<0.5	0.69	<0.5	1.1	-
GP16W	5/1/2008	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
GP17W	5/1/2008	<50	-	-	<5.0	<0.5	1.7	<0.5	2	-
GP18W	5/1/2008	<50	-	-	<5.0	<0.5	2.1	0.79	4	-
GP19W	5/1/2008	85	-	-	<5.0	<0.5	0.80	<0.5	<0.5	-
GP20W	5/1/2008	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
GP21W	5/2/2008	9,400	-	-	<50	560	1,400	260	1,300	-
GP22W	5/2/2008	3,900	-	-	<25	36	160	120	610	-
GP23W	5/2/2008	16,000	-	-	<90	830	1,900	540	2,600	-
GP24W	5/2/2008	110,000	-	-	<450	6,500	4,200	3,100	13,000	-
AEI-1-W	7/25/2011	<50	<50	<250	-				-	-
AEI-2-W	7/25/2011	<50	<50	<250	-				-	-
AEI-3-W	7/25/2011	11,000	12,000	29,000	<50	1,100	1,900	210	860	-
AEI-4-W	7/25/2011	200,000	25,000	19,000	<500	21,000	30,000	3,600	16,000	-
AEI-5-W	7/25/2011	<50	<50	<250	-	-	-	-	-	-
AEI-6-W	7/25/2011	18,000	120,000	300,000	<50	<5.0	7.7	<5.0	28	-
AEI-7-W	7/25/2011	280	11,000	28,000	-	-	-	-	-	-
AEI-8-W	7/25/2011	<50	1,600	3,800	-	-	-	-	-	-
AEI-9-W	7/25/2011	<50	<50	<250	-	-	-	-	-	-

Sample ID	Date Collected	TPH-g (μg/L)	TPH-d* (µg/L)	TPH-mo* (µg/L)	MTBE (µg/L) EPA Method SW	Benzene (μg/L) 8021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TRPH (µg/L) EPA Method E418.1
AEI-10-W	7/26/2011	<50	<50	400	-	-	-	-	-	-
AEI-14-W	7/26/2011	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-15-W	7/26/2011	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-16-W	7/26/2011	<50	<50	<250	<0.5	<0.5	< 0.5	<0.5	<0.5	<1.0
AEI-17-W	7/26/2011	<50	89	590	<5.0	<0.5	< 0.5	<0.5	<0.5	-
AEI-18-W	7/26/2011	<50	<100	<500	<5.0	<0.5	< 0.5	<0.5	<0.5	-
AEI-19-W	7/26/2011	<50	<100	<500	<5.0	<0.5	< 0.5	<0.5	<0.5	-
AEI-20	1/17/2012	130,000	-	-	<500	1,200	2,200	4,400	20,000	
AEI-21	1/17/2012	110,000	-	-	<500	160	520	1,200	3,300	
AEI-22	1/17/2012	61,000	-	-	<500	790	4,400	1,500	7,200	
AEI-23	1/17/2012	9,000	8,400	1,500	<50	<5.0	16	12	<5.0	
AEI-24	1/17/2012	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	
AEI-25	1/17/2012	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	
AEI-26	1/17/2012	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	
AEI-27	1/17/2012	<50	<100	<500	<5.0	<0.5	<0.5	<0.5	<0.5	
AEI-28	1/17/2012	16,000	4,500	<250	<100	160	690	540	2,500	

µg/L = micrograms per liter

TPH = total petroleum hydrocarbons TPH-g = TPH as gasoline "<" = less than

MDL = method detection limit TRPH = total recoverable petroleum hydrocarbons

MTBE and BTEX analysis for AEI-16-W performed by EPA Method SW8260B

TPH-d = TPH as diesel TPH-mo = TPH as motor oil

MTBE = methyl tertiary butyl ether

"*" = with silica gel cleanup

"-" = not available

Table 4Groundwater Sample Analytical DataVOCs, Fuel Oxygenates, SVOCs, and PCBsAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	1,4-Dioxane (μg/L)	TBA (μg/L)	EDB (µg/L)	EDC (µg/L) EPA Method S	MTBE (μg/L) SW8260B	Fuel Oxygenates^ (µg/L)	All Target VOCs (µg/L)	All Target SVOCs (µg/L) EPA Method 8270	All Target PCBs (µg/L) EPA Method SW8082
GP1W	4/29/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP2W	4/29/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP3W	4/29/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP4W	4/29/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP5W	4/29/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP6W	4/29/2008	-	24	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP7W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP8W	5/1/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP9W	5/1/2008	-	7.7	< 0.5	1.1	1.2	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP10W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP11W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP12W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP13W	4/30/2008	-	8.9	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP14W	4/30/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP15W	4/30/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP16W	5/1/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP17W	5/1/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP18W	5/1/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP19W	5/1/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP20W	5/1/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP21W	5/2/2008	-	<2.0	0.65	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-

Table 4Groundwater Sample Analytical DataVOCs, Fuel Oxygenates, SVOCs, and PCBsAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	1,4-Dioxane (μg/L)	TBA (μg/L)	EDB (µg/L)	EDC (µg/L) EPA Method S	MTBE (μg/L) 5W8260B	Fuel Oxygenates^ (µg/L)	All Target VOCs (µg/L)	All Target SVOCs (µg/L) EPA Method 8270	All Target PCBs (µg/L) EPA Method SW8082
GP22W	5/2/2008	-	<2.0	< 0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP23W	5/2/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP24W	5/2/2008	-	75	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-14-W	7/26/2011	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-15-W	7/26/2011	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-16-W	7/26/2011	<2.0	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><0.5</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><0.5</td></mdl<></td></mdl<>	<mdl< td=""><td><0.5</td></mdl<>	<0.5
AEI-27	1/17/2012	-	-	-	-	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit

VOCs = volatile organic compounds

SVOCs = semi-volatile organic compounds

PCBs = polychlorinated biphenyls

TBA = t-butyl alcohol

EDB = 1,2-dibromomethane

EDC = 1,2-dichloroethane

MTBE = methyl tert-butyl ether

"-" = not available

"<" = less than

"^" = fuel oxygenates tert-amyl methyl ether (TAME),

1,2-dichloroethane (1,2-DCA), diisopropyl ether (DIPE), methanol, ethanol, and ethyl tert-butyl ether (ETBE)

Table 5Soil Sample Analytical DataMetalsAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	Cd mg/kg	Cr (total)* mg/kg EPA	Pb mg/kg A Method SW6010	Ni mg/kg B	Zn mg/kg
AEI-11-3'	7/26/2011	3	<1.5	60	<5.0	24	16
AEI-12-3'	7/26/2011	3	<1.5	31	<5.0	15	10
AEI-13-3'	7/26/2011	3	<1.5	29	<5.0	14	9.7
AEI-14-7'	7/26/2011	7	-	-	<5.0	-	-
AEI-15-7'	7/26/2011	7	-	-	<5.0	-	-
AEI-16-7'	7/26/2011	7	<1.5	54	<5.0	48	27
AEI-17-8'	7/26/2011	8	-	-	<5.0	-	-
AEI-18-8'	7/26/2011	8	-	-	<5.0	-	-
AEI-19-8'	7/26/2011	8	-	-	<5.0	-	-
*AEI-27-3'	1/17/2012	3	<0.25	38	140	17	140

Notes:

mg/kg = milligrams per kilogram

"-" = not available

Cd = Cadmium

Cr = Chromium

Pb = Lead

Ni = Nickel

Zn = Zinc

*AEI-27-3' = Antimony - 1.2 mg/kg, Arsenic - 4.0 mg/kg, Barium - 130 mg/kg, Cobalt - 3.7 mg/kg, Copper - 18 mg/kg, Mercury - 0.32 mg/kg and Vanadium - 28 mg/kg by CAM 17 EPA Method SW3050B.

Table 6Groundwater Sample Analytical DataMetalsAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Cd µg/L	Cr (total) µg/L EF	Ρb μg/L PA Method E200.8	Ni µg/L	Zn μg/L
AEI-14-W*	7/26/2011	-	-	21	-	-
AEI-15-W*	7/26/2011	-	-	66	-	-
AEI-16-W**	7/26/2011	<0.25	<0.5	<0.5	8.7	<5.0

Notes:

µg/L = micrograms per liter "*" = total "**" = dissolved Cd = Cadmium Cr = Chromium

Pb =Lead

Ni = Nickel

Zn = Zinc

Well ID Number	Well Installation Date	Elevation TOC (feet)	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material
AS-1	11/14/2011	-	PVC	25	25	8	2	20 - 25	0.020	20 - 25	#3 Sand
DPE-1	11/15/2011	-	PVC	16	15	10	4	7 - 15	0.010	6.5 - 16	#2/12 Sand
DPE-2	11/15/2011	-	PVC	16	15	10	4	7 - 15	0.010	6.5 - 16	#2/12 Sand
DPE-3	11/14/2011	-	PVC	16	14	10	4	7 - 14	0.010	6.5 - 16	#2/12 Sand
DPE-4	1/19/2012	-	PVC	17	17	10	4	8 - 17	0.010	7.5 - 17	#2/12 Sand
DPE-5	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-6	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-8	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-9	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-10	1/20/2012	-	PVC	17	17	10	4	8 - 17	0.010	7.5 - 17	#2/12 Sand
DPE-11	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
MW-1	1/15/1987	-	PVC	-	20	8	2	5 - 20	-	-	-
MW-2	1/15/1987	-	PVC	-	20	8	2	5 - 20	-	-	-
MW-3	1/15/1987	-	PVC	-	20	8	2	5 - 20	-	-	-
MW-4	4/20/1994	-	PVC	-	23	8	2	8 - 23	-	-	-
MW-5	4/20/1994	-	PVC	-	22	8	2	7 - 22	-	-	-
VP-1	12/6/2011	-	Stainless Steel	6	6	1.25	1/4	5.1 - 5.6	Mesh	4.7 - 6	#3 Sand
VP-2	12/6/2011	-	Stainless Steel	5.9	5.9	1.25	1/4	5.1-5.6	Mesh	4.7-5.9	#3 Sand
VP-3	12/6/2011	-	Stainless Steel	5.75	5.75	1.25	1/4	5.1-5.6	Mesh	4.7-5.75	#3 Sand

Table 7 Well Construction Details AEI Project No. 298931, 1630 Park Street, Alameda, California

PVC = polyvinyl chloride TOC = top of casing "-" = not available

Table 8Groundwater Elevation DataAEI Project No. 298931, 1630 Park Street, Alameda, California

Well ID Screen Interval)	Date Collected	Well Elevation (ft amsl)	Depth to Water (feet)	Groundwater Elevation (ft amsl)
MW-1	Jul-89	104.76	8.93	95.83
(5 - 20 feet bgs)	Apr-91	10 11/0	7.59	97.17
(0 201000 0 80)	Jul-92		8.72	96.04
	Aug-92		9.09	95.67
	Sep-92		9.25	95.51
	Oct-92		9.34	95.42
	Nov-92		9.21	95.55
	Dec-92		9.26	95.50
	Jan-93		7.81	96.95
	Feb-93		7.32	97.44
	Mar-93		7.20	97.56
	Apr-93		7.31	97.45
	May-93		8.29	96.47
	Jul-93		8.30	96.46
	Oct-93		9.38	95.38
	Jan-94		8.80	95.96
	Apr-94		8.15	96.61
	Jul-94		8.70	96.06
	Oct-94		9.37	95.39
	Jan-94		7.18	97.58
	Apr-95		6.76	98.00
	Jan-97		7.03	97.73
	Nov-98		8.10	96.66
	Jan-01		7.70	97.06
	Jun-02		7.30	97.46
	Nov-02		8.14	96.62
	Feb-03		6.87	97.89
	Jun-03	25.42	7.05 7.13	97.71
	Apr-08 Jun-11	25.42	7.54	18.29 17.88
	Dec-11		8.02	17.88 17.40
	Jan-12		8.02	17.40
MW-2	Jul-89	104.86	9.24	95.62
(5 - 20 feet bgs)	Apr-91	10 1100	8.01	96.85
	Jul-92		9.03	95.83
	Aug-92		9.34	95.52
	Sep-92		9.46	95.40
	Oct-92		9.52	95.34
	Nov-92		9.42	95.44
	Dec-92		9.47	95.39
	Jan-93		8.25	96.61
	Feb-93		7.85	97.01
	Mar-93		7.77	97.09
	Apr-93		7.86	97.00
	May-93		8.20	96.66
	Jul-93		8.72	96.14
	Oct-93		9.64	95.22
	Jan-94		9.12	95.74
	Apr-94		8.56	96.30

Table 8Groundwater Elevation DataAEI Project No. 298931, 1630 Park Street, Alameda, California

Well ID (Screen Interval)	Date Collected	Well Elevation (ft amsl)	Depth to Water (feet)	Groundwater Elevation (ft amsl)
	Oct-94		9.59	95.27
	Jan-94		7.71	97.15
	Apr-95		7.40	97.46
	Jan-97		7.55	97.31
	Nov-98		8.49	96.37
	Jan-01		8.08	96.78
	Jun-02		7.77	97.09
	Nov-02		8.50	96.36
	Feb-03		7.38	97.48
	Jun-03		7.57	97.29
	Apr-08	25.52	7.67	17.85
	Jun-11		7.35	18.17
	Dec-11		8.41	17.11
	Jan-12		8.43	17.09
MW-3	Jul-89	104.52	9.00	95.52
(5 - 20 feet bgs)	Apr-91		8.06	96.46
	Jul-92		8.82	95.70
	Aug-92		9.05	95.47
	Sep-92		9.09	95.43
	Oct-92		9.15	95.37
	Nov-92		9.05	95.47
	Dec-92		9.12	95.40
	Jan-93		8.18	96.34
	Feb-93		7.98	96.54
	Mar-93		7.94	96.58
	Apr-93		8.02	96.50
	May-93		7.69	96.83
	Jul-93		8.65	95.87
	Oct-93		9.32	NC
	Jan-94		8.93	NC
	Apr-94		8.52	96.00
	Jul-94		8.86	95.66
	Oct-94		9.25	95.27
	Jan-94		7.85	96.67
	Apr-95		7.64	96.88
	Jan-97		7.75	96.77
	Nov-98		8.38	96.14
	Jan-01		8.00	96.52
	Jun-02		7.81	96.71
	Nov-02		8.37	96.15
	Feb-03		7.48	97.04
	Jun-03	05.15	7.67	96.85
	Apr-08	25.17	7.74	17.43
	Jun-11		7.50	17.67
	Dec-11		8.25	16.92
	Jan-12		8.25	16.92
MW-4	Apr-94	104.86	9.29	95.57
(8 - 23 feet bgs)	Jul-94		9.55	95.31
	Oct-94		9.83	95.03

Table 8Groundwater Elevation DataAEI Project No. 298931, 1630 Park Street, Alameda, California

Well ID (Screen Interval)	Date Collected	Well Elevation (ft amsl)	Depth to Water (feet)	Groundwater Elevation (ft amsl)
	Jan-94		8.88	95.98
	Apr-95		8.80	96.06
	Jan-97		-	-
	Nov-98		-	-
	Jan-01		-	-
	Jun-02		-	-
	Nov-02		-	-
	Feb-03		-	-
	Jun-03		-	-
	Apr-08	25.53	8.73	16.80
	Jun-11		8.52	17.01
	Dec-11		-	-
	Jan-12		-	-
MW-5	Apr-94	103.62	8.27	95.35
(7 - 22 feet bgs)	Jul-94		8.50	95.12
	Oct-94		8.92	94.70
	Jan-94		7.61	96.01
	Apr-95		8.48	95.14
	Jan-97		6.79	96.83
	Nov-98		8.12	95.50
	Jan-01		7.67	95.95
	Jun-02		7.61	96.01
	Nov-02		8.01	95.61
	Feb-03		7.22	96.40
	Jun-03		7.43	96.19
	Apr-08	24.31	7.36	16.95
	Jun-11		7.43	16.88
	Dec-11		-	-
	Jan-12		-	-
DPE-1	Dec-11	-	8.81	-
(7 - 15 feet bgs)	Jan-12		8.78	-
DPE-2	Dec-11	-	9.29	-
(7 - 15 feet bgs)	Jan-12		7.97	-
DPE-3	Dec-11	-	7.92	-
(7 - 14 feet bgs)	Jan-12		8.98	-
DPE-4	Jan-12	-	9.11	
(8 - 17)				
DPE-5	Jan-12	-	-	
(8 - 18)				
DPE-6	Jan-12	-		
(8 - 18)			8.58	
DPE-8	Jan-12	-	-	

Table 8Groundwater Elevation DataAEI Project No. 298931, 1630 Park Street, Alameda, California

Well ID (Screen Interval)	Date Collected	Well Elevation (ft amsl)	Depth to Water (feet)	Groundwater Elevation (ft amsl)
DPE-9 (8 - 18)	Jan-12	-	8.12	
DPE-10 (8 - 17)	Jan-12	-	-	

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing

"-" = not measured

bgs = below ground surface

Sample	Date	TPH-g		Renzene	Toluero	Ethylbenzene	Vylenes	MTRF	MTRF	TAME	ТВА	EDB	1,2-DCA	DIPF	Ethanol	FTRF	Methanol	Lead
Sample ID	Date	IFn-g				, 8021B, or 8260		NIIDE	NIIDE	IANE	IDA	EDD	,	thod 8260		LIDE	Methanoi	Leau
		(µg/L)		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	1/21/1987	21,020		1,148	8,627	1,792	6,012	-	-	-	-	_	-	-	-	-	-	-
	1/11/1989	1,400		74	10	13	5	-	-	-	-	-	-	-	-	-	-	-
	7/12/1989	1,200		470	49	45	33	-	-	-	-	-	-	-	-	-	-	-
	4/9/1991	850		260	10	15	12	-	-	-	-	-	-	-	-	-	-	-
	7/14/1992	13,000		2,300	1,200	1,200	1,200	-	-	-	-	-	-	-	-	-	-	-
	10/7/1992	3,600		1,600	80	120	120	-	-	-	-	-	-	-	-	-	-	-
	1/11/1993	1,200		410	16	23	19	-	-	-	-	-	-	-	-	-	-	-
	4/23/1993	2,200	а	720	180	82	150	-	-	-	-	-	-	-	-	-	-	-
	7/8/1993	3,200	а	1,200	110	97	100	-	-	-	-	-	-	-	-	-	-	-
	10/15/1993	3,700	а	1,400	43	94	36	-	-	-	-	-	-	-	-	-	-	-
	1/25/1994	1,600	а	680	16	41	35	-	-	-	-	-	-	-	-	-	-	-
	4/28/1994	6,100	а	1,900	380	250	340	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	6,000	а	1,800	510	220	450	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	3,000	а	1,100	79	82	87	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	1,600	а	660	100	82	87	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	3,800	а	1,200	270	120	260	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995	5,200	а	1,500	450	190	400	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	5,900	а	1,800	450	210	400	-	-	-	-	-	-	-	-	-	-	-
	1/21/1997	3,100	а	1,100	87	160	180	<7.3	-	-	-	-	-	-	-	-	-	-
	11/12/1998	1,000	а	280	3	3.3	7.9	<30	-	-	-	-	-	-	-	-	-	-
	1/16/2001	4,700	а	1,20	18	150	49	-	<5	<5.0	<25	< 5.0	<5.0	<5.0	-	<5.0	-	-
	6/27/2002	5,900	а	230	7.7	<5	1,500	-	<5	<5.0	<50	< 5.0	<5.0	<5.0	-	<5.0	-	-
	11/18/2002	3,100	а	890	12	310	28	-	<2.5	-	-	<2.5	<2.5	-	-	-	-	-
	2/20/2003	260	d	100	0.72	<0.5	< 0.5	-	< 0.5	-	-	< 0.5	< 0.5	-	-	-	-	-
	6/11/2003	3,100	а	480	6.7	220	420	-	<2.5	-	-	<2.5	<2.5	-	-	-	-	-
	4/3/2008	2,700	а	280	21	130	230	<25	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<100	<1.0	<1,000	< 0.5
	6/23/2011	610	а	100	6.2	46	77	-	<2.5	<2.5	<10	-	-	<2.5	-	<2.5	-	-
	12/6/2011	900	a	160	<5.0	68	76	-	<5.0	<5.0	<20	-	-	<5.0	-	<5.0	-	-
	1/24/2012	190	a	25	<1.0	1.4	4.6	<1.0	-	-	-	-	-	-	-	-	-	-
MW-2	1/21/1987	5,018		386	1,981	285	1,432	-	-	-	-	-	-	-	-	-	-	-
	1/11/1989	10,000		3,000	410	240	190	-	-	-	-	-	-	-	-	-	-	-
	7/12/1989	7,600		2,700	540	250	320	-	-	-	-	-	-	-	-	-	-	-
	4/9/1991	4,900		910	210	130	200	-	-	-	-	-	-	-	-	-	-	-
	7/14/1992	13,000		4,400	1,500	610	1,100	-	-	-	-	-	-	-	-	-	-	-
	10/7/1992	11,000		5,200	1,500	500	1,200	-	-	-	-	-	-	-	-	-	-	-
	1/11/1993	17,000		940	1,100	480	930	-	-	-	-	-	-	-	-	-	-	-
	4/23/1993	52,000	а	13,000	8,400	1,700	5,300	-	-	-	-	-	-	-	-	-	-	-

Table 9 Groundwater Monitoring Analytical Data AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample Date TPH-g Benzene Toluene Ethvlbenzene Xvlenes MTBE MTBE TAME TBA EDB 1,2-DCA DIPE Ethanol ETBE Methanol Lead ID EPA Methods 8020, 8021B, or 8260B EPA Method 8260B $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ (µg/L) $(\mu g/L)$ $(\mu g/L)$ 7/8/1993 470 280 530 6,400 2,500 а --_ -_ 10/15/1993 3,900 870 500 940 17,000 а -1/25/1994 5,400 1,500 16,000 а 1,140 640 -4/28/1994 15,000 а 4,00 910 480 1,200 -7/27/1994 18,000 6,000 760 630 1,600 а -10/27/1994 9,500 2,700 230 320 640 а -1.900 1/26/1995 5,900 290 230 500 а 4/13/1995 10,000 3,300 620 360 930 а -9,900 3,300 320 390 830 7/21/1995 а -580 10/25/1995 13,000 4,900 400 990 а -1/21/1997 7,600 а 2,600 310 330 660 <20 _ 11/12/1998 31,000 а 11,000 750 1,500 2,300 < 900 -_ ---<30 1/16/2001 23,000 а 8,200 260 1,000 820 <30 <30 <150 <30 <30<30 -6/27/2002 39,000 а 7,000 1,800 690 4,000 <5 < 5.0 < 5.0 < 5.0 6.1 < 5.0 < 5.0 --<12 11/18/2002 15,000 а 5,700 76 1,000 150 <12 <12 ---2/20/2003 26,000 а 6,300 1,100 1,300 1,900 < 5.0 < 5.0 < 5.0 ------6/11/2003 37,000 а 7,100 2,300 2,000 3,600 <25 <25 <25 ----4/3/2008 4,100 а 760 96 250 130 < 50 <2.5 < 2.5 <10 <2.5 <2.5 <2.5 $<\!\!250$ < 2.5 <2,500 < 0.5 6/23/2011 6,500 2,100 210.0 560 310 <50 <50 <200 <50 <50 а ------12/6/2011 4,800 1.600 <50 260 <50 -<50 <50 <200 <50 <50 a ---_ -1/24/2012 2,500 a 100 22 <5.0 410 <5.0 --_ _ _ -_ MW-3 1/21/1987 10,287 1,428 3,281 610 2,761 -1/11/1989 5,300 1.800 340 150 160 -7/12/1989 7,800 3,100 900 300 480 _ 4/9/1991 9,400 1,400 730 200 510 -17,000 390 7/14/1992 3,500 390 260 -10/7/1992 9,200 4,300 470 390 610 2,000 58 28 1/11/1993 740 29 4/23/1993 6,500 2,600 280 260 190 а -7/8/1993 5,200 2,100 260 250 180 а 10/15/1993 11,000 3,500 580 430 370 а -2,500 270 160 28 1/25/1994 6,200 а _ 4/28/1994 5,300 1,700 190 210 180 а 7/27/1994 2,000 330 5,900 360 260 а -10/27/1994 8,000 а 2,200 580 260 170 190 1/26/1995 3,700 а 1,200 150 150 180 4/13/1995 4,000 а 1,400 200 210 -

Table 9 Groundwater Monitoring Analytical Data AEI Project No. 298931, 1630 Park Street, Alameda, California

Benzene Toluene Ethylbenzene Xylenes MTBE MTBE TAME TBA 1,2-DCA DIPE Ethanol ETBE Methanol Lead Sample Date TPH-g EDB ID EPA Methods 8020, 8021B, or 8260B EPA Method 8260B $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ (µg/L) $(\mu g/L)$ $(\mu g/L)$ 7/21/1995 2,000 280 270 280 5,700 а --_ _ -----10/25/1995 11,000 3,500 1,100 460 а 680 ---_ _ -1/21/1997 2,200 860 63 71 80 <5 а -_ _ -_ -< 0.5 11/12/1998 180 d 44 0.51 0.92 <20 ---_ --1/16/2001 11 0.77 < 0.5 < 0.5 <5 64 <1.0 < 5.0 <1.0 1.4 <1.0 а --< 1.0< 0.5 < 0.5 < 0.5 6/27/2002 <50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 < 0.5 --11/18/2002 21 1 < 0.5 < 0.5 < 0.5 < 0.5 110 < 0.5 а ----<50 2.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 2/20/2003 < 0.5 -------6/11/2003 <50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 -------4/3/2008 7,600 2,400 58 250 170 <100 < 5.0 < 5.0 <20< 5.0 < 5.0 < 5.0 < 500< 5.0 < 5,000 < 0.5 а 6/23/2011 560 21 86 150 <12 <50 <12 <12 1,300 а <12 -----28 22 <17 12/6/2011 1,800 a 620 46 -<17 <67 <17 -<17 --_ -1/24/2012 1,200 68 34 130 <25 3,700 a _ -_ _ MW-4 4/28/1994 190 2.9 2.1 3.1 b.c 3.8 _ 9.2 7/27/1994 180 а 15 7.6 28 8.6 4.5 17 10/27/1994 130 а 6.6 1/26/1995 110 6.5 1.2 1.8 11 4/13/1995 82 3.9 < 0.5 < 0.5 2.5 7/21/1995 130 8.8 1.3 4.5 7.6 10/25/1995 95 6.6 1.7 4.3 7 1/21/1997 ----11/12/1998 -_ --1/16/2001 -6/27/2002 -11/18/2002 -2/20/2003 -_ _ -_ _ -_ _ -6/11/2003 --_ -----_ ----4/3/2008 < 0.5 0.89 0.85 130 1.6 < 5.0 < 0.5 < 0.5 <2.0 < 0.5 < 0.5 < 0.5 < 50 < 0.5 < 500 < 0.5 6/23/2011 53 2.7 < 0.5 1.0 1.7 < 0.5 < 0.5 <2.0 < 0.5 < 0.5 а ------12/6/2011 ---_ -_ _ _ _ _ _ -1/24/2012 --------MW-5 4/28/1994 30,000 4,000 3,000 810 3,500 а 7/27/1994 2,000 800 290 940 9,300 а _ 10/27/1994 15,000 а 2,700 1,300 420 1,100 7,900 680 240 1/26/1995 а 2,100 860 4/13/1995 7,900 а 2,400 580 340 630 -

