RECEIVED

By dehloptoxic at 1:44 pm, Nov 30, 2006

Revised Site Conceptual Model and Plume Travel Time Report

Former Thrifty Oil Co. Station #063 ARCO Products Company Station #9542 6125 Telegraph Avenue Oakland, California

RWQCB File No. 01-1479 Local #RO0000005 Facility Global ID No. T0600101366

Prepared for

Thrifty Oil Co.
13116 Imperial Highway
Santa Fe Springs, California 90670
Equipoise Project No. CA135.063.T3

November 27, 2006

1401 N. El Camino Real, Suite 107 San Clemente, California 92672 Phone (949) 366-0275 Fax (949) 366-0281

CONTENTS

	CE	RTIFICATION	.IV
1.0	INT	TRODUCTION	1
2.0	SIT	TE DESCRIPTION	2
3.0	SIT	TE CHARACTERIZATION DATA	3
	3.1	Geology / Hydrogeology	3
		3.1.1 Geology	3
		3.1.2 Hydrogeology	3
		3.1.3 Production Well Survey	4
	3.2	Sensitive Site Survey	4
		Previous Site Activities	
	3.4	Previous Remedial Activities	6
4.0	SIT	TE CONCEPTUAL MODEL	7
5.0	PLU	UME TRAVEL TIME REPORT	11
6.0	CO	NCLUSIONS AND RECOMMENDATIONS	13
7.0	STA	ANDARD LIMITATIONS	15

TABLES

Table 1 Historic Soil Sample Laboratory Analytical Results
 Table 2A Groundwater Data
 Table 2B Oxygenates Data in Groundwater
 Table 3 Well Completion Details

FIGURES

Figure 1 Site Vicinity Figure 2 Site Plan with Cross Section Locations Geologic Cross-Section A-A' Figure 3A Figure 3B Geologic Cross-Section B-B' Figure 3C Geologic Cross-Section C-C' Figure 4A Distribution of TPHg in Soil (Pre-Remediation, 0-10 Feet Below Ground Surface) Figure 4B Distribution of Benzene in Soil (Pre-Remediation, 0-10 Feet Below Ground Surface) Figure 4C Distribution of MTBE in Soil (Pre-Remediation, 0-10 Feet Below Ground Surface) Figure 4D Distribution of TPHg in Soil (Pre-Remediation, 11-20 Feet Below Ground Surface) Figure 4E Distribution of Benzene in Soil (Pre-Remediation, 11-20 Feet Below Ground Surface) Figure 4F Distribution of MTBE in Soil (Pre-Remediation, 11-20 Feet Below Ground Surface) Figure 4G Distribution of TPHg in Soil (Post-Remediation, 0-10 Feet Below Ground Surface) Figure 4H Distribution of Benzene in Soil (Post-Remediation, 0-10 Feet Below Ground Surface) Figure 4I Distribution of MTBE in Soil (Post-Remediation, 0-10 Feet Below Ground Surface) Figure 4J Distribution of TPHg in Soil (Post-Remediation, 0-10 Feet Below Ground Surface) Figure 4K Distribution of Benzene in Soil (Post-Remediation, 0-10 Feet Below Ground Surface) Figure 4L Distribution of MTBE in Soil (Post-Remediation, 0-10 Feet Below Ground Surface)

Figure 5	Elevation Contour Map
Figure 6A	Distribution of TPHg in Groundwater (Post-Remediation)
Figure 6B	Distribution of Benzene in Groundwater (Post-Remediation)
Figure 6C	Distribution of MTBE in Groundwater (Post-Remediation)
Figure 6D	Distribution of TPHg in Groundwater (Pre-Remediation)
Figure 6E	Distribution of Benzene in Groundwater (Pre-Remediation)
Figure 6F	Distribution of MTBE in Groundwater (Pre-Remediation)
Figure 7A	Benzene MTBE Concentrations and Groundwater Elevations vs. Time (MW-1)
Figure 7B	Benzene MTBE Concentrations and Groundwater Elevations vs. Time (MW-2)
Figure 7C	Benzene MTBE Concentrations and Groundwater Elevations vs. Time (MW-3)
Figure 7D	Benzene MTBE Concentrations and Groundwater Elevations vs. Time (MW-4)
Figure 7E	Benzene MTBE Concentrations and Groundwater Elevations vs. Time (MW-5)
Figure 7F	Benzene MTBE Concentrations and Groundwater Elevations vs. Time (MW-6)
Figure 8	Site Plan with Conduit Locations

APPENDICES

Appendix A	Status Update Report dated March 19, 1994
Appendix B	Production Well Location Map
Appendix C	Existing and Potential Beneficial Uses of Groundwater in Identified Basins
Appendix D	Historic Boring and Well Logs
Appendix E	ESLs for Soil and Basin Plan Objectives for Groundwater
Appendix F	Groundwater Remediation System Data
Appendix G	BIOSCREEN Plume Travel Time Output

CERTIFICATION

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an Equipoise Corporation California Registered Civil Engineer.

Timothy E. Welligan

Senior Engineer

California Registered Civil Engineer (68666)

27/06

Date

1.0 INTRODUCTION

On behalf of Thrifty Oil Co. (Thrifty), Equipoise (EQC) has prepared this report to fulfill the requirements of the Alameda County Environmental Health (ACEH), which required Thrifty to prepare a Revised Site Conceptual Model and Plume Travel Time Report (Revised SCM and PTTR) for Thrifty Station No. 063 located at 6125 Telegraph Avenue in Oakland, California ("the Site"; **Figure 1**). The original requirements of this work were set forth in the ACEH's letter to Thrifty dated December 7, 2005. On behalf of Thrifty, GeoHydrologic Consultants, Inc. (GHC) prepared the *Site Conceptual Model and Plume Travel Time* Report dated April 24, 2006. After reviewing GHC's report, the ACEH requested a revised report in their letter dated October 24, 2006. The purpose of this work is to summarize all activities that have occurred at the Site to date.

In addition to providing a Revised SCM and PTTR, we would like to address some comments from the ACEH letter dated October 24, 2006.

Quarterly groundwater monitoring conducted in January 1994 detected the presence of 16.95 feet of separate phase petroleum hydrocarbon in monitoring well MW-2.

After review of historical data, field data sheets, and reports submitted to ACEH, Thrifty discovered several data entry errors had occurred in the historical groundwater data presented in the previous SCM and PTTR. The depth to product and product thickness values were transposed, creating the illusion of a greater volume of separate phase petroleum product. The product thickness in well MW-2 during groundwater monitoring on January 1994 was only 0.03 feet. Maximum product thickness in MW-2 was 0.38 feet observed on July 22, 1991.

Other data entry errors on MW-2 and MW-3 were also found and were corrected, as well as casing elevations on MW-4, MW-5, and MW-6. On January 20, 1999, one foot was erroneously added to the casing elevation data from wells MW-4, MW-5, and MW-6. Although the correction resulted in a decreased groundwater gradient, it did not change the groundwater flow direction. An updated well survey will be performed following the offsite investigation.

A copy of the text and table of the groundwater monitoring report for the January 1994 (*Status Update Report* dated March 19, 1994) event as well as the field data sheets substantiating the data entry errors are included in **Appendix A**. The corrected historical field data are presented in **Table 2A**.

More recently, in May 2006, water quality sampling conducted during periodic remediation system monitoring detected free phase petroleum hydrocarbon at concentrations of up to 638,000 micrograms per liter (µg/L) total petroleum hydrocarbons as gasoline (TPHg) in influent water samples. Current Laboratory analytical results from sampling conducted in July 2006 indicate that groundwater from onsite monitoring wells MW-1, MW-3, and MW-4 contain dissolved petroleum hydrocarbons at maximum concentrations of 8,850 µg/L, 151 µg/L, and 1,160 µg/L for TPHg, benzene and MTBE, respectively.... In addition, the high concentration of TPHg detected during treatment system sampling in May 2006 may well indicate a secondary release. Moreover, no investigation or analysis was performed to explain the

possible source of the free phase hydrocarbon detected in influent water.

The 638,000 ug/L TPHg in the influent water sample collected in May 2006 was an anomalous sampling result. In a typical remediation system, the total influent should have concentrations more than the minimum individual extraction well concentrations and less than the maximum individual extraction well concentrations. Before and after May 2006, the individual well sampling results show the maximum concentrations in well MW-4 as follows: 1,860 ug/L of TPHg on 4/12/06 and 6,390 ug/L of TPHg on 7/26/06. The high concentration of TPHg in the influent water sampling (if coming from the extraction wells) can not be 100 times higher than the maximum individual well concentration of 6,390 ug/L detected on 7/26/06. Therefore, the result reported for the influent water sample collected in May 2006 should be considered anomalous and it should not be construed as originating from the extraction wells. Because of the suspected anomaly, another influent sample was collected on 6/9/06 and the laboratory analyses result was much lower. At this groundwater system, the influent sample was collected from the holding tank where the two groundwater extraction wells discharge into, before being pumped though three canisters of liquid-phase carbon adsorbers in series. Thrifty believes a possible explanation could be an unauthorized dump of liquid removed from tank sumps or other sources, into the groundwater system's holding tank, thinking that the system will treat the liquid before discharge. Since subsequent influent sample results are consistent with previous influent samples prior to the anomalous result, they support the suspicion of unauthorized high-concentration liquid being dumped into the treatment system. Following the carbon change-out on 7/18/06, the system sample results from 8/4/06 indicate an influent concentration of 763 ug/L of TPHg and non-detect for the effluent. This influent concentration does not indicate a secondary release.

Our review of the case files indicate that no off site investigation has been conducted immediately downgradient of your site. Therefore, ACEH requests that you perform an offsite investigation to determine soil and groundwater conditions immediately downgradient of the site.

EQC, on behalf of Thrifty, will be submitting a Workplan for offsite site assessment under a separate cover in November 2006. This Workplan will provide a technical discussion on monitoring well construction and proposed well locations.

During UST removal and replacement, associated confirmation soil sampling detected high levels of residual petroleum hydrocarbon pollution at concentrations up to 3,600 milligrams per kilogram (mg/kg) TPHg, 4.2 mg/kg benzene and 7.3 mg/kg MTBE.

Based on the *Underground Storage Tank Removal Report* by Pacific Environmental Group, Inc. dated August 31, 1998, the sample referred to in the above comment is SS-15 (Soil Stockpile 15). This stockpile was one of sixteen stockpiles that was disposed offsite as part of the 977 tons of impacted soil. Therefore the concentrations cited in the ACEH letter are not the residual petroleum hydrocarbons left in place. The maximum TPHg concentrations from confirmation samples in the former UST excavation was only 260 mg/kg in T-2. TPHg concentrations from the piping confirmation samples ranged from below the laboratory MDL in P-3 to 1,200 mg/kg in P-2 (@ 3 feet bgs).

2.0 SITE DESCRIPTION

The Site is an active service station located at the southwest corner of the intersection of Telegraph Avenue and 62nd Street in the City of Oakland, California. The Site consists of two active pump islands, a service station building, and two 20,000-gallon double-walled

3.0 SITE CHARACTERIZATION DATA

3.1 Geology / Hydrogeology

3.1.1 Geology

The Site is located at 6125 Telegraph Avenue in the City of Oakland (**Figure 1**) at an elevation of approximately 145 feet above mean sea level. Local topography slopes to the southwest at approximately 0.025 feet/foot. The Site is located within the San Francisco Bay structural depression of the Coast Ranges Physiographic Province in north-central Alameda County, California. The Site is situated in the flatland region between the San Francisco Bay and the Oakland Hills. This flatland region is comprised of Quaternary alluvium and estuarine bay and marsh deposits. Bedrock in the area consists of sedimentary, metasedimentary, volcanic, and intrusive rocks of Jurassic through Tertiary geologic age. Quaternary-age marine and alluvial sediments blanket the downwarped bedrock within the basin in which the Site is located. Shallow groundwater is locally present within the Quaternary sediments. The Site is underlain by Holocene alluvium and marsh deposits comprised of silts and clay. Soil types encountered during site investigation activities consisted predominantly of silty clay and silty sand from the ground surface to the total depth of investigation (30 feet).

Geologic cross sections from GHC's previous SCM and PTTR are included as **Figures 3A, 3B,** and **3C.** The lines of cross section are shown in **Figure 2**.

3.1.2 Hydrogeology

The area of investigation lies within the East Bay Plain groundwater basin which consists of two main water bearing units. The primary unit is comprised of unconsolidated alluvial deposits of Late Quaternary age and a secondary, older semi-consolidated deposit of Tertiary-Quaternary age. Groundwater within these deposits is both confined and unconfined, with the majority of the aquifers being confined. The Site is within the Berkeley alluvial plain sub area of the Bay Plains Groundwater Basin.

Groundwater is present beneath the Site under unconfined conditions at depths ranging from approximately 12.56 feet bgs in MW-6 to 15.53 feet bgs in MW-5 (**Table 2A**). A groundwater

elevation contour map based on the July 26, 2006 monitoring data indicates that groundwater flows to the west-southwest at an approximate gradient of 0.0373 feet/foot (**Figure 5**).

3.1.3 Production Well Survey

In 1986, Woodward Clyde Consultants (WCC) conducted a production well survey. Records found indicated that approximately five wells exist within a one mile radius of the Site. Two of the wells in the area are, or were, used for industrial purposes, two for irrigation, and one for domestic use. No municipal wells were identified anywhere near the Site. The closest well is the domestic well located approximately ½ mile (approximately 1,300 feet) to the south of the Site. The closest well in the downgradient direction is an irrigation well located ½ mile (approximately 2,640 feet) to the west-northwest of the Site. Based on GHC's phone correspondence on April 12, 2006 with James Yoo of the County of Alameda Public Works Agency, it was found that no production wells have been installed near the Site since WCC conducted their production well survey, and that there are no closer wells than the ones described above. The locations of the wells are shown in **Appendix B.**

3.2 Sensitive Site Survey

Based on the production well survey conducted by WCC, the closest sensitive receptor is a domestic well located approximately ½ mile (approximately 1,300 feet) to the south of the Site. There appear to be no sensitive receptors such as surface water bodies within at least a half mile radius of the Site. The San Francisco Regional Water Quality Control Board's (SFRWQCB) Basin Plan indicates that groundwater within the basin has existing beneficial uses for municipal and domestic water supply, industrial process water supply, industrial service water supply, and agricultural water supply (**Appendix C**).