Table 9Groundwater Monitoring Analytical DataAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample	Date	TPH-g				Ethylbenzene		MTBE	MTBE	TAME	ТВА	EDB	1,2-DCA		Ethanol	ETBE	Methanol	Lead
ID		(µg/L)		EPA Met (µg/L)	thods 8020. (μg/L)	, 8021B, or 826((µg/L))Β (μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	EPA Met (µg/L)	thod 8260 (μg/L)	B (µg/L)	(µg/L)	(µg/L)	(µg/L)
	7/21/1995	11,000	а	3,400	760	610	1,200	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	13,000	а	2,900	830	570	1,100	-	-	-	-	-	-	-	-	-	-	-
	1/21/1997	2,600	а	750	65	1,860	280	<5	-	-	-	-	-	-	-	-	-	-
	11/12/1998	<50		< 0.5	< 0.5	< 0.5	< 0.5	<5	-	-	-	-	-	-	-	-	-	-
	1/16/2001	<50		11	< 0.5	<0.5	0.82	-	<5	<1.0	<5.0	<1.0	<1.0	<1.0	-	<1.0	-	-
	6/27/2002	<50		<0.5	< 0.5	<0.5	< 0.5	-	<0.5	<0.5	<5.0	< 0.5	<0.5	< 0.5	-	<0.5	-	-
	11/18/2002	130	а	17	3.8	2.1	16	-	<0.5	-	-	<0.5	< 0.5	-	-	-	-	-
	2/20/2003	<50		5.6	0.51	<0.5	0.68	-	<0.5	-	-	<0.5	<0.5	-	-	-	-	-
	6/11/2003	170	а	48	<0.5	<0.5	1.4	-	<0.5	-	-	<0.5	< 0.5	-	-	-	-	-
	4/3/2008	31,000	а	490	3,400	1,600	5,300	<250	<10	<10	<40	<10	<10	<10	<1,000	<10	<10,000	<0.5
	6/23/2011	82	а	5.1	<0.5	12.0	8.4	-	<0.5	< 0.5	<2.0	-	-	< 0.5	-	<0.5	-	-
	12/6/2011	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1/24/2012	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DPE-1	12/6/2011	9,200	a	1,800	570	460	1,100	-	<50	<50	<200	-	-	<50	-	<50	-	-
	1/24/2012	3,200	a	170	58	<5.0	620	<5.0	-	-	-	-	-	-	-	-	-	-
DPE-2	12/6/2011	22,000	a	2,100	3,300	650	3,300	-	<100	<100	<400	-	-	<100	-	<100	-	-
	1/24/2012	1,100	a	44	26	11	150	<2.5	-	-	-	-	-	-	-	-	-	-
DPE-3	12/6/2011	6,400	a	550	560	180	1,000	_	<17	<17	<67	_	-	<17	_	<17	_	_
	1/24/2012	5,500	a	290	240	44	1,000	<5.0	-	-	-	-	-	-	-	-	-	-
DPE-4	1/24/2012	730	a	66	6.0	7.1	83	2.5	-	-	-	-	-	-	-	-	-	-
DPE-5	1/24/2012	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DPE-6	1/24/2012	64*	a	<0.5	<0.5	<0.5	3.2	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-8	1/24/2012	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DPE-9	1/24/2012	4,400	a	160	390	93	1,100	<5.0	-	-	-	-	-	-	-	-	-	-
DPE-10	1/24/2012	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 9 Groundwater Monitoring Analytical Data AEI Project No. 298931, 1630 Park Street, Alameda, California

TPH-g= total petroleum hydrocarbons as gasoline

TPH-g= total petroleum hydrocarbons as diesel

Table 9Groundwater Monitoring Analytical DataAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample	Date	TPH-g	Benzene				MTBE	MTBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol	ETBE	Methanol	Lead
ID		(µg/L)	EPA Met (µg/L)	(μg/L)	, 8021B, or 8260 (μg/L)	в (µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	EPA Met (µg/L)	(μg/L)	в (µg/L)	(µg/L)	(µg/L)	(µg/L)

TPH-motor oil = total petroleum hydrocarbons as motor oil

MTBE = Methyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Diisopropyl ether

ETBE = Ethyl tertiary butyl ether

 $\mu g/L = micrograms per liter$

a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.

b = Laboratory note indicates heavier gasoline range compounds are significant (aged gas?).

c = Laboratory note indicates gasoline range compounds are significant with no recognizable pattern.

d = Laboratory note indicates that lighter gasoline range coounds (the most mobile fraction) are significant.

e = Laboratory note indicates that one to a few isloated non-targed peaks are present.

* TPH-d = <50, TPH-motor oil = 250

Table 10 Hydrocarbon Mass Calculation (TPH-g) AEI Project No. 298931, 1630 Park Street, Alameda, California

		Area		
Parameter	1	2	3	Source
Area (feet ²)	3,733	707	6,316	Figure 7
Height (feet)	8	8	8	Approximate thickness of impacted zone
Volume (feet ³)	29,864	5,656	50,528	Calculated as the Area * Height
Volume (m ³)	845	160	1,430	
Soil Density (kg/m ³)	1,800	1,800	1,800	Average density for silty sand (Lindeburg 1992)
Soil Weight (kg)	1,521,810	288,218	2,574,806	Calculated as the Volume * Soil Density
Estimated Average Conc. (mg/kg)	2,674	1,600	280	Average of concentrations shown in Figure 7
Mass (mg)	4,069,982,244	461,149,517	722,049,119	Calculated as the Soil Weight * Conc.
Mass (pounds)	8,974	1,017	1,592	

	-	MASS IN GROUNDWATER
Parameter	Area 4	Source
Area (feet ²)	7,115	Figure 8
Height (feet)	8	Approximate thickness of impacted zone
Volume (feet ³)	56,920	Calculated as the Area * Height
Porosity	0.40	Assumed value
Pore Space (feet ³)	22,768	Calculated as the Volume * Porosity
Gallons per feet ³ (gallons/feet ³)	7.48	
Estimated Average Conc. (ug/L)	8,550	Average of concentrations shown in Figure 7
Grams per ug	0.000001	
Liters / Gallon	3.7854	
Pounds / Gram	0.0022	
Mass (pounds)	12.13	

Area 1 = The area of concentrations defined by the southern 1,000 mg/kg contour line (Figure 7).

Area 2 = The area of concentrations defined by the northern 1,000 mg/kg contour line (Figure 7).

Area 3 = The area of concentrations defined by the 100 mg/kg contour line (Figure 7).

Area 4 = The area of the concentrations defined by the 1,000 ug/L contour line (Figure 8).

TPH-g = Total petroleum hydrocarbons as gasoline

Conc. = Concentration

mg/kg= milligrams per kilogram

ug/L = micrograms per liter

Reference:

Michael R. Lindeburg, Civil Engineering Reference Manual, Sixth Edition, P.E. 1992

Well Designation	Township / Range	Section, Parcel and Number	Direction	Distance (feet)	Address	Total Depth (feet)	Drill Date
L1	2S/3W	7L1	Northeast	1,350	1915 EVERETT ST	90	Unknown
P1	2S/3W	7P1	East	1,750	2623 EAGLE AVE	120	6/76
Q80	2S/3W	7Q80	East	1,900	1823 PEARL ST	11	10/96
D2	2S/3W	18D2	South	1,400	EVERETT & ALAMEDA	120	7/76
R1	2S/4W	12R1	Southwest	1,400	CENTRAL & OAK ST	325	Unknown
M1	2S/3W	7M1	North	1,200	2307 CLEMENT AVE	72	4/77
M2	2S/3W	7M2	North	1,200	2307 CLEMENT AVE	82	4/77
L2	2S/3W	7L2	East	1,100	1819 EVERETT ST	Unknown	/06
N1	2S/3W	7N1	West	1,000	2235 LINCOLN AVE	206	/16
J1	2S/4W	12J1	West	1,950	2138 PACIFIC AVE	29	8/77

Table 11 Well Search Table AEI Project No. 298931, 1600 - 1630 Park Street, Alameda, California

Table 12 Summary of Select HVDPE Event Data AEI Project No. 298931, 1630 Park Street, Alameda, California

																Ob	servation W	ells						
				Extraction				Water		DPE-1		DPE-2		DPE-3		MW-1		MW-2		MW-3		VP-1	VP-2	VP-3
				Casing	System	System	Influent	Totalizer			Depth to	Induced	Depth to	Induced	Depth to	Induced	Depth to	Induced	Depth to	Induced	Depth to	Induced	Induced	Induced
	Extraction					Flow Rate	Conc.	Readings		Vacuum	Water	Vacuum	Water	Vacuum	Water	Vacuum	Water	Vacuum		Vacuum	Water	Vacuum	Vacuum	
	Well(s)	Date	(Days)	(in. of Hg)	(in. of Hg)	(cfm)	(ppmv)	(gallons)	(gpm)	$(\text{In. } H_2 O)$	(feet TOC)	$(In. H_2O)$	(feet TOC)	$(In. H_2O)$	(feet TOC)	$(In. H_2O)$	(feet TOC)	$(\text{in. } H_2 O)$	(feet TOC)	$(In. H_2O)$	(feet TOC)	$(\text{In. } H_2 O)$	$(In. H_2O)$	$(\text{in. } H_2\text{O})$
Baseline		12/5/11						12380			8.61		8.75		7.73		8.27		8.48		8.34			
Start	DPE-1	12/6/11 8:00																						
	DPE-1	12/6/11 11:40						12410																
Stop	DPE-1	12/7/11 8:00	1.0	10	25	37	6410	13140	0.60			0.73	9.61	0.39	8.42	0.22	9.19	0.60	9.41	0.03	8.77	0.44	0.78	0.22
Start	DPE-3	12/7/11 9:00																						
	DPE-3	12/7/11 20:00						13450																
Stop	DPE-3	12/8/11 8:00	1.0	8	25	30	9240	13760	0.43	0.48	11.04	1.55	12.28			0.10	9.97	0.15	9.94	0.00	9.29	0.00	0.01	0.07
Start	DPE-2	12/8/11 8:30																						
	DPE-2	12/8/11 20:00						14020																
Stop	DPE-2	12/9/11 8:00	1.0	8	23	46	2670	14190	0.24	0.30	11.10			0.00	11.00	0.10	10.07	0.05	10.01	0.00	9.39	0.00	0.01	0.04
Start	DPE-1 to DPE-3	12/9/11 9:00																						
	DPE-1 to DPE-3	12/9/11 20:00						14910																
Stop	DPE-1 to DPE-3	12/30/11 4:00	20.8	7/5/0	15	177	876	42310	0.94							0.35		0.35		0.00		0.50	0.40	0.35
Ĩ	DPE-1 to DPE-3																9.49		9.52		9.21			
Start	MW-2	12/30/11 12:15																						
	MW-2	12/30/11 20:00						43370																
	MW-2	12/31/11 8:00						43630	0.36															
Stop	MW-2	12/31/11 12:00	1.0		25	36	653			0.75		0.07		0.05		0.15				0.05		0.60	0.50	0.20

Notes:

in. of Hg Inches of mercury vacuum

in. H_2O Inches of water vacuum

cfmCubic feet per minuteppmvParts per million by volumefeet TOCFeet below the top of casing

Gallons per minute gpm

Table 13Vapor Radius of InfluenceAEI Project No. 298931, 1630 Park Street, Alameda, California

Extraction Well DPE-1			Extraction Well DPE-2			Ext	raction Well DP	E-3	Extraction Well MW-2			
		Induced			Induced			Induced			Induced	
Observation Well	Distance (X) (feet)	Vacuum (Y) (in. H ₂ O)	Observation Well	Distance (X) (feet)	Vacuum (Y) (in. H ₂ O)	Observation Well	Distance (X) (feet)	Vacuum (Y) (in. H ₂ O)	Observation Well	Distance (X) (feet)	Vacuum (Y) (in. H ₂ O)	
VP-1	15	0.44	VP-1	30	0.00	VP-1	34	0.00	VP-1	16	0.60	
VP-2	10	0.78	VP-2	25	0.01	VP-2	29	0.01	VP-2	13	0.50	
VP-3	20	0.22	VP-3	26	0.04	VP-3	16	0.07	VP-3	23	0.20	
ROI	23	0.10	ROI	13	0.10	ROI	12	0.10	ROI	30	0.10	
DPE-2	19	0.73	DPE-1	19	0.30	DPE-1	19	0.48	DPE-1	13		
DPE-3	19	0.39	DPE-3	12	0.00	DPE-2	12	1.55	DPE-2	32		
MW-1	27	0.22	MW-1	33	0.10	MW-1	22	0.10	DPE-3	30		
MW-2	13	0.60	MW-2	32	0.05	MW-2	30	0.15	MW-1	27		
MW-3	36	0.03	MW-3	47	0.00	MW-3	54	0.00	MW-3	36		
ROI	35	0.10	ROI	21	0.10	ROI	35	0.10	ROI	N/C		

Notes:

ROI calculated as X on a semi-log linear regression trendline for a given value of Y. The trendline has the formula: Y = C*Ln(X) + B, or $X = e^{(Y - B)/C}$

in. H₂O Inches of water vacuum

N/C Not calculated

Table 14Pore Exchange Volume CalculationAEI Project No. 298931, 1630 Park Street, Alameda, California

		Well		
Parameter	DPE-1	DPE-2	DPE-3	Source
	0.3	0.3	0.3	Assumed value
Effective Porosity (unitless)				
ROI (feet)	35	21	35	Table 13
Thickness (feet)	8	8	8	One half of the thickness of the contaminated zone
Volume (feet ³)	30,788	11,084	30,788	Calculated as pi*ROI(feet) ² *Thickness (feet)
System Flow Rate (feet ³ per minute)	37	46	30	Table 12
Pore Volume Exchange (minutes)	249.63	72.28	307.88	(Calculated as Effective Porosity * Volume) / System Flow Rate
Pore Volume Exchange (hours)	4.16	1.20	5.13	1 hour = 60 minutes
Pore Volume Exchange (days)	0.17	0.05	0.21	1 day = 24 hours
Pore Volumes Exchanged per day	5.77	19.92	4.68	1 / Pore Volume Exchange (days)
Average Pore Volumes Exchange	ed per day	10.12		

cfm = Cubic feet per minute

ROI = Radius of influence

Reference:

EPA (United States Environmental Protection Agency). 2004. How to Evaluate Alternative Cleanup Teclmologies for Underground Storage Tank Sites, A Guide for Corrective Action Plan Reviewers. May 2004.

Table 15Groundwater Radius of InfluenceAEI Project No. 298931, 1630 Park Street, Alameda, California

Initial D		h to Water	Final Depth	to Water			Distance to
Observation Well	Date	(feet)	Date	(feet)	Drawdown (feet)	Nearest Ext. Well	Nearest Ext. Well (feet)
MW-1	12/5/2011	8.27	12/30/2011	9.49	1.22	DPE-3	22
MW-2	12/5/2011	8.48	12/30/2011	9.52	1.04	DPE-1	13
MW-3	12/5/2011	8.34	12/30/2011	9.21	0.87	DPE-1	36

Note:

Initial depth to water measurements were collected at the beginning of the event.

The final depth to wate measurements were collected after the operation of wells DPE-1 through DPE-3.

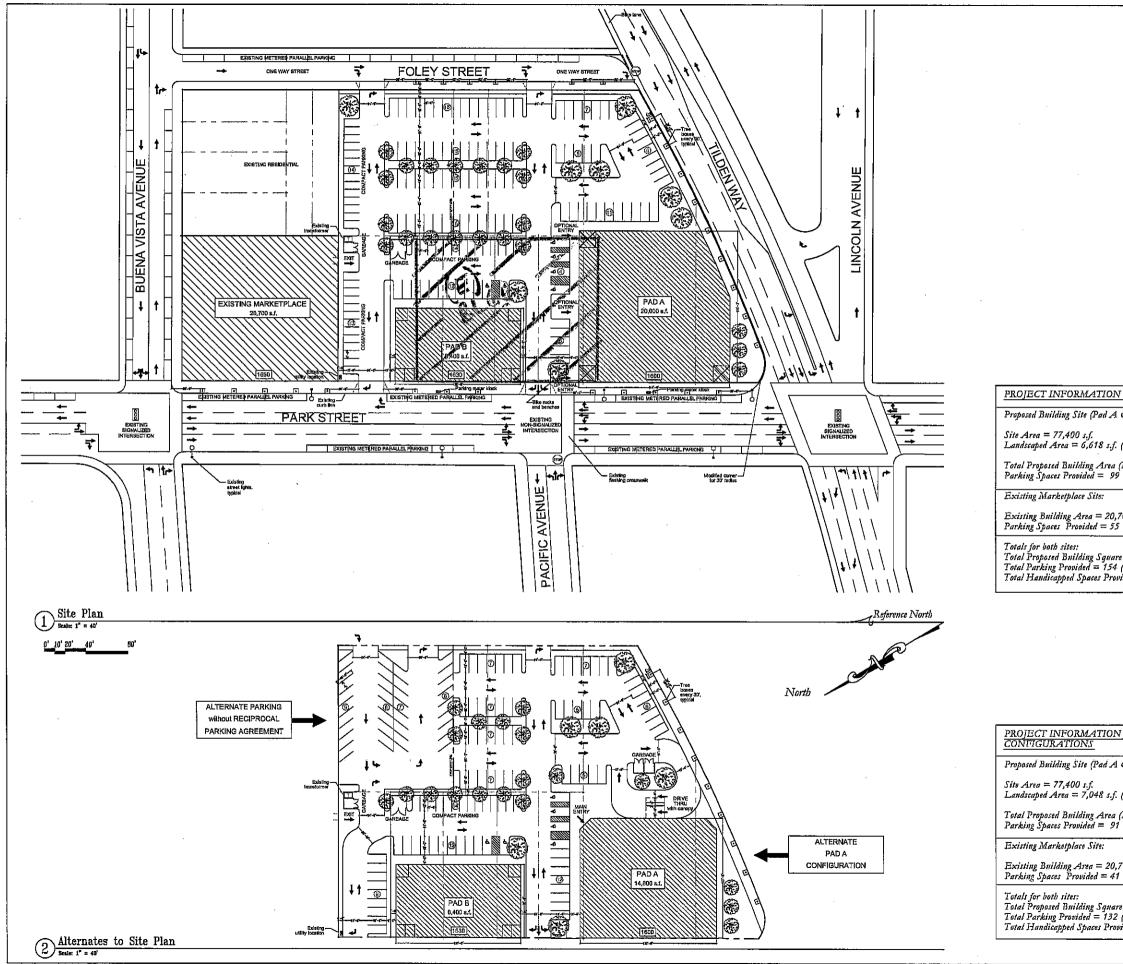
Table 16Hydrocarbon Mass Removal in GroundwaterAEI Project No. 298931, 1630 Park Street, Alameda, California

Sample	Date	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes		
ID		EPA Methods 8020, 8021B, or 8260B						
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
/W-2	12/6/2011	4,800	1,600	<50	260	<50		
	1/24/2012	2,500	100	22	<5.0	410		
OPE-1	12/6/2011	9,200	1,800	570	460	1,100		
	1/24/2012	3,200	170	58	<5.0	620		
DPE-2	12/6/2011	22,000	2,100	3,300	650	3,300		
	1/24/2012	1,100	44	26	11	150		
OPE-3	12/6/2011	6,400	550	560	180	1,000		
	1/24/2012	5,500	290	240	44	1,000		
Average		6,838	832	682	268	1,083		

Sample ID	Date	TPH-g	Benzene EPA Me	Toluene ethods 8020, 8021B,	Ethylbenzene or 8260B	Xylenes
		(pounds)	(pounds)	(pounds)	(pounds)	(pounds)
Average		2.48	0.30	0.25	0.10	0.39

Total Gallons Removed =

Estimated Mass Removed (pounds) = Average influent concentration (µg/L) * flow (gallons)*11b/454 g * 1/1,000,000 * 3.785 L/gallon


43,530

TPH-g= total petroleum hydrocarbons as gasoline μ g/L = micrograms per liter

APPENDIX A

PLANNED DEVELOPMENT LAYOUT

Existing Marketplace Site:

Totals for both sites: Total Proposed Building Square Footage = 49,100 s.f. Total Parking Provided = 154 (3.1 per 1000 s.f.) Total Handicapped Spaces Provided = 6

PROJECT INFORM

Site Area = 77,400 . Landscaped Area = 7

Total Proposed Buildi Parking Spaces Provid

Existing Marketplace

Existing Building Ar Parking Spaces Provi

Totals for both sites: Total Proposed Buildi. Total Parking Provide Total Handicapped Sp

Proposed Building Site (Pad A & Pad B):

Site Area = 77,400 s.f. Landscaped Area = 6,618 s.f. (8.5%)

Total Proposed Building Area (Pad A & B) = 28,400 s.f. Parking Spaces Provided = 99 (3.5 per 1000 s.f.)

Existing Building Area = 20,700 s.f. Parking Spaces Provided = 55 (2.6 per 1000 s.f.)

MATION for ALTERNATE
te (Pad A & Pad B):
s.f. 7,048 s.f. (9.1%)
ling Area (Pad A & B) = 23,200 s.f. ided = 91 (4 per 1000 s.f.)
e Site:
lrea = 20,700 s.f. vided = 41 (2 per 1000 s.f.)
ling Sgnare Footage = 43,900 s.f. led = 132 (3 per 1000 s.f.) paces Provided = 6

JOHN MALICK R ASSOCIATES

Architecture · Planning

1195 Park Avc., Suite 102 Emeryville, California 94608 Tel: 510,595,8042 Fax: 510,595,8365

🖒 John Malick & Associates, 2011					
Revisions	Dat				
Meeting	6/23/11				
Revisions	7/12/11				
··					
•					

Foley Street Investments LLC

Tilden Way and Park Street Alameda, CA

Drawing Title

Site Plan

Scale]"=40'	
Drawn By	AG/GK	
Job Number	456,1	
Drawing Number	t	

A101

APPENDIX B

CALCLEAN REPORT

CALCLEAN INC.

"A Partner in Protecting California's Waters"

January 19, 2012

AEI Consultants 2500 Camino Diablo, Suite 100 Walnut Creek, CA

ATTN: MR. PETER MCINTYRE

SITE: GOOD CHEVROLET 1630 PARK STREET ALAMEDA, CA

RE: HIGH VACUUM DUAL PHASE EXTRACTION REPORT

Dear Mr. McIntyre:

CalClean Inc. is submitting this High Vacuum Dual Phase Extraction Report for the above referenced site. This report includes all activities performed during the dates of December 5, 2011 to January 9, 2012.

From December 5, 2011 to January 9, 2012, CalClean performed a 35-day high vacuum dual phase extraction (HVDPE) event on several onsite extraction wells using a low-noise, truck-mounted 450-CFM high-vacuum liquid ring blower along with a Bay Area Air Quality Management District (BAAQMD) various locations permitted propane-fired thermal oxidizer (Plant No. 12568). This technology allows hydrocarbons to be simultaneously removed from the vadose zone, capillary fringe, and saturated soil zone. A high vacuum was applied for vapor extraction and drawdown of the groundwater table around the extraction wells, while vacuum and vapor flow rates were modified to optimize recovery of vapor, free-product (if any) and dissolved-phase hydrocarbons.

During the event, the high vacuum dual phase extraction (HVDPE) system was connected to wells DPE-1, DPE-2, DPE-3, and MW-2 individually or in combination. HVDPE activities were conducted for a total of 35 days during the HVDPE event.

Vapor samples were collected in Tedlar bags during the HVDPE event from the extraction wells. Total Inlet well vapor samples were also collected during the event. The laboratory results, listed in Table 1 and laboratory reports included in Attachment 1, indicate the following:

• The starting Total Petroleum Hydrocarbons as Gasoline (TPH-G) vapor concentrations for wells DPE-1, DPE-2, and DPE-3 were 5,600 ppmv, 4,000 ppmv, and 7,100 ppmv, respectively. The ending TPH-G vapor concentrations were 1,600 ppmv, 1,700 ppmv, and 3,300 ppmv, respectively. The TPH-G vapor concentration for well MW-2 was 1,000 ppmv. The starting and ending Total Inlet TPH-G vapor concentrations were 6,000 ppmv and 1,500 ppmv, respectively.

- The starting Benzene vapor concentrations for wells DPE-1, DPE-2, and DPE-3 were 130 ppmv, 110 ppmv, and 130 ppmv, respectively. The ending Benzene vapor concentrations were 24 ppmv, 28 ppmv, and 62 ppmv, respectively. The Benzene vapor concentration for well MW-2 was 9 ppmv. The starting and ending Total Inlet Benzene vapor concentrations were 110 ppmv and 22 ppmv, respectively.
- The starting Methyl tert-Butyl Ether (MtBE) vapor concentrations for wells DPE-1, DPE-2, and DPE-3 were 280 ppmv, 160 ppmv, and 550 ppmv, respectively. The ending MtBE vapor concentrations were 18 ppmv, 22 ppmv, and 58 ppmv, respectively. The MtBE vapor concentration for well MW-2 was 13 ppmv. The starting and ending Total Inlet MtBE vapor concentrations were 170 ppmv and 18 ppmv, respectively.

The total equivalent amount of hydrocarbons recovered through vapor extraction during the 35-day HVDPE event was 6,422.16 pounds (based on laboratory data), and 4,274.15 pounds (based on the Horiba field organic vapor analyzer data) with an average of 5,348.16 pounds. The cumulative tabulation of recovered hydrocarbons (based on laboratory data) is provided in Table 2. The cumulative tabulation of recovered hydrocarbons (based on the field organic vapor analyzer data) is provided in Table 3.

The total volume of hydrocarbon-affected groundwater recovered from the extraction wells during the HVDPE event was approximately 43,530 gallons. The extracted groundwater was treated through two 500-pound granular activated carbon vessels in series and then discharged periodically to the onsite sewer system in accordance with Special Discharge Permit #36810870 from East Bay Municipal Utility District.

The following attachments are included to document the HVDPE event at the site:

- Table 1
 Results of Laboratory Analysis of Influent Vapor Samples
- Table 2Hydrocarbon Mass Removal (using Lab Data)
- Figure 1 Total Inlet HC Concentrations versus Time (35-Days, Using Lab Data)
- Figure 2 Cumulative HC Recovered over 35 Days (using Lab Data)
- Table 3Hydrocarbon Mass Removal (using Horiba Data)
- Figure 3 Total Inlet HC Concentrations versus Time (35-Days, Using Horiba Data)
- Figure 4 Cumulative HC Recovered over 35 Days (using Horiba and Lab Data)
- Attachment 1 Laboratory Reports
- Attachment 2 High Vacuum Dual Phase Extraction Field Data Sheets

High Vacuum Dual Phase Extraction Report Good Chevrolet, Alameda, CA January 19, 2012

If you have any questions regarding this report, please contact us at (714) 734-9137 or via cell phone at (714) 936-2706.

Sincerely,

m.

CALCLEAN INC.

Noel Shenoi Principal Engineer

Attachments

Table 1 RESULTS OF LABORATORY ANALYSIS OF VAPOR SAMPLES Good Chevrolet Alameda, CA

Sample ID	Date/Time Sampled	TPH-g (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	MtBE (ppmv)
DPE-1	12/5/11 1015	5,600	130	56	2.6	14	280
DPE-1	12/6/11 1405	6,900	150	230	26	77	120
DPE-1	12/6/11 2000	7,500	130	250	32	98	84
DPE-1	12/7/11 0400	6,500	120	220	24	72	79
DPE-1	12/30/11 0400	3,300	27	38	12	36	11
DPE-1	1/9/12 1700	1,600	24	120	20	80	18
DPE-2	12/5/11 1030	4,000	110	80	2.4	15	160
DPE-2	12/8/11 0930	2,100	25	64	8.7	27	17
DPE-2	12/8/11 1130	1,800	21	68	5.7	20	41
DPE-2	12/8/11 1600	1,900	22	75	6.3	21	43
DPE-2	12/9/11 0400	2,500	25	95	7.8	26	60
DPE-2	12/30/11 0405	3,100	50	55	15	43	55
DPE-2	1/9/12 1655	1,700	28	130	19	77	22

Table 1 RESULTS OF LABORATORY ANALYSIS OF VAPOR SAMPLES Good Chevrolet Alameda, CA

Sample ID	Date/Time Sampled	TPH-g (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	MtBE (ppmv)
DPE-3	12/5/11 1040	7,100	130	120	5.5	28	550
DPE-3	12/7/11 0905	10,000	180	310	35	100	93
DPE-3	12/7/11 1100	15,000	180	320	49	110	330
DPE-3	12/7/11 1600	9,200	120	330	54	140	210
DPE-3	12/8/11 0400	10,000	120	260	51	130	240
DPE-3	12/30/11 0410	3,300	62	64	20	55	58
MW-2	1/9/12 1645	1,000	9	74	15	61	13

Table 1 RESULTS OF LABORATORY ANALYSIS OF VAPOR SAMPLES Good Chevrolet Alameda, CA

Sample ID	Date/Time Sampled	TPH-g (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	MtBE (ppmv)					
TOTAL INLET	12/5/11 1050	6,000	110	110	5.3	26	170					
TOTAL INLET	12/9/11 0900	7,400	44	140	16	56	73					
TOTAL INLET	12/10/11 0800	6,100	53	140	17	59	95					
TOTAL INLET	12/11/11 0800	6,000	56	140	18	61	33					
TOTAL INLET	12/12/11 0800	7,400	61	160	18	65	120					
TOTAL INLET	12/22/11 1300	3,800	48	62	27	87	56					
TOTAL INLET	12/30/11 0355	4,300	39	36	21	66	12					
TOTAL INLET	1/6/12 0800	1,300	17	93	15	59	14					
TOTAL INLET	1/9/12 1645	1,500	22	110	19	76	18					
Notes: ppmv TPH - g	ppmv = parts per million by volume TPH-G/BTEX analyzed by EPA 8015B/8021B											

Table 2 HYDROCARBON MASS REMOVAL (Using Lab Data) Good Chevrolet, Alameda, CA

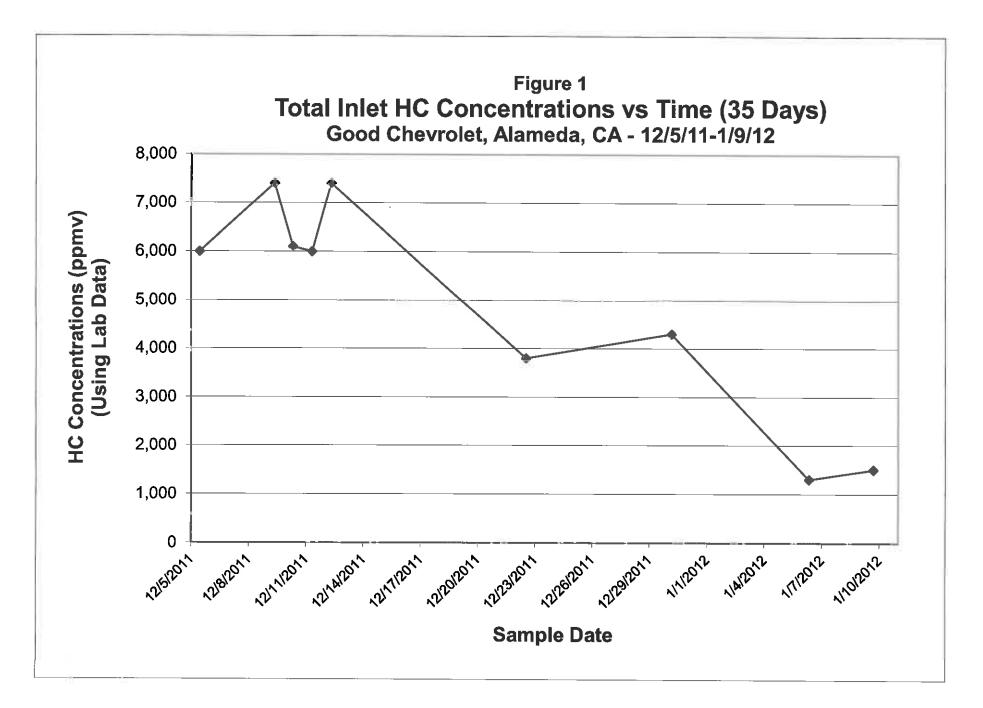
		SYSTEM P	ARAMETERS			
TIME	Average System Vacuum (in of Hg)	Average Total System Inlet Flow (scfm)	Influent Concentrations Post-dilution* (ppmv)	Hydro	ocarbon Recov (gal)	/ery (Cumul. lbs)
12/5/2011 10:50	22	97	6,000	0.00	0.00	0.00
12/9/2011 9:00	21	124	7,400	949.19	151.93	949.19
<u>12/10/2011 8:00</u>	21	123	6,100	261.05	41.78	1,210.23
12/11/2011 8:00	21	126	6,000	246.12	39.40	1,456.36
12/12/2011 8:00	21 126		7,400	273.66	43.80	1,730.02
12/22/2011 13:00	18	89	3,800	1,989.40	318.43	3,719.41
12/30/2011 3:55	15	177	4,300	1,341.46	214.72	5,060.87
1/6/2012 8:00	18	162	1,300	1,111.95	177.98	6,172.82
1/9/2012 16:45	18	162	1,500	249.35	39.91	6,422.16
	TOTAL HC F	RECOVERED* - LA	AB DATA	6,422.16	1,027.96	
			ELD ANALYZER DATA	4,274.15	684.14	
	Average HC R	ecovered*** (Fie	d Analyzer/Lab Data)	5,348.16	856.05	

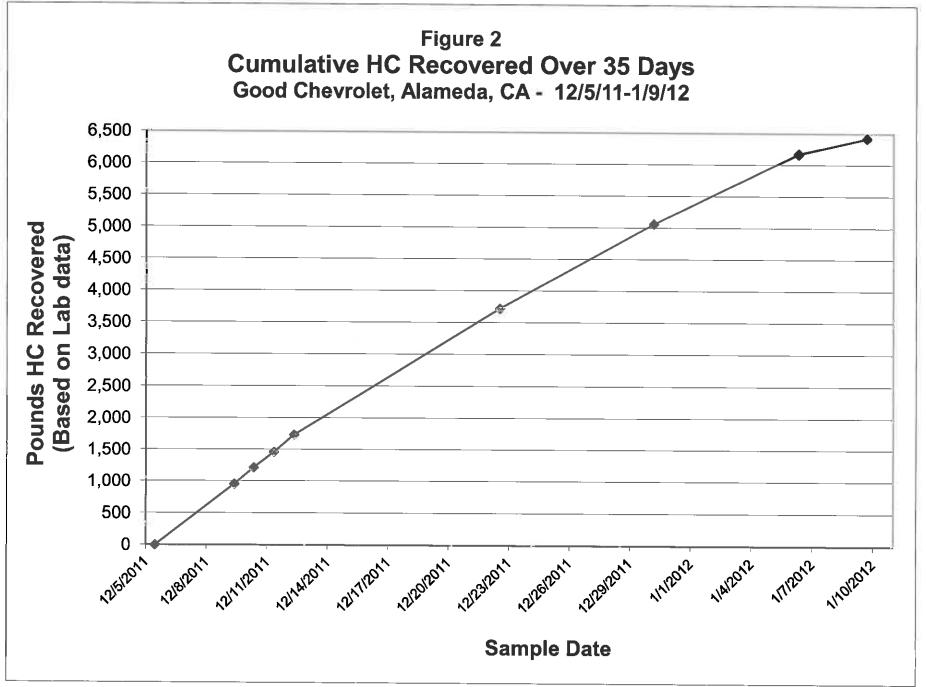
TOTAL GROUNDWATER RECOVERED

gal = gallons

43,530

in of Hg = inches of mercury


scfm = standard cubic feet per minute


ppmv = parts per million by volume lbs = pounds

* Concentration data based on laboratory data.

** Based on Horiba field analyzer data.

*** Average HC Recovered using Laboratory and Horiba data

. . .

								SYSTEM	PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**	Influent Concentrations (ppmv)*	Etfluent Concentrations (ppmv) *		ocarbon Rec	ata)
12/5/2011 10:15			ar opuli,		Dopaty	Dopaty	24	35	11,560	(ppinv) 6	0.00	(gal) 0.00	(Cumul. lbs)
12/5/2011 10:30		During the			L		24	37	6,740	3	1.12	0.00	0.00
12/5/2011 10:40				us wells were by the consul			24	36	8,710	3	0.64	0.18	
12/5/2011 10:50							22	97	9,510		1.37	0.10	1.76
12/5/2011 12:00							22	98	9,230		14.51	2.32	<u>3.14</u> 17.65
12/6/2011 11:40	_						23	31	5,610		154.21	24.68	171.86
12/6/2011 12:10							25	34	5,040	——————————————————————————————————————	1.18	0.19	171.86
12/6/2011 12:30							25	33	5,830		0.83	0.13	173.86
12/6/2011 13:00							25	30	6,390		1.31	0.13	175.17
12/6/2011 13:30							25	31	5,920		1.28	0.20	176.45
12/6/2011 14:00						· · · · ·	25	32	7,790		1.47	0.24	177.92
12/6/2011 14:30							25	34	7,640		1.73	0.28	179.65
12/6/2011 15:00							25	33	6,930		1.66	0.27	181.32
12/6/2011 15:30							25	31	6,910		1.51	0.24	182.82
12/6/2011 16:00							25	31	6,730		1.44	0.23	184.26
12/6/2011 20:00							25	38	6,810		12.72	2.04	196.98
12/7/2011 0:01							25	32	6,470		12,71	2.03	209.69
12/7/2011 4:00							25	36	6,230		11.71	1.87	221.40
12/7/2011 8:00							25	37	6,410		12.56	2.01	233.96
12/7/2011 9:00							25	38	8,130		3.71	0.59	237.68
12/7/2011 9:30							25	34	9,930		2.21	0.35	239.89
12/7/2011 10:00							25	31	10,670		2.28	0.36	242.17
12/7/2011 10:30							25	37	10,390		2.44	0.39	244.60
12/7/2011 11:00							25	33	11,540		2.61	0.42	247.22
12/7/2011 11:30							25	32	<u>1</u> 2,810		2.69	0.43	249.91
12/7/2011 12:00							25	34	11,370		2.72	0.43	252.63
12/7/2011 12:30							25	31	11,920		2.58	0.41	255.20
12/7/2011 13:00							25	32	10,730		2.43	0.39	257.63
12/7/2011 14:00							25	31	10,510		4.55	0.73	262.19
12/7/2011 15:00							25	32	10,930		4.60	0.74	266.78

								SYSTEM	PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System Vacuum	Total System Inlet Flow (scfm)**	Concentrations	Effluent Concentrations	(us	ocarbon Rec ing Horiba D	ata)
12/7/2011 16:00	Bopany	Deputy			Depui)	Depui)	(in of Hg)		(ppmv)*	(ppm/v) *	(lbs)	(gal)	(Cumul lbs)
12/7/2011 20:00							25 25	<u>34</u> 31	10,870		4.90	0.78	271.68
12/8/2011 0:01								<u> </u>	10,410		18.83	3.01	290.51
12/8/2011 4:00							25	31	10,110		17.39	2.78	307.91
12/8/2011 8:00					ł		25	33	9,630		17.13	2.74	325.04
12/8/2011 8:30		·			<u> </u>		25	30	9,240		16.19	2.59	341.22
12/8/2011 9:00					<u> </u>		<u>25</u> 25	31	6,370		1.62	0.26	342.84
12/8/2011 9:30							25	30	6,640		1.35	0.22	344.19
12/8/2011 10:00								30	6,810		1.37	0.22	345.57
12/8/2011 10:30					<u> </u>		25 25	31 32	7,340		1.47	0.24	347.04
12/8/2011 11:00							25	32	7,260		<u>1.57</u> 1.78	0.25	348.60
12/8/2011 11:30							24	38	8,230			0.29	350.38
12/8/2011 12:00							24	36	8,230		2.06	0.33	352.44
12/8/2011 12:30					<u> </u>		24	37	7,940		2.07	0.33	354.51 356.51
12/8/2011 13:00							24	38	8,340		2.00	0.32	358.59
12/8/2011 14:00							24	37	8,170		4.21	0.33	362.80
12/8/2011 15:00					<u> </u>		23	41	7,940		4.28	0.68	367.08
12/8/2011 16:00							23	44	7,530		4.48	0.00	371.56
12/8/2011 20:00							23	43	6,720		16.88	2.70	388.43
12/9/2011 0:01							23	42	5,710		14.44	2.31	402.88
12/9/2011 4:00							23	43	4,930		12.26	1.96	415.14
12/9/2011 8:00							23	46	2,670		9.21	1.47	424.35
12/9/2011 9:00						·	21	124	5,380		4.66	0.75	429.01
12/9/2011 10:00							21	121	6,140		9.61	1.54	438.62
12/9/2011 11:00							21	123	6,970		10.89	1.74	449.50
12/9/2011 12:00							21	128	7,830		12.64	2.02	462.15
12/9/2011 16:00							21	124	8,270		55.24	8.84	517.39
12/9/2011 20:00							21	129	8,140		56.53	9.05	573.91
12/10/2011 0:01							21	127	8,610		58.62	9.38	632.54
12/10/2011 8:00							21	123	8,530		116.44	18.64	748.97

								SYSTEN	PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**		Effluent Concentrations (ppmy) *		ocarbon Rec Ing Horiba Da (gal)	
12/10/2011 12:00							21	125	8,970		59.09	9.46	808.06
12/10/2011 16:00							21	124	8,410		58.92	9.43	866.98
12/10/2011 20:00							21	128	8,160		56.85	9.10	923.83
12/11/2011 0:01							21	121	7,920		54.74	8.76	978.58
12/11/2011 8:00							21	126	8,230		108.40	17.35	1,086.97
12/11/2011 12:00							21	124	8,040		55.38	8.86	1,142.35
12/11/2011 16:00							21	125	7,980		54.31	8.69	1,196.66
12/11/2011 20:00							21	123	7,530		52.37	8.38	1,249.03
12/12/2011 0:01							21	128	7,410	· · · · · · · · · · · · · · · · · · ·	51.27	8.21	1,300.30
12/12/2011 8:00							21	124	7,230		100.25	16.05	1,400.55
12/12/2011 10:30							23	93	5,930		24.30	3.89	1.424.85
12/12/2011 10:45							23	97	6,170		1.96	0.31	1,426.80
12/12/2011 12:00							23	95	6,020		9.96	1.59	1,436.76
12/12/2011 16:00							21	128	5,970		36.40	5.83	1,473.17
12/12/2011 20:00							21	129	6,240		42.72	6.84	1,515.89
12/13/2011 0:01							20	132	6,510		45.50	7.28	1,561.38
12/13/2011 8:00							19	147	6,830		101.14	16.19	1,662.52
12/13/2011 12:00							19	143	6,670		53.30	8.53	1,715.82
12/13/2011 16:00							19	142	6,510		51.14	8.19	1,766.96
12/13/2011 20:00							19	144	6,380		50.19	8.03	1,817.16
12/14/2011 0:01							19	148	6,110		49.86	7.98	1,867.02
12/14/2011 8:00							19	145	6,920		103.74	16.61	1,970.76
12/14/2011 12:00							19	147	5,730		50.29	8.05	2,021.05
12/14/2011 16:00							19	142	5,570		44.46	7.12	2,065.51
12/14/2011 20:00							19	148	5,140		42.29	6.77	2,107.80
12/15/2011 0:01							18	151	4,930		41.16	6.59	2,148.97
12/15/2011 8:00							18	153	4,410		77.15	12.35	2,226.12
12/15/2011 12:00	_						18	154	4,230		36.11	5.78	2,262.23
12/15/2011 16:00							18	152	4,370		35.83	5.73	2,298.06
12/15/2011 20:00							21	136	4,920		36.43	5.83	2,334.49

								SYSTEM	PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**	Influent Concentrations (ppmv)*	Effluent Cencentrations (ppmv) *		ocarbon Recaing Horiba Da	
12/16/2011 0:01							19	137	4,930		36.76	5.88	2,371.25
12/16/2011 8:00							20	138	4,890		73.38	11.75	2,444.64
12/16/2011 12:00							20	136	4,840		36.30	5.81	2,480.93
12/16/2011 16:00							20	139	4,840		36.24	5.80	2,517.18
12/16/2011 20:00							19	137	4,710		35.89	5.74	2,553.06
12/17/2011 0:01							18	148	4,530		36.00	5.76	2,589.07
12/17/2011 8:00							18	151	4,250		71.34	11.42	2,660.40
12/17/2011 12:00							18	153	4,290		35.35	5.66	2,695.75
12/17/2011 16:00							18	151	4,310		35.60	5.70	2,731.34
12/17/2011 20:00				_			18	153	4,230		35.35	5.66	2,766.69
12/18/2011 0:01							18	151	4,190		35.00	5.60	2,801.69
12/18/2011 8:00							18	154	4,120		68.87	11.02	2,870.56
12/18/2011 12:00							18	151	4,160		34.38	5.50	2,904.94
12/18/2011 16:00							18	154	4,070		34.18	5.47	2,939.12
12/18/2011 20:00							18	153	4,010		33.77	5.41	2,972.89
12/19/2011 0:01							18	154	3,930		33.33	5.33	3,006.22
12/19/2011 8:00							18	153	3,870		65.07	10.42	3,071.28
12/19/2011 12:00							18	156	3,750		32.06	5.13	3,103.34
12/19/2011 16:00							18	153	3,630		31.05	4.97	3,134.39
12/19/2011 16:15							14	190	1,820		1.59	0.25	3,135.98
12/19/2011 16:30							14	193	1,808		1.18	0.19	3,137.16
12/19/2011 16:35							14	197	1,820		0.40	0.06	3,137.56
12/19/2011 17:00							14	193	1,770		1.99	0.32	3,139.55
<u>12/19/2011 17:15</u>	L,						14	190	1,760		1.15	0.18	3,140.70
12/19/2011 17:30							14	194	1,710		1.13	0.18	3,141.83
12/19/2011 17:45							14	196	1,730		1.14	0.18	3,142.98
1 <u>2/19/2011 18:00</u>							14	196	1,680		1.14	0.18	3,144.11
12/19/2011 18:15							14	191	1,710		1.12	0.18	3,145.23
12/19/2011 18:30							14	193	1,740		1.13	0.18	3,146.36
12/19/2011 18:45							14	197	1,780		1.17	0.19	3,147.52

								SYSTEM	I PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger	System Vacuum	Total System Inlet Flow	Influent Concentrations	Effluent Concentrations	(us	ocarbon Rec ing Horiba D	ata)
12/19/2011 19:00	Depuij	opui)	Deptri)	Deput)	Deputy	Depth)	(in of Hg)	·	(ppniv)*	(ppmv) *	(lbs)	(gal)	(Cumul lbs)
12/19/2011 19:15						•	14	194	1,830		1.20	0.19	3,148.73
12/19/2011 19:30			· · ·		<u> </u>		14	197	1,860		1.23	0.20	3,149.95
12/19/2011 19:30					· · ·		14	193	1,910		1.25	0.20	3,151.20
12/19/2011 19:45							14	197	1,960		1.28	0.21	3,152.49
12/19/2011 20:00			· · ·				14	196	1,970		1.31	0.21	3,153.80
12/19/2011 22:00							14	194	1,940		5.19	0.83	3,158.99
12/19/2011 23:00					· · ·		14 14	<u>196</u> 196	<u>1,870</u> 1,890		5.06	0.81	3,164.05
12/20/2011 0:00											5.02	0.80	3,169.07
12/20/2011 0:00				<u> </u>			14 14	197 196	1,860 1,820		5.02	0.80	3,174.08
12/20/2011 8:00						·	14	190	1,830		0.08	0.01	3,174.17
12/20/2011 12:00			·				14	197	1,830		38.98	6.24	3,213.15
12/20/2011 16:00				<u> </u>			14	195	1,760		19.27 18.63	3.08 2.98	3,232.41
12/20/2011 20:00	·						16	153	2,470		19.92	3.19	3,251.04 3,270.96
12/21/2011 0:01							16	157	2,140		19.52	3.13	3,290.50
12/21/2011 8:00							15	157	1,780		33.55	5.37	3,324.05
12/21/2011 9:30							15	142	1,700		5.36	0.86	3,329.41
12/21/2011 9:45							15	142	1,706		0.84	0.00	3,330.25
12/21/2011 10:00							15	147	1,672		0.85	0.13	3,331.09
12/21/2011 10:15							15	147	1,682		0.84	0.14	3,331.93
12/21/2011 10:30			<u> </u>				15	149	1,630		0.83	0.13	3,332.77
12/21/2011 10:45							15	149	1,608		0.82	0.13	3,333.59
12/21/2011 11:00							15	147	1,637		0.82	0.13	3,334.40
12/21/2011 11:15							15	149	1,638		0.82	0.13	3,335.23
12/21/2011 11:30			Ì				15	147	1,593		0.81	0.13	3,336.04
12/21/2011 11:45							15	149	1,550		0.79	0.13	3,336.83
12/21/2011 12:00							15	147	1,560		0.78	0.13	3,337.62
12/21/2011 13:00							15	149	1,610		3.19	0.51	3,340.81
12/21/2011 14:00							15	149	1,730		3.39	0.54	3,344.20
12/21/2011 15:00							15	148	1,670		3.44	0.55	3,347.64

Table 3 HYDROCARBON MASS REMOVAL (Using Field Analyzer Data) Good Chevrolet, Alameda, CA

								SYSTEM	PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger	Extraction Well # DP-3 (Stinger	Extraction Well # MW-2 (Stinger	Extraction Well # (Stinger	Extraction Well # (Stinger	System Vacuum	Total System Inlet Flow	Concentrations	Effluent Concentrations	(us	ocarbon Rec	ata)
40/04/0044 40:00	Deputy	Depth)	Depih)	Depth)	Depth)	Depth)	(in of Hg)	(scfm)**	(ppmv)*	(ppmv)*	(lhs)	(gal)	(Cumul_lbs)
12/21/2011 16:00 12/21/2011 17:00							15	149	1,640		3.35	0.54	3,350.98
12/21/2011 18:00	<u> </u>						15	151	1,650		3.36	0.54	3,354.34
12/21/2011 18:00	<u> </u>	·					15	150	1,620		3.35	0.54	3,357.69
12/21/2011 22:00	<u> </u>						<u>15</u> 15	149 151	1,630		6.62	1.06	3,364.31
12/22/2011 0:00	<u> </u>	-							1,610		6.62	1.06	3,370.92
12/22/2011 8:00					· · · -		15	149	1,590		6.54	1.05	3,377.46
12/22/2011 12:00							15	151	1,470		25.00	4.00	3,402.46
12/22/2011 12:00							15 18	151 89	1,410		11.84	1.90	3,414.30
12/22/2011 13:30							18	89	1,380 1,420		<u> </u>	0.36	3,416.58
12/22/2011 14:00							18	86	1,420		0.81	0.13	3,417.39
12/22/2011 14:30							18	85	1,470	· · · · · · · · · · · · · · · · · · ·	0.82	0.13	3,418.21
12/22/2011 15:00							18	84	1,490		0.87	0.14	3,419.07 3,419.94
12/22/2011 15:30							18	87	1,530		0.90	0.14	3,419.94
12/22/2011 16:00							18	83	1,620		0.92	0.14	3,420.84
12/22/2011 16:30							18	85	1,610		0.92	0.15	3,422.69
12/22/2011 17:00							18	81	1,610		0.91	0.15	3,423.60
12/22/2011 17:30							18	87	1,593		0.92	0.15	3,424.51
12/22/2011 18:00							18	82	1,542		0.90	0.13	3,425.41
12/22/2011 18:30							18	86	1,579		0.89	0.14	3,426.31
12/22/2011 19:00							18	83	1,528		0.89	0.14	3,427.20
12/22/2011 19:30							18	81	1,552		0.86	0.14	3,428.06
12/22/2011 20:00							18	87	1,513		0.88	0.14	3,428.94
12/23/2011 0:00						1	18	86	1,437		6.95	1.11	3,435.89
12/23/2011 4:00							16	103	1,371		7.23	1.16	3,443.11
12/23/2011 8:00							14	121	1,293		8.12	1.30	3,451.24
12/23/2011 12:00							14	124	1,281		8.59	1.37	3,459.82
12/23/2011 13:00							15	173	1,497		2.81	0.45	3,462.63
12/23/2011 16:00	·						15	174	1,578		10.90	1.74	3,473.53
12/23/2011 20:00							15	178	1,632		15.38	2.46	3,488.91

Table 3 HYDROCARBON MASS REMOVAL (Using Field Analyzer Data) Good Chevrolet, Alameda, CA