3.3 Previous Site Activities

An initial site assessment was conducted by Groundwater Technology from June through August of 1986 which consisted of advancing three soil borings and installing three 2-inch monitoring wells (MW-I through MW-3) to 30 feet bgs. Soil samples were taken at five foot intervals in all borings beginning at a depth of 6 to 8 feet. The samples taken at a depth of 14 to 14.5 in borings MW-2 and MW-3 and at a depth of 17 to 17.5 feet in boring MW-1 were submitted for laboratory analysis. The sample from MW-2 was found to contain 735 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPHg) while samples from MW-1 and MW-3 contained

471.5 ppm and 52 ppm, respectively. Benzene concentrations in the three wells ranged from 5.4 ppm to 12.6 ppm. Groundwater samples were collected and TPHg was detected in MW-4 at 100 ppm. The SFRWQCB Environmental Screening Levels (ESLs) for TPHg, benzene, toluene, ethylbenzene, xylenes, and MTBE in soil are 100 mg/kg, 0.044 mg/kg, 2.9 mg/kg, 3.3 mg/kg, 2.3 mg/kg, and 0.023 mg/kg, respectively. The presence of free product was observed in all three wells at a thickness of 0.01 feet in MW-1, 0.84 feet in MW-2, and 0.46 feet in MW-3.

A follow-up assessment in November 1986 was conducted by Woodward-Clyde Consultants (WCC) and consisted of advancing three 30-foot deep borings and installing three monitoring wells (MW-4 through MW-6). Soil samples were taken at five foot intervals down to the water table in all borings. Only those samples exhibiting signs of contamination and/or located at the water table were submitted for laboratory analysis. TPHg and benzene were detected in MW-4 at the 16 foot interval at concentrations of 1,100 mg/kg and 13 mg/kg, respectively (TPHg soil ESL is 100 mg/kg). Groundwater samples were collected and TPHg was detected in MW-4 at 100 ppm (TPHg Regional Board Basin Plan Groundwater Objective (BPO) is 100 µg/L). The presence of free product was observed in MW-1 through MW-3, which supported a previous assumption that some free product was still present in the tank backfill. The original product thicknesses were greater, but a manual bailing recovery program implemented by Thrifty had reduced the thicknesses considerably. The presence of product in MW-2 was likely due to its close proximity to the backfill while the product in MW-3 was probably a result of it being located downgradient of the backfill. The low permeability nature of the clayey substrate surrounding the tank pit area would have tended to contain, within the backfill, any free product that may have accumulated from occasional overfills or historical leaks.

On September 11, 1987, a limited subsurface investigation was conducted by Hydrotech Consultants, Inc. Four soil borings were advanced to 20 feet bgs and soil samples were taken at five foot intervals. Laboratory analysis was performed on soil samples recovered from B-1 at the 10 and 20 foot intervals. Both soil samples analyzed contained less than 10 mg/kg TPHg.

On June 11 and 12, 1997, a baselining subsurface investigation was conducted by Pacific Environmental Group, Inc. Seven soil borings were advanced to 20 feet bgs (TDD-1 through TDD-5,TDD-8 and TDD-9) and two soil borings were advanced to 10 feet bgs (TDD-6 and TDD-7) and soil samples were collected at five foot intervals. TPHg was detected in boring TDD-6 at the five foot interval at a concentration of 550 mg/kg, and in borings TDD-1 through

TDD-4 at the 15 foot interval at concentrations of 480 mg/kg, 37.0 mg/kg, 7.5 mg/kg, and 36 mg/kg, respectively (TPHg soil ESL is 100 mg/kg). Benzene concentrations ranged from below the laboratory method detection limit (MDL) to 2.5 mg/kg in TDD-6 at the five foot interval (benzene soil ESL is 0.044 mg/kg).

MTBE concentrations ranged from below the MDL to 12 mg/kg in TDD-3 at the 15 foot interval (MTBE soil ESL is 0.023 mg/kg). MTBE was not confirmed using EPA method 8260B.

On February 4, 1998, three gasoline USTs and their associated piping were removed from the Site under the supervision of Pacific Environmental Group, Inc. The tanks consisted of two 10,000-gallon and one 12,000-gallon capacity USTs and were constructed of steel coated with fiberglass. On February 10, 1998, two 20,000-gallon double-walled USTs were installed at the Site. Approximately 977 tons of impacted soil was excavated and disposed of offsite. Soil samples were collected and analyzed. Areas of petroleum hydrocarbon impacted soil were present in the former UST basin and the product piping trenches. TPHg concentrations from the former UST excavation ranged from below the laboratory MDL in T-3 to 260 mg/kg in T-2. TPHg concentrations from the piping samples ranged from below the laboratory MDL in P-3 to 1,200 mg/kg in P-2 (TPHg ESL for soil is 100 mg/kg).

Historic soil sample laboratory analytical results are presented in **Table 1**. Copies of historic boring and well logs are included in **Appendix D**. The ESLs for soil and the BPOs for groundwater are included in **Appendix E**.

3.4 Previous Remedial Activities

During the UST removal activities in February 1998, approximately 977 tons of impacted soil was excavated and disposed of offsite.

Site remedial activities were initiated in April 1991. Presently, the remediation system consists of a groundwater treatment system that extracts groundwater from monitoring wells MW-3 and MW-4 with treatment utilizing activated carbon. System operational data is included in Appendix B. As of December 15, 2005, the groundwater treatment system treated approximately 2,705,679 gallons of groundwater since start-up in April 1991. The system was upgraded in the 2nd quarter 2005, consisting of a pump replacement in well MW-3 and the adding of well MW-4 to the

extraction well array. On May 10, 2005, the system was restarted with a new pump in well MW-3 and on May 13, 2005 a pump was installed in well MW-4. The pump in well MW-4 was started on May 20, 2005.

4.0 SITE CONCEPTUAL MODEL

This Revised Site Conceptual Model was prepared on behalf of Thrifty Oil Co. (Thrifty) to fulfill the requirements set forth by Alameda County Environmental Health (ACEH) in their letter dated October 24, 2006. As additional information is obtained from the Site, the Site Conceptual Model will be updated appropriately. The current Site Conceptual Model is as follows:

- Soils beneath the Site consist primarily of silty clay and silty sand from the ground surface to the total depth of investigation (30 feet) (GHC's **Figures 3A, 3B, and 3C**). Bedrock in the area consists of sedimentary, metasedimentary, volcanic, and intrusive rocks of Jurassic through Tertiary geologic age. GHC's **Figures 4A** through **4L** show the pre and post-remediation distributions of TPHg, benzene, and MTBE in shallow and deep soil depths.
- For Groundwater beneath the Site is under unconfined conditions at a depth of approximately 13 to 18 feet below grade. Groundwater has historically flowed approximately southwest at a hydraulic gradient ranging from approximately 0.03 feet per foot to 0.05 feet per foot. Currently, the depth to groundwater beneath the Site ranges from 15.18 feet below the ground surface (84.16 feet above sea level) in MW-1 to 12.56 feet below the ground surface (86.88 feet above sea level) in MW-6, as measured on July 26, 2006. Groundwater is flowing towards the west-southwest at an approximate gradient of 0.0373 feet/foot (Figure 5). Based on this gradient, an estimated hydraulic conductivity of a silt of 0.08 rn/day (Todd, 1980) and an assumed effective porosity of 30 percent, the groundwater velocity beneath the Site is calculated to be approximately 0.0065 meters per day or 2.4 meters per year. (It should be noted that using the erroneous groundwater elevations, the previous SCM calculated the groundwater velocity to be approximately 0.001 meters per day or 3.6 meters per year).
- ➤ Utility locations including gas, cable, electric, sewer, and storm drains are located under 62nd Street and Telegraph Avenue at depths between 5 and 10 feet as shown in **Figure 8**.
- ➤ During the 3rd quarter 2006 groundwater sampling event on July 26, 2006, samples were taken from wells MW-1 and MW-3 through MW-6. TPHg was detected in wells MW-1,

MW-3, MW-4 and MW-6 at concentrations of 8,850 μg/L, 228 μg/L, 6,390 μg/L, and 55 μg/L, respectively. Benzene was detected in wells MW-1 and MW-4 at concentrations of 151 μg/L and 133 μg/L, respectively. MTBE was detected in wells MW-1, MW-3, MW-4 and MW-6 at concentrations of 133 μg/L, 389 μg/L, 1,160 μg/L, and 57 μg/L, respectively. The BPOs for TPHg, benzene, and MTBE in groundwater are 100 μg/L, 1 μg/L, and 5 μg/L, respectively. Post-remediation (samples taken on July 26, 2006) distributions of TPHg, benzene, and MTBE in groundwater are shown in **Figures 6A, 6B, and 6C,** respectively. Pre-remediation (samples taken on November 21, 1986) distributions of TPHg, benzene, and MTBE in groundwater are shown in GHC's **Figures 6D, 6E,** and **6F,** respectively. Pre-remediation results also show the presence of free product in wells MW-2 and MW-3. Groundwater sample laboratory results with reference to the BPOs are shown in **Table 2A**. The results for other oxygenates detected in groundwater are shown in **Table 2B**.

- The main contaminants of concern at the Site are benzene and MTBE, because of the toxicity of benzene, and the solubility, odor, and taste threshold associated with MTBE. Potential exposure pathways include ingestion of groundwater that has been impacted by these fuel constituents. Under typical subsurface conditions, benzene will naturally attenuate through volatilization, dispersion, and biodegradation to plume lengths of less than 150 to 200 feet. Based on historical data for the Site, it appears that the benzene plume and the total petroleum hydrocarbons (TPH), ethylbenzene, toluene, and xylene plumes have all been stable and/or shrinking as a result of natural attenuation. On the other hand, MTBE is very soluble, appears to be far more resilient to biodegradation compared to TPH and benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds, and longer plumes can typically be expected. The concentrations of MTBE detected in groundwater in the onsite wells have decreased somewhat over time (Figures 7A through 7F). The groundwater sampling event (July 2006) indicated that the maximum MTBE concentration detected in groundwater was 1,160 μg/L in MW-4.
- ➤ Hydrocarbon soil contamination was first detected in June 1986 in three 30-foot deep borings (MW-1 through MW-3) at concentrations up to 735 mg/kg of total recoverable petroleum hydrocarbons, indicating that the initial petroleum hydrocarbons release occurred at some point prior to this first assessment in the area of the USTs.
- > On February 4, 1998, three gasoline USTs and their associated piping were removed from the

Site under the supervision of Pacific Environmental Group, Inc. The tanks consisted of two 10,000-gallon and one 12,000-gallon capacity USTs and were constructed of steel coated with fiberglass. On February 10, 1998, two 20,000-gallon double-walled USTs were installed at the Site. Approximately 977 tons of impacted soil was excavated.

- ➤ Based on calculations using a soil density of 120 lbs/ft³, the area of lateral and vertical extent of contamination, and the average constituent concentration per plume, on the previous SCM (April 2006), GHC estimated the mass of TPHg in soil beneath the Site to be approximately 4,941 pounds (based on an area that is 100 feet long by 75 feet wide by 15 feet deep), the mass of benzene in soil beneath the Site to be approximately 21 pounds (based on an areas that are 50 feet wide by 65 feet long by 15 feet deep and 25 feet long by 15 feet wide by 15 feet deep), and the mass of MTBE in soil beneath the Site to be approximately 18 pounds (based on areas that are 38 feet long by 17 feet wide by 15 feet deep and 10 feet long by 10 feet wide by 15 feet deep). These figures were calculated from the historic soil concentration data (Table 1) and soil concentration maps (GHC's Figures 4A through 4L).
- > TPHg concentrations in excess of 100 mg/kg are confined to depths of 17 feet bgs or less and the vertical and horizontal extent of contamination has been fairly defined at the Site. The downward vertical migration of petroleum hydrocarbons in soil beneath the Site appears to have been substantially attenuated at relatively shallow depths as a result of the lower permeability soils which were encountered at these same shallow depths beneath the Site, as demonstrated by the decrease in hydrocarbon soil concentrations to low levels or nondetectable levels at depth. For example, soil samples analyzed for TPHg from borings TDD-1, TDD-2, and TDD-3 at the 15 foot interval were 480 mg/kg, 37.0 mg/kg, and 7.5 mg/kg, respectively. At the 20 foot interval, TPHg is below the laboratory method detection limits, as shown in Table 1 along with reference to soil ESLs. Shallow, pre-remediation (samples taken between 0-10 feet bgs before April, 1991) TPHg, benzene, and MTBE soil concentration maps are included as GHC's Figures 4A through 4C, respectively. Deep, pre-remediation (samples taken between 11-20 feet bgs before April, 1991) TPHg, benzene, and MTBE soil concentration maps are included as GHC's Figures 4D through 4F, respectively. Shallow, post-remediation (samples taken between 0-10 feet bgs after April, 1991) TPHg, benzene, and MTBE soil concentration maps are included as GHC's **Figures 4G** through **4I**, respectively. Deep, post-remediation (samples taken between 11-20 feet bgs after April, 1991) TPHg, benzene, and MTBE soil concentration maps are included as GHC's Figures 4J through 4L,

respectively.