								SYSTEM	I PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Well Well #DP-3 #MW-2 (Stinger (Stinger		Extraction Well # (Stinger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**	Concentrations	Effluent Concentrations	(us	ocarbon Rec	ata)
12/24/2011 0:00	E (put)		Dopany	Departy	Depth)	Depuij	(in or rig) 15	177	(ppmv)*	(ppmv) *	(lbs)	(gal)	(Cumul Ibs)
12/24/2011 4:00							15	175	1,581 1,459		15.53	2.49	3,504.44
12/24/2011 8:00	· ·						15	175	1,459		14.57	2.33	3,519.01
12/24/2011 12:00							15	176	1,398	· · · · ·	13.46	2.15	3,532.47
12/24/2011 16:00							15	173	1,306		13.11	2.10	3,545.58
12/24/2011 20:00					<u> </u>		15	173	1,300		<u>12.75</u> 12.13	2.04 1.94	3,558.33
12/25/2011 0:00							15	178	1,251		12.13	1.94	3,582.51
12/25/2011 4:00							15	175	1,274		12.05	1.93	3,582.51
12/25/2011 8:00							15	174	1,274		11.88	1.94	3,606.53
12/25/2011 12:00					<u> </u>		15	173	1,193		11.43	1.83	3,617.95
12/25/2011 20:00					<u> </u>		15	177	1,108		21.55	3.45	3,639.50
12/26/2011 0:01							15	171	1,000		10.11	1.62	3.649.61
12/26/2011 4:00							15	175	1,008		9.69	1.55	3,659.30
12/26/2011 8:00							15	173	1,031		9.66	1.55	3,668.96
12/26/2011 12:00							15	174	1,053		9.85	1.58	3,678.81
12/26/2011 16:00							15	177	1,096		10.27	1.64	3,689.08
12/26/2011 20:00							15	176	1,041		10.27	1.64	3,699.35
12/27/2011 0:01						<u> </u>	15	178	1,007		9.91	1.59	3,709.26
12/27/2011 4:00							15	176	953	· · · · · · · · · · · · · · · · · · ·	9.41	1.51	3,718.67
12/27/2011 8:00							15	171	978		9.12	1.46	3,727.79
12/27/2011 10:00							20	37	427		1.99	0.32	3,729.78
12/27/2011 10:30							25	24	715		0.12	0.02	3,729.90
12/27/2011 11:00							25	21	793		0.12	0.02	3,730.01
12/27/2011 11:05							24	2.8	847		0.02	0.00	3,730.03
12/27/2011 11:35							24	29	949		0.17	0.03	3,730.21
12/27/2011 12:05							24	28	973		0.19	0.03	3,730.40
12/27/2011 12:10							23	31	942		0.03	0.01	3,730.43
12/27/2011 12:40							23	33	1,013		0.21	0.03	3,730.64
12/27/2011 13:10							23	32	1,028		0.23	0.04	3,730.87
12/27/2011 13:15							22	39	1,054		0.04	0.01	3,730.91

Table 3 HYDROCARBON MASS REMOVAL (Using Field Analyzer Data) Good Chevrolet, Alameda, CA

								SYSTEM	PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**	Influent Concentrations (ppmv)*	Effluent Concentrations	(มร	ocarbon Rec	ata)
12/27/2011 13:45	Bopary	Deputy	220party	Depiny		Disputy	22	39	1,059	(ppmv) *	(lbs)	(gal)	(Cumul Ibs)
12/27/2011 14:15							22	39	1,059	I	0.28	0.04	3,731.19
12/27/2011 14:20							25	23	243		0.28	0.04	3,731.47
12/27/2011 14:50				<u></u>	<u> </u>		25	23	<u>243</u> 317		0.02	0.00	3,731.49
12/27/2011 15:20							24	28	343		0.05	0.01	3,731.54
12/27/2011 15:25		· · · · ·					24	30	418		0.06	0.01	3,731.60
12/27/2011 15:55							23	32	418		0.01	0.00	<u>3,731.61</u> 3,731.70
12/27/2011 16:25		···					23	35	496		0.09	0.01	3,731.81
12/27/2011 16:30			· · · ·				21	39	581		0.02	0.02	3,731.83
12/27/2011 17:00							21	40	578		0.02	0.00	3,731.99
12/27/2011 17:30							21	43	721		0.18	0.02	3,732.17
12/27/2011 17:45							17	163	852		0.18	0.03	3,732.45
12/27/2011 20:00							17	162	871		4.29	0.69	3,736.74
12/28/2011 0:01							16	168	864		7.83	1.25	3,744.56
12/28/2011 4:00							16	170	921	· · · · ·	8.18	1.31	3,752.74
12/28/2011 8:00							16	171	907		8.49	1.36	3,761.23
12/28/2011 12:00							15	174	923		8.60	1.38	3,769.83
12/28/2011 16:00							15	177	974		9.07	1.45	3.778.89
12/28/2011 20:00							15	178	951		9.30	1.49	3,788.20
12/29/2011 0:01						Î	15	178	928		9.15	1.46	3,797.34
12/29/2011 4:00							15	176	897		8.76	1.40	3,806.10
12/29/2011 8:00							15	173	871		8.40	1.34	3,814.50
12/29/2011 12:00							15	171	855		8.08	1.29	3,822.59
12/29/2011 16:00							15	172	833		7.88	1.26	3,830.47
12/29/2011 20:00							15	174	818		7.78	1.24	3,838.25
12/30/2011 0:01							15	171	841		7.83	1.25	3,846.07
12/30/2011 4:00							15	177	876		8.10	1.30	3,854.17
12/30/2011 12:15							25	33	289	· · · ·	0.00	0.00	3,854.17
12/30/2011 12:30							25	25	241		0.03	0.00	3,854.20
12/30/2011 13:00							25	37	376		0.07	0.01	3,854.26

8

								SYSTEM	I PARAMETERS				
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**	Influent Concentrations (ppmv)*	rations Concentrations (using Horiba D			
12/30/2011 13:30							25	39	528	(ppiirv)	0.12	0.02	3,854.38
12/30/2011 14:00							25	38	1,073		0.12	0.02	3,854.59
12/30/2011 14:30					<u> </u>		25	39	1,637		0.36	0.06	3,854.95
12/30/2011 16:00							25	38	1,728		1.32	0.21	3,856.27
12/30/2011 20:00							25	37	1,793		3.60	0.58	3,859.86
12/31/2011 0:01							25	35	1,852		3.59	0.57	3,863.45
12/31/2011 4:00							25	37	1,937		3.70	0.59	3,867.15
12/31/2011 8:00							25	39	2,010		4.08	0.65	3,871.23
12/31/2011 12:00							25	36	1,958		4.05	0.65	3,875.29
12/31/2011 13:15							22	57	1,538		1.38	0.22	3,876.67
12/31/2011 14:15							22	58	1,529		1.20	0.19	3,877.87
12/31/2011 15:15							22	56	1,486		1.17	0.19	3,879.04
12/31/2011 16:00							22	55	1,392		0.82	0.13	3,879.86
1/1/2012 4:00							22	57	1,173		11.73	1.88	3,891.59
1/1/2012 8:00							22	59	1,158		3.68	0.59	3,895.27
1/1/2012 12:00							22	56	1,117		3.56	0.57	3,898.83
1/1/2012 16:00							22	55	1,073		3.31	0.53	3,902.14
1/1/2012 20:00							22	59	1,047		3.29	0.53	3,905.43
1/2/2012 0:01							22	59	1,004		3.31	0.53	3,908.74
1/2/2012 4:00							22	60	956		3.16	0.51	<u>3,</u> 911.90
1/2/2012 8:00							22	58	928		3.03	0.48	3,914.93
1/2/2012 12:00							22	56	911		2.85	0.46	3,917.79
1/2/2012 16:00							22	124	1,298		5.41	0.87	3,923.20
1/2/2012 20:00							22	132	1,252		8.89	1.42	3,932.09
1/3/2012 0:01							22	137	1,227		9.12	1.46	3,941.20
1/3/2012 4:00							19	148	1,177		9.29	1.49	3,950.49
1/3/2012 8:00							18	164	1,135		9.82	1.57	3,960.31
1/3/2012 11:00							18	163	1,103		7.47	1.20	3,967.79
1/3/2012 15:00							18	164	1,078		9.71	1.55	3,977.50
1/3/2012 16:00							18	163	1,056		2.38	0.38	3,979.87

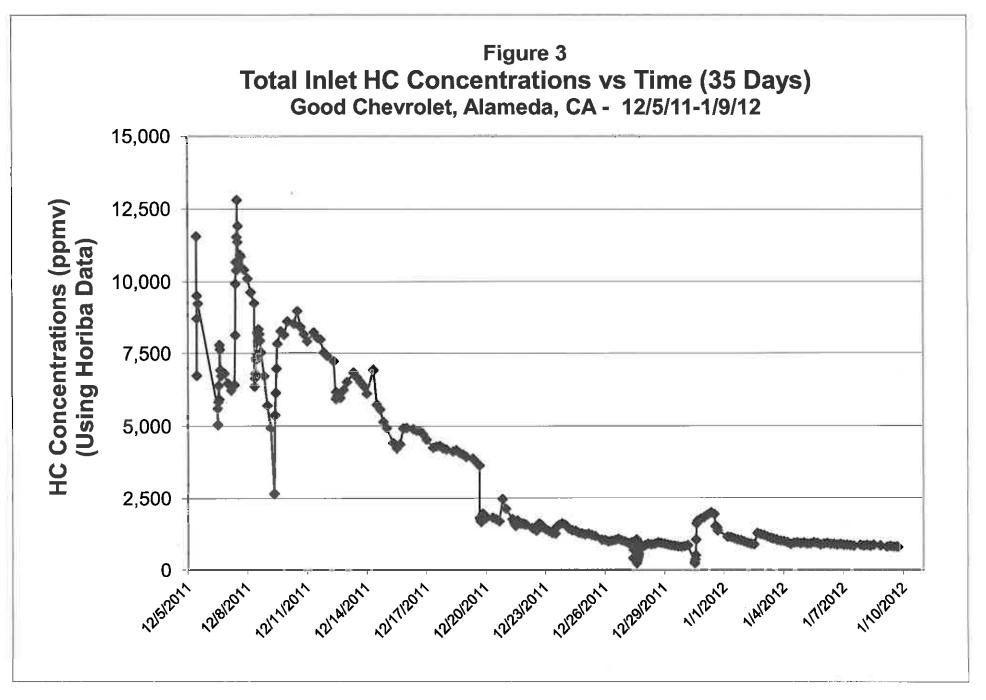
								SYSTEM	I PARAMETERS					
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stunger Depth)	System Vacuum (in of Hg)	Total System Inlet Flow (scfm)**	Concentrations	Effluent Concentrations (ppmv) *	(usi	Hydrocarbon Recovery (using Horiba Data) (lbs) (gal) (Curr		
1/3/2012 20:00	Dopiny	Dopaty	Doptity	Depairy	Deptily	Depui)	(# <u>011g)</u> 18	165	(ppmv)* 1,031	(ppmv)		(gal)	(Curnul lbs)	
1/4/2012 0:01							18	165	1,031		9.32	1.49	3,989.19	
1/4/2012 4:00							18	167	977		9.30	1.49	3,998.49	
1/4/2012 8:00							18	163	977		8.98	1.44	4,007.46	
1/4/2012 12:00							18	168	923		<u>8.48</u> 8.48	1.36	4,015.95	
1/4/2012 16:00							18	162	956		<u> </u>	1.36	4,024.43	
1/4/2012 20:00	·						18	167	971		8.57	1.39 1.37	4,033.09	
1/5/2012 0:01							18	163	967		8.62	1.37	4,041.87	
1/5/2012 4:00							18	161	928		8.32	1.33	4,058.61	
1/5/2012 8:00							18	165	939		8.29	1.33	4,066.89	
1/5/2012 12:00							18	167	976		8.66	1.39	4,075.55	
1/5/2012 16:00							18	163	952		8.66	1.39	4,073.33	
1/5/2012 20:00		Ì					18	164	903		8.26	1.32	4,092.47	
1/6/2012 0:01							18	165	928		8.24	1.32	4,100.71	
1/6/2012 4:00							18	161	952		8.31	1.33	4,109.02	
1/6/2012 8:00							18	162	917		8.22	1.32	4,117.24	
1/6/2012 12:00							18	163	924		8.15	1.30	4,125.38	
1/6/2012 16:00							18	164	893		8.09	1.29	4,133.47	
1/6/2012 20:00							18	161	915		8.00	1.28	4,141.47	
1/7/2012 0:01							18	165	886		8.03	1.28	4,149.50	
1/7/2012 4:00							18	168	892		8.03	1.28	4,157.53	
1/7/2012 8:00							18	163	871		7.95	1.27	4,165.47	
1/7/2012 12:00							18	165	857		7.72	1.24	4,173.19	
1/7/2012 20:00							18	161	882		15.44	2.47	4,188.63	
1/8/2012 0:01							18	167	861		7.82	1.25	4,196.44	
1/8/2012 4:00							18	164	879		7.81	1.25	4,204.25	
1/8/2012 8:00							18	167	852		7.80	1.25	4,212.05	
1/8/2012 12:00							18	163	883		7.80	1.25	4,219.85	
1/8/2012 20:00							18	161	864		15.41	2.47	4,235.26	
1/9/2012 4:00							<u>1</u> 8	168	821		15.10	2.42	4,250.35	

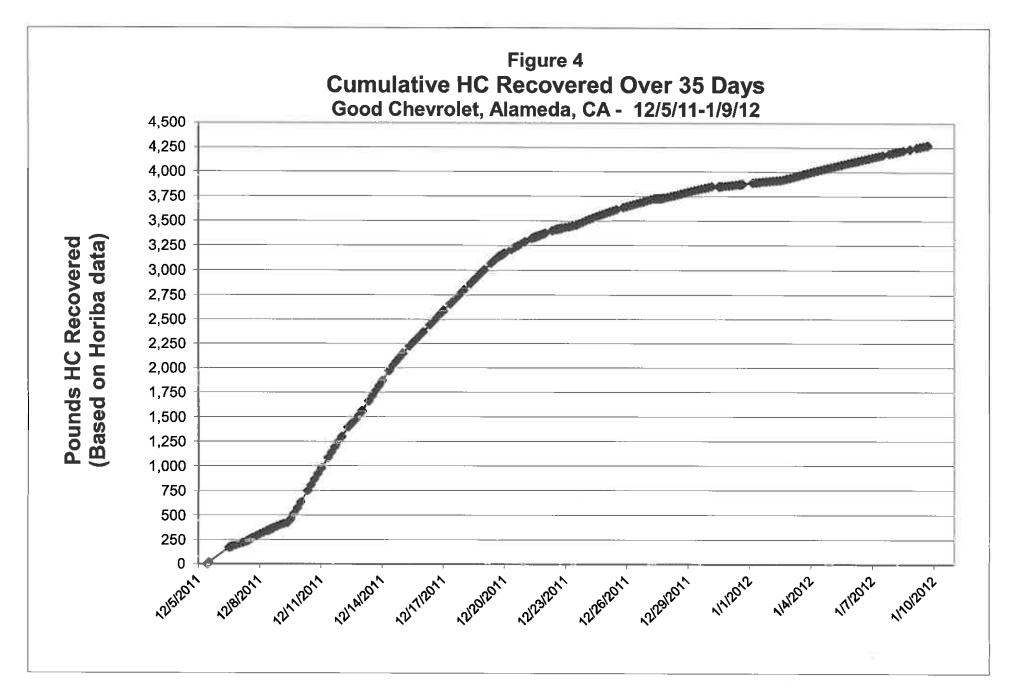
							SYSTEM PARAMETERS						
TIME	Extraction Well # DP-1 (Stinger Depth)	Extraction Well # DP-2 (Stinger Depth)	Extraction Well # DP-3 (Stinger Depth)	Extraction Well # MW-2 (Stinger Depth)	Extraction Well # (Stinger Depth)	Extraction Well # (Stinger Depth)	System ∀acuum (īn of Hg)	Total System Inlet Flow (scfrn)**	Influent Concentrations (ppmv)*	Effluent Concentrations (ppmv) *		carbon Rec ng Honba Da (gal)	
1/9/2012 8:00							18	166	845		7.58	1.21	4,257.93
1/9/2012 12:00							18	165	817		7.49	1.20	4,265.42
1/9/2012 16:00							18	164	827		7.36	1.18	4,272.78
1/9/2012 16:45							18	162	811		1.36	0.22	4,274.15
							L		TOTAL HC RECO	VERED	4,274.15	684.14	╁────

TOTAL GROUNDWATER EXTRACTED

43,530

Comments: Manual dilution was not opened during the event.

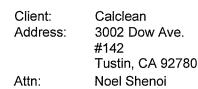

in of Hg = inches of mercury gal = gallons


scfm = standard cubic feet per minute lbs = pounds

* Concentrations based on Horiba MEXA 324-JU field organic vapor analyzer, calibrated as hexane

Inlet flow measured through orifice tube and converted from acfm to reported scfm

11


ATTACHMENT 1

LABORATORY REPORTS

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Comments: Good Chevrolet 1630 Park St., Alameda, CA Global ID: T0600100655

Lab Request: 295822 Report Date: 12/15/2011 Date Received: 12/07/2011

Client ID: 9977

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods indicated on the attached report and all NELAC criteria. This cover letter is an integral part of the final report.

Sample #Client Sample ID295822-001DPE-1295822-002DPE-2295822-003DPE-3295822-004Total Inlet295822-005Stack

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by,

Edward Behare

Lab Director NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Sample #:	295822-001	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-1
Collect Date:	12/05/11	Site:	
Collect Time:	10:15 AM	Collector:	client

R	lesult	DF	RDL	Units A	Analysis Date	Analyst
Prep Method:	Method			QCBatchl	D: QC1121362	
	5600	100	500	Vppm	12/10/11	sandyw
Prep Method:	Method			QCBatchI	D: QC1121363	
	130	100	1	Vppm	12/10/11	sandyw
	2.6	100	1	Vppm	12/10/11	sandyw
	280	100	10	Vppm	12/10/11	sandyw
	56	100	1	Vppm	12/10/11	sandyw
***********************************	14	100	3	Vppm	12/10/11	sandyw
	Prep Method:	Prep Method: Method 130 2.6 280 56	Prep Method: Method 5600 100 Prep Method: Method 130 100 2.6 100 280 100 56 100	Prep Method: Method 5600 100 500 Prep Method: Method 100 1 2.6 100 1 2.6 100 1 2.6 100 1 2.6 100 1 56 100 1 10 1 10	Prep Method: Method QCBatchII 5600 100 500 Vppm Prep Method: Method QCBatchII 130 100 1 Vppm 2.6 100 1 Vppm 280 100 1 Vppm 56 100 1 Vppm	Prep Method: Method QCBatchID: QC1121362 5600 100 500 Vppm 12/10/11 Prep Method: Method QCBatchID: QC1121363 130 100 1 Vppm 12/10/11 2.6 100 1 Vppm 12/10/11 2.80 100 1 Vppm 12/10/11 56 100 1 Vppm 12/10/11

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 295822 Page 2 of 6

Sample #:	295822-002	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-2
Collect Date:	12/05/11	Site:	
Collect Time:	10:30 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121362	
TPH Gasoline Vppm		4000	50	250	Vppm	12/10/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121363	
Benzene Vppm		110	50	0.5	Vppm	12/10/11	sandyw
Ethylbenzene Vppm		2.4	50	0.5	Vppm	12/10/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		160	50	5	Vppm	12/10/11	sandyw
Toluene Vppm		80	50	0.5	Vppm	12/10/11	sandyw
Xylenes (Total) Vppm		15	50	1.5	Vppm	12/10/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 295822 Page 3 of 6

Sample #:	295822-003	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-3
Collect Date:	12/05/11	Site:	
Collect Time:	10:40 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units A	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1121362	
TPH Gasoline Vppm		7100	100	500	Vppm	12/10/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchII	D: QC1121363	
Benzene Vppm		130	100	1	Vppm	12/10/11	sandyw
Ethylbenzene Vppm		5.5	100	1	Vppm	12/10/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm	*************************	550	250	25	Vppm	12/10/11	sandyw
Toluene Vppm		120	100	1	Vppm	12/10/11	sandyw
Xylenes (Total) Vppm		28	100	3	Vppm	12/10/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 295822 Page 4 of 6

Sample #:	295822-004	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	12/05/11	Site:	
Collect Time:	10:50 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121362	
TPH Gasoline Vppm		6000	100	500	Vppm	12/10/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121363	
Benzene Vppm		110	100	1	Vppm	12/10/11	sandyw
Ethylbenzene Vppm		5.3	100	1	Vppm	12/10/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		170	100	10	Vppm	12/10/11	sandyw
Toluene Vppm		110	100	1	Vppm	12/10/11	sandyw
Xylenes (Total) Vppm		26	100	3	Vppm	12/10/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 295822 Page 5 of 6

Sample #:	295822-005	Client:	Calclean
Matrix:	Air	Client Sample #:	Stack
Collect Date:	12/05/11	Site:	
Collect Time:	11:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchil	D: QC1121362	
TPH Gasoline Vppm		ND	1	5	Vppm	12/10/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121363	
Benzene Vppm	ernanderskan kalman man aller de strevaren kannen og fra kannak men kannen for som som som som som som som som	ND	1	0.01	Vppm	12/10/11	sandyw
Ethylbenzene Vppm		ND	1	0.01	Vppm	12/10/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		ND	1	0.1	Vppm	12/10/11	sandyw
Toluene Vppm		ND	1	0.01	Vppm	12/10/11	sandyw
Xylenes (Total) Vppm		ND	1	0.03	Vppm	12/10/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 295822 Page 6 of 6

ASSOCIATED LABORATOR 806 North Batavia • Orange, CA 92866 Phone: (714) 771-6900 • Fax: (714) 53	3 //-	•	Cha	in of Cus	tody	/ Re	cor	ď						Lab Job No Page	295822 of	
CUSTOMER INFORMATI	ON		PROJEC	T INFORMATION					REC	QUIRE	DTUR	N ARG	DUND	TIME: Stan	dard: <u>×</u>	
COMPANY CalClean Inc.		PROJECT NAM	AE: GOO	D CHEVE	20 LE				72	Hours	s:		48 H	ours:	24 Hours:	
SEND REPORT TO: 3002 Dow, #142		NUMBER:							L							
EMAIL: Tustin, CA 92780		ADDRESS:	630	PARK	ST		/ é	5/	61			7	77		·····	
ADDRESS: NOEL SHEN				IEDA, C			1	5	\$`\ \{`	/\$	*/ /	/ /		1		
PHONE: Fax (714) 734-9	· · · · · · · · · · · · · · · · · · ·	P.O. #:		,		\Box /	5	$\frac{0}{4}$	<u> </u>] Z	'/					
PHONE: Fax (714) 734-	9138	SAMPLED BY:	. ⁻		T		$\overline{\phi}$	EX1178E (0075)				/ /	. /			
Sample ID	Date	Time	Matrix	Container Number/Size	Pres	s.	BTA G	EXMITBE (007.01)	1-005-1-	.			.	Test In	structions & Com	nents
IDPE-1	12/5/1	1 1015	AIR	TEDĻAR	NON	VE X	ĺΧ			-(\int					
2 DPE-2		1030					\uparrow									
3 DPF3		1040					+				+	-+			·······	
+ TOTAL TALET		1050			+		+								·	
5 Stock							++							· · · · · · · · · · · · · · · · · · ·		
6		1100		V	V	- ·¥				_		·				
7					<u> </u>						<u> </u>					
8																
9														, 		
10														also	mail KK	
																- Com
12							1									
13											+			EDF		
14							+								<u> </u>	
15						- <u>·</u>	+				+			AIR =	0100655	
Total No. of Samples: 5		d of Shipme	nt:		L	Pres	serva	tive:	1= lce	e 2:	HCI	3 =			5 = NaOH 6 = Ot	her
	eived By:	1.	Relinquis	shed by	2.	Received					Relin			3.	Received By:	3.
Signature: Sign	and con e	9L	Signature	:		Signature	ə: .				Signa	ature:			Signature:	
Printed Name: NOEL SHENOI		20	Printed N	ame:		Printed N	lame:				Printe	ed Nan	ne:	· · · · · · · · · · · · · · · · · · ·	Printed Name:	
Date: Time: Date $12/7/11$		Time:	Date:	Time:		Date:			Time:		Date	:		Time:	Date:	Time:

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Lab Request: 296186 Report Date: 12/21/2011 Date Received: 12/13/2011

Client ID: 9977

Client: Calclean Address: 3002 Dow Ave. #142 Tustin, CA 92780 Attn: Noel Shenoi

Comments: Good Chevrolet 1630 Park St., Alameda, CA Global ID: T0600100655

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods indicated on the attached report and all NELAC criteria. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
296186-001	DPE-1
296186-002	DPE-1
296186-003	DPE-1
296186-004	DPE-3
296186-005	DPE-3
296186-006	DPE-3
296186-007	DPE-3
296186-008	DPE-2
296186-009	DPE-2
296186-010	DPE-2
296186-011	DPE-2
296186-012	Total Inlet
296186-013	Total Inlet
296186-014	Total Inlet
296186-015	Total Inlet

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by.

Edward S. Behare, Lab Director

NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Sample #:	296186-001	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-1
Collect Date:	12/06/11	Site:	
Collect Time:	02:05 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchil	D: QC1121622	
TPH Gasoline Vppm		6900	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		150	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		26	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		120	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		230	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		77	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 2 of 16

Sample #:	296186-002	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-1
Collect Date:	12/06/11	Site:	
Collect Time:	08:00 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units A	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		7500	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121621	
Benzene Vppm		130	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		32	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm	*******************************	84	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		250	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		98	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 3 of 16

Sample #:	296186-003	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-1
Collect Date:	12/07/11	Site:	
Collect Time:	04:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1121622	
TPH Gasoline Vppm		6500	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121621	
Benzene Vppm		120	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		24	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		79	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		220	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		72	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 4 of 16

Sample #:	296186-004	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-3
Collect Date:	12/07/11	Site:	
Collect Time:	09:05 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		10000	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		180	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		35	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		93	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		310	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		100	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 5 of 16

Sample #:	296186-005	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-3
Collect Date:	12/07/11	Site:	
Collect Time:	11:00 AM	Collector:	client

Compound	F	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchil	D: QC1121622	
TPH Gasoline Vppm		15000	125	625	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		180	125	1.25	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		49	125	1.25	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		330	125	12.5	Vppm	12/18/11	sandyw
Toluene Vppm	******	320	125	1.25	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		110	125	3.75	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 6 of 16

Sample #:	296186-006	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-3
Collect Date:	12/07/11	Site:	
Collect Time:	04:00 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units A	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1121622	
TPH Gasoline Vppm		9200	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121621	
Benzene Vppm		120	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		54	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		210	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		330	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		140	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 7 of 16

Sample #:	296186-007	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-3
Collect Date:	12/08/11	Site:	
Collect Time:	04:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1121622	
TPH Gasoline Vppm		10000	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121621	
Benzene Vppm		120	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		51	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		240	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		260	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		130	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 8 of 16

Sample #:	296186-008	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-2
Collect Date:	12/08/11	Site:	
Collect Time:	09:30 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		2100	25	125	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		25	25	0.25	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		8.7	25	0.25	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		17	25	2.5	Vppm	12/18/11	sandyw
Toluene Vppm		64	25	0.25	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		27	25	0.75	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 9 of 16

Sample #:	296186-009	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-2
Collect Date:	12/08/11	Site:	
Collect Time:	11:30 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		1800	25	125	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		21	25	0.25	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		5.7	25	0.25	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		41	25	2.5	Vppm	12/18/11	sandyw
Toluene Vppm		68	25	0.25	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		20	25	0.75	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 10 of 16

Sample #:	296186-010	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-2
Collect Date:	12/08/11	Site:	
Collect Time:	04:00 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1121622	
TPH Gasoline Vppm		1900	25	125	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		22	25	0.25	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		6.3	25	0.25	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		43	25	2.5	Vppm	12/18/11	sandyw
Toluene Vppm		75	25	0.25	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		21	25	0.75	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 11 of 16

Sample #:	296186-011	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-2
Collect Date:	12/09/11	Site:	
Collect Time:	04:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		2500	50	250	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchil	D: QC1121621	
Benzene Vppm	<u>, , ,,,, , , , , , , , , , , , , , , ,</u>	25	50	0.5	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		7.8	50	0.5	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		60	50	5	Vppm	12/18/11	sandyw
Toluene Vppm		95	50	0.5	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		26	50	1.5	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 12 of 16

Sample #:	296186-012	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	12/09/11	Site:	
Collect Time:	09:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		7400	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchil	D: QC1121621	
Benzene Vppm		44	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm	*************************	16	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		73	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		140	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		56	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 13 of 16

Sample #:	296186-013	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	12/10/11	Site:	
Collect Time:	08:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1121622	
TPH Gasoline Vppm		6100	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1121621	
Benzene Vppm		53	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		17	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		95	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		140	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		59	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 14 of 16

Sample #:	296186-014	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	12/11/11	Site:	
Collect Time:	08:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1121622	
TPH Gasoline Vppm		6000	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1121621	
Benzene Vppm		56	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		18	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		33	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		140	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		61	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 15 of 16

Sample #:	296186-015	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	: 12/12/11	Site:	
Collect Time	: 08:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units A	nalysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchID	: QC1121622	
TPH Gasoline Vppm		7400	100	500	Vppm	12/18/11	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchID	: QC1121621	
Benzene Vppm		61	100	1	Vppm	12/18/11	sandyw
Ethylbenzene Vppm		18	100	1	Vppm	12/18/11	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		120	100	10	Vppm	12/18/11	sandyw
Toluene Vppm		160	100	1	Vppm	12/18/11	sandyw
Xylenes (Total) Vppm		65	100	3	Vppm	12/18/11	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 296186 Page 16 of 16

ASSOCIATED LABORATORIES

<u>े</u> ग्र

Chain	of	Custody	Record
-------	----	---------	--------

806 North Batavia • Orange, (Phone: (714) 771-6900 • Fax:	CA 92868 //		•		lou	yı			''u							L	ab Job No Page	29(618	6	
CUSTOMER INF	ORMATION		PROJEC	T INFORMATION			7				REQ	UIREI	D TU	RN A	ROU	ND TI	IME: Stan	idard: 📉 🗡	<u>.</u>	
COMPANY CalClean		PROJECT NA	ME: GOO	D CHEVE	20 11	ET	7				72 F	lours	:		4	B Hou	ırs:	_24 Hours:		
SEND REPORT TO: 3002 Dow Tustin, CA	, #142	NUMBER:								<u>ba</u>			•							
EMAIL:				PARK				/	5	1-	1	1		7	7	7	TTT			
	SHENOI		7LAN	NEDA, C	<u>A</u>			/\$	5	$\langle s \rangle$		\$	7,	/ /	/ .j		1		· .	
(/ 14)	734-9137	P.O. #: SAMPLED BY:	<i>;</i>		······		+/	\$ \$	6)/3	ų /	/ /s	\$.								
· (/14)	734-9138		T	T	1		Allalu	?/9	p/s	-	Æ				/· .	/ /				
Sample ID	Date	Time	Matrix	Container Number/Size	· Pre	es.	W	<u> </u>	BTENNTO 15)		Wert .	'					Test In	structions &	Comments	
DPE-1	12/06/ 1	11 1405	AIR	TEDLAR	NO	NE	X	X	(1	1	1	ſ	ſ	[Í				
² DPE-1	12/06/1	1 2000					11	1			-			1	1					
³ DPE-1	12/07/1	1 0400												1						
⁴ DPE-3		0905						\square				1							· · · · · · · · · · · · · · · · · · ·	
DPE-3		1100					11							<u>† </u>	1					
DPE-3		1600												-	1		<u> </u>			
DPE-3	12/08/	11 0400							_	+				 .	<u> </u>					
DPE-3		0930	1 1				┼╂	+						+						~
PPE-2		1130					+					1								
10 DRE-2		1600				1	+		}		-				<u> </u>					
"DRE-2	12/09/	11 0400				\uparrow	+			+			<u> </u>		<u> </u>		andere	email	KKing	
	et il	D900	1			\uparrow	$\dagger \dagger$			+			1	┼──		$\left - \right $				
13 TOTAL Inle	+ 12/10/1	1 0800				1	$\uparrow \uparrow$			-							EDF	=	<u> </u>	
14 Total Inlet	- 12/11/1	1 0800	1 1					$\uparrow \uparrow$		+				<u> </u>				01006	·	
15 TOTAL INTE	+ 12/12/1	11 080			ļ,	$\overline{\mathbf{v}}$	\downarrow	·	-	+		÷						PPMV	<u> </u>	
Total No. of Samples: ノノ	/ / Metho	od of Shipme		ΔΩ		<u> </u>		_ <u></u>	, ,						.L	Li				
Relinquished by	1. Received By:	1.	Relinqui	shed by	2.	Re	ceive	d By:	ative	: 1:	= Ice				=HN shed I		$4 = H_2 SO_4$ 3.	5 =NaOH (Received By:		3.
Signature: Nollshena	Signature: We	æ	Signature	9:		Sig	natur	e: .					Sig	nature	:			Signature:		
Printed Name: NOEL SHENOT	Printed Name:	ee .	Printed N			Pri	nted N	Vame	:				Prir	ted N	ame:			Printed Name:		
Date: Time: 1 2 /13/11	Date: 12/13/11	Time: [233	Date:	Time:		Da	te:	•		Ti	me:		Dat	e:			Time:	Date:	Time:	

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Lab Request: 297267 Report Date: 01/16/2012 Date Received: 01/04/2012

Client ID: 9977

Client: Calclean Address: 3002 Dow Ave. #142 Tustin, CA 92780 Attn: Noel Shenoi

Comments: Good Chevrolet 1630 Park Street, Alameda Global ID: T0600100655

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods indicated on the attached report and all NELAC criteria. This cover letter is an integral part of the final report.

Sample # Client Sample ID 297267-001 Total Inlet 297267-002 Total Inlet 297267-003 DPE-1 297267-004 DPE-2

DPE-3

297267-005

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by,

Edw/afd/S D

Lab Director NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Sample #:	297267-001	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	12/22/11	Site:	
Collect Time:	01:00 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units A	alysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchI): QC1122272	
TPH Gasoline Vppm	······································	3800	50	250	Vppm	01/07/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl): QC1122273	
Benzene Vppm		48	50	0.5	Vppm	01/07/12	sandyw
Ethylbenzene Vppm		27	50	0.5	Vppm	01/07/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		56	50	5	Vppm	01/07/12	sandyw
Toluene Vppm		62	50	0.5	Vppm	01/07/12	sandyw
Xylenes (Total) Vppm		87	50	1.5	Vppm	01/07/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit D

Analytical Results Report Lab Request 297267 Page 2 of 6

Sample #:	297267-002	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	12/30/11	Site:	
Collect Time:	03:55 AM	Collector:	client

Compound	R	Result	DF	RDL	Units A	nalysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchID	: QC1122272	
TPH Gasoline Vppm		4300	50	250	Vppm	01/07/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchID	: QC1122273	
Benzene Vppm		39	50	0.5	Vppm	01/07/12	sandyw
Ethylbenzene Vppm		21	50	0.5	Vppm	01/07/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		12	50	5	Vppm	01/07/12	sandyw
Toluene Vppm	******	36	50	0.5	Vppm	01/07/12	sandyw
Xylenes (Total) Vppm		66	50	1.5	Vppm	01/07/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297267 Page 3 of 6

Sample #:	297267-003	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-1
Collect Date:	12/30/11	Site:	
Collect Time:	04:00 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchll	D: QC1122272	
TPH Gasoline Vppm		3300	50	250	Vppm	01/07/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl): QC1122273	
Benzene Vppm		27	50	0.5	Vppm	01/07/12	sandyw
Ethylbenzene Vppm		12	50	0.5	Vppm	01/07/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		11	50	5	Vppm	01/07/12	sandyw
Toluene Vppm		38	50	0.5	Vppm	01/07/12	sandyw
Xylenes (Total) Vppm		36	50	1.5	Vppm	01/07/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297267 Page 4 of 6

Sample #:	297267-004	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-2
Collect Date:	12/30/11	Site:	
Collect Time:	04:05 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units A	nalysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchID	: QC1122272	
TPH Gasoline Vppm		3100	50	250	Vppm	01/07/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchID	: QC1122273	
Benzene Vppm		50	50	0.5	Vppm	01/07/12	sandyw
Ethylbenzene Vppm		15	50	0.5	Vppm	01/07/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		55	50	5	Vppm	01/07/12	sandyw
Toluene Vppm		55	50	0.5	Vppm	01/07/12	sandyw
Xylenes (Total) Vppm		43	50	1.5	Vppm	01/07/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297267 Page 5 of 6

Sample #:	297267-005	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-3
Collect Date:	12/30/11	Site:	
Collect Time:	04:10 AM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1122272	
TPH Gasoline Vppm		3300	50	250	Vppm	01/07/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1122273	
Benzene Vppm		62	50	0.5	Vppm	01/07/12	sandyw
Ethylbenzene Vppm		20	50	0.5	Vppm	01/07/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		58	50	5	Vppm	01/07/12	sandyw
Toluene Vppm		64	50	0.5	Vppm	01/07/12	sandyw
Xylenes (Total) Vppm		55	50	1.5	Vppm	01/07/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297267 Page 6 of 6

ASSOCIATED LABORATORIES

806 North Batavia • Orange, CA 92868 Phone: (714) 771-6900 • Fax: (714) 538-1209

Phone

Sample ID

Fax

COMPANY

EMAIL:

PHONE:

ADDRESS:

SEND REPORT TO:

CUSTOMER INFORMATION

CalClean Inc. ___ 3002 Dow, #142

Tustin, CA 92780

NOEL SHENOI

(714) 734-9137

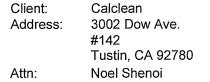
(714) 734-9138

09

Date

19/33

12


		Cha	ain of Cus	stody I	Re	COI	rd							L	Lab Job No. 297267 Page of	
		PROJEC	CT INFORMATION]			F	REQU	JIRE) TUF	IN AI	ROUI		IME: Standard: X	
F	ROJECT NAM	AE: GOO	D CHEVI	ROLET	1				72 Hours: 48 Hours: 24 Hours:							
١	IUMBER:					·										
1	DDRESS:	630	PARK	ST		. /	5/	T	7	1	\mathcal{T}	7	7	7	7 / /	
1	f	+LAN	NEDA, C	A			5	Į.S.	7.	/\$ ^{\$\$}		/ /	/	/ ,	/ / /	
	O. #:				/	5	8/4	<u>~</u> /	1	F/						
		r				\$/0	18		A	/	/ /	/	/.	/		
	Time	Matrix	Container Number/Size	Pres.	- AN	PH-GSIS REQUE	3/	HIN.	\$) \$/	Too and the second seco		/	.		Test Instructions & Comments	
1	1300	AIR	TEDLAR	NONE	Ń	ÍΧ	1	[(([]	/	(\square		
	0355			1	$\overline{1}$	γ										
19-		 		<u>+ - +</u>						<u> </u>						
	0400				$\left - \right $											
	0405							ļ								
	0410	V					1					·				
												•				
						+	<u> </u>									
					<u> </u>		┼──									
					ļ		<u> </u>								· · · · · · · · · · · · · · · · · · ·	
					<u> </u>										also email KKing	
															0	
							· .							<u> </u>		
														<u> </u>	(EDF)	
						+										
		<u>_</u>				_	ļ	· ·							TO 600100655	

									HR =	FYMN	
Total No. of Samples: 5	Method of	of Shipmer	nt:		Preservative	: 1= lce 2	=HCl 3 =	=HNO ₂ 4	=H₂SO₄	5 =NaOH 6 =Oth	hor
Relinquished by 1.	Received By:	\ ^{1.}	Relinquished by	2.	Received By:		. Relinquish		<u> </u>	Received By:	3
Signature: Nollshena	Signature: (C	5,A	Signature:		Signature:		Signature:			Signature:	<u> </u>
Printed Name: NOEL SHENOI	Printed Name:		Printed Name:		Printed Name:	······································	Printed Nar	ne:		Printed Name:	·
Date: 1/4/12_10:25	Date: DI 04 12	nei (6.2	Date:	Time:	Date:	Time:	Date:	T	ime:	Date: 7	Time:

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Comments: Good Chevrolet 1630 Park St., Alameda, CA Global ID: T0600100655

Lab Request: 297588 Report Date: 01/16/2012 Date Received: 01/11/2012

Client ID: 9977

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods indicated on the attached report and all NELAC criteria. This cover letter is an integral part of the final report.

Sample #Client Sample ID297588-001Total Inlet297588-002Total Inlet297588-003MW-2297588-004DPE-2297588-005DPE-1

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORA TORIES by,

Lab'Director

Edward S. Behare, P

NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Sample #:	297588-001	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	01/06/12	Site:	
Collect Time:	08:00 AM	Collector:	client

Compound	R	Result	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1122373	
TPH Gasoline Vppm		1300	25	125	Vppm	01/12/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1122377	
Benzene Vppm		17	25	0.25	Vppm	01/12/12	sandyw
Ethylbenzene Vppm		15	25	0.25	Vppm	01/12/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		14	25	2.5	Vppm	01/12/12	sandyw
Toluene Vppm		93	25	0.25	Vppm	01/12/12	sandyw
Xylenes (Total) Vppm		59	25	0.75	Vppm	01/12/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297588 Page 2 of 6

Sample #:	297588-002	Client:	Calclean
Matrix:	Air	Client Sample #:	Total Inlet
Collect Date:	01/09/12	Site:	
Collect Time:	04:45 PM	Collector:	client

Compound	R	esult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1122373	
TPH Gasoline Vppm		1500	25	125	Vppm	01/12/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1122377	
Benzene Vppm		22	25	0.25	Vppm	01/12/12	sandyw
Ethylbenzene Vppm		19	25	0.25	Vppm	01/12/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		18	25	2.5	Vppm	01/12/12	sandyw
Toluene Vppm		110	25	0.25	Vppm	01/12/12	sandyw
Xylenes (Total) Vppm		76	25	0.75	Vppm	01/12/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297588 Page 3 of 6

Sample #:	297588-003	Client:	Calclean
Matrix:	Air	Client Sample #:	MW-2
Collect Date:	01/06/12	Site:	
Collect Time:	04:50 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1122373	
TPH Gasoline Vppm		1000	25	125	Vppm	01/12/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1122377	
Benzene Vppm		9.0	25	0.25	Vppm	01/12/12	sandyw
Ethylbenzene Vppm		15	25	0.25	Vppm	01/12/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		13	25	2.5	Vppm	01/12/12	sandyw
Toluene Vppm		74	25	0.25	Vppm	01/12/12	sandyw
Xylenes (Total) Vppm		61	25	0.75	Vppm	01/12/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297588 Page 4 of 6

Sample #:	297588-004	Client:	Calclean
Matrix:	Aír	Client Sample #:	DPE-2
Collect Date:	01/06/12	Site:	
Collect Time:	04:55 PM	Collector:	client

Compound	R	lesult	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchi	D: QC1122373	
TPH Gasoline Vppm		1700	25	125	Vppm	01/12/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchll	D: QC1122377	
Benzene Vppm		28	25	0.25	Vppm	01/12/12	sandyw
Ethylbenzene Vppm		19	25	0.25	Vppm	01/12/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		22	25	2.5	Vppm	01/12/12	sandyw
Toluene Vppm	********	130	50	0.5	Vppm	01/12/12	sandyw
Xylenes (Total) Vppm		77	25	0.75	Vppm	01/12/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297588 Page 5 of 6

Sample #:	297588-005	Client:	Calclean
Matrix:	Air	Client Sample #:	DPE-1
Collect Date:	01/06/12	Site:	
Collect Time:	05:00 PM	Collector:	client

Compound	R	Result	DF	RDL	Units /	Analysis Date	e Analyst
Method: EPA 8015B	Prep Method:	Method			QCBatchl	D: QC1122373	
TPH Gasoline Vppm		1600	25	125	Vppm	01/12/12	sandyw
Method: EPA 8021B	Prep Method:	Method			QCBatchl	D: QC1122377	
Benzene Vppm		24	25	0.25	Vppm	01/12/12	sandyw
Ethylbenzene Vppm		20	25	0.25	Vppm	01/12/12	sandyw
Methyl-t-butyl Ether (MTBE) Vppm		18	25	2.5	Vppm	01/12/12	sandyw
Toluene Vppm		120	50	0.5	Vppm	01/12/12	sandyw
Xylenes (Total) Vppm		80	25	0.75	Vppm	01/12/12	sandyw

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Analytical Results Report Lab Request 297588 Page 6 of 6

ASSOCIATED LABORATORIES

806 North Batavia • Orange, CA 92868 Phone: (714) 771-6900 • Fax: (714) 538-1209 (

Chain of Custody Record

Lab Job No.	297588
Page	of

CUST	OMER INFORMA	ATION		PROJEC	T INFORMATION					R	EQUIRI	ED .	TURN	N AR	DUND	TIME:	Star	ndard:	K	
COMPANY	CalClean Inc.		PROJECT NAM	ME: 6-00	D CHEV	ROLE	7			7	72 Hou	rs:			48 H	ours:		_24 Hours: _		
SEND REPORT TO:	3002 Dow, #14 Tustin, CA 9278		NUMBER:							<u>L</u>		,								
EMAIL:			ADDRESS:	630	PARK	ST		7	5/	7	77	_	7	7	77	77				
ADDRESS:	NOEL SHE	ENOI			NEDA, C		· ·		5	27		\$/	' /	/		1				
Phon	ē (714) 734	4-9137	P.O. #:						$\langle \hat{\mathbf{s}} \rangle \rangle$	@/	5	/		/	1		/			
PHONE: Fax	(714) 734		SAMPLED BY:	.,				\tilde{S}_{0}	120	/	S.	/	/ /	/ /	.					
Sam	ple ID	Date	Time	Matrix	Container Number/Size	Pres	ANA	HO	UEXMIBE (8075)			/			.					
1 -1-1-1		1/1/1						\mathcal{K}		/ ••• /		-	{	{			est Ir	structions	& Comme	nts
2 1011	-Tulet	1/6/1		AIR	TEDLAR	NON	ЕX	ЦX												
3 NOTA	Lnet	- 19/12																		
1. I.I.I.N	2		1650																	
1 DPE -	2		1655									╈								- <u></u>
5 DPE-	1		1700					H				╈								
6	t		1100		V	$+ \vee$	<u> </u>	42	1										·	
7						+			<u> </u>											
8																				
9																				
10												-				01	<u> </u>	2 1	L K	`
11						1		-						+		1 ~~	، ريسر	email	FL	<u>~5</u> -
12.													<u> </u>				<u>_</u>		1	
13																				•
14								-								E	3			
15		· ·								·						TO	6 1	00100	655	
																		PPMV		T
Total No. of Sam	κ	Metho	d of Shipme					•		·		•••• -			····-					
Relinquished by		Received By:		Relinqui	shad by		Pre: Receive			1=						3 4 = H ₂		5 =NaOH		
				·	sheu by	2.	Receive	а ву:			2	!.	Relin	quish	ed by		3.	Received B	y:	3.
Signature:			Jut	Signature	3:		Signatur	e: .					Signa	ture:				Signature:		
Printed Name: NOEL S	HENOI	Printed Name:	-V	Printed N			Printed N	Name:	3				Printe	d Nar	ne:			Printed Nam	ie:	
1/91/12		Date:	Time;	Date:	Time:		Date:			Time);		Date:			Time:		Date:	Tir	ne:
MS	· • 1		<u> </u>									l.,					•			·····

CalClean Inc.

ATTACHMENT 2

HIGH VACUUM DUAL PHASE EXTRACTION SYSTEM FIELD DATA SHEETS

	Location: BUESTA		PARK ST	REET			City: /	ALMED		or (s): <u>N</u>	Ick	Site #:	GOOD	CHEVR	OLET		Date: _	251	201 <u>\</u>	Page 1	rof <u> 9</u>
											XTRA	CTION	I WEL	LS							
		Well I.D.			DRE	-1	_	DPE	5-3		DPE	:-Z									Cumul.
			From-To (2	1. L'A											Water Meter	Water
Time	Initial Do	epth To V Air	Vater DTV		8.			1.7			85							·		Readings	Extracted
/ime	Vacuum		TOX Temp.	Vapor Inlet Conc.	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	unite	gala
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)		(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)		(ppmv)	(ft)	(feet)	123 80	gals
2/05		<u> </u>			on		13.5	OFF		12	OFT		13						(
015	24	350	1462	11560									-							12380	Ð
<u>רוס</u>		***			dff			ON												1000-	
030	24	37	1452	6740																	
032		100						OFF			ON										
040	24	36	1458	8710																	
042					ON			50													
050	22	97	1447	9510																	
200	22	98	1443	9230	OFF			OFF			OFF										
2/06										· · ·											
5700		· · · · ·				8,81			7.92												
)Sa	2				62	VAC	5-					9.29									
140	23	31	1452	5610		17			VAC			VAC								12410	20
210	25	34	1453	5010		16														10110	
130	25	33	1451	5830		112											_				
300	25	30	1455	6390		16															
	25	31	1454	5920		16															
400	25	32	1449	770		16															
	25	34	1455	7640		14	13.5										\rightarrow				
600	25	33	1449	6930		14		0.32	7.99		0.24	931					\rightarrow				_
530	25	31	1447	6910		12		0.20	1.98		0.31	1.37					-+				
omme	ents: (7	105	- 51	ARTU	7 in	IIT	QIN	00	STA	RTIN	16 H	7 D F	<u></u> אוידיווי	<u>ا _ ل</u>	7-20		1.000	6.		S TAKE	
-	nuc		2=-10	2 Int	<u>ເ</u>	Dr -7		INCLO	<u>- 1751</u>	78.5					- 70		NOVE		PMP UE	120 BAI	<u>h yo</u>

-7

14/10-1100 START OV UNIT. THE-I VAPOR GAMPLE TAKEN @ 1405.

			HI	GH VA	CUUI	M		SVE	OF	X	DPE		FIEL	D DA	TA S	HEET	r			CalClea	an Inc.
Project I	Location:	1630 P	ARK ST	REET			City: A		A	1		Site #: (GOOD	CHEVR	OLET		Date:	2,01	201	Page 24	of 19
Client: I	BUESTA	D							Operato	(s): N	TUK										
									_			CTION	WEL	LS							
		Well I.D.			DRE	-(VYE	З.		DRE	2									Cumul,
	Screen	Interval: I	From-To (1	ît)				-	· . · · ·											Water Meter	Water
Time	Initial Do Unit	epth To V Air	ater DTV TOX		0500	DTM	CH	0510-	DTM	011	0.00		0.1							Readings	Extracted
		Flowrate		Vapor Inlet Conc.	Off/On	DTW VAC Ha	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)		Ĵ.
12/06		-	1		ON	VAC	13.5				VAC	0.00									
1400	29	31		6130		12		0.71	537		0,31										
1000	th.	.38	1442	6810		12		0,29	8,37		0,70	4,41									
12/07	25	1.1	1.412	101120		10		0-1	0 111		2-14	11.16									
0001 0400	25		1448			10		0.7K 0.77	8,39 0 20		0,25									·	
0206	25	-		6410		10		<u>୦.ଜା</u> 0.3୩	· · ·		0.73									17.110	727
0870 0855			1740		ONT VAL				VAC	5	<u>0:17</u> ≝	1.01								13140	730
0900	25	38	1453	8130				0.0	12	-5	0,34	12									
0930	25				0,25				12		0.36										
1000	25				0.25				13		0.75										
1030	25	37			0.76				13		0.80										
1100	25			11640	6.28	1			17		0.95										
1130	25		4		0.26	10.73			13	12	0.92	11.82									
1200					0.25	10.77			13		0,90	11.85								11	
17,30	25	31			0,28				13		0,92	11.89									
1300	25	32	145le	10730	0.25	10.77			13		094	11,93									
				10510					13		0.91										
				10930					12		1.05										
				10870					12		611										
2000		-		10410							1.27	12.03								13450	1070
Comme	ents: \	2/10-	UYE	-1 VAR	or 5	Arpl	<u>t67</u>	AKEN		2000)										
	41.	- VAP	01-6k	mples -	TAKE	H AK	FOU	ws	<u>- 'V')</u>	E-1(00	400	<u>D't</u>	18-30	<u> </u>	105	1100	110	00.		