- ➤ Site remedial activities were initiated in April 1991. Presently, the remediation system consists of a groundwater treatment system that extracts groundwater from monitoring well MW-3 and MW-4 with treatment utilizing activated carbon. System operational data is included in **Appendix F**. As of August 25, 2006, the groundwater treatment system has treated approximately 2,775,479 gallons of groundwater since start-up in April 1991. The system was upgraded in the 2nd quarter 2005, consisting of a pump replacement in well MW-3 and the adding of well MW-4 to the extraction well array. On May 10, 2005, the system was restarted with a new pump in well MW-3 and on May 13, 2005 a pump was installed in well MW-4. The pump in well MW-4 was started on May 20, 2005.
- As demonstrated by the BIOSCREEN Natural Attenuation Decision Support System runs included in the following section, the MTBE contaminant plume with no degradation arrives at the receptor (groundwater production well; 1,300 feet downgradient) at year 92. A maximum concentration of MTBE is observed at this receptor well at years 134 and 135 at a concentration of 0.489 mg/L, which is above the MCL of 0.013 mg/L, and the plume becomes detached from the source at year 354. The plume impacts the assumed well at concentration below the MCL from approximately year 92 through year 101. The results of using the 1st Order Decay model show that the contaminant plume never arrives at the receptor (groundwater production well; 1,300 feet) and the MTBE plume never impacts the well at concentration above the MCL.
- As demonstrated by the BIOSCREEN Natural Attenuation Decision Support System runs included in the following section, the benzene contaminant plume with no degradation arrives at the receptor (groundwater production well; 1,300 feet downgradient) at year 142. A maximum concentration of benzene is observed at this receptor well at years 160 through 247 at a concentration of 0.029 mg/L, which is above the MCL of 0.001 mg/L, and the plume becomes detached from the source at year 13,753. The 1st Order Decay model results in the benzene plume never arriving at the receptor and only achieving a plume length under 100 feet in total length. The benzene plume never impacts the assumed well at concentration above the MCL.

5.0 PLUME TRAVEL TIME REPORT

The plume travel time was estimated using BIOSCREEN Natural Attenuation Decision Support System. BIOSCREEN is an easy to use screening model that simulates remediation through natural attenuation (RNA) of dissolved hydrocarbons at petroleum release sites. The software, programmed in Microsoft Excel spreadsheet environment and based on the Domenico analytical solute transport model, has the ability to simulate advection, dispersion, adsorption, and aerobic decay as well as anaerobic reactions that have been shown to be the dominant biodegradation process at many petroleum release sites. BIOSCREEN includes three different model types:

- > solute transport without decay
- > solute transport with biodegradation modeled as a first-order decay process (simple, lumped-parameter approach)
- > solute transport with biodegradation modeled as an "instantaneous" biodegradation reaction (approach used by BIOPLUME models)

In our case all three models types would be applicable for the Site, although the solute transport without decay model will be used as a worst case scenario. Based on the actual observed groundwater conditions at the Site, the solute transport first-order decay model appears to be most representative of actual Site conditions including plume sizes and concentrations for MTBE. If natural attenuation analytical results were present for the Site these values were used for input parameters in the "Instantaneous" Biodegradation Reaction. If Site data was not available, model default parameters were used.

The model is designed to simulate biodegradation by both aerobic and anaerobic reactions. It was developed for the Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division at Brooks Air Force Base by Groundwater Services, Inc., of Houston, Texas.

BIOSCREEN attempts to answer the two fundamental questions regarding RNA:

> How far will the dissolved contaminant plume extend if no engineered controls or further

source reduction measures are implemented?

➤ How long will the plume persist until natural attenuation processes cause it to dissipate?

BIOSCREEN has the following limitations:

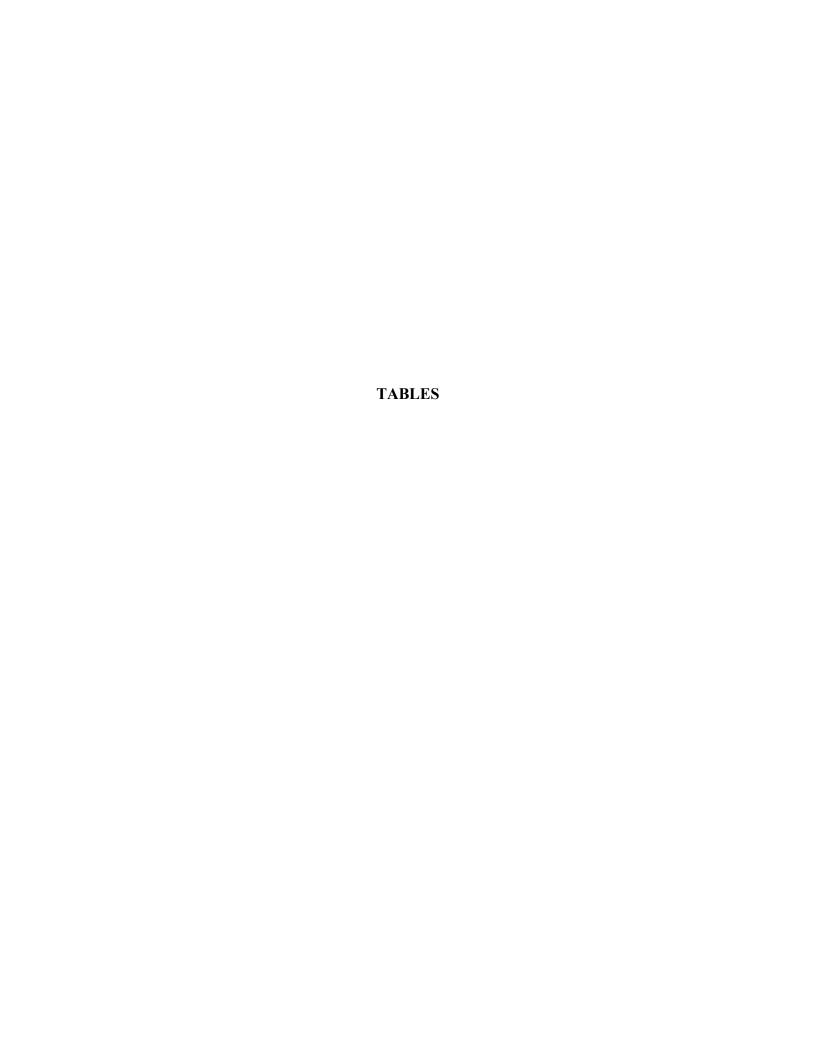
- As an analytical model, BIOSCREEN assumes simple groundwater flow conditions.
- As a screening tool, BIOSCREEN only approximates more complicated processes that occur in the field.

Site-specific data was entered into BIOSCREEN to determine the degree of RNA. Site-specific data such as hydraulic conductivity and effective porosity were based on text book values for similar as observed at the Site (Todd 1980). The Site specific groundwater gradient which was obtained from the latest quarterly sampling event was used and the model length was set at the distance from the closest groundwater production well (which is located approximately 1,300 feet to the south of the Site, based on a production well survey performed by WCC). It was assumed that this well was downgradient during the simulation, and that the gradient in the model was equal to that measured at the Site during this quarter. Input parameters such as the estimated plume length and the concentrations of MTBE and benzene were also based on the actual Site data collected this quarter. The highest concentration of benzene in groundwater was detected at 151 µg/L (0.151 mg/L), which was used for the purpose of the model. The highest concentration of MTBE in groundwater was detected at 1,160 µg/L (1.16 mg/L), which was used for the purpose of the model. The source mass for benzene was assumed to be equal to the mass of benzene in one pore volume of groundwater for a dissolved phase benzene plume measuring 15 feet by 15 feet by 20 feet thick, at a concentration of 0.151 mg/L. The source mass for MTBE was assumed to be equal to the mass of MTBE in one pore volume of groundwater for a dissolved phase MTBE plume measuring 40 feet by 70 feet by 20 feet thick, at an MTBE concentration of 1.16 mg/L. The partitioning coefficient for MTBE (12.59 L/kg) was obtained from the American Petroleum Institute's Strategies for Characterizing Subsurface Releases of Gasoline Containing MTBE (Regulatory and Scientific Affairs Publication Number 4699 dated February 2000). The partitioning coefficient used for benzene was 38 L/kg. The fraction of organic carbon used (0.0025) was the mean concentration for site soils as reported by the RWQCB in their Interim Site Assessment & Cleanup Guidebook dated May 1996.

- The input parameters and model results for MTBE at years 1, 91, 92, 101, 102, 133, 134, 135, 136, 353, and 354 are included in **Appendix G.** As demonstrated by the output included in **Appendix G,** the MTBE contaminant plume with no degradation arrives at the receptor (groundwater production well; 1,300 feet downgradient) at year 92. A maximum concentration of MTBE is observed at this receptor well at years 134 and 135 at a concentration of 0.489 mg/L, which is above the MCL of 0.013 mg/L, and the plume becomes detached from the source at year 354. The plume impacts the assumed well at concentration below the MCL from approximately year 92 through year 101. The results of using the 1st Order Decay model show that the contaminant plume never arrives at the receptor (groundwater production well; 1,300 feet). The MTBE plume never impacts the well at concentration above the MCL.
- The input parameters and model results for benzene at years 1, 141, 142, 159, 160, 247, 248, 13,752, and 13,753 are included in **Appendix G**. As demonstrated by the BIOSCREEN Natural Attenuation Decision Support System runs included in the following section, the benzene contaminant plume with no degradation arrives at the receptor (groundwater production well; 1,300 feet downgradient) at year 142. A maximum concentration of benzene is observed at this receptor well at years 160 through 247 at a concentration of 0.029 mg/L, which is above the MCL of 0.001 mg/L, and the plume completely attenuates at the source at year 13,753. The 1st Order Decay model results in the benzene plume never arriving at the receptor and only achieving a plume length under 100 feet in total length. The benzene plume never impacts the well at concentration above the MCL.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Site remedial activities have been on-going for the past 15 years. As of August 25, 2006, the groundwater treatment system treated approximately 2,775,479 gallons of groundwater since start-up in April 1991. Free product has successfully been removed from the subsurface since 1996. The quarterly groundwater monitoring results confirm that the contaminant plume is attenuating and that groundwater concentrations have been decreasing over time.


There are no sensitive receptors identified within 1,000 feet of the Site. Based on the BIOSCREEN 1st Order Decay model results for MTBE and benzene, it appears that the

contaminant plume never impacts the nearest receptor (groundwater production well; 1,300 feet south of the Site) above the respective MCLs for MTBE and benzene, and the plume <u>never</u> reaches the sensitive receptor. The MTBE plume length stays below a length of 1,300 feet, and the benzene plume stays below a length of 100 feet.

7.0 STANDARD LIMITATIONS

Services provided by EQC in the course of completing site investigation activities have been conducted in a manner consistent with the care and skill ordinarily exercised by members of the consulting industry. No other representation expressed or implied and no other warranty or guarantee is included or intended in this report, its opinions, or documentation.

EQC may have relied on information provided by third parties in the course of completing this work. The validity of this information has not been confirmed and EQC cannot warrant its accuracy. There is always a potential for the presence of unknown, unidentified, or unforeseen subsurface conditions and/or contamination. If new data are developed from future studies (which may include intrusive investigations, groundwater sampling, or other efforts), EQC should be requested to re-evaluate the conclusions of this report, and to provide amendments as appropriate.

TABLE 1 Historic Soil Sample Laboratory Analytical Results Thrifty Oil Station #063 - Oakland, CA

Sample	Date	ANALYTICAL PARAMETERS										
ID	Sampled	TPHg	Benzene	Toluene	Ethylbenzene		MTBE					
		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)					
ESLs shallow	soil (≤3m bgs)	100	0.044	2.9	3.3	2.3	0.023					
ESLs deep so	il (>3m bgs)	100	0.044	2.9	3.3	2.3	0.023					
MW1-17	6/21/1986	471	7.6	6.3	7.3	39.7						
MW2-14	6/21/1986	735	12.6	26.4	10.7	64.3						
MW3-14	6/21/1986	52	5.4	1.9	1.3	6.9						
MW4-10	11/13/1986	<10	<0.5	<0.5	-	<0.5						
MW4-16	11/13/1986	1100	13.0	14.0	_	34.0						
MW5-16	11/13/1986	<10	<0.5	<0.5	_	<0.5	_					
MW6-15	11/13/1986	<10	<0.5	<0.5	-	<0.5						
C-1	11/13/1986	58	<0.5	5.8	-	<0.5	_					
B1-5	9/11/1987	-	-	_	-	-	 					
B1-10	9/11/1987	<10	-	-] -	-						
B1-15	9/11/1987	-	-	-] -	-						
B1-20	9/11/1987	<10	-	-	_	_						
B2-5	9/11/1987	-	-	-	-	_	.					
B2-10	9/11/1987	-	-	-	-	_						
B2-15	9/11/1987	-	-	_	_	-	_					
B2-20	9/11/1987	-	-	-	-	_	_					
B3-5	9/11/1987	-	-	-	_	_	_					
B3-10	9/11/1987	-	-	-	-	-	_					
B3-15	9/11/1987	-	-	-	i <u>-</u> i	_	1 -					
B3-20	9/11/1987	-	-	-	- 1	_	1 -					
B4-5	9/11/1987	-	-	-	-	-	-					
B4-10	9/11/1987	-	-	-	-	_	_					
B4-15	9/11/1987	-	-	-	- 1	-						
B4-20	9/11/1987		-	-		-	_					
TDD1-15	6/11/1997	480	2.3	<0.75	7.0	42	1.7					
TDD1-20	6/11/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD2-15	6/11/1997	37.0	0.19	0.13	0.61	1.9	<1.0					
TDD2-20	6/11/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD3-15	6/11/1997	7.5	0.043	<0.015	0.044	<0.045	12					
TDD3-20	6/11/1997	<1.0	0.11	<0.0050	0.0070	<0.015	3.2					
TDD4-15	6/11/1997	36	0.41	<0.038	0.39	1.2	14					
TDD4-20	6/11/1997	<1.0	<0.0050	<0.0050	<0.0050	< 0.015	1.4					
TDD5-10	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD5-20	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD6-5	6/11/1997	550	2.5	5.5	9.7	50	6.0					
TDD6-10	6/11/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD7-5	6/11/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD7-10	6/11/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD8-10	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD8-20	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD9-5	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD9-10	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
TDD9-20	6/12/1997	<1.0	<0.0050	<0.0050	<0.0050	<0.015	<1.0					
T-1(8')	2/4/1998	61	0.085	1.3	0.77	4.6	0.60					
T-2(8')	2/4/1998	260	<0.03	0.18	3.0	1.1	< 0.3					