-

			HIG	GH VA	CUUI	M		SVE	or	X	DPE		FIEL	D DA	TA S	HEET	Г			CalClea	an Inc.	
Project	Location:	1630 P		REET			City: A		A	١		Site #: (GOOD	CHEVR	OLET		Date:	2,8,	201	Page 3A	of 19	
Client:	BUESTA	D							Operato	r (s): <u>N</u>	TUK						_			<u>.</u>		
											XTRA	CTION	I WEL	LS	З							
		Well I.D.			DPE	-1		DPE	-3		DPE	-2	_								Cumul.	1
			From-To (1					م 												Water Meter	Water	
Time	Unitial D	Air	Vater DTW TOX	V (ft) Vapor Inlet	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Readings	Extracted	
		Flowrate	Temp.	Conc.	VAL		Depth			Depth	VAC		Depth			Depth		DIM	Depth	units	gals	
12/8	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)		(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)			4
0001	25	31	1451	10110		1093		ON	10		OFF	1210								<u> </u>		
0400	25			9630					00		11	12.10										1
0800	24			9240					0			12.28								13760	1220	67.0
			<u>, , , , , , , , , , , , , , , , , , , </u>					OFF			DN	10.00	5-							10.0	1700	600
0830	25	31	1452	6370	0.45			1.15			14											1
0900	1	30	1451	6640				1.15			14											1
-0930	25	30	1451		0.45			1.10			14											
1000	25	31	1450		0,45		·	1,15			14											
1030	25	32	1454		0,45			1.15			13											
0011	24	39	1451		0,45	the second se			10.98		12		13									
-1130	24				0.45			1.20	10.99		12	_				(-				
1200	24			8170		1		1.20			12					4						
1270		-	1447	7940					11.07		12											4
1300		38			1.00	8			11.09		12											
1400	24	41	1447 1451		04.40			1.05	11.08		12											
3600	13	44	1461	7940 7530	0.40	1117		1.00	11.00		12											
1000	23	43	1449	6720	0.25	11.110		0.7.0	11.05		12									14020	1640	510
						1 TOL		<u>V.1.</u> V													1010	1
Comm	ents:	2/8	- VA9	or sa	MPLE	5	AGF	010	Neg-	- TPP	E-3(20	400,	DRE	-20	20	930	2, 11?	0,10	<i>0</i> 00 <i>.</i>		

			HI	GH VA	М]sve]DPE			.D DA			Г			CalCle	an Inc.		
Project	ocation	: 1630 F	PARK ST	REET			City:		Α		ι.	Site #:	GOOD	CHEVR	OLET		Date:	29	201	Page 4A	of 19	
Client: I	BUESTA	D					•		Operato	r (s): 卜	IICK						D0101 _		2013	raye <u>- m</u>	_01_11	
													N WEL		· ·					1		
		Well I.D			VPE.	-1		DP	-3			E-2				_				<u> </u>	Querui	1
	Screen	Interval:	From-To (ft)		• 								<u> </u>						Water Meter	Cumul. Water	
77.000			Vater DTV																	Readings	Extracted	J
Time	Unit Vacuum	Air Flowrate	TOX Temp.	Vapor Inlet Conc.	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)		(ppmv)	(ft)		(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	12380	J. I	
12/9	11	1.00		600	OFF		13.5	OFF	11.0	12	40		13-			L						1
0001	23	47	1448	6710	0.35		<u> </u>		11.03	1	10		<u> </u>	<u> </u>		<u> </u>					L	
0400	23	43			0.30				11.04		8			<u> </u>								1.000
0360 6370	43	nie	1437	2670		11/10	19/		11.00	12	8		<u> </u>	<u> </u>	ļ					14190	1810	430
0900	21	174	12/17	5380	ON		13.5	DN		12	——						<u> </u>					-
1000	21	121		6140							——										ł	
1100	21	123	1449	6970				<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>				<u> </u>		
1200	21	128	1495	7830		VAC		<u> </u>	VAC			VAC		<u> </u>	<u> </u>						╞───	1
1600	21			8270	•	12			5			4		_	<u> </u>						<u> </u>	1
1000	21			8140	6590			10390			10530		-							14910	2530	890
12/10																					1930	
0001	21	127	1451	8610		12			5			4									<u> </u>	1
0800	21	123	1453	8530	6420	12		10210	5		5940	4								15430	3050	240
1200	21		457	8970		12			5			4										
1600	21			8410		12			5			3										1
2000	21	128	1453	B160	6170	12		IOIID	5		5510	4								16180	3800	1270
12/11	-	L																				1
0001				7920		12			5			3										1
0800	21	12le	144B	8230	6040			10230			5140	4								16610	4290	1240
				8040		12			6			Ц										
Comme	nts: \7	<u>-19-</u>	VARC	DR GAN	APUES	2 TA	KEN	AG_	FOU	OVE	7-T	JPE.	20	040	0,1	orm	THI	LET	@ 0'	900.		-
	12	./10 -	-70	TAU I	HUG	- 58	mpl	EW	DBC	0.												•
	12	<u>/11 -</u>	101	NI	LET	i Gan	NUE	00	Boc	>												

			HI	GH VA	CUU	М]sve	or	X	DPE		FIEL	.D DA	TA S	HEE.	Г			CalCle	an Inc.	
			PARK ST	REET			City:	ALMED.	A		Lov	Site #:	GOOD	CHEVR	OLET		Date:	12, 11,	201 <u>/</u>	Page 54	of 9	
Client: E	SUESTA	D							Operato		ECK					\ \				1		
							_			E			N WEL	LS								
	-	Well I.D.			DPE	-		DPE	-3		DPU	<u>-2</u>									Cumul.	
			From-To (Vater DTV								<u> </u>									Water Meter	Water	
Time	Unit	Air	TOX	Vapor Inlet	Off/On		Stinger	Off/On		Stinger	Off/On		Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Readings	Extracted	1
	Vacuum		1 '	Conc.		VAC	Depth		VAC	Depth		VAC	Depth			Depth			Depth	units	gals	1
12/11	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	12380		1
1600	21	12.6	1443	7980	DN	" <u>HG</u> 12	13.5	UNI .	"461 5	12	ON	"HG 4	13			<u> </u>			<u> </u>	<u> </u>		1
2000	21	1.00	1447	1530	5910			10040			4910	Ü							·	1111-0	5000	1280
12/12				1050				10010			-(110					<u> </u>			<u> </u>	17460	5080	1600
6001	21	128	1451	7410		12			5			4	<u> </u>									
0800		2		7230	5120			9820	5		4460	·								17960	5520	1290
0800 0930		_			OFF		<u> </u>	OFF			OFF										7000	
1030		93	1451	5930	NO			ON			ON								<u> </u>			
1045	23	97	1455		6140	12		8930	5		4140	3										1
1200	23			10020	5010	12		8340	5		397D	3										1
1600				5970		11			5			3							-			1
700	21	129	1452	6240	5170	11		8410	4		4010	3								18530	4150	1010
12/13					L																	1
10001	20		-	6510		10			4.			3]
080					5540	9		8670	Н		3910	3								19100	6720	1140
1200	19			66.70		9			4			3										
1600	19	142	1448	6510		9	<u> </u>		4			3										10
	19	144	1449	6380	5240	9	<u> </u>	8430	Ч		3520	3								20240	7860	1.110
12/14	101		11/2	1.000	<u> </u>	0	<u> </u>														L	Į –
				6110		9		00	4		2	3							<u> </u>		0	-110 0
				5920				8210	4		3110	3								21520	4140	2420
Comme	nts: [<u>CIIL</u>	- 107	No 14	1004	DA	mpla	TA	KEN	(D)	080	\mathcal{U}_{e}	1441	Your	NU I	IT C	.047	x0 40	or G	EN, MAIN	Π.	-
	5	1/44/-1	UYU	NIT @	2102	7.																-

			HI	GH VA	CUU	М]SVE	or	X]DPE		FIEL	D DA	TAS	HEE	Г			CalClea	an Inc.	
	ct Locat	ion: 1630 STAD	PARK ST	REET			City: A	ALMED		r (s): 📐	her		GOOD AVD	CHEVR	OLET		· Date: _	<u>12,14</u> ,	201	Page 6 /	rof 19	
													I WEL	.LS					-			
		Well I.().		VPE	-1		DPE	-3		DP	E-2									Cumul.	1
	Scre	en Interval	: From-To ((ft)					· · · · ·							_				Water Meter	Water	
Tim		I Depth To hit Air	1	1	0510-	martin	Offeren	050-	datas		0.00		0	0.7/0						Readings	Extracted	1
	e Ur Vaci		e TOX	Vapor Inlet Conc.	Off/On	VAC	Stinger Depth	Off/On	VAL	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	
1-	("H	g.) (cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	12380		
12/1					ON	"Ha	13.5	ON	"261	12	ON	"HG	13									
120				5730		9			4			2										
llet	<u> </u>			5570		9	L		ч			2										
	019	148	1453	5140	4530	9	<u> </u>	7640	ч	<u> </u>	2970	2								22420	10090	1230
12/		2 1 1						<u> </u>		ļ										<u> </u>		
000				4930	201.0	99		1024	4		21.10	2			ļ							1
08					3960			6930	4		2610	2								23280	10900	7160
120				4230		9			4			3						ļ			<u> </u>	
	618			4370	and the second se	9			4		0.00	3									<u> </u>	
		0100	1400	4920	0210	10	<u> </u>	6740	5	<u> </u>	2230	3				<u> </u>	<u> </u>		<u> </u>	24365	11985	4
12		2 . 76	11140	140.76			<u> </u>				<u> </u>						<u> </u>			<u> </u>	<u> </u>	- 1977
000			- ·	4930	T							_				<u> </u>					 	82
-	10 20			4890		10		6700	4		2260	3				<u> </u>				25460	13080	
120			1451	4830																	<u> </u>	1
		_		4710		10		1 (1) 4	4		0214	7										ł
12/		1 1 1 1	6130		TONU	10		6640			2310	3								26550		
		149	1450	4530																	<u> </u>	1
690		3 15		4350		9		6540	4		2190	3								SMALLE	111111	1
120				4290		G			L (<u> </u>	N 79	<u> </u>		<u> </u>		<u> </u>				27045	114665	{
V-O		5 151				Q	<u> </u>				<u> </u>											1
				T DF	F FR	~	1015	1017	45	১৩৮	to	Re	WER	- CH4	NGK	FROM	(25		Ro	۱ <u>۲.</u>	L	1
				-					-						-19							-

			HI	GH VA	CUU	M		SVE	or	X	DPE		FIEL	.D DA	TA S	HEET	Г			CalCle	an Inc.
Project L	ocation	1630 P	PARK ST	REET			City: A		A			Site #: 1	GOOD	CHEVR	OLET		Date:	2/17/	201	Page 74	19
Client: E	BUESTA	D					•			r (s): Î								<u>cara tr</u>		1 490	
											XTRA		IWEI	IS							
		Well I.D.			00	Ē- 1		00	5-3			E-2		_	W-1	z					
	Screen		From-To (ft)		. 1				-				<u> </u> r	<u>. w</u>	ر 				184 at a 1 1 - 1	Cumul. Water
			Vater DTV																	Water Meter Readings	Extracted
Time	Unit Vacuum	Air Flowrate	TOX Temp.	Vapor Inlet Conc.	Off/On	DTH+ VAC	Stinger Depth	Off/On	-DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger	Off/On	DTW	Stinger		
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	VAC. (ft)	(feet)	(ppmv)	VIC. (ft)	(feet)	(ppmv)	(ft)	Depth (feet)	(ppmv)	(ft)	Depth (feet)	units 12380	gals
12/17					ou		13.5			12	02		13	ON		3	(1)		()	12200	
2000	18	153	1455	4230	4570	9		6370	4		2120	3								28165	15785
12/18																					
0001	18	151	1460	4190		9			4			3									
0%00	18	154	1455	4120	4460	9		6210	4		2090	3								28675	16295
1200	18	151	1450	4160		9			4			3									
1600	18	191		4070		9			5			3									
2000	18	153	1460	4010	4360	9		6170	4		2040	3								29175	16795
12/19																					
0001	18	154	1449			9			4			3									
0800	18	153	1450	3870	4120			5760	3		1980	3								29669	17315
1200	18			3750	÷.,	9			3			3									
1600	18		1450	3630		9			3			3									
1615	14	190	1450			7			2			2		ON	6	3'					
1630	14	193	1459	1408		6			3			t			6						
1645	14	197	1459	1820		6			3			l			3						
0051				1770		5			2			1	<u> </u>		5						
1715				1740		4	<u> </u>		2						5						
1730	-			0171		4			2						5						
1745				1730		4			2						5						
1800	14	1960	1450	1680		4			2						5	16'					
Comme	nts: 1	took	UP	hw	-3	@ 10	600														

				HI	GH VA	CUU	M		SVE	or	X	DPE		FIEL	D DA	TA S	HEET	Г			CalCle	an Inc.
	Project I Client: I			PARK ST	REET			City: A			r (s): 🔽			GOOD	CHEVR	OLET		Date:	1 2/19 /	201_	Page <u>8</u> A	of <u>/9</u>
														N WEL	LS	(<u>e</u>				_		
			Well I.D.			DPE	- 1		DP	E-3		DP	E-2		N	W- 1	3					Cumul.
		Screen	Interval: I	From-To (ft)		-								,	<u>.</u>	<u> </u>				Water Meter	Water
				Vater DTV	1																Readings	Extracted
	Time	Unit Vacuum (**Hg.)	Air Flowrate (cfm)	TOX Temp. (degF)	Vapor Inlet Conc. (ppmv)	Off/On (ppmv)	VAC. (ît)	Stinger Depth (feet)	Off/On (ppmv)	₩ ₩ ₩ (ît)	Stinger Depth (feet)	Off/On (ppmv)	-₽₩ √IAC. (ft)	Stinger Depth (feet)	Off/On (ppmv)	DTW VAC. (ft)	Stinger Depth (feet)	Off/On	DTW (ft)	Stinger Depth	units	gals
12/19	1815	14	191	1450	1	ON	2	13.5		2	12	0	(10)	13	ON	3		(ppmv)	(ii)	(feet)	(2380)	
	1830	14	193				2			2		0.0		13	00	3	16					
	1845	14	197				2			2			<u> </u>			3						
	1900		~194				2			2			1			3						
	1915	· · · ·	197	1450	;		2			2			i			3			<u> </u>			
	1930		193	<u> </u>	19:0		2			2			ι			3						
	1945	14	197	1449	1960		2			2			1			3					·	
	2000	14	196	1450	1970	3670	2		4340	2		1710	1		1540	3					30209×	17979
	2100	14	194	1450	1940		2			2		<u> </u>	1			2						10001
	2200	14	196	1449	1870		2			2			1			2						
	2300	14	196	1455	1890		2			2			I			2						
	2402	14	197	1450	1860		2			2			l			2	1					
	12/20																					
	0001	14	196	1460	1820		2			2			1			2						
	0800	14	197	1450	1830	3450	2		4160	2		1520	l.		1390	2					30744	18344
	1200	14	195	1455	1780		2			t			1			2						
	1600	14	197	1450	0171		2			1			1			2	000					
	2000	16	153	1455	2470		3						ų								31224	14444
	12/21				1																	
	0001	16			2140		4	flow		ł	41		ч	61								
	0.600	15	158	1455	1780	2030	5	57	2740	N	30	1510	4	46							32410	20030
	Comme	nte*																				

			HI	GH VA	CUUI	М]SVE	or	X	DPE		FIEL	D DA	TA S	HEET	r			CalClea	an Inc.
Project I	Location	: 1630 F	PARK ST	REET			City: A		A			Site #:	GOOD	CHEVR	OLET		Date:	12/21/	201	Page 9A	of
Client:	BUESTA	D							Operato	or (s): 📝											1
							-			E	TRA	CTION	I WEL	.LS							
		Well I.D.			DPG	2-1		100	2-3		DPE	2-2		H	N-3						Cumul.
	Screen	Interval: 1	From-To (i	ft)									<u>`</u>							Water Meter	Water
	1	<u> </u>	Vater DTV				r													Readings	Extracted
Time	Unit Vacuum	Air Flowrate	TOX Temp.	Vapor Inlet Conc.	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	_(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)		_
12/21					91)		L	21)			au			०६६							
0930	15	142		רודו					0												
0945	15.	147		1706	2040	7	49	2530	0	30	1690	5	61								
1000	15	147	1460	1672	1980	7	47	21.50	0	30	1540	6	60	_							
1015	15	147	1450	1682	1995	7	49	2150	0	30	1440	5	61								
1030	15	149	1450	1630	1990	4	47	2150	0	31	1440	5	60								
1045	<u> </u>	149	1455	1608	1990	6	49	2130	13	31	1410	5	61								
100	15	147	1450	1637	1980	$\langle \varphi \rangle$	47	2140	0	30	1420	5	60								
1115	15	149	1451	1638	1980	4	47	2130	0	31	1420	5	61								
1130	15	เนา	1450	1593	1980	6	47	2140	0	31	1420	5	41								
1145	15	149	1450	1550	1920	6	47	2580	0	31	1550	5	60								
1200	15	147	1450	1560	1810	4	47	1950	0	31	1810	5	60								
1300	15	149	1450	1610	1790	6	49	1860	0	30	1790	5	61								
1400	15	49	1450	1730	1740	6	47	1860	0	30	1740	5	61								
1500	15	148	1455	1670	1690	6	49	1810	0	31	1670	5	63								
1600	15	149	1450	1640	1620	6	୳ଡ଼	780	0	30	1680	5	61								
00	15	[5]	1450	1650	1610	6	4	160	0	31	1540	5	63								
1800	15	150	1455	1620	1620	6	49	1540	0	30	1490	5	63								
2000	15	149	1465	1630	1610.	6	49	1550	0	31	1470	5	61								
2200	15	151	1450	1610	1540	4	47	1520	0	31	1430	5	61								
2400	15	149	1449	1590	1520	4	49	1510	0	30	14:0	5	63								
Comme	ents:											-									

1

			HI	GH VA	CUUI	M		SVE	or	X	DPE		FIEL	D DA	TA S	HEET	Г			CalCle	an Inc.
Project	Location	1630 P	ARK ST	REET			City: A			\sim			GOOD	CHEVR	OLET		Date:	2,224	201 <u> </u>	Page 10A	of 19
Client:	BUESTA	D							Operato	r (s): <u>V</u>	1550	/N	ECX-								
				_						E	XTRA		I WEL	LS	2						
		Well I.D.			DP	E-1		D	PE-	3	DP	E-7	2	r	1.00-	3					Cumul.
			From-To (- C-											Water Meter	Water
Time	Initial D Unit	epth To V Air	Vater DTV		Off/On	DTW	0	06//0+	DTW	01	0.770	0.77.14						<u> </u>		Readings	Extracted
Time		Flowrate	TOX Temp.	Vapor Inlet Conc.	OnijOn	DTW ₩AC	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	Depth Flow (feet)		(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)		3
12/22	T.				00			00)			ON			off							
0800	15	151	1450		1530	6	53	1470	0	30	1380	5	63								
1200	15		_		1460		51	1380	0	31	1320	5	63								
1300		89		1380	1490		48	OFF			1374	5	62								
1330	18	81	1461	1420	1490		49				1398	5	67								
1400	18	86		1470	1530	7	45				1391	5	64								
1430	18	85		1490	1530		44			<u> </u>	1422	6	51								
1500	18	84		1530	1550	7	48				1437	le	53								
1530		81		1570	1550	7	43				1449	٩	54								
1600		83		1620	1590	-/	44				1468	le	52								
1630	18	85	1451	1610	1580	1	41				1471	le	54								
1700				1610	1580	1.	42				1459	Q	51								
1730	18		1451	1593	1570	7	40				1464	5	61								
1800	1	82	1453	1542	1561	6	51				1451	5	63								
1830		86	1457	1579	1553	le	53				1448	5	107								
1900	18	83	1452	1528	154B	6	57				1437	Б	64								
1930	18	81	1449	1552	1576	5	le1				1452	5	68								
100	18	87	1449	1513	1574	5	64				1429									33780	21400
2400	18	86	1451	1437	1568	5	62				1401	5	63								
Comm	ents: 2	122-	Took	- TOTAL	, INU	Et V	4Por	SAM	PLE (<u>2/?</u>	500	TUR	NED	off	DPE	-3 1	~ AI	2 51	AFGI	E @ 130	5.
TUPN	ED.	AIR.	SPAR	ar Di	N AT	- 150	9D,														

			HI	GH VA	CUUI	N		SVE			DPE			D DA						CalClea	n Inc.	
Project l	ocation:	1630 P		REET			City: A		4			Site #: (GOOD	CHEVR	OLET		Date: /	2,23,	201 <u> </u>	Page ///	of 19	
Client: 1	BUESTA	D					-		Operato	r (s): 📐	1704									<u></u>		
							-		-		XTRA				1							
		Well I.D.			DPE	-1		DPE	-3		TPE	-7_			•						Cumul,	1
	Screen	Interval: F	From-To (R)				•	- 4-						-					Water Meter	Water	1
		T T	Vater DTV			-		0.00												Readings	Extracted	
Time	Unit Vacuum	Air Flowrate	TOX Temp.	Vapor Inlet Conc.	Off/On	D P *	Leph	Off/On	DTW	Stinger Depth	Off/On	1	GT+C+ Septi-	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	
	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)		Ŭ	
1423					ON	VAL	FLOW	OFF			CKL	VAU	FLOO									
0400	1e	107	458	1371	1521	7	49				13/24	5	lel		· · · · ·							
080	14	121	1057	1293	1475	7	41				1375	5	64			_				34520	22140	
1200	14	124	653	1281	1468	7	42	NO			1348	5	63									
1300	15	173	1252	1497	1471	7	44	1396	D	101	1321	5	61									
1600	15	174	1051	1578	1524	7	43	1377	0	103	1306	5	62									1
2000	15	178	653	1632	1567	7	41	1342	0	105	1298	5	61							35110	2130	
12/24									1													1
0001	15	177	651	1581	1531	7	42	1327	0	107	1324	5	63									1
0400	15	175	649	1459	1488	7	41	1304	0	108	1293	5	65									1
0810	15	171	658	1398	1507	7	44	1281	0	102	1261	5	62						-	35150	23370	1290
1200	15	176	1 A	1378	1478	7	41	1273	0	104	1244	5	61									
1600	16	173	654	130Le	1452	7	43	1258	0	101	12110	5	64									1
2000	15	171	651	1284	1443	7	40	1212	0	106	1194	85	103							36480	24100	1370
12/25													1		-							
0001	15	178	652	1251	1396	7	42	1196	0	105	1173	5	165									1
0400	15	175	651	1274	1373	7	41	1153	0	102	1148	5	62						<u> </u>	· · · ·		1
0800	15	174	453	1226	1328	1		1107		1	1124									37240	14960	1490
1200	15	173	651	1193	1291	7	43	1086			1097	5	104								- 1000	
2000	15	177	653	1068	1284	1	45	1048	0	103	1076		42	—						37890	76510	1410
																			<u> </u>	51013	1000	
Comme	ents:	-	-		•										<u> </u>						L	1

			HI	GH VA	CUUI	N		SVE	or	X	DPE		FIEL	D DA	TA S	HEET	Г			CalClea	an Inc.	
Project I	ocation:	: 1630 F	ARK ST	REET			City: A		A	1		Site #:	GOOD	CHEVR	OLET		Date:	2,26,	201	Page 174	f 19	
Client: E	BUESTA	D							Operato	r (s):	TUC	•		0.792								
			κ.								KTRA		I WEL	LS	•							
	_	Weli I.D.			DVE	E-1		TPI	13		TR	E-2									Cumul.	1
			From-To (*** <u>`</u>											Water Meter	Water	
Time	Initial D Unit	<u> </u>	Vater DTV		0550-	0704/	L Oliverad	050-	DTM	0	0///0		-	0.000						Readings	Extracted	
Ime	Vacuum	Air Flowrate	TOX Temp.	Vapor Inlet Conc.	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	
	("Hģ.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)		(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	12380		
12/26					DM	VAC.	FLOW		VAe	FLOW	ON	VAL	FLOUP									
0001	15	171			1267	1	41	1093	0	106	1093	<u> </u>	64									
0400	15		651	1008	1244	1	44	8104	0	102	1058		67									
0800	15	773		1031	1223	7	48	1071	0	103	1023		62							38240	25860	1000
1200		174	1254	1053	1209		43	1053	0	101	1001	5	63									
1600		1	1	1096	1191	1	44	1027	0		998	5	64									
2000	15	176	649	1041	1146	-1	47	1009	0	103	973	5	lel							38870	26490	1980
12/27							<u> </u>			ļ												1
10001	15	1		1007	1158	1	44	968	0		952	1	65									1
0400	15	176		953	1115	7	1 4	947	0	1	908	5	63									
0800	15	171	lehz.	978	109(e	7	45	921	0	103	964	5	61							39490	27110	1250
VHY	OFF	PER		m-/Usi				OFF			OFF											
1000	20	37	12/21		421		91		0.18			0.10										
1030	14	14	146		715	1.5	99		0.20			0.09								·		
1100	25	21	619		793	15	98	-	0,20			0.10										
1105	24	28	681		847	3	81		0.20			0,10										
1135	24	29	lele3		949	3.	87		0.20			0.10										
1765	24	28	658		973		85		0,30			0.14										
1210	23	31	654		942	5	64		0.30			0.17								-		
1240		33	653		1013	5	63		0.30			0.17										
1310	23	32	1051		1028	5	05		0,30			0.19										
Comme	ents:																					-

			HI	GH VA	CUU	M		SVE	or	X	DPE		FIEL	DDA	TAS	HEE1	Г			CalCle	an Inc.	
Project I	Location:	1630 P	ARK ST	REET			City: A		A	1		Site #:	GOOD	CHEVR	OLET		Date:	12,27	201 <u>1</u>	Page 134	of 19	
Client: I	BUESTA	D							Operato	r (s): <u>N</u>	suc.											
										E	KTRA	CTION	WEL	LS								_
		Well I.D.			DPE	4		DPE	3		DPE	-12_									Cumul,	İ 👘
			From-To (·											Water Meter	Water	
Time	Unit	Air	Vater DTV TOX	Vapor Inlet	Off/On	ĐTW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Readings	Extracted	
	1	Flowrate (cfm)	Temp.	Conc.	(nnmu)		Depth (foot)	(0.000)	(4)	Depth	(10,000,0)	5. (A)	Depth	()	(1)	Depth		(11)	Depth	units	gais	1
12/27	("Hg.)	(Cint)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	<u>(</u> ft)	(feet)	(ppmiv)	(ft)	(feet)	(ppmv)	_(ft)	(feet)			1
1315	22	39	651	<u>.</u>	1054	7	43		0.35			0,20										1
1345	22		653		1059	7	41		035			0.20										
1415	22	-38	654		1077	1	45		0,40			0.20										1
					OFF						10											1
1420	25	23	658			0,70			0,95		743	1.5	910									
1450	24	26	652			610			1.05		317	1.5	98									
1520	74	1.8	651			0.65			1.15		343	1.5	91									
1525	23	30	653			0.64		L	1.15		418		83					<u> </u>				
1555	13	32	651			0160		<u> </u>	1.20		4約	3	85									
1675	22	35	1055			0.60		<u> </u>	1.20	<u> </u>	496	×	82									
1700		40	1951		·	0.55			1.25		581 678	5	64									
1730	21	43	1003			0.55			1.30		721	5	65									-
					ON			OU			1011		UL V									
1746	17	163	654	852	1174	1	42	652	0	107	743	5	62									1
2000	11	162	653		1217	7	410	678	0	109	776	5	61					3	;	39770	27340	900
12/28						ŀ																
0001	lle	168	651	864	1244		47	682	0	101	751	9	61									
0400				921	1268		44	699	0	105	784	5	103									1
0800	16	111	653	1907	1277	7	41	703	0	104	792	5	65							40310	27930	820

Comments.