TABLE 1 Historic Soil Sample Laboratory Analytical Results

Thrifty Oil Station #063 - Oakland, CA

Sample	Date			ANALYTICAL	- PARAMETERS	3	
ID	Sampled	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
T-3(8')	2/4/1998	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05
T-4(8')	2/4/1998	2	<0.005	<0.005	<0.005	0.01	0.07
UST-10	2/4/1998	210	<0.12	<0.5	0.71	1.1	<1.2
P-1	2/4/1998	49	0.071	0.39	0.44	2.6	<0.25
P-2	2/4/1998	1,200	1.7	24	21	96	15
P-3	2/4/1998	<5	0.062	0.092	0.031	0.098	9.4
P-4	2/4/1998	310	1.6	25	7.4	47	26
P-5	2/4/1998	920	6.5	35	15	78	13
P-6	2/4/1998	330	1.9	5.5	8.3	38	<2.5
SS-1	2/4/1998	<1.0	<0.005	<0.005	<0.005	0.022	0.56
SS-2	2/4/1998	<1.0	<0.005	<0.005	<0.005	< 0.005	<0.05
SS-3	2/4/1998	<1.0	<0.005	<0.005	<0.005	< 0.005	<0.05
SS-4	2/4/1998	<1.0	<0.005	<0.005	<0.005	< 0.005	<0.05
SS-5	2/4/1998	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05
SS-6	2/4/1998	<1.0	<0.005	<0.005	<0.005	< 0.005	<0.05
SS-7	2/4/1998	<1.0	<0.005	0.009	<0.005	0.008	<0.05
SS-8	2/4/1998	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05
SS-9	2/4/1998	<1.0	<0.005	0.006	<0.005	0.017	<0.05
SS-10	2/4/1998	<1.0	<0.005	<0.005	<0.005	0.016	<0.05
SS-11	2/4/1998	<1.0	<0.005	0.007	<0.005	0.007	<0.05
SS-12	2/4/1998	<1.0	<0.005	0.032	0.017	0.19	0.56
SS-13	2/4/1998	2,700	4.03	66	42	220	6.4
SS-14	2/4/1998	4	<0.005	0.74	0.047	0.33	0.86
SS-15	2/4/1998	3,600	4.2	78	49	260	7.3
SS-16	2/4/1998	2,100	2.4	41	27	130	5.2
SS-17	2/4/1998	2,900	3.8	67	42	230	4.7
SS-19	2/4/1998	15	0.04	0.055	0.1	0.42	0.45
SS-20	2/4/1998	270	<0.12	1.9	2.7	16	<1.2
SS-21	2/4/1998	86	<0.05	0.6	0.75	4.2	<0.5
SS-22	2/4/1998	240	0.25	4.1	3.3	19	<1.2
SS-23	2/4/1998	1	<0.005	0.007	0.007	0.082	0.1

NOTES:

TPHg analyzed by EPA Method 8015M

ESLs = Environmental Screening Levels

BTEX and MTBE analysis by EPA Method 8260B 3m bgs = 3 meters (10 feet) below ground surface

"<" = Less than the specified laboratory detection limit

"J" = Trace

* = Total Recoverable Petroleum Hydrocarbons

- = Not analyzed

DATE			ANALYTICAL	PARAMETERS			DEPTH TO	DEPTH TO	PRODUCT	CASING	GROUNDWATER
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
•		, , ,	, ,	, , ,	, , ,			, ,		, ,	
MONITORING W	ELL #MW-1			Screen Interval =	15 to 30 feet						
11/21/86	-	-	-	-	-	-	NP	15.42	0.00	99.34	83.92
07/22/91	-	-	-	-	-	-	FILM	20.41	0.00	99.34	78.93
10/24/91	-	-	-	-	-	-	SHEEN	19.06	0.00	99.34	80.28
11/12/91	=	-	-	=	-	-	SHEEN	18.91	0.00	99.34	80.43
12/11/91	-	-	-	-	-	-	SHEEN	19.02	0.00	99.34	80.32
01/09/92	-	-	-	-	-	-	SHEEN	18.57	0.00	99.34	80.77
01/22/92	-	-	-	-	-	-	SHEEN	18.78	0.00	99.34	80.56
02/11/92	-	-	-	-	-	-	SHEEN	15.95	0.00	99.34	83.39
03/24/92	-	-	-	-	-	-	SHEEN	13.55	0.00	99.34	85.79
04/13/92	-	-	-	-	-	-	SHEEN	18.54	0.00	99.34	80.80
05/11/92	-	-	-	-	-	-	SHEEN	18.14	0.00	99.34	81.20
06/08/92	-	-	-	-	-	-	NP	18.40	0.00	99.34	80.94
07/15/92	-	-	-	-	-	-	SHEEN	18.90	0.00	99.34	80.44
10/05/92	-	-	-	-	-	-	FILM	20.50	0.00	99.34	78.84
11/09/92	-	-	-	-	-	-	SHEEN	19.21	0.00	99.34	80.13
12/14/92	-	-	-	-	-	-	SHEEN	16.05	0.00	99.34	83.29
01/06/93	-	-	-	-	-	-	FILM	14.93	0.00	99.34	84.41
07/13/93	=	-	-	-	-	-	FILM	15.44	0.00	99.34	83.90
10/11/93	-	-	-	-	-	-	FILM	20.36	0.00	99.34	78.98
01/11/94	=	-	-	-	-	-	FILM	19.50	0.00	99.34	79.84
04/12/94	-	-	-	-	-	-	FILM	18.10	0.00	99.34	81.24
07/14/94	-	-	-	-	-	-	FILM	20.03	0.00	99.34	79.31
01/15/96	11,000	2,800	150	780	770	-	NP	19.02	0.00	99.34	80.32
04/15/96	17,000	3,600	330	1,500	3,400	-	NP	18.82	0.00	99.34	80.52
07/15/96	12,000	1,300	200	1,200	4,600	250	#N/A	#N/A	#N/A	99.34	#N/A
10/09/96	-	-	-	-	-	-	NP	14.87	0.00	99.34	84.47
01/13/97	27,000	810	6,000	570	4,100	2,700	NP	10.20	0.00	99.34	89.14
04/14/97	2,900	3.0	2.9	<0.3	1.7	9,900	#N/A	#N/A	#N/A	99.34	#N/A
07/07/97	5,200	0.57	0.57	<0.3	0.71	16,000	NP	18.75	0.00	99.34	80.59
10/16/97	680	<0.3	0.55	<0.3	<0.5	-	NP	17.92	0.00	99.34	81.42
01/07/98	42,000	980	2,800	1,200	5,200	1.3	NP	9.80	0.00	99.34	89.54
04/06/98	7,100	700	340	170	2,600	1,000	NP	9.60	0.00	99.34	89.74
07/14/98	19,000	2,100	400	890	5,800	1,600	NP	13.70	0.00	99.34	85.64
10/15/98	490	<0.3	<0.3	<0.3	<0.5	1,300	NP	15.25	0.00	99.34	84.09
01/20/99	350	<0.3	<0.3	<0.3	<0.5	* 670 / 820	NP	12.20	0.00	99.34	87.14
04/16/99	320	<0.3	<0.3	<0.3	<0.5	* 540 / 630	NP	12.20	0.00	99.34	87.14
07/14/99	290	<0.3	<0.3	<0.3	<0.5	*590 / 580	NP	13.75	0.00	99.34	85.59
10/07/99	130	<0.3	<0.3	<0.3	<0.5	270	NP	12.15	0.00	99.34	87.19
01/26/00	13,000	460	54	290	3,700	940	NP	13.14	0.00	99.34	86.20
04/19/00	546	<0.25	<0.25	<0.25	<0.5	*430 / 606	NP	10.63	0.00	99.34	88.71
05/26/00	<50	<0.3	<0.3	<0.3	<0.6	<5	NP	9.11	0.00	99.34	90.23
07/26/00	<50	<0.3	<0.3	<0.3	<0.6	<5	NP	9.10	0.00	99.34	90.24
10/25/00	< 50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	9.08	0.00	99.34	90.26

DATE			ANALYTICAL	PARAMETERS			DEPTH TO	DEPTH TO	PRODUCT	CASING	GROUNDWATER
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
			, , ,			, , , ,					<u> </u>
01/10/01	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	12.16	0.00	99.34	87.18
04/23/01	18,100	740	55	650	4,000	*1,850 / 842	NP	10.60	0.00	99.34	88.74
07/16/01	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	9.07	0.00	99.34	90.27
10/17/01	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	12.16	0.00	99.34	87.18
01/23/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	15.23	0.00	99.34	84.11
04/10/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	15.17	0.00	99.34	84.17
07/24/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	16.71	0.00	99.34	82.63
10/30/02	< 50	2.2	< 0.14	< 0.18	< 0.26	13	NP	15.16	0.00	99.34	84.18
01/15/03	465 J	< 0.14	< 0.07	< 0.08	< 0.35	147	NP	16.70	0.00	99.34	82.64
04/16/03	<15	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03	NP	15.16	0.00	99.34	84.18
07/14/03	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	13.64	0.00	99.34	85.70
10/08/03	761	11	< 0.32	1.4 J	2.9 J	653	NP	15.50	0.00	99.34	83.84
01/15/04	853	< 0.04	< 0.02	< 0.02	< 0.06	*1,100 / 558	NP	14.20	0.00	99.34	85.14
04/14/04	494	<2.2	<3.2	<3.1	<4.0	843	NP	12.93	0.00	99.34	86.41
07/29/04	1,040	<2.2	<3.2	<3.1	<4.0	1,070	NP	14.73	0.00	99.34	84.61
10/14/04	3,250	266	< 0.32	59	78	811	NP	15.26	0.00	99.34	84.08
01/06/05	197	< 0.22	< 0.32	< 0.31	< 0.4	406	NP	15.14	0.00	99.34	84.20
04/13/05	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	9.40	0.00	99.34	89.94
07/27/05	<2.9	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	16.65	0.00	99.34	82.69
10/12/05	<2.9	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	18.19	0.00	99.34	81.15
01/19/06	1,380	58	< 0.10	62	113	33	NP	9.37	0.00	99.34	89.97
04/12/06	< 5.6	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	10.02	0.00	99.34	89.32
07/26/06	8,850	151	649	178	778	133	NP	15.18	0.00	99.34	84.16
MONITORING W	ELL #MW-2	1	T	Screen Interval =	· · · · · · · · · · · · · · · · · · ·	T		1 1		1	1
11/21/86	-	-	-	-	-	-	14.88	14.99	0.11	100.01	85.10
07/22/91	-	-	-	-	-	-	17.46	17.84	0.38	100.01	82.46
10/24/91	-	-	-	-	-	-	16.97	17.00	0.03	100.01	83.03
11/12/91	-	-	-	-	-	-	FILM	18.82	0.00	100.01	81.19
12/11/91	-	-	-	-	-	-	16.96	16.97	0.01	100.01	83.05
01/09/92	-	-	-	-	-	-	15.81	15.85	0.04	100.01	84.19
01/22/92	-	-	-	-	-	-	FILM	16.72	0.00	100.01	83.29
02/11/92	-	-	-	-	-	-	11.20	11.24	0.04	100.01	88.80
03/24/92	-	-	-	-	-	-	11.94	11.98	0.04	100.01	88.06
04/13/92	-	-	-	-	-	-	SHEEN	15.62	0.00	100.01	84.39
05/11/92	-	-	-	-	-	-	SHEEN	15.47	0.00	100.01	84.54
06/08/92	-	-	-	-	-	-	FILM	15.21	0.00	100.01	84.80
07/15/92	-	-	-	-	-	-	FILM	16.37	0.00	100.01	83.64
10/05/92	-	-	-	-	-	-	18.09	18.41	0.32	100.01	81.84
11/09/92	-	-	-	-	-	-	FILM	17.07	0.00	100.01	82.94
12/14/92	-	-	-	-	-	-	13.35	13.40	0.05	100.01	86.65
01/06/93	-	-	-	-	-	-	FILM	12.37	0.00	100.01	87.64
07/13/93	-	-	-	-	-	-	FILM	15.19	0.00	100.01	84.82

D. L. MIN			13117 7777 617	D. D. METERS			DEPENT TO	DEDTH TO	PROPERCE	GLODYG	CD CVINDIVI TED
DATE				PARAMETERS	1		DEPTH TO	DEPTH TO	PRODUCT	CASING	GROUNDWATER
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
			_			_	_				-
10/11/93	-	-	-	-	-	-	17.95	18.05	0.10	100.01	82.04
01/11/94	-	-	-	-	-	-	16.95	16.98	0.03	100.01	83.05
04/12/94	-	-	-	-	-	-	FILM	15.54	0.00	100.01	84.47
07/14/94	-	-	-	-	-	-	FILM	17.93	0.00	100.01	82.08
01/15/96	7,100	720	280	48	660	-	NP	17.20	0.00	100.01	82.81
04/15/96	11,000	600	59	420	870	-	NP	17.26	0.00	100.01	82.75
07/15/96	19,000	360	51	610	1,600	<250	#N/A	#N/A	#N/A	100.01	#N/A
10/09/96	-	-	-	-	-	-	NP	14.42	0.00	100.01	85.59
01/13/97	11,000	230	30	91	700	56	NP	10.25	0.00	100.01	89.76
04/14/97	141	1.2	0.33	0.44	< 0.5	20	#N/A	#N/A	#N/A	100.01	#N/A
07/07/97	< 50	< 0.3	< 0.3	< 0.3	< 0.5	<20	NP	17.20	0.00	100.01	82.81
10/16/97	<50	< 0.3	< 0.3	< 0.3	< 0.5	-	NP	16.20	0.00	100.01	83.81
01/07/98	-	-	-	-	-	-	16.18	16.26	0.08	100.01	83.81
			Well Aband	loned 1/30/98							
											_
MONITORING W	VELL #MW-3			Screen Interval =				(GROUNDWATER S'	YSTEM'S PUMPING		
11/21/86	-	100	5.1	<1.0	25	-	16.15	16.25	0.10	99.76	83.59
07/22/91	-	-	-	-	-	-	NP	24.00	0.00	99.76	75.76
10/24/91	-	-	-	-	-	-	NP	18.10	0.00	99.76	81.66
11/12/91	-	-	-	-	-	-	NP	25.80	0.00	99.76	73.96
12/11/91	-	-	-	-	-	-	NP	25.70	0.00	99.76	74.06
01/09/92	-	-	-	-	-	-	NP	25.78	0.00	99.76	73.98
01/22/92	-	-	-	-	-	-	SHEEN	25.80	0.00	99.76	73.96
02/11/92	-	-	-	-	-	-	SHEEN	25.00	0.00	99.76	74.76
03/24/92	-	-	-	-	-	-	SHEEN	15.60	0.00	99.76	84.16
04/13/92	-	-	-	-	-	-	SHEEN	25.80	0.00	99.76	73.96
05/11/92	-	-	-	-	-	-	SHEEN	25.41	0.00	99.76	74.35
06/08/92	-	-	-	-	-	-	SHEEN	25.40	0.00	99.76	74.36
07/15/92	-	-	-	-	-	-	SHEEN	25.10	0.00	99.76	74.66
10/05/92	-	-	-	-	-	-	NP	25.20	0.00	99.76	74.56
11/09/92	-	-	-	-	-	-	NP	25.40	0.00	99.76	74.36
12/14/92	-	-	-	-	-	-	SHEEN	25.45	0.00	99.76	74.31
01/06/93	-	-	-	-	-	-	NP	25.45	0.00	99.76	74.31
07/13/93	-	-	-	-	-	-	NP	14.24	0.00	99.76	85.52
10/11/93	-	-	-	-	-	-	NP	25.60	0.00	99.76	74.16
01/11/94	-	-	-	-	-	-	NP	25.90	0.00	99.76	73.86
04/12/94	-	-	=	=	-	-	NP	25.70	0.00	99.76	74.06
07/14/94	-	-	-	-	-	-	NP	25.10	0.00	99.76	74.66
01/15/96	-	-	-	-	-	-	NP	26.04	0.00	99.76	73.72
04/15/96	-	-	-	-	-	-	NP	21.03	0.00	99.76	78.73
07/15/96	5,900	240	30	270	730	780	#N/A	#N/A	#N/A	99.76	#N/A
10/09/96	-	-	-	-	-	-	NP	21.43	0.00	99.76	78.33
01/13/97	-	-	-	-	-	-	NP	11.20	0.00	99.76	88.56
07/07/97	-	-	-	-	-	-	NP	23.40	0.00	99.76	76.36

DATE			ANALYTICAL	L PARAMETERS	DEPTH TO	DEPTH TO	PRODUCT	CASING	GROUNDWATER		
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
10/16/97	•	-	-	-	-	-	NP	22.30	0.00	99.76	77.46
01/07/98	•	=	-	=	-	=	NP	20.10	0.00	99.76	79.66
07/14/98	ī	-	-	-	-	-	NP	14.40	0.00	99.76	85.36
10/15/98	ı	-	-	-	-	-	#N/A	#N/A	#N/A	99.76	#N/A
01/20/99	-	-	-	-	-	-	#N/A	#N/A	#N/A	99.76	#N/A
04/16/99	-	-	-	-	-	-	NP	11.20	0.00	99.76	88.56
07/14/99	5,600	9.6	1.3	3.5	8.1	*14,000 / 14,000	NP	25.87	0.00	99.76	73.89
10/07/99	-	-	-	-	-	-	NP	15.40	0.00	99.76	84.36
01/26/00	-	-	-	-	-	-	NP	14.25	0.00	99.76	85.51
04/19/00	-	-	-	-	-	-	NP	14.20	0.00	99.76	85.56
05/26/00	-	-	-	-	-	-	NP	15.12	0.00	99.76	84.64
07/26/00	-	-	-	-	-	-	NP	14.30	0.00	99.76	85.46
10/25/00	ı	-	-	-	-	-	NP	14.32	0.00	99.76	85.44
01/10/01	-	-	-	-	-	-	NP	13.46	0.00	99.76	86.30
04/23/01	Ī	-	-	=	-	-	#N/A	#N/A	#N/A	99.76	#N/A
07/16/01	-	-	-	-	-	-	NP	12.80	0.00	99.76	86.96
10/17/01	-	-	-	-	-	-	NP	15.30	0.00	99.76	84.46
01/23/02	-	-	-	-	-	-	#N/A	#N/A	#N/A	99.76	#N/A
04/10/02	-	-	-	-	-	-	NP	13.22	0.00	99.76	86.54
07/24/02	-	-	-	-	-	-	NP	14.32	0.00	99.76	85.44
10/30/02	-	-	-	-	-	-	NP	16.20	0.00	99.76	83.56
01/15/03	-	-	-	-	-	-	NP	14.10	0.00	99.76	85.66
04/16/03	-	-	-	-	-	-	#N/A	#N/A	#N/A	99.76	#N/A
07/14/03	2,490	< 0.22	< 0.32	< 0.31	1.3 J	2,050	NP	18.30	0.00	99.76	81.46
10/08/03	3,330	< 0.22	< 0.32	< 0.31	< 0.4	4,070	NP	16.65	0.00	99.76	83.11
01/15/04	102	2.1	3.5	< 0.02	12	*28 / 17	NP	14.18	0.00	99.76	85.58
04/14/04	464	63	18	< 0.31	16	189	NP	13.45	0.00	99.76	86.32
07/29/04	1,560	74	<3.2	30 J	<4.0	729	NP	15.94	0.00	99.76	83.82
10/14/04	2,490	25	< 0.32	< 0.31	< 0.4	2,530	NP	16.11	0.00	99.76	83.65
01/06/05	394	12	< 0.32	1.5 J	< 0.4	51	NP	15.61	0.00	99.76	84.15
04/13/05	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	9.19	0.00	99.76	90.57
07/27/05	383	5.6	< 0.10	17	2.4 J	125	NP	16.63	0.00	99.76	83.13
10/12/05	<2.9	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	16.97	0.00	99.76	82.79
01/19/06	2,050	93	2.2 J	103	55	273	NP	10.92	0.00	99.76	88.84
04/12/06	70	< 0.32	< 0.10	< 0.24	< 0.30	265	NP	12.55	0.00	99.76	87.21
07/26/06	228	< 0.32	< 0.10	< 0.24	26	389	NP	14.94	0.00	99.76	84.82
ONITORING W	ELL #MW-4			Screen Interval =	9 to 29 feet			(GROUNDWATER S	YSTEM'S PUMPING	WELL)	
11/21/86	100,000	3,200	2,700	2,400	14,000	- 1	FILM	16.22	0.00	99.48	83.26
07/22/91	-	-	-	-	-	-	21.35	21.80	0.45	99.48	78.02
10/24/91	-	-	-	-	-	-	SHEEN	20.02	0.00	99.48	79.46
11/12/91	-	-	-	-	-	-	FILM	20.00	0.00	99.48	79.48
12/11/91	-	-	_	_	-	_	FILM	20.03	0.00	99.48	79.45

DATE			ANALYTICAL	PARAMETERS			DEPTH TO	DEPTH TO	PRODUCT	CASING	GROUNDWATER
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
	(2)	(0)	()	(2)		()	. ,	()	,		,
01/09/92	-	-	-	-	-	_	FILM	19.55	0.00	99.48	79.93
01/22/92	_	_	_	-	-	_	SHEEN	19.78	0.00	99.48	79.70
02/11/92	_	-	_	_	_	_	FILM	16.40	0.00	99.48	83.08
03/24/92	_	-	_	-	_	_	FILM	13.94	0.00	99.48	85.54
04/13/92	-	_	-	-	-	_	FILM	19.42	0.00	99.48	80.06
05/11/92	_	-	_	_	_	_	SHEEN	18.10	0.00	99.48	81.38
06/08/92	_	_	_	-	-	_	SHEEN	19.55	0.00	99.48	79.93
07/15/92	_	-	_	-	_	_	SHEEN	19.27	0.00	99.48	80.21
10/05/92	_	_	_	_	_	_	FILM	21.44	0.00	99.48	78.04
11/09/92	_	-	_	-	_	_	SHEEN	20.10	0.00	99.48	79.38
12/14/92	-	-	-	-	_	_	SHEEN	16.05	0.00	99.48	83.43
01/06/93	_	_	-	_	_	_	FILM	14.08	0.00	99.48	85.40
07/13/93	-	_	-	-	_	-	FILM	16.09	0.00	99.48	83.39
10/11/93	_	_	_	_	_	_	FILM	21.33	0.00	99.48	78.15
01/11/94	-	-	-	-	-	-	FILM	20.45	0.00	99.48	79.03
04/12/94	_	_	_	_	_	_	FILM	19.05	0.00	99.48	80.43
07/14/94	-	-	-	-	-	-	FILM	20.41	0.00	99.48	79.07
01/15/96	5,000	370	38	300	390	_	NP	19.89	0.00	99.48	79.59
04/15/96	38,000	300	78	540	470	-	NP	19.62	0.00	99.48	79.86
07/15/96	13,000	880	69	820	1,100	3,600	#N/A	#N/A	#N/A	99.48	#N/A
10/09/96	-	-	-	-	-	-	NP	15.32	0.00	99.48	84.16
01/13/97	47,000	2,500	2,500	1,100	2,800	70,000	NP	10.80	0.00	99.48	88.68
04/14/97	8,700	<0.3	0.45	<0.3	0.64	29,000	#N/A	#N/A	#N/A	99.48	#N/A
07/07/97	12,000	<0.3	<0.3	<0.3	<0.5	29,000	NP	18.80	0.00	99.48	80.68
10/16/97	770	<0.3	<0.3	<0.3	<0.5	-	NP	17.76	0.00	99.48	81.72
01/07/98	75,000	3,000	900	1,400	2,500	110	NP	11.60	0.00	99.48	87.88
04/08/98	18.000	1.200	130	710	1,400	22,000	NP	10.10	0.00	99.48	89.38
07/14/98	21,000	1,300	58	1,200	1,100	23,000	NP	16.30	0.00	99.48	83.18
10/15/98	9,100	1.1	0.62	<0.3	<0.5	30,000	NP	16.90	0.00	99.48	82.58
01/20/99	16,000	<0.3	0.91	0.72	1.4	* 43,000 / 42,000	NP	15.35	0.00	99.48	84.13
04/16/99	17,000	0.48	0.92	0.54	1.4	* 28,000 / 26,000	NP	15.30	0.00	99.48	84.18
07/14/99	8,500	<6	<6	<6	<10	*21,000 / 16,000	NP	18.40	0.00	99.48	81.08
10/07/99	2,500	<1.5	3.1	<1.5	<2.5	4,800	NP	16.89	0.00	99.48	82.59
01/26/00	9,900	350	9	460	460	2,800	NP	12.62	0.00	99.48	86.86
04/19/00	8,990	0.7	<0.25	<0.25	<0.5	*3,240 / 5,450	NP	12.28	0.00	99.48	87.20
05/26/00	94	<0.3	<0.3	<0.3	<0.6	*746 / 419	NP	13.81	0.00	99.48	85.67
07/26/00	<50	<0.3	<0.3	<0.3	<0.6	3,110 / 2,060	NP	12.29	0.00	99.48	87.19
10/25/00	2,480	<0.18	<0.14	<0.18	<0.26	*3,690 / 3,040	NP	12.26	0.00	99.48	87.22
01/10/01	<50	<0.18	2	<0.18	1	962	NP	10.75	0.00	99.48	88.73
04/23/01	482	<0.18	<0.14	<0.18	<0.26	*875 / 453	NP	12.26	0.00	99.48	87.22
07/16/01	71,700	9,440	12,600	514	8,980	*1,330 / 389	NP	13.80	0.00	99.48	85.68
10/17/01	13,500	1,950	425	<5.94	1,110	*829 / 329	NP	16.87	0.00	99.48	82.61
01/23/02	12,100	196	57	68	2,090	*688/738	NP	12.28	0.00	99.48	87.20
04/10/02	655	7	8	1	2,090	587	NP	13.80	0.00	99.48	85.68
07/10/02	033	,	l o	1	1	307	111	13.00	0.00	77.40	03.00