			HI	GH VA	CUUI	M		SVE	or	X	DPE		FIEL	D DA	TA S	HEET	Г			CalClea	an Inc.	
	Location: BUESTA		PARK ST	REET			City: A	LMED		or (s): N	TCK	Site #:		chevr 27-	OLET		Date:	1 <u>2 13</u> 1	201 <u>1</u>	Page /44	of 19	
									opolato			CTION	N WEL									
		Well I.D.			DPE	-1		DPE	:3		DPE	-2		<u> </u>							Cumul,	
			From-To (Water Meter	Water	
Time	Initial De	epth To V Air	Vater DTV	V (ft) Vapor Inlet	Off/On	ĐŦW	Stinger	Off/On	DTW	Stinger	Off/On	DTW	Stinger	050-	DTM	China and	0///0-			Readings	Extracted	!
	Vacuum ("Hg.)			Conc. (ppmv)	(ppmv)	(ft)	Depth (feet)	(ppmv)	(ft)	Depth (feet)	(ppmv)		Stinger Depth (feet)	Off/On (ppmv)	DTW (ft)	Stinger Depth (feet)	Off/On (ppmv)	DTW (ft)	Stinger Depth (feet)	units 12380	gals	
12/28					LIO	VAC	Flow	ON	Vic	FLOW	onl	VAC	FLOW	(ppint)	(11)	(1001)	(ppinv)			1070-		
1200	15	174	651	923	1293	7	43	717	0	101	806	5	63									
1600	15	177	1253	974	1313	7	42	742	0	99	819	5	64									
2000	15	<u>178</u>	654	951	1284	7	44	721	0	104	803	5	62							40920	28540	1150
12/29																						
0001	15		1052	928	1263	-1	45	691	0	105	782	5	61									
0400	15	276	658		1251	7	43	674	0	103	773	5	65									
0800	15	173	637	871	1233	7	42	653	0	101	75B	5	64							41710	29330	1400
1200	15	171	652		1208	7	44	611	0	104	742	5	61									
1600	15	172		833 818	1196 1191	4	43	643	0	102	719	5	63							1.00.0		
12/30		1 17	657	010	11-11	1	41	641		101	698	17	68							42310	19930	1390
0601	16	171	1254	841	1142	7	UZ	618	0	103	732	5	65				<u> </u>					
0400			651	876	1093	1	44	637	6	102	787		62									
~	-	OFF											Carbo									
																		,				
										L												
		14 -																				l
Comme	ents: 17	-170-	- 100	k varo	K 6A	INPLE	DA.	5 Fou	000	5-T	STAL .	Inite		<u>356</u>	DPE	<u>-10</u>	<u>040</u>	, DPI	<u>=10</u>	0405, V	PE-3	
<u>@04</u>	10.																	۳				-

			HI	GH VA	CUUI	M		SVE		X				D DA			г			CalCle	an Inc.	
-	Location: BUESTA		ARK ST	REET			City: A	LMED	A Oporato	. (a): N	KCK	Site #: (GOOD 	CHEVR	OLET		Date: /	<u>Z 1 70</u> 1	201 <u> </u>	Page <u>154</u>	tof 19	
C.C.M.									Operato				I WEL		•							
		Well I.D.			DPE	-1		DRE	-3		TRE	-2		MW	-1.						Cumul.	1
	Screen	Interval:	From-To (ft)					5-25 -											Water Meter	Water	
K and		1	Vater DTV					-												Readings	Extracted	
Time	Unit Vacuum ("Hg.)	Air Flowrate (cfm)	TOX Temp. (degF)	Vapor Inlet Conc. (ppmv)	Off/On (ppmv)	ÐTW (ft)	Stinger Depth (feet)	Off/On (ppmv)	DTW (ft)	Stinger Depth (feet)	Off/On (ppmv)		Stinger Depth (feet)	Off/On (ppmv)	DTW (ft)	Stinger Depth (feet)	Off/On (ppmv)	DTW (ft)	Stinger Depth (feet)	units 17380	gals	
12/30																						
0930		5				10,63			9.60			10.89								42770	30390	
130						10,54			9,68			10.65									007 00	1
						VAC			VAC					ON								1
1215	25	33	651	289		0.01			0.01			Diot										1
1270	25	35		241		0.05			0.03			0,05										1
1300	25	37	1249	376		0.70			0.03			0.01										1
1370	25	39	655	528		0.15			0.05			0.05										1
1400	Î.	38	668	1073		0.15			0.07			0.05]
1430	1	39	651	1637		0,75			10,07			0.05										
1600	-	38		1728		0.75			0,01			0,05										
1000	1	37	66Z	1793		0.15			0.07			0.05								43370	30990	1060
12/31	-																					
0001	25	35		1852		075			0,06			0.05										
0400		37		1937		0.75			0.07			0.05]
0800		39	454	2010		0.70			0.07			0.05								43630	31250	860
1200	25	136	653	1958		0.75			0.07			0.05						1				
14.0	100	20			ON																	
1315	22	51		1538			48		0.07			0.09		1870								
1415	1	178	1664	1529	1150		45		0.07			0.05	-	1852		<u> </u>						
	<u> </u>	2/31	- Too	14860 Jk VM	1017 101 Q	7A.:4	47 LE (fΜ	0.07 hl-2	ON 1	300.	1005	HED 0	1841 M D	P5-1	Q 13	05.]

39

			HI	GH VA	CUU	M		SVE	or	X	DPE		FIEL	.D DA	TA S	HEE	г			CalCle	an Inc.	
Project I	_ocation:	: 1630 F	PARK ST	REET			City: A	LMED	A		ł .	Site #: 1	GOOD	CHEVR	OLET		Date:	12:31	201	Page 16	A. 19	
Client:	BUESTA	D							Operato	r (s):	Jul			167-						rage <u>r o</u>	01_1	
			_										N WEL	LS						1		
		Weli I.D.	,		DPE	-1		VPE-	3		DPE	5-2		MW	1			_			Cumul.	1
			From-To (14 - C						_				_	Water Meter	Water	
Time	Initial D Unit	epth To V Air	Vater DTV	V (ft) Vapor Inlet	Off/On	ÐTW	Otherson	0///0-	D714											Readings	Extracted	
		Flowrate		Conc.			Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	}
link	("Hg.)	(cfm)	(degF)	(ppmv) .	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	12380	guio	
12/31							<u> </u>	off			OFF			ON								1
1600	22		652		1007	7	47		0.21			0,05		1817							1	1
	HAPPy	-NEW	YEAR	-2012-]
61/01	17	10		1100	0-21	2	4.4]
0400	12	57	657	1173	874	1	49		0.36			0.1D		1704								
0800	22	59	12		839		51		0,35			0,10		691	<u> </u>					45180	32800	1550
1200	22	512 55	USZ USI		818	le	52		0.34			a15		1673							L	1
2006	12	69		1073	756 717	6	57		0.39			0,15		1642								1
01/02	1	1.5	11/1	1041	- / [[U	77		0177			0,20		1668						45870	33490	4
0001	n	59	1058	1004	693	6	54		0.24			0.25	_	11 7 7	<u> </u>							4
0406	22	40		956	688	6	56		0.75			0.20	-	1637							L	4
0300	22	58		923	677	le	53		0.34			0.25		1568						111 77 2	1-0.	
1200	22	56		911	652	-	51		0.36		ON	0.07	-	1700						46220	<u>33840</u>	1040
1600	21	124		1298	631	6	52		0.35		831	5	103	1533					_			
1000	20			0	1,49	6	54		0,35		796		62	1506						11 920	21.1-	
01/03											T TOE		40	1700						410930	34550	10000
0001	20	137	653	1227	619	6	51		0.75		728	5	1.4	1482								
0400				1177	594		67		0.35		673			1461								
0800	18	64	652	1135	583		54		0.35		1221	5		1479						47790	36410	1510
1100	18	163	651	1103		le	52		0:35		593		(al	1391						<u></u>	17-110	1910
				JET GN		E-2 (1

.

			HI	GH VA	CUU	М]SVE	or	X]DPE		FIEL	.D DA	TA S	HEE	Г			CalCle	an Inc.	
Project L	ocation	: 1630 F	PARK ST	REET			City: A	ALMED.			,	Site #:	GOOD	CHEVR	OLET		Date:	1,3,	201 Z	Page <u>/7/</u>	of 18	
Client: E	BUESTA	D							Operato	r (s): 🖊	Kur		-70	47-								
										E	XTRA	стю	N WEL	.LS	21					1		
		Well I.D			DPE	5-1		DPI	5-3		DRE	12		MW	-2						Cumul.	1
			From-To (-			1											Water Meter	Water	
Time	Initial D Unit	epth To V Air	Vater DTV	V (ft) Vapor Inlet	Off/On	ĐTW	Chinese	050-	DTM	01									_	Readings	Extracted	
1 IIIIe	Vacuum	Flowrate	Temp.	Conc.	Onion	1	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	
012	("Hg.)	(cfm)	(degF)	(ppmv)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(গি)	(feet)	(ppmv)	(ft)	(feet)	(ppmv)	(ft)	(feet)	12380		
0103		1. 11	100		DN			OFF	0.02		ON			ON								
1500	18	164		1078	551	6	53	<u> </u>	0.35		563		63	1343							1	
2000	18				623 578	6	52		0.35		551	5	lel	1321						0.1		100
01/04	10	167	1001	1031	710	le.	71		0.35		542	5	64	1318						48520	36140	1570
0001	18	167	6.54	1017	556	10	54		0.35		528	5	63	1791		-						1
0400	18			977	564	6	54		0.35		515	5	61	1243								1
0800	18		652	923	537	6	51		0.35		507	5	64	1271						49220	36840	1430
1200	18	168	1	958	618	6	53		0.35		501	5	61	1241						11600	500010	1
1600	18	102	652	971	561	6	52		0,35		521	5	63	1257								
1000	18		1052		647	6	53		0.35		516	5	42	1251						49970	32690	1450
01/05																				11110	71910	1
0001	18	163		967	529	4	53		0.35		511	5	64	1259								1
0400	18	161	654		551	6	53		0.35		503	5	101	1282								1
0800	18	165		939	529	<u>Le</u>	54		0,37		497	5	63	1253				_		50640	387100	1420
1200	18	167		976	558	6	51		0.35		492	5	61	1217						VU D-10	10000	
1600	18	163	15	952	507	6	51		0.35		499	5	61	1247								
	18	164	654	903	523	6	51		0,35		494	5	64	1231						51030	38650	1000
0100												:									00000	
	18	165	652		542	6	51		0.35		487	5	64	1206								
0400	19	161	651	952	511	le	53		0.35		491	5	64	1191								
Comme	nts:																					1

. E .

			HI	GH VA	CUU	M		SVE	ог	X]DPE	1	FIEL	.D DA	TA S	HEE	Г			CalCle	an Inc.	
Project	Location	: 1630 F	PARK ST	REET			City: A		A		L.	Site #:		CHEVR	OLET		Date: _	Cli de	201 <u>/</u>	Page <u>/8</u>	40f 19	
Client:	BUESTA	D			_				Operato	r (s): N	fice		-7	<u>le7-</u>								
	5												N WEL	LS								
		Weli I.D.	·		DP	E~1		TPE	i-3		DPE	-2		Mh	1-2						Cumul.	1
			From-To (1943											Water Meter	Water	
Time	Initial D Unit	epth To V Air	Vater DTV	V (ft) Vapor Inlet	Off/On	ĐŦW	Stinger	Off/On	DTW	Chinasa	0///0-	074	L ctu						_	Readings	Extracted	
	Vacuum ("Hg.)	Flowrate	E .	Conc. (ppmv)	(ppmv)	•	Depth	(ppmv)	(ft)	Stinger Depth (feet)	Off/On (ppmv)	DTW (ft)	Stinger Depth	Off/On	DTW (ft)	Stinger Depth	Off/On	DTW	Stinger Depth	units	gals	
01/04					<u>, , , , , , , , , , , , , , , , , , , </u>				((())))))))))))))))))))))))))))))))))))))	(14)	(incory	(ppmv)	(11)	(feet)	(ppmv)	(ft)	(feet)	12380		
080	18	1.02	652	917	529	le	52		0.35		487	5	63	1176						51740	2021.0	1100
1200		1,63	654	924	507	6	51		035		492		64	1142						01140	575000	110 -
1000	18	164	451	893	513	6	53		0,35		478		64	1159								
200	18	1(2)		915	501	6	53		075		473		61	1131		-				52310	39930	1280
01/07																				76010	51155	1
0001	18	145		B86	528	6	51		0,35		452	5	61	1146							j	1
0400	18	168	654	892	509	le	51		035		448	5	63	1178								
0800	18	163	654	871	493	6	51		0,35		467	5	63	1151						52970	40590	1230
1200	<u> </u>	165	651		499	6	52		0.35		434	5	63	1118								
2000		161	658	882	496	4	51		0.35		451	5	61	1093						53610	41230	1300
0108						L																
10001			654		478		51		0.35		472	5	61	1077								
0400		164	651	879	491	Q	51		0.35		478	5	63	1081						1		
0800				852	468	6	57		0.35		421	5	62	1042						54110	41730	INUD
1200				883	492	6	53		0.35		413	5	62	1071								
2000	16	161	652	864	471	4	53		0.35		401	5	62	1093						54690	42310	1080
01/09	10	11.0	10	0.21	1.10	1																
D400				821	458		52		0.75		376	5		1098								
1200				845		6	52		0.35		352	5		1047						55230	42850	1120
		10.5	651	01/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	459	<u>(e</u>	52		0.35		268	5	64	1023								
081	0, P	112-2	0	0815		<u> MIYN</u>	1000	AS	rou	ישוס	5-1	OTAL	- In	LET	20	800,	DPE-)@	030	5, DPE-	2. @	

			HIC	GH VA	CUUI	M		SVE	or	Х	DPE		FIEL	D DA	TA S	HEET	Г			CalCle	an Inc.
-	Location: BUESTA		ARK ST	REET			City: A	LMED	A Operato	r (8): N	Tik	Site #: 1	GOOD	CHEVR	OLET		Date: 4	<u>01,09</u>	201_/	Page <u>19</u> 4	fof 19
								· · ·	oporato		XTRA				5						
		Weil I.D.			DAG	5-1		DPE	-3		DPE	-2		Mh	-2						Cumul.
			From-To (1 Vater DTW				· · · ·													Water Meter	Water
Time	Unit	Air Flowrate	тох	Vapor Inlet Conc.	Off/On	ĐTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger Depth	Off/On	DTW	Stinger	Off/On	DTW	Stinger	Readings	Extracted
		(cfm)			(ppmv)	(ft)		(ppmv)	(ft)		(ppmv)	(ft)	ifeet)	(ppmv)	(ft)	Depth (feet)	(ppmv)	(ft)	Depth (feet)	units 123 50	gals
01 09	10	11.0		Rod	1111																
1600	10	164	653	821	441 423	1 <u>0</u>	53 52		0.35		371 362	5		1004 987						(10.	
			EVENT		765	U.	26		0.37		746	<u> </u>	120	101						55910	43630
		:																			
<u> </u>																					
-						*															
			·																		
	[
-	l												. <u> </u>								
<u> </u>						 							·								
												:									
Comme	ents: 0	109	- 100	K VAP	<u>25</u>	AMPL	25	AS	Four	wcg.	- 101/	ut	JLET	<u>e11</u>	<u>e45,</u>	MK-	20	Ile 5	O, DI	2E-201	655
	- e		0.6	NDI	420	ME	TEK	~ 54	> 91	0.	·								<u> </u>	<u></u>	

			ню	GH V	ACUU	M		SVE	or	х	DPE		FIELD	D DA	TA SH	IEET					CLEAN I	
Project Lo	ocation: 1	630 PAI	RK STRE	ET			City: Al	MEDA		1		Site #: (GOOD C	HEVR	OLET		Date: 12	105/20	01	(71- Page	4) 734-913 ∋_ 12 of _	16
Client: B	UESTAD						-		Operator ((s): 1	TCK									_		
										OBSE	ERVAT	ON W	/ELLS									
WELL	MkJ-1		MW-	2	MW-	3	AS	-	VP-1	-	VP-2		178-3	>								
SCREEN									16 T													
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/05		-																				
12/06		8.27		318		8.34		8.41														
12/06	· · ·																					
000		8.02		8.41		8.24		8.43														
1130)	8.13		8.51		8,28			0.33		0.20		0.10	-								
1230									0,35		0.20		0110				-					
1300					L				0.40		0.20		0.12	<u> </u>								
1350	0.10		0.43		0.02	A		<u> </u>	0.42		0.23		0.12	ļ			L					ļ
1406	0.05		0.45		0.03	ļ			0.44		0.25		0.14		<u> </u>							
1430	0,10		0.44	ļ	0,02			<u> </u>	0.49		0.26		0.12		<u> </u>							
			0,47		20.02	8.77			0,44		0.23		0,11									
1930	0.10	8,71	0,44	8.0	0,02	8.39	<u> </u>	<u> </u>	0.43		0.22		0.12			L	 		ļ		<u> </u>	
					0.02				0,43		0.28		0.12		ļ	ļ			<u> </u>			
2000	0,13	8.29	0.42	8.77	0.02	844		ļ	0,44		6.12		0,10				<u> </u>					<u> </u>
12/07							L					<u> </u>				L		ļ			<u> </u>	
0001	0.12	8,35	0.40	8.79	0.07	8,47			D.47		0.54		0,12									
0400	0.10	<u>Q.38</u>	0.44	8.83	0,03	8.49		ļ	0.49		087		0,11		L							ļ
				9,41	0.03	5,7			0,44		013		012	Ļ			<u> </u>					
	0.10	1	0.12	L	0.01		L	ļ	0.02		0.01		0.04						L			
	0.08		0.13	<u> </u>	0.00				0.015		0.01		D.04						L			
1000	0,00		0.13		0.00				0.014		0.01		0.04									

			HI	GH V	ACUU	M		SVE	or	X	DPE		FIELD	D DA	TA SH	IEET					CLEAN I	
Project Lo	cation: 1	630 PAF		ET			City: AL	.MEDA		1		Site #:	GOOD C	HEVR	OLET		Date: 12	51712	01	(71- Page	4) 734-913 = <u>ZB</u> of _	16
Client: B	JESTAD				_		•		Operator	(s): <u>M</u>	TCK											
											RVAT	ON W	/ELLS									
WELL	MW-1		Mht	2	MW-	3	VP-1		VP-Z	2	VP-3	5	Ag-	1								
SCREEN								, .	4													
DTW (ft) Time	Vacuum	UTW	Vacuum	wта	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H ₂ O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/7		-												_	•							
1030	0.10	· 	0.13		00,0		10,01		0.01		0.04											
	0.10		0,13		0,00		0.01		0.01		0.04											
1130	0.10	9,72	0.15	9.58		8,86	0.01		0.01		0.04	_										
1200	0.10	975	0.15	9.69	0,00		0.01		0.01		0,04											
1230	0,10	9.76	0.15	9.61	0.00	8.89	0.01		0,01		0.04											
					0.00	891	0.01		0.01		0.04											
	0,10				0,00		-		0.00		0.04											
					0.00			Ĺ	0,01		0.04											
1600					0,00				0.01		0.04					L						
		9.81	0.15	9.77	0.00	9.04	0.00		0.00		0.04											
12/8																						
0001					0.00				D.OL'		0,05											
							Ð, 00		0.01		0,06		<u> </u>									
0800	0.10	9.97	0,15	994	0.00	9,29	0.00		0.01		0.064											
0830	0,10		0.10		0.06		0.01		0.01		0,05											
0900			0.10		0.00		D.01		0.00		0.05											
6930	0,10		DilO		0.00		0,01		0.00		0.05											
	01,0		0,10		0.00		0.00		0.01		0.05											
	0.10		0,10		0,00		0,00		0.00		0.05											
1100	0.10	9,96	010	9.95	0,00	9.27	0.00		0,01		0.05											

			HIC	GH V	ACUU	M		SVE	or	_x	DPE		FIELC	D DA	TA SH	IEET	I				CLEAN I	
Project Lo	cation: 1	630 PAF	RK STRE	EŤ			City: AL	.MEDA	L	. 1		Site #: (GOOD C	HEVR	OLET		Date: 17	<u>4 8</u> 2(01 <u> </u>	(71- Page	4) 734-913 e <u>37</u> of _	76
Client: B	JESTAD								Operator	(s):	TCK											
										OBSE	ERVATI		/ELLS									
WELL	Mid	1	MW-	2	MW-	3	VP-1		VP-Z		VP-3		AG-	1								
SCREEN																						
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	 Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/08		1																				
1130	0.10	9.99	0,10	991	0.00	9,29	0.00		0.01		0.05											
	0.10								0.00		0,05											
1230	0.05	10.01	0.10	10,00	0,00	9.30	0.00		0,01		0.04											
1300	0.05	10,03	DIID	10.02	0.00	9.33	0,00		0,01		0.05											
1400	0.05	10.07	0.10	10,03	0.00	9.34	0.00		0.00		0,04											
1500	0.06	10.08	0.10	10.04	0190	9.37	0.00		0.01		0.04											
1600	0.10	10,06	0.05	10.03	0,00	9.36	0.00		D101		0.03											
2000	0.05	10,09	0.10	1007	0.00	9.31	0,00		0.01		0.03											
12/9																	йł,					
0001	0.1D	10.05	0,05	10.01	0.00	9,33	0.00		0.01		0.03											
0400	0.10	10.08	0.10	10,04	0.00	9.35	0,00		0.01		0.03											
	0.10	10.01		10.01	0.00	9,39	0.00		0.01		0.04											
	0.08		0.08		0,01		0.30		015		0.07											
	0,07		0.09		0(01		0.35		0.15		0.05											
1100	0,10		0.07		0,01		0,35		015		0,09											
1200	0.15		0,11		0.00		0.40		0.20		0.15											
1600	0,10		0.10		0.00		0,50		0.25		0.15											
2000	0.10		0.1D		0,00		0.55		0.30		0,70											
											I											

				HIC	GH V	ACUU	Μ		SVE	or	х	DPE		FIEL	D DA	TA SH	IEET					CLEAN	
	•	cation: 1	630 PA	RK STRE	ET			City: Al	LMEDA	Operator		TUK	Site #: (GOOD C	HEVR	OLET		Date: 1	<u>2 10</u> 2	01 <u>/</u>	<i>(71</i> Pag	4) 734-913 e 43 of _	7 16
Unit												RVAT	ON W	/ELLS		<u>.</u>							
WE		MW	-1	MW	2	MW	-3	VP-	1	VP-2		VP-3		AG	-1								
	REEN																						
	W (ft) Time	Vacuum	WTG	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
		"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)						
12	10		-																				
0	300	0,15		0.15		0.00		0.55		0.30		0.24											
		0.15		0.20		0.00		0.55		0.30		0.24											
12	/11		Ł	2																`			
0	300	0,20	-	0.20		0.00		0.55		0.32		0,26											
		0.20		0.25		0.00		260		0.28		0.26		L					ļ				
	/12		<u> </u>															ļ	Ļ	ļ	<u> </u>	<u> </u>	ļ
		0.20		0.25		0.00		0.60		0.30		0.24		<u> </u>						[<u> </u>
		0.20		0.26		0.00		0.62	ļ	0.32		0.28			ļ		<u> </u>		<u> </u>	<u> </u>		<u> </u>	
		0.20	<u> </u>	0.25		0,00		0.60	<u> </u>	0.35	╞───	0.30			<u> </u>							<u> </u>	
	13		ļ									. 10			<u> </u>		<u> </u>				<u> </u>	<u> </u>	
	-	0.20		0.25		0.00		0.60	_	0.35	<u> </u>	0,30		ļ		<u> </u>				[<u> </u>	<u> </u>	
_		0.25	 	0.20	ļ	0,00		0.55		0,30		0,30											
	2/14	4 - 1		- 21				- (0		0 16		020				<u> </u>						├──	──
		0.26		0.75 0.20	· ·	0.00		0,50		0.35		0,30						<u> </u>				<u> </u>	
		0.00		0.00		0,00		0.45		0.20		0.07			-			<u> </u>			+		┣──
	115	0,20		070	<u> </u>	0.00	<u> </u>	0.45		0.30		0.25		<u> </u>			<u> </u>						╀───
		0.20	1	0.20		0.00		0.45		0,30		0,30						<u> </u>					┼──
	000	0.20	,	0.20		0.00	<u> </u>	0.45		0.35		0.30										<u> </u>	+
		0.20	1					0.50		0.55	I	0.30										· · · ·	+
	<u>50</u>	10.30		0-25		0.00	L	10.00	1	10.00		V. U.				I		·	<u> </u>		L	<u> </u>	

			HIC	SH V	ACUU	M		SVE	or	Х	DPE		FIEL	D DA	TA SH	IEET					CLEAN I	
Project Lo	ocation: 10	630 PA	RK STRE	ET			City: Al	.MEDA				Site #: (GOOD C	HEVR	OLET		Date: 13	17/2	01	(71- Page	4) 734-913 e <u>5 B</u> of _	1b
Client: B	UESTAD					10			Operator	(s): <u>N</u>	IC.K											
										OBSE	ERVATI	ON W	/ELLS									
WELL	MW		MW-	2	Mw/	-3_	VP-	Market State	VP-	2	VP-	3	AS-	-								
SCREEN			<u> </u>						33													
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)
12/17		-																				
	0.20	1	0.20		0.00		0.55		1).32		0.30											
	0.25		0.20		0.00		0.50		0.30		0.30											
12/18			- 11 -																			
0900	0.30		0.25		0.00		0.50		0.30		0.30											
	0.35		0.25		0-00		0.50		0.30		0.30				L					<u> </u>		<u> </u>
12/19													L	<u> </u>								<u> </u>
	0.40		0.25		0.00		0,50		030	L	0.30				<u> </u>		<u> </u>				<u> </u>	
	0.40		0.25		ON	 	0.60		0.35		0.30		<u> </u>			ļ	<u> </u>				<u> </u>	
	0-41		0.25				<u> </u>						<u> </u>	<u> </u>							<u> </u>	
	0.45		0.25		 		0.60		0.35		0.30		<u> </u>		<u> </u>		<u> </u>				<u> </u>	
	0.45		0.25		<u> </u>		0.60		0.35		0.30		<u> </u>	<u> </u>	<u> </u>						┝──	──
	0.45		0.25				0.60		0.35		0.30				<u> </u>	<u> </u>					├──	
	0.45		0.25		─	<u> </u>	0.60		0.35	<u>i – </u>	0.30								<u> </u>	<u> </u>		<u> </u>
	0.45	· ·	0.25				1.60		0.35	1	0.30										<u> </u>	
	0.45		0.25		· · · ·		0.60		0.35		0.30											
	0.43		0.25				0.60	1	0.35	<u> </u>	0.30								┣───			╂──
	0.44		0.25				0.60	1	0.35		0.30										╂───	╂───
	0,45		0.25				0.60	T	0.35		0.30										╂───	
	0.45		0.25		╂──		0.60		0,35	1	0.30										├──	+
[[4]]5	0.45		0.25				0.60		0.35		0.30		1	1			1			L	L	