ANALYTICAL PARAMETERS

DATE

DEPTH TO

DEPTH TO

PRODUCT

GROUNDWATER

CASING

SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
07/24/02	17,400	< 0.18	1.9	1.4	2.2	12,800	NP	15.33	0.00	99.48	84.15
10/30/02	17,300	400	47	748	131	12,300	NP	17.00	0.00	99.48	82.48
01/15/03	23,000	568	39	832	268	18,300	NP	16.84	0.00	99.48	82.64
04/16/03	15,800	411	15	26	14	18,200	NP	16.86	0.00	99.48	82.62
07/14/03	13,300	145	26	2.8 J	12	17,600	NP	10.69	0.00	99.48	88.79
10/08/03	12,500	64	<3.2	359	24 J	11,400	NP	16.32	0.00	99.48	83.16
01/15/04	12,300	11	4.4	66	4.0	*17,000 / 9,560	NP	14.67	0.00	99.48	84.81
04/14/04	7,340	<11	<16	<15.5	<20	13,500	NP	13.68	0.00	99.48	85.80
07/29/04	5,400	<2.2	<3.2	57	<4.0	6,730	NP	15.50	0.00	99.48	83.98
10/14/04	10,200	197	<3.2	233	13 J	3,940	NP	16.08	0.00	99.48	83.40
01/06/05	4,880	60	<3.2	74	<4.0	4,760	NP	15.24	0.00	99.48	84.24
04/13/05	2,780	57	35	20	251	3,650	NP	9.64	0.00	99.48	89.84
07/27/05	1,990	< 0.32	< 0.10	< 0.24	< 0.30	2,590	NP	16.79	0.00	99.48	82.69
10/12/05	25,700	177	<1.0	941	<3.0	4,810	NP	16.78	0.00	99.48	82.70
01/19/06	4,780	96	1.9 J	183	57	210	NP	10.46	0.00	99.48	89.02
04/12/06	1,860	< 0.32	< 0.10	< 0.24	< 0.30	192	NP	12.69	0.00	99.48	86.79
07/26/06	6,390	133	343	94	363	1,160	NP	15.18	0.00	99.48	84.30
MONITORING W		T	1	Screen Interval =						T	
11/21/86	<1,000	4.8	2.1	<0.5	7.4	-	NP	16.10	0.00	100.98	84.88
07/22/91	-	< 0.5	1.6	<1.0	2.0	-	NP	18.20	0.00	100.98	82.78
10/24/91	-	-	-	-	-	-	NP	17.67	0.00	100.98	83.31
11/12/91	-	-	-	-	-	-	NP	17.80	0.00	100.98	83.18
12/11/91	-	-	-	-	-	-	NP	17.73	0.00	100.98	83.25
01/09/92	-	-	-	-	-	-	NP	16.30	0.00	100.98	84.68
01/22/92	600	21.0	8.0	2.0	17.0	-	NP	17.45	0.00	100.98	83.53
02/11/92	-	-	-	-	-	-	NP	14.20	0.00	100.98	86.78
03/24/92	-	-	-	-	-	-	NP	12.98	0.00	100.98	88.00
04/13/92	-	-	-	-	-	-	NP	16.36	0.00	100.98	84.62
05/11/92	-	-	-	-	-	-	NP	16.10	0.00	100.98	84.88
06/08/92 07/15/92	-					-	NP	16.05	0.00	100.98	84.93
	<200	<0.5	<0.5	<0.5	<0.5	-	NP	17.29	0.00	100.98	83.69
10/05/92	-	-	-	-	-	-	NP	18.92	0.00	100.98	82.06
11/09/92	-	-	-	-	-	-	NP	17.75	0.00	100.98	83.23
12/14/92	300	2.7	<0.5	- 1.2	26.0	-	NP NP	14.21	0.00	100.98	86.77
01/06/93				1.3	26.0	-		13.12		100.98	87.86
07/13/93	<100	1.1	0.5	1.0		-	NP	16.15	0.00	100.98	84.83
10/11/93 01/11/94	130 <50	1.2	<0.3	<0.3	<0.6 <0.5	-	NP NP	18.75 17.80	0.00	100.98	82.23
			<0.3	<0.3		-				100.98	83.18
04/12/94	<50	<0.3	<0.3	<0.3	<0.5	-	NP	13.59	0.00	100.98	87.39
07/14/94	<50	0.42	<0.3	<0.3	< 0.5	-	NP #N/A	18.26	0.00	100.98	82.72
07/15/95	100	1.2	<0.5	0.8 6.2	<1	-	#N/A NP	#N/A 13.09	#N/A 0.00	100.98 100.98	#N/A
01/15/96	1,900	21	13	0.2	6.8	-	NY	13.09	0.00	100.98	87.89

DATE			ANALYTICAL	PARAMETERS			DEPTH TO	DEPTH TO	PRODUCT	CASING	GROUNDWATER ELEVATION
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
			, , ,	, , ,	, , , , , , , , , , , , , , , , , , , ,	, ,				, ,	, ,
04/15/96	250	5.1	2.7	1.7	1.1	-	NP	13.16	0.00	100.98	87.82
07/15/96	270	6.5	1.4	1.8	1.4	230	#N/A	#N/A	#N/A	100.98	#N/A
10/09/96	-	-	-	-	-	-	NP	15.37	0.00	100.98	85.61
01/13/97	25,000	780	5,700	560	4,000	24,000	NP	10.90	0.00	100.98	90.08
04/14/97	6,300	260	1,600	28	550	9,000	#N/A	#N/A	#N/A	100.98	#N/A
07/07/97	7,500	300	1,500	12	110	16,000	NP	14.70	0.00	100.98	86.28
10/16/97	4,600	< 0.3	0.65	< 0.3	< 0.5	-	NP	13.60	0.00	100.98	87.38
01/07/98	2,700	33	11	37	580	7.3	NP	10.97	0.00	100.98	90.01
04/08/98	300	9.1	< 0.3	< 0.3	< 0.5	650	NP	10.90	0.00	100.98	90.08
07/14/98	670	5.9	< 0.3	< 0.3	0.53	2,300	NP	15.20	0.00	100.98	85.78
10/15/98	<50	< 0.3	< 0.3	< 0.3	< 0.5	19	NP	15.90	0.00	100.98	85.08
01/20/99	<50	< 0.3	< 0.3	< 0.3	< 0.5	<5	NP	15.20	0.00	100.98	85.78
04/16/99	<50	< 0.3	< 0.3	< 0.3	< 0.5	<5	NP	15.25	0.00	100.98	85.73
07/14/99	<50	< 0.3	< 0.3	< 0.3	< 0.5	<5	NP	15.96	0.00	100.98	85.02
10/07/99	<50	< 0.3	< 0.3	< 0.3	< 0.5	<5	NP	16.33	0.00	100.98	84.65
01/26/00	<50	< 0.3	< 0.3	< 0.3	< 0.5	<5	NP	14.80	0.00	100.98	86.18
04/19/00	965	< 0.25	< 0.25	< 0.25	< 0.5	<5	NP	10.97	0.00	100.98	90.01
05/26/00	<50	< 0.3	< 0.3	< 0.3	< 0.6	<5	NP	14.43	0.00	100.98	86.55
07/26/00	<50	< 0.3	< 0.3	< 0.3	< 0.6	<5	NP	14.02	0.00	100.98	86.96
10/25/00	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	14.04	0.00	100.98	86.94
01/10/01	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	14.80	0.00	100.98	86.18
04/23/01	<50	< 0.18	< 0.14	< 0.18	< 0.26	*10 / 4.2	NP	10.97	0.00	100.98	90.01
07/16/01	3,360	430	603	53	429	*41 / 4.2	NP	14.80	0.00	100.98	86.18
10/17/01	<50	< 0.18	< 0.14	< 0.18	< 0.26	*16 / 5.2	NP	16.71	0.00	100.98	84.27
01/23/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	14.80	0.00	100.98	86.18
04/10/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	14.42	0.00	100.98	86.56
07/24/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	14.78	0.00	100.98	86.20
10/30/02	<50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	15.93	0.00	100.98	85.05
01/15/03	<50	< 0.14	< 0.07	< 0.08	< 0.35	<2.0	NP	15.55	0.00	100.98	85.43
04/16/03	<15	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03	NP	15.55	0.00	100.98	85.43
07/14/03	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	15.93	0.00	100.98	85.05
10/08/03	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	16.35	0.00	100.98	84.63
01/15/04	<15	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03	NP	15.06	0.00	100.98	85.92
04/14/04	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	13.96	0.00	100.98	87.02
07/29/04	659	<2.2	<3.2	<3.1	<4.0	606	NP	15.60	0.00	100.98	85.38
10/14/04	411	< 0.22	< 0.32	< 0.31	< 0.4	425	NP	16.17	0.00	100.98	84.81
01/06/05	433	< 0.22	< 0.32	< 0.31	< 0.4	491	NP	15.52	0.00	100.98	85.46
04/13/05	161	< 0.22	< 0.32	< 0.31	< 0.4	465	NP	10.12	0.00	100.98	90.86
07/27/05	237	< 0.32	< 0.10	< 0.24	< 0.30	243	NP	16.66	0.00	100.98	84.32
10/12/05	149	< 0.32	< 0.10	< 0.24	< 0.30	183	NP	16.66	0.00	100.98	84.32
01/19/06	66	< 0.32	< 0.10	< 0.24	< 0.30	5.9	NP	9.96	0.00	100.98	91.02
04/12/06	<5.6	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	11.69	0.00	100.98	89.29
07/26/06	<5.6	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	15.53	0.00	100.98	85.45

DATE	ANALYTICAL PARAMETERS							DEPTH TO	PRODUCT	CASING	GROUNDWATER
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
	(0)	(5)	(2)	(5)	(3)	(0)				,	,
MONITORING W	ELL #MW-6			Screen Interval =	7 to 27 feet						
11/21/86	<1,000	<2.0	<2.0	<2.0	<2.0	-	NP	12.64	0.00	99.44	86.80
07/22/91	-	-	-	-	-	-	#N/A	#N/A	#N/A	99.44	#N/A
10/24/91	-	-	-	-	-	-	#N/A	#N/A	#N/A	99.44	#N/A
11/12/91	-	-	-	-	-	-	#N/A	#N/A	#N/A	99.44	#N/A
12/11/91	-	-	-	-	-	-	NP	13.57	0.00	99.44	85.87
01/09/92	-	-	-	-	-	-	NP	12.73	0.00	99.44	86.71
01/22/92	<200	< 0.5	< 0.5	< 0.5	1.5	-	NP	13.36	0.00	99.44	86.08
02/11/92	-	-	-	-	-	-	NP	7.60	0.00	99.44	91.84
03/24/92	-	-	-	-	-	-	NP	10.04	0.00	99.44	89.40
04/13/92	-	-	-	-	-	-	NP	12.30	0.00	99.44	87.14
05/11/92	-	-	-	-	-	-	NP	13.28	0.00	99.44	86.16
06/08/92	-	-	-	-	-	-	NP	13.30	0.00	99.44	86.14
07/15/92	<200	< 0.5	< 0.5	< 0.5	< 0.5	-	NP	13.29	0.00	99.44	86.15
10/05/92	-	-	-	-	-	-	NP	14.69	0.00	99.44	84.75
11/09/92	-	-	-	-	-	-	NP	13.60	0.00	99.44	85.84
12/14/92	-	-	-	-	-	-	NP	11.10	0.00	99.44	88.34
01/06/93	<200	< 0.5	< 0.5	< 0.5	<1.0	-	NP	10.87	0.00	99.44	88.57
07/13/93	<100	< 0.5	< 0.5	< 0.5	<1.0	-	NP	13.10	0.00	99.44	86.34
10/11/93	<60	< 0.3	< 0.3	< 0.3	< 0.6	-	NP	14.43	0.00	99.44	85.01
01/11/94	<50	< 0.3	< 0.3	< 0.3	< 0.5	-	NP	13.56	0.00	99.44	85.88
04/12/94	<50	< 0.3	< 0.3	< 0.3	< 0.3	-	NP	12.10	0.00	99.44	87.34
07/14/94	<50	< 0.3	< 0.3	< 0.3	< 0.3	-	NP	14.16	0.00	99.44	85.28
07/15/95	140	< 0.5	< 0.5	< 0.5	<1	-	#N/A	#N/A	#N/A	99.44	#N/A
01/15/96	56	0.38	0.33	< 0.3	< 0.5	-	NP	14.29	0.00	99.44	85.15
04/15/96	96	4.5	< 0.3	< 0.3	0.53	-	NP	14.32	0.00	99.44	85.12
07/15/96	140	2.4	0.44	< 0.3	0.70	110	#N/A	#N/A	#N/A	99.44	#N/A
10/09/96	-	-	-	-	-	-	NP	12.09	0.00	99.44	87.35
01/13/97	210	< 0.3	1.2	< 0.3	0.68	270	NP	9.85	0.00	99.44	89.59
04/14/97	<50	< 0.3	< 0.3	< 0.3	< 0.5	<20	#N/A	#N/A	#N/A	99.44	#N/A
07/07/97	<50	< 0.3	< 0.3	< 0.3	< 0.5	<20	NP	14.20	0.00	99.44	85.24
10/16/97	<50	< 0.3	< 0.3	< 0.3	< 0.5	-	NP	13.10	0.00	99.44	86.34
01/07/98	<50	< 0.3	< 0.3	< 0.3	< 0.5	0.10	NP	9.80	0.00	99.44	89.64
07/14/98	330	< 0.3	< 0.3	< 0.3	< 0.5	380	NP	12.30	0.00	99.44	87.14
10/15/98	<50	<0.3	< 0.3	< 0.3	< 0.5	<5	NP	14.30	0.00	99.44	85.14
01/20/99	<50	0.47	< 0.3	< 0.3	< 0.5	<5	NP	13.60	0.00	99.44	85.84
04/16/99	<50	<0.3	< 0.3	< 0.3	< 0.5	<5	NP	13.50	0.00	99.44	85.94
07/14/99	<50	< 0.3	< 0.3	< 0.3	< 0.5	*5.4 / <5	NP	14.65	0.00	99.44	84.79
10/07/99	<50	<0.3	0.96	0.35	1.8	<5	NP	15.39	0.00	99.44	84.05
01/26/00	<50	< 0.3	< 0.3	< 0.3	0.63	<5	NP	13.85	0.00	99.44	85.59
04/19/00	83.1	< 0.25	< 0.25	< 0.25	< 0.5	*11/<5	NP	9.65	0.00	99.44	89.79
05/26/00	<50	< 0.3	< 0.3	< 0.3	< 0.6	<5	NP	13.10	0.00	99.44	86.34
07/26/00	<50	<0.3	<0.3	<0.3	<0.6	<5	NP	12.35	0.00	99.44	87.09

DATE	ANALYTICAL PARAMETERS							DEPTH TO	PRODUCT	CASING	GROUNDWATE
SAMPLED	ТРН	BENZENE	TOLUENE	EthylBenzene	XYLENE	MTBE	PRODUCT	GROUNDWATER	THICKNESS	ELEVATION	ELEVATION
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(feet)	(feet)	(feet)	(feet)	(feet)
10/25/00	< 50	< 0.18	< 0.14	< 0.18	< 0.26	*7 / 10	NP	12.30	0.00	99.44	87.14
01/10/01	< 50	< 0.18	< 0.14	< 0.18	< 0.26	78	NP	13.45	0.00	99.44	85.99
04/23/01	< 50	< 0.18	< 0.14	< 0.18	< 0.26	*9 / 4	NP	9.65	0.00	99.44	89.79
07/16/01	< 50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	13.09	0.00	99.44	86.35
10/17/01	< 50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	15.37	0.00	99.44	84.07
01/23/02	< 50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	13.27	0.00	99.44	86.17
04/10/02	< 50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	13.07	0.00	99.44	86.37
07/24/02	< 50	< 0.18	< 0.14	< 0.18	< 0.26	< 0.24	NP	13.86	0.00	99.44	85.58
10/30/02	< 50	1.6	< 0.14	< 0.18	< 0.26	6.4	NP	14.20	0.00	99.44	85.24
01/15/03	< 50	< 0.14	< 0.07	< 0.08	0.84	<2.0	NP	15.35	0.00	99.44	84.09
04/16/03	<15	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03	NP	14.58	0.00	99.44	84.86
07/14/03	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	15.35	0.00	99.44	84.09
10/08/03	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	13.80	0.00	99.44	85.64
01/15/04	<15	< 0.04	< 0.02	< 0.02	< 0.06	< 0.03	NP	13.51	0.00	99.44	85.93
04/14/04	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	11.62	0.00	99.44	87.82
07/29/04	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	13.12	0.00	99.44	86.32
10/14/04	346	< 0.22	< 0.32	< 0.31	< 0.4	159	NP	13.53	0.00	99.44	85.91
01/06/05	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	13.02	0.00	99.44	86.42
04/13/05	<15	< 0.22	< 0.32	< 0.31	< 0.4	< 0.18	NP	9.32	0.00	99.44	90.12
07/27/05	<2.9	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	13.17	0.00	99.44	86.27
10/12/05	<2.9	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	14.55	0.00	99.44	84.89
01/19/06	72	< 0.32	< 0.10	< 0.24	< 0.30	12	NP	8.74	0.00	99.44	90.70
04/12/06	<5.6	< 0.32	< 0.10	< 0.24	< 0.30	< 0.63	NP	9.96	0.00	99.44	89.48
07/26/06	55	< 0.32	< 0.10	< 0.24	< 0.30	57	NP	12.56	0.00	99.44	86.88

NOTE:

NP = No free hydrocarbon product

" - " = Not analyzed / Not available

* MTBE 8020 / 8260

Benzene, toluene, ethlybenzene, and xylene analyzed by EPA method 8020/8021B.

 $Total\ petroleum\ hydrocarbons\ (TPH)\ analyzed\ by\ EPA\ method\ 8015\ modified\ for\ gasoline$

Methyl-tert Butyl Ether (MTBE) analyzed by EPA method 8020/8021B

On 10/8/03 & 7/14/2003, BTEX and MTBE analyzed by 8260B

Beginning 4/14/2004, BTEX and MTBE analyzed by 8260B

TABLE 2B OXYGENATE DATA IN GROUNDWATER THRIFTY OIL STATION # 063, OAKLAND, CA.

	Di-isopropyl Ether	Ethyl-Tert-Butyl Ether	Tert-Amyl Methyl Ether	Tert-Butyl Alcohol	Ethaanol	Methanol
DATE	(DIPE)	(ETBE)	(TAME)	(TBA)	(ETH)	(METH)
SAMPLED	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)
SILIII EED	(-8)	(-8-)	(-8-)	(***)	(8)	(
ONITORING WELL	C # MW-1					
10/16/97	<20	<20	<20	3,900		
01/07/98	<20	<20	92	<500		
04/03/98	<20	<20	65	<500		
07/14/03	< 0.29	< 0.17	<0.28	<10		
10/08/03	< 0.29	<0.17	15	487		
01/15/04	-	-	-	-		
04/14/04	_	-	-	_		
07/29/04	_	_	_	-		
10/14/04	_	-	_	-		
07/27/05	<0.29	<0.17	<0.28	<10	<20	<20
10/12/05	<0.29	<0.17	<0.28	<10	<20	<20
		<0.17		27	<20	<20
01/19/06	<0.29		<0.28			
04/12/06	<0.29	<0.17	<0.28	<10	<20	<20
07/26/06	<2.9	<1.7	<2.8	121	-	-
		l				
ONITORING WELL	# MW 2					
10/16/97		-20	-20	Z500		
10/16/97/	<20	<20	<20 Well Abor	<500		
			Well Abar	ndoned 1/30/98		
IONITODING WELL	W MIN 2 (CDOUNDH) AT	ED CUCTEMIC DUMBING	TOTAL L			
	,	ER SYSTEM'S PUMPING V				
10/16/97	-	-	-	-		
01/07/98	-	-	-	-		
04/03/98	-	-	-	-		
07/14/03	< 0.29	< 0.17	24	608		
10/08/03	< 0.29	< 0.17	30	<10		
01/15/04	-	-	-	-		
04/14/04	-	-	-	-		
07/29/04	-	-	-	-		
10/14/04	-	-	-	-		
07/27/05	< 0.29	< 0.17	< 0.28	24	<20	<20
10/12/05	< 0.29	< 0.17	< 0.28	<10	<20	<20
01/19/06	< 0.29	< 0.17	3.9	167	<20	<20
04/12/06	< 0.29	< 0.17	2.5	17	<20	<20
07/26/06	< 0.29	< 0.17	3.2	205	-	-
ONITORING WELL	L # MW-4		<u> </u>			
10/16/97	<20	<20	<20	14,000		
01/07/98	<20	<20	230	<500		
04/03/98	<200	<200	<200	<5,000		
07/14/03	< 0.29	< 0.17	62	2,490		
10/08/03	<2.9	<1.7	101	<100		
01/15/04	-	-	-	-		
04/14/04	-	-	-	-		
07/29/04	-	-	-	-		
10/14/04	-	-	-	-		
07/27/05	< 0.29	< 0.17	< 0.28	<10	<20	<20
10/12/05	<2.9	<1.7	<2.8	1,340	<20	<20
01/19/06	<0.29	<0.17	<0.28	138	<20	<20
04/12/06	<0.29	<0.17	<0.28	163	<20	<20
07/26/06	<2.9	<1.7	16	836		-
07/20/00	~2.3	N1./	10	030	-	-
	I	l				<u> </u>
ONITODING WELL	# MW-5					
10/16/07		-20	-20	4.700		
10/16/97	<20	<20	<20	4,700		
01/07/98	<20	<20	<20	<500		

TABLE 2B OXYGENATE DATA IN GROUNDWATER THRIFTY OIL STATION # 063, OAKLAND, CA.

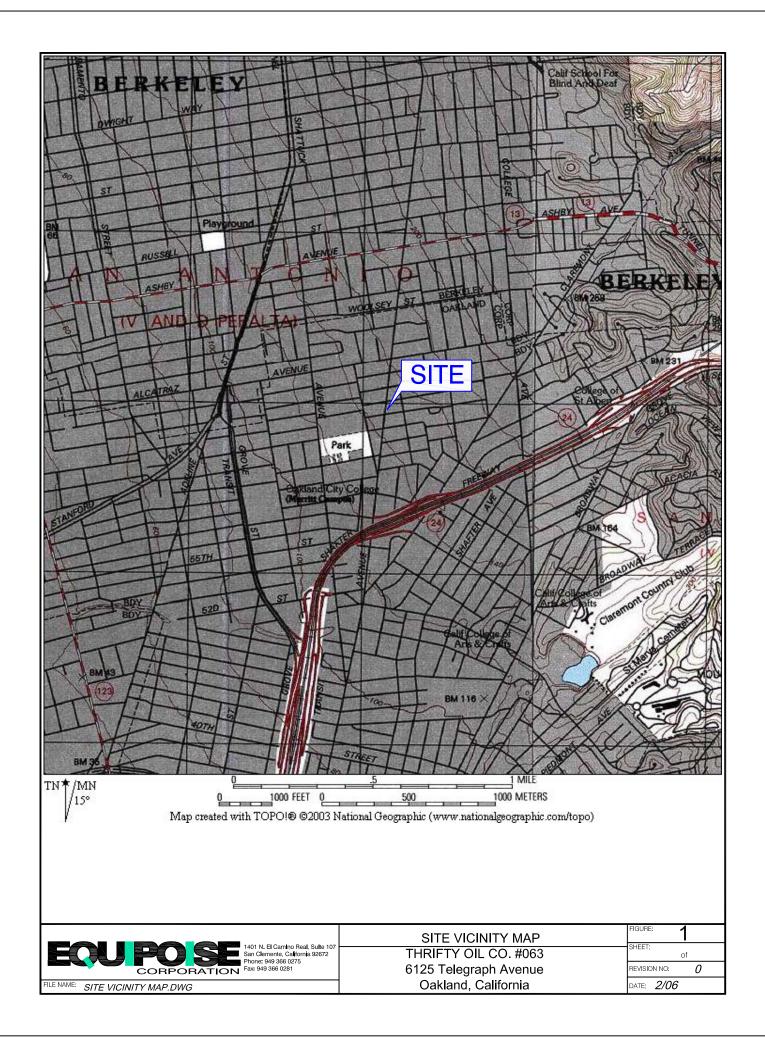
	OXYGENATES								
	Di-isopropyl Ether	Ethyl-Tert-Butyl Ether	Tert-Amyl Methyl Ether	Tert-Butyl Alcohol	Ethaanol	Methanol			
DATE	(DIPE)	(ETBE)	(TAME)	(TBA)	(ETH)	(METH)			
SAMPLED	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)			
	(0)	(0)	, 0 /		, 5 ,	, ,			
04/03/98	<20	<20	<20	<500					
07/14/03	< 0.29	< 0.17	< 0.28	<10					
10/08/03	< 0.29	< 0.17	< 0.28	<10					
01/15/04	-	-	-	-					
04/14/04	-	-	-	-					
07/29/04	-	-	-	-					
10/14/04	-	-	-	-					
07/27/05	< 0.29	< 0.17	< 0.28	<10	<20	<20			
10/12/05	< 0.29	< 0.17	< 0.28	<10	<20	<20			
01/19/06	< 0.29	< 0.17	< 0.28	<10	<20	<20			
04/12/06	< 0.29	< 0.17	< 0.28	<10	<20	<20			
07/26/06	< 0.29	< 0.17	< 0.28	<10	-	-			
NITORING WELL		T							
10/16/97	<20	<20	<20	<500					
01/07/98	<20	<20	40	<500					
04/03/98	-	-	-	-					
07/14/03	< 0.29	< 0.17	<0.28	<10					
10/08/03	< 0.29	< 0.17	<0.28	<10					
01/15/04	-	-	-	-					
04/14/04	-	-	=	-					
07/29/04	-	-	-	-					
10/14/04	-	-	-	-					
07/27/05	< 0.29	< 0.17	< 0.28	<10	<20	<20			
10/12/05	< 0.29	< 0.17	< 0.28	<10	<20	<20			
01/19/06	< 0.29	< 0.17	2.7	<10	<20	<20			
04/12/06	< 0.29	< 0.17	< 0.28	<10	<20	<20			
07/26/06	< 0.29	< 0.17	47	<10	-	_			

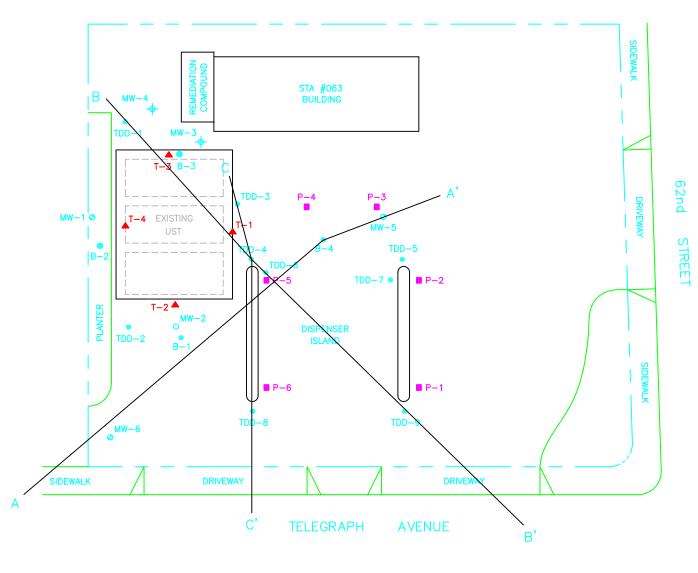
NOTE: DIPE, ETBE, TAME, TBA analyzed by EPA Method 8260/8260B