 \sim

			ню	GH V	ACUU	M		SVE	or	x	DPE		FIELI	D DA	TA SH	IEET					CLEAN I	
Project Lo	cation: 1	630 PA	RK STRE	ET			City: AL	.MEDA				Site #: (GOOD C	HEVR	DLET		Date: 12	. 1 9 1 20	01 <u> </u>	(71- Page	4) 734-913 e 072 of _	16
Client: B	JESTAD								Operator	(s): 🚺	AVIG									-		
										OBSE	RVATI	ON W	/ELLS									
WELL	MW	-	Mhl	-2	MW-	3	VP-1		VP-2		VP-3	>	A5-	1								
SCREEN																						
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	1. S. S. S. S.	in the first	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	POL	FLOW	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/19		4			OFF																	
	0.45		0.25				0.60	_	0.35		0.30											
1945	0.45		0.25				0.60		0.35		0.30											
2000	0.45-	-	0.26				0.60		0.35		0.30											
2100	0.45		0.25				0.60		0.35		0.30											
2200	0,45		0.25				0.60		0.35		0.70											
1300	0.45		0.25				0.60		0.35		0.30											
2400	0.45		0.26				0.60		0.35		0.30				L	L						ļ
12/20			1									L										<u> </u>
0400	0.46		0.25				0.60		0.35		0.30											
0800	0.40		0.25	<u> </u>	<u> </u>		0.55		0.35		0.30						L					
2000	0.40		0.25				0.65		0.30		0.30			<u> </u>		ļ	<u> </u>		1			<u> </u>
12/21																		<u> </u>			<u> </u>	<u> </u>
	0.40		0.25				0.55		0.31		0.30											
0930			0.40				0.50		0.40		0.55		B	5	<u> </u>		ļ					
	0.50		0.35				1.45		0.70	L	0.55		8	5								
	0.45		0.35				1.45		0.70		0.55	<u> </u>	8	5			<u> </u>					
1015	0.45		0.85				1.45		0.70		0.55		8	5		<u> </u>						
1030	0.45		0.35	1			1.45		0.70		0.55		8	5								
	0.45		0.35				1.45		0.70		0.55		8	5								
1100	0.45		0.35				1.45		0.70		0.55		8	5			<u> </u>					

			ню	SH V	ACUU	M		SVE	or	х	DPE		FIEL	D DA	TA SH	IEET					.CLEAN I	
Project Lo	cation: 1	530 PA	RK STRE	ET			City: Al	.MEDA	1	_		Site #: (GOOD C	HEVRO	OLET		Date: 12	-121/2	01	(71- Page	4) 734-913; e]B of _	16
Client: B	JESTAD								Operator	(s): V/	WIS											
										OBSE	RVAT	ON W	ELLS				_					
WELL	MW-		MIN	2	MW-	3	VP-1		VP-Z		VP-3)	A5	-1								
SCREEN						··· - <u>-</u>					· ·											
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Victor		Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H₂O	(ft)	"H₂O	(ft)	PSI	FLOW	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)
12/21		-													•							
1115	0.46		0.35				1.45		0.70		0.55		7	6								
1130	0.45		0.35				1.45		070		0.55		ר	la	•							
1145	0.45-	-	0.35				1.45		000		0.50		7	le								L
1200	0.45		0.35				1.45		0.70		0.50		7	le								
1300	0.45		0.36				1.45		0.20		0.45		7	6								_
1400	0.45		0.36				1.45		0.70		0.45		7	6			<u> </u>					ļ
1500	0.45		0.35			<u> </u>	1.45		070		0.45		7	<u>le</u>								<u> </u>
	0.45		0.35				1.45		0.70		0.44		7	6			<u> </u>		<u> </u>			<u> </u>
	0.45		0.35		ļ		1.44		0.10	<u> </u>	044		1	6		<u> </u>		-	<u> </u>		 	ļ
	0.45		0.35	ļ	ļ		1.44		0.70	<u> </u>	0.44		7	6			<u> </u>		ļ			<u> </u>
	0.45		0.35		<u> </u>		1.44	_	0.70		0.45	<u> </u>	7	<u>l</u> e		<u> </u>	 	ļ	N.		<u> </u>	<u> </u>
	0.45		0.35				1.44	ļ	070	ļ	0.44	<u> </u>	7	10		 			<u> </u>		<u> </u>	<u> </u>
2200	0.44		0.35	<u> </u>		<u> </u>	1.44		0,70	<u> </u>	0.4H		6	7		<u> </u>	<u> </u>	 	<u> </u>		ļ	_
	0.44		0.35	 	 	<u> </u>	1.44	<u> </u>	0.70	<u> </u>	0.44		6	7		<u> </u>					<u> </u>	
12/22	B.				 	ļ			-								<u> </u>	ļ			[_
	0.44	ļ	0.35	ļ			1,44		0.70		0.44	1	6	1		<u> </u>	<u> </u>			 	<u> </u>	┢───
	0.45		0.35		<u> </u>	<u> </u>	1.41		070	<u> </u>	0.44		le	7			<u> </u>				<u> </u>	ļ
	0.44		0.75	ļ	<u> </u>	<u> </u>	0.55	 	0.35		0.35	1	OFF	ļ			ļ	_	<u> </u>			<u> </u>
	0.43		0.25		 		0.55		0.40		0.35			ļ		<u> </u>	<u> </u>				<u> </u>	<u> </u>
1400	0.43		0.25				0.60		0.35		0.30	<u> </u>					<u> </u>					

			ню	SH V	ACUU	M		SVE	or	х	DPE		FIELD	D DA	TA SH	EET					CLEAN I	
Project Lo	cation: 1	630 PA	RK STRE	ET			City: Al	.MEDA		1		Site #: (GOOD C	HEVR	OLET		Date: 12	- 1 <u>22</u> 1 20	01	(714 Page	4) 734-913 BB of _	16
Client: B	UESTAD								Operator	(s): <u>N</u>	<u>rcu</u>											
										OBSE	RVAT	ON W	/ELLS									
WELL	MIN-	1	MW-	2	MW	3	VP-1		VP-Z	-	VP-3)	AS	-1								
SCREEN															·							
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H₂O	(it)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)
12/22		-													, ·							
1430	0.43		0.25				0.65		0.40		0.35		40									
1500	0.44		0.35				1.35		0.60		0.40		le	٦								
1530	0.44-	r	0.35				1.35		0.60		0.45		7	le_								
1600	0.44		0.35				1.35		0.65		0.40		8	5								
1630	0.45		0:35				1.40		0.60		0.40		8	5								
0051	0,44		0.35				1.40		0.60		0,40		8	5								
1730	0.44		0.35				1.40		0.65		0.35		8	5								
1800	0.45		0.35				1.40		0,65		0.35		8	5								
1830	0.44		0.35				1.45		0.65		0.35		8	5								<u> </u>
	0.45		0.35				1.45		070		0.35		7	6								
1930	0.45		0.35				1.45		07.0		0.35		7	le					A,			
	0.44		0.35		ļ		1.45		670		0.30		8	5				L				
12/23	, .		ļ																			
0001			0.35		ļ		1.45		0.70		0.30		8	5								<u> </u>
0400	0.43		0.35				1.40		0.70	ļ	0.30		8	5			<u> </u>					
0800	0.41		0.35				1.45		0.70		0.35		8	5								
1200			0.35				1.45		0,70		0.30		8	5								
1300	0.36		0.30				0.95		07.0		0,30		OFF	OFF								
1600	0.35		0.24			1	0.90		0.100	1	0.30											
1000	0.35		0.20				0.90		0.55		0.24											

.....

			HIC	SH V	ACUU	M		SVE	or	Х	DPE		FIELD	DA	TA SH	EET					CLEAN I	
Project Lo	cation: 16	530 PAI	RK STRE	ET			City: AL	.MEDA	k	. [Site #: (GOOD C	HEVR	OLET		Date: 12	-124/20	01_L	(714 Page	1) 734-9137 9 98 of _	16
Client: Bl	JESTAD								Operator ((s): <u>U</u>	Ub											
											RVATI											
WELL	MW-	1	MW-	2	MILL-	3	VP-1		V7-2		VP-3		As.	4								
SCREEN																						
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
Inne	"H ₂ O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/24 0 00 1					OFF								OFF									
0001	0.35	_	0,20		1.17		0.36		0.55		0,25											
0400	0.35		0.20				0.85		0.55		0.25											
0200	0.36-	•	0.26				0.80		0.55		0.25											
1700	030		0.25				0.80		0.55		0.25											
100	0.30		0.25				0.7.5		0.55		0,30									L		
100	0.30		0.20				0.75		0,55		0.25											
12/16																L						\square
0001	0.75		0.25				0,75		0.55		0:30								L		L	<u> </u>
0400	0.35		0.24				0,65		0.50		0.30											
Bw	0,30		0.25				0.65		0.40	L	0.25											
1200	0,35		0.25				0.70		0,50		0.24								N.			<u> </u>
1600	0.30		0.30				Diles		045		0.26					L	L		<u> </u>			L
2000	0.35		0.25				Dilas		0.45		0.25											
12/200											<u> </u>									<u> </u>		
0001	0.30		0,30				0.60		0.46		0.25											
0400	0.35		0,30				0,65		0.50		0.25											
0800	0.70		0.30				0.65		0.60		0.25											
1200	0,30		0.25				0.60		0.60		0.26											
1600	0.35		0.25				0.60		0.45		0.30											
1000	0.30		0.25				OileO		0,50		0.25											

			HIC	SH V	ACUU	M		SVE	or	х	DPE		FIELD	D DA	TA SH	IEET					CLEAN	
Project Lo	ocation: 16	630 PAI	RK STRE	ET			City: Al	.MEDA			al	Site #:	GOOD C	HEVR	OLET		Date: 10	171/2	01 <u>1</u>	(71- Pag	1) 734-913 • 10 B of	16
Client: B	UESTAD								Operator	(s): N	OL											
											RVATI											
WELL	MH-		MW-	2	MW-	3	VP-1		VP-Z		VP-3	1	A5-									
SCREEN DTW (ft)									<u></u>						-							
Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTV
j	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/27		-1			OFF								OFF									
	0.35		0.30				0.54		0,50		0,30											
0400	0.35		0.25				0.55		0.50		0.30											
0900	0.30-	*	0.25				0,55		0,44		0.70											
0846	0.05		0.05				0.10		0.20		0.10											
0915	8		Ð				-0-		Ð		-0-											
1000	0.18		0.70		0.00		0.80		0.40		0.20											1
1030	0.20		0.90		0.04		0.85		0.41		0.15											
100	0.20		0.90		0.04		0.80		0,40	1	0.15											
1105	0.20		0.95		0.04		1.20		0.56		0.26											
1135	0,20		0,95		0.05		1.30		0,60		0,25											
1205	0.20		0,95		0.05		1.30		0.60		0.25								$-\chi$			
1210	0.30		1.10		0.06		1.70		0.80		0.35					-						
1240	0.30		1.10	l	0.06		1.75		0.95		0,40											
1310	0,30		1.10		0,07		1.50		0.95		0.45											
	0.35		1:0		0.07		1.85		1.05		0,55						8					
	0.35		1.10	L	0.01		1,90		1.10		0.55											
	0.35		1.10		0.07		1.90		1.10		0.55											
	0.35		0.10		0.00		0,90		0,60		0.20											
	0.35		0.60	L	0.00		0.30		0.45		0.20											
1520	0.30		0.35		0,00		0,65		0.35		0,15											

•

			HIG	SH V	ACUU	M		SVE	or	х	DPE		FIELD) DA	TA SH	EET					CLEAN I	
Project Lo	cation: 10	530 PAI	RK STRE	ET			City: AL	.MEDA		1		Site #:	GOOD C	HEVR	OLET		Date: 12	-1271 21	01_1	(71) Page	4) 734-9133 • <u>IIB</u> of	lb
Client: B	JESTAD								Operator (_{(s):}	ick								-			
											ERVATI	ON W	/ELLS								_	
WELL	MW-		MIN-	L	MW	3	VP-1		VP-Z		VP-3	-	145	4								
SCREEN									- 4 ¹ -						-							
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
Time	vacuum "H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/27		-											2FF									
1525	0.30		0.35		0.00		0.44		0,24		0,10											
1555	0.25		0,70		0.00		0,40		0.20		0.05											
11/25	0.25-	-	0.25		0.00		0.24		0,10		0.04											
1630	0.20		0.20		0.00		0.20		0.05		0.00											
1700	0,15		0.15		0.00		0.16		0.05		0.00											
1730	0.15		0,15		0,00		0,15		0.05		0.00											
1745	0,35		0.35		0.00		0.15		0,05		0.00						<u> </u>		<u> </u>			
2000	0,30		0.35		0.00		0,30		0.25		0.05		<u> </u>									
12/28																						
0001	0.30		0.34		0.00		0.35		0.30		0.10											
0400	0,30		0.30		0.00		0.40		0.35		0119								$\sim \Lambda_{\rm c}$			
6600	0.35		9.30		0.00		0.40		0.36	1	0,15						n)					
1200	0.75		0.30		0.00		0,40		0.30		0.20											
1600	0.30		0.30		0.00		0.40		0.35		0.20						1					
2000	0.30		0.35	-	0.00		0.45		0.30		0.25											
12/29																						
0001	0.35		0,70		0.00		0,45		0.35		075											
0400	0.35		0.70		0.00		0.45		0.35		0.30											
0800	0.35		0:30		0.00		0.45		0.35		0.30											
1200			0.35		0.00		0,60		0,40		0.30											
Comme																						

HIGH VACUUM	SVE or	x	DPE	FIEL
Project Location: 1630 PARK STREET	City: ALMEDA			Site #: GOOD

LD DATA SHEET

Date: 12,29, 2011

CALCLEAN INC.

(714) 734-9137 Page <u>12B</u>of <u>16</u>

Client:	BUESTAD

Operator (s): NECK

Site #: GOOD CHEVROLET

		·							Operator (ERVATI	ON V	VELLS									
VELL	Mhi	-1 1	MW.	~7	MW-	3	VP-1		VP-Z	-	UP-3	,	AS-1									
SCREEN								,				·			1							
DTW (ft)						<u> </u>						·				T		1	<u> </u>		I	<u> </u>
Time	Vacuum "H₂O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum [:] "H ₂ O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum "H₂O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum "H ₂ O	(ft)	Vacuum "H₂O	(ft)	Vacuum "H₂O	DTW (ft)
12/29		-											OFF									
	0.30		0.35	['	0,00	['	0,50		0,40		0,30	Ĺ'	<u> </u>									['
	0,30		0,35		0,00	['	0.50		0.40		0,30											
12/30	-	-																				
1000	0.35	,	0,30		000		0.50	1	0.40		0.35		<u> </u>									
0400	0.34		0.35		0.00		0,50		0.40		0.35	<u> </u>	<u> </u>									'
0930		9.49		9.52		9.21							<u> </u>									
1130		9,43		9.86		9.25			′				′									
	0.00		ON		0,00		0.10		0,02		0.05		<u> </u>									
1300	0.15	['			0.09		0,55		0.42		0,15		'									
1330	0.10	['			0.05		0.55		0,40		0.15		'									
	0.10				0.06	[0.60		0,45		0.15						•% 					
	0.10				0.06		0.60		0.45		0.20	Ĺ	′							<u> </u>		
1600	0.10				0.05		0.60		0.45		0.20											
	0.10				0.05		0,60		0.45		0.20											
12/31							<u> </u>		·													
0001	0,10				0.05		0.60		0,45		0.15											
0400	0.15			<u> </u>	0.05		0.60		0.50		0,15								Γ			
	0.15				0.05		(مار 0		0.50		0:20											
	0.15				0.05		060		0.50		0.20											
11315	0.25		Γ		0.05	Γ	0.75	[0.50		0.20				T	-		T	T			

			HIC	GH V	ACUU	M		SVE	or	х	DPE		FIELD	D DA	TA SH	IEET	1				CLEAN I	
Project Lo	ocation: 1	630 PAI	RK STRE	EŤ			City: Al	.MEDA				Site #: (GOOD C	HEVR	OLET		Date: /2	:, 3) ,2	01	(714 Page	1) 734-913 • 178 of _	ĺh –
Client: Bl	UESTAD								Operator	(s): NT	UL											- - -
											ERVATI	ION W	/ELLS							•		
WELL	MW-	1	MW-	r	MW	3	VP-	!	VP-Z	-	VP-3	>	AS	-1								
SCREEN									3.													
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW
	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)
12/31		-	40																			
	0.25				0.05		0.75		0,55		0.20											
1515	0.25				0.05		0.75		0.65		0,20											
1600	0.25	-			0.05		0.75		0.55		0.25											
01/01																						
0400					0.06		0.75		0,46		0.25											
0800	0.25				0.06		0.80		0.55		0.25											
1200	0.30		·		0.05		0.80		0.60		0.30											
1600	0.30				0.05		0.80		0,60		0.30											
· · · · · · ·	0.30				0.05		0.80		0,60		0.30											
01/02													<u> </u>									
	0,30				0.05		0.85		0,60		0.35						<u> </u>					
0400			<u> </u>		0.05		0.85		0.65		0.75											
0800	0.30				0.05		0.85		0.65		0.35											
	0,30		· ·		0.05		0.85		0.65		0.35											
1600					0.00		0,70		0.60		0.30											
2000	0.30				0.00		010		0.55		0,30											
0103																						
0001	0.30				0.00		0.65		0,50		0.25											
6400	0.30				0.00		0.65		0,50		0.25											

			ню	GH V	ACUU	М		SVE	or	х	DPE		FIELD	D DA	TA SH	EET					CLEAN I	
Project Lo	cation: 1	630 PAI	RK STRE	ET			City: AL	.MEDA		-		Site #:	GOOD C	HEVR	OLET		Date: 1	1312	012	(71- Pag	4) 734-9137 e <u>HB</u> of <u> </u>	16
Client: B	UESTAD						-		Operator	(s): <u>H</u>	SCK									-0		
											ERVATI	ON W	/ELLS	-						-		
WELL	MW-	1	MIN	-2	MINT	3	VP-1		VP-Z		VP-3	1	AS-	1				-				
SCREEN																						
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Manura	DTW	Manuar	DTM		DTH
1 mile	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	Vacuum "H ₂ O	(ft)	Vacuum "H₂O	DTW (ft)	Vacuum ″H₂O	DTW (ft)
0./03		-	ON										off									
	0.25				0.00		0,65		0,50		0,25											
	0.25				0.00		0.6		0.50		0.26											
	0.25-	-			0,00		0195		6.50		0.25											
1600	0.25				0.00		0.65		0.50		0,25											
2000	0.25				0,00		0.65		0.50		0,25											
01/04										<u> </u>		L										
	0.25,				0.00		0.65		0.60		0.25											
0400	0.25				0.00		0165		0.50		0.25											
	0.25				0,00		0.65		0.50		0.25											
1200	0.25				0.00		0.65		0.60		0,25											
1600	0.25				0.00		0.65		0.50		0.25								N.			
2000	0.25				0,00		0.65		0.45		0.70											
01/05										1												
10001	0.25		Ē		0,02		0.70		945		0.30											
	0.25				0.02		0,10		0.45		0.30											
	0.25		· · ·		50.0		0.70		0.45		0.30											
	0.25				0.07		0.75		0.50		0.35											
	0.25				50.0		010		0.50		0.36											
2000	0.25				0.02		0.65		0.50		0.35											
Comme	nts:																			-		

	HIGH VACUUM					М		SVE or X DPE FIELD DATA SHEET City: ALMEDA Dete: 01/06/2 Operator (s): LTCK									CLEAN INC. 1) 734-9137 5 /5B of /6 Vacuum DTW "H ₂ O (ft) 					
Project Lo	cation: 1	630 PAF	RK STRE	ET			City: AL	.MEDA		. 1	- 11	Site #:	GOOD C	HEVR	OLET		Date: 0	1,009,20	D1	(71- Pagi	1) 734-913; в <u>15</u> 8of_	16
Client: B	JESTAD								Operator	(s): <u> </u>	ICL				<u>.</u>					_		
											RVAT											
WELL	MW	~}	MW	·Z	MW	-3	VP-1		VP-Z	/	VP-3	>	As	-}								
SCREEN									<u></u>						·							
DTW (ft) Time	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum [;]	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Vacuum	DTW	Voouum	DTM
	"H₂O	(ft)	"H₂O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)		
01/06		4	ON										OFF									
0001	0.30				0.02		0.70		0.45		0.95											
0400	0.30				0,02		0.70		0.50		0.35											
0800	0.30-	-			0.04		0.70		0.60		0.35											
1200	0.30				0.04		6.70		0.50		0.35											
1600	0.30				0.04		0.70		0.64		0:40											
2000	0,30				0.04		0.70		0.55		0.40											
0107																						
0001	0,30				0.04		01.0		0.60		0.36											
0400					0,06		0.10		0,50		0.40											
	0.35				0,06		0.75		0.54		0.35											
1200	0.35				0,04		0.75		0.55		0,40								\sim			
2000					6,06		0.75		0.60		0.35											
0108																						
0001					0.08		0.70		0.60		0,35											
0400	0.36				0.08		0.70		0,60		0.35											
0800					0,08		0.75		0.55		0.46											
1200	0.35				0.08		0.75		0.55		0.35											
2000	0.35				0.08		סרס		0.60		0.40											
01/09																						
0400	0.75				0.08		0.75		0,60		0,40											

	HIGH VACUUM					M	SVE or X						FIELD DATA SHEET							CALCLEAN INC.		
Project Location: 1630 PARK STREET Client: BUESTAD						City: ALMEDA Operator (s): MICK Site #: GOOD CHEVROLET							Date: 01	<u> १</u> 2	01 <u> </u>	(71- Pag	4) 734-913 • <u>169</u> 7 ₀ f [16				
					· · · · ·						RVATI	ION W	/ELLS						<u></u>			
WELL	MW-	1	MW.	7	MW	-3	VP-		VP-Z		VP-3		AS-	.}								
SCREEN					V*										-							
DTW (ft) Time	Vacuum	DTW	Manufacture	DTW	Vacuum	DTW	Vacuum	DTW	Maguum	DTW	Maguna	DTW		0704	Vacuum	DTA	14	DTH		DIRA		
Ime	vacuum "H₂O	(ft)	Vacuum "H ₂ O	(ft)	"H ₂ O	(ft)	"H ₂ O	(ft)	Vacuum "H ₂ O	(ft)	Vacuum "H₂O	(ft)	Vacuum "H ₂ O	DTW (ft)	"H ₂ O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)	Vacuum "H ₂ O	DTW (ft)
01/09			ON										OFF		-							
0800	0.35				0,08		0.75		0.55		0.40											
1200	0.35				0.10		0.75		0.55		0.40											
		-			0.10		0.75		0.55		0.40											
1715	0.35				0.10		0.75		0.55		0.40											
												ļ										
			<u> </u>											<u> </u>								
													<u> </u>									
					ļ		ļ				ļ								Ň			
													<u> </u>									
			<u> </u>	L	<u> </u>																	L
			ļ											 								
			<u> </u>										L	<u> </u>								
					<u> </u>		<u> </u>			L							p					L
					<u> </u>		_					<u> </u>		_		2						
														 	ļ							
					L								<u> </u>	ļ						L		<u> </u>
L			L													L		<u> </u>				

12

APPENDIX C

REMEDIAL COST ESTIMATES

Appendic C Remedial Option Cost Estimates

Shoring (20 ft along sidewalk), installation, 3 weeks rental, removal	\$	33,500.00	1	\$	33,500.00
Monitoring well decommissioning	\$	8,000.00	1	\$	8,000.00
Dewatering system installation	\$	94,000.00	1	\$	94,000.00
Excavate approximately 3650 tons, soil handling and stockpiling, backfilling	\$	49.50	3650	\$	180,675.00
Transportation and disposal of impacted soils	\$	68.25	2200	\$	150,150.00
Sample analyses (sidewall re-use) and reporting	\$	25,000.00	1	\$	25,000.00
				\$	491,325.00
Other tasks					
Other tasks Data gaps investigation (well, conduit survey; vapor survey, add'l MWs)	\$	28,000.00	1	\$	28,000.00
	\$ \$	28,000.00 4,250.00	-	\$ \$	28,000.00 34,000.00
Data gaps investigation (well, conduit survey; vapor survey, add'l MWs)	\$ \$ \$,	8	T	

Estimated total: \$ 596,325.00

Appendic C Remedial Option Cost Estimates

HVDPE Extraction			
HVDPE equipment and operation*	\$ 190,000.00	1 \$	190,000.00
Data analysis and scale-up design	\$ 12,500.00	1 \$	12,500.00
Additional remediation wells (7 extraction)	\$ 35,000.00	1 \$	35,000.00
Additional remediation wells (3 extraction)	\$ 15,000.00	1 \$	15,000.00
Monthly monitoring, data analysis, optimization	\$ 7,000.00	4 \$	28,000.00
4th month of HVDPE system operation	\$ 60,000.00	1 \$	60,000.00
		\$	340,500.00
Other tasks			
Data gaps investigation (well, conduit survey; vapor survey, add'l MWs)	\$ 15,000.00	1 \$	15,000.00
Excavation and disposal of oil impacted soil (515 tons estimated)	\$ 106.00	515 \$	54,590.00
Groundwater Monitoring (quarterly for 1 year, semi-annual for 2 additional years)	\$ 4,250.00	8 \$	34,000.00
Closure tasks (report, well & system decommissioning)	\$ 32,000.00	1 \$	32,000.00
		\$	135,590.00

Estimated total: \$ 476,090.00

* Quote from CalClean, Inc: includes mobilization, operation for 3 months, water & vapor treatment, AQMD permitting and sampling

Appendic C Remedial Option Cost Estimates

Ozone sparge system with vapor control				
Field pilot test for ROI determination	\$ 14,000.00	1 5	5 14,0	000.00
Laboratory bench pilot test	\$ 18,000.00	1 5	5 18,0	000.00
System design, engineering, drafting and project coordination	\$ 10,000.00	1 5	5 10,0	000.00
20 point sparge system package unit	\$ 68,000.00	1 5	68,0	000.00
Install sparge wells	\$ 2,700.00	19 5	5 51,3	300.00
Conduit, line, and compound installation	\$ 24,500.00	1 5	5 24,	500.00
Vapor control piping and system installation	\$ 20,000.00	1 5	S 20,0	000.00
Vapor control blower system (permitting, blower package, abatement)	\$ 31,500.00	1 5	S 31,	500.00
System startup and optimimization	\$ 16,000.00	1 5	5 16,0	000.00
Monthly routine O&M	\$ 3,100.00	30 3	93 ,0	000.00
Annual non-routine maintenance and replacement	\$ 7,500.00	2.5 \$	5 18 ,	750.00
		ç	s 365,0	050.00
Other tasks				
Data gaps investigation (well, conduit survey; vapor survey, add'l MWs)	\$ 28,000.00	1 5	5 28,0	00.00
Groundwater Monitoring (quarterly to 1 year after operation, semi-annual for 2 additional years	\$ 5,150.00	16 \$	s 82,4	400.00
Closure tasks (report, well & system decommissioning)	\$ 43,000.00	1 5	6 43,0	000.00
		ç	5 153,4	400.00
	Estimat	ed total:	5 518,4	450.00