TABLE 3

WELL COMPLETION DETAILS

Thrifty Oil Station #063 - Oakland, CA GHC - 1332


Well ID	Date Constructed	Total Depth	Casing Diameter	Screen Interval	TOC Elevation *
MW-1	06/21/86	30 ft	2 - inch	15-30 ft	99.34
MW-2	06/21/86	30 ft	2 - inch	15-30 ft	abandoned
MW-3	06/21/86	30 ft	2 - inch	15-30 ft	99.76
MW-4	11/13/86	29 ft	4 - inch	9-29 ft	99.48
MW-5	11/13/86	27 ft	4 - inch	7-27 ft	100.98
MW-6	11/13/86	27 ft	4 - inch	7-27 ft	99.44


NOTES:

* Feet above mean sea level

- = Not surveyed

LEGEND

- GROUNDWATER MONITORING WELL
- GROUNDWATER RECOVERY WELL
- O ABANDONED GROUNDWATER MONITORING WELL
- SOIL BORING
- ▲ − TANK BOTTOM SAMPLE POINT
- PIPING SAMPLE POINT

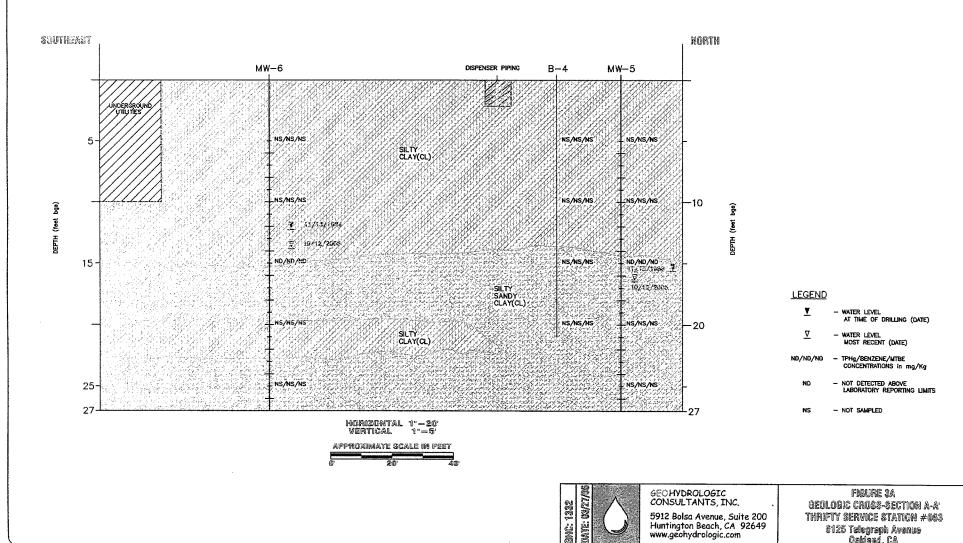
APPROXIMATE SCALE IN FEET

0' 30' 60'

NOTE: FORMER TANKS AND DISPENSERS WERE IN THE SAME LOCATION AS EXISTING TANKS AND DISPENSERS

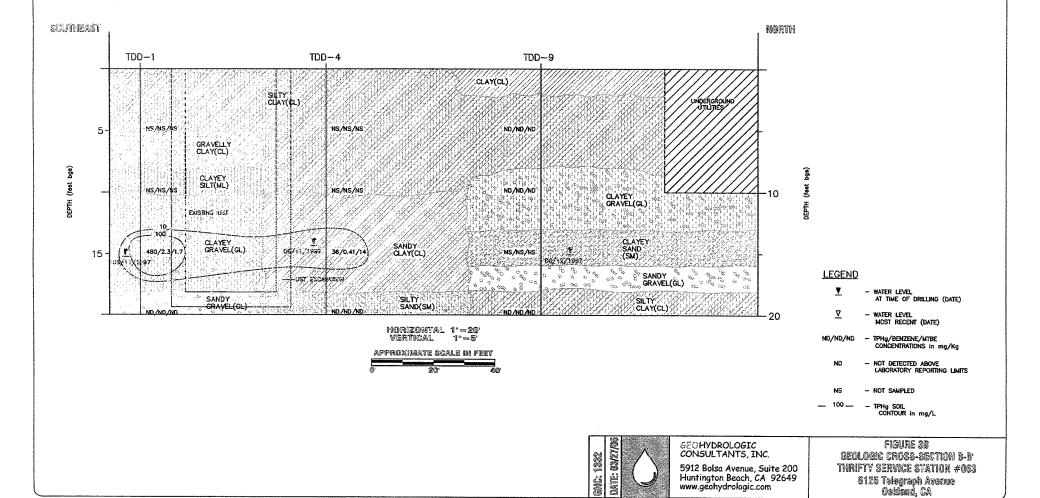
NORTH

DATE: 011/06


FIGURE 2 SITE PLAN WITH CROSS SECTION LOCATIONS THRIFTY SERVICE STATION #063 6125 Telegraph Avenue Oakland, CA

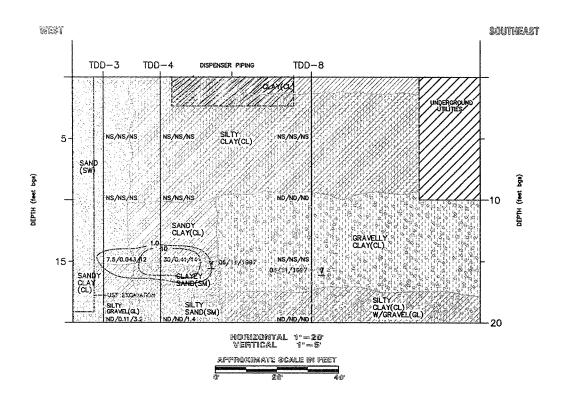
Α

A'


5125 Telegraph Avenue Cakland, CA

В

В'


6125 Telegraph Avenue Oakland, CA

VIEW NORTHEAST

С

C,

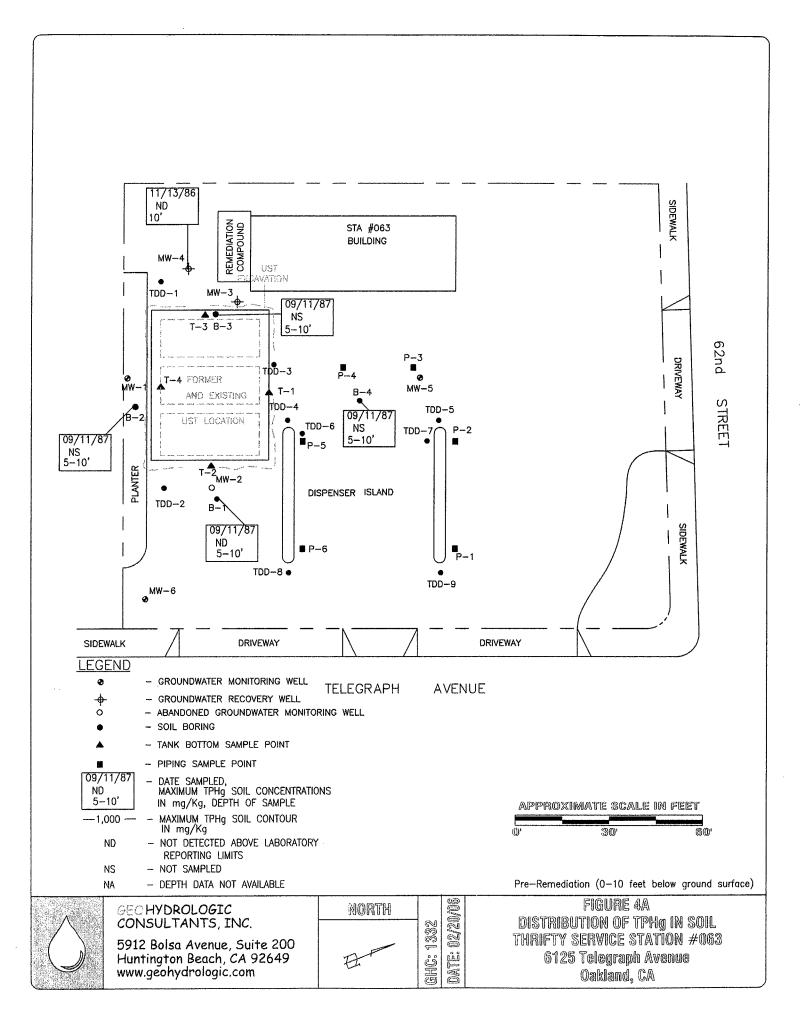
LEGEND

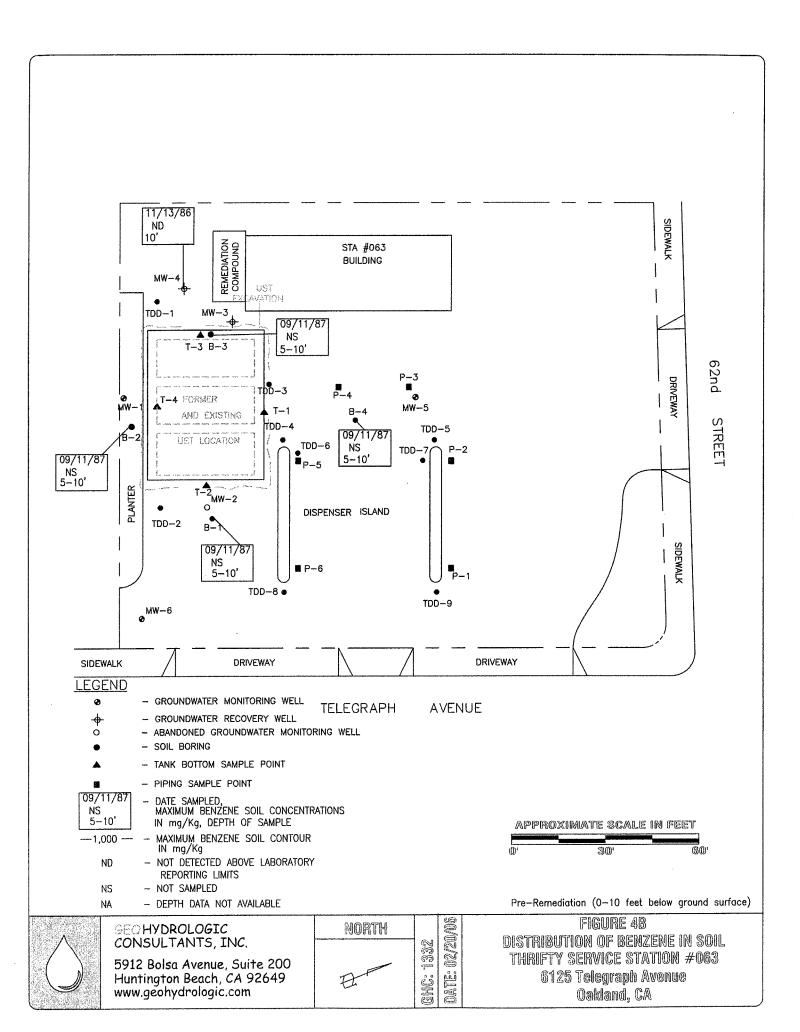
- WATER LEVEL
AT TIME OF DRILLING (DATE)

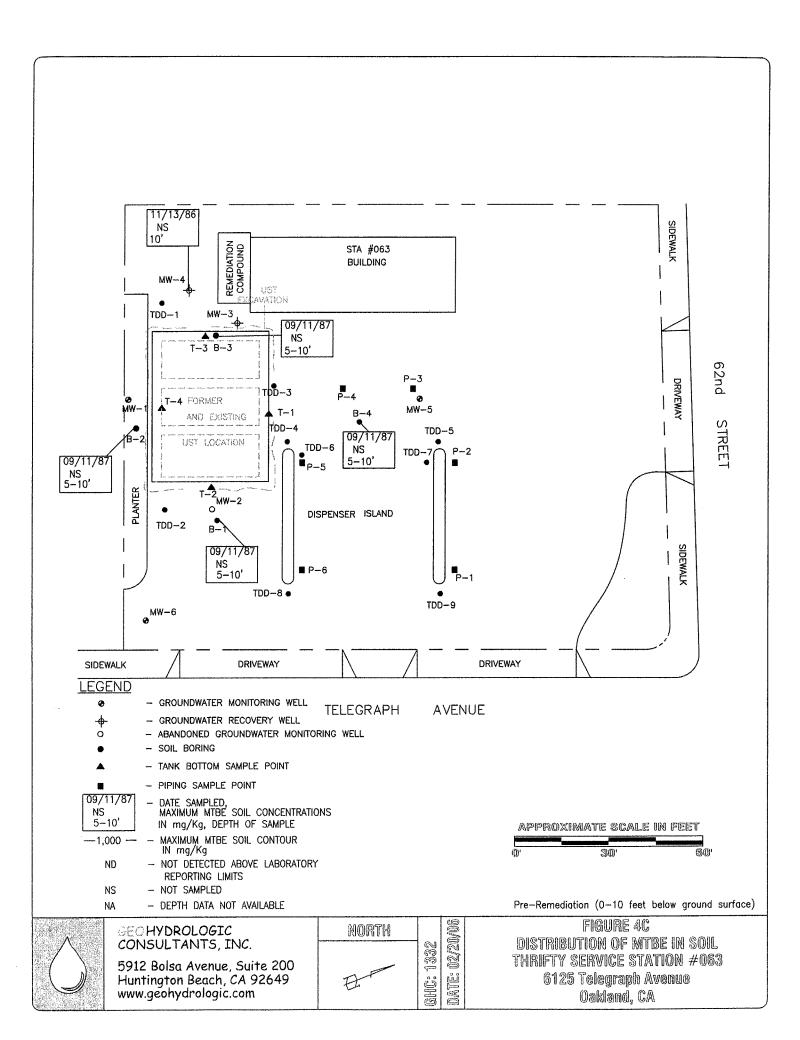
→ WATER LEVEL MOST RECENT (DATE)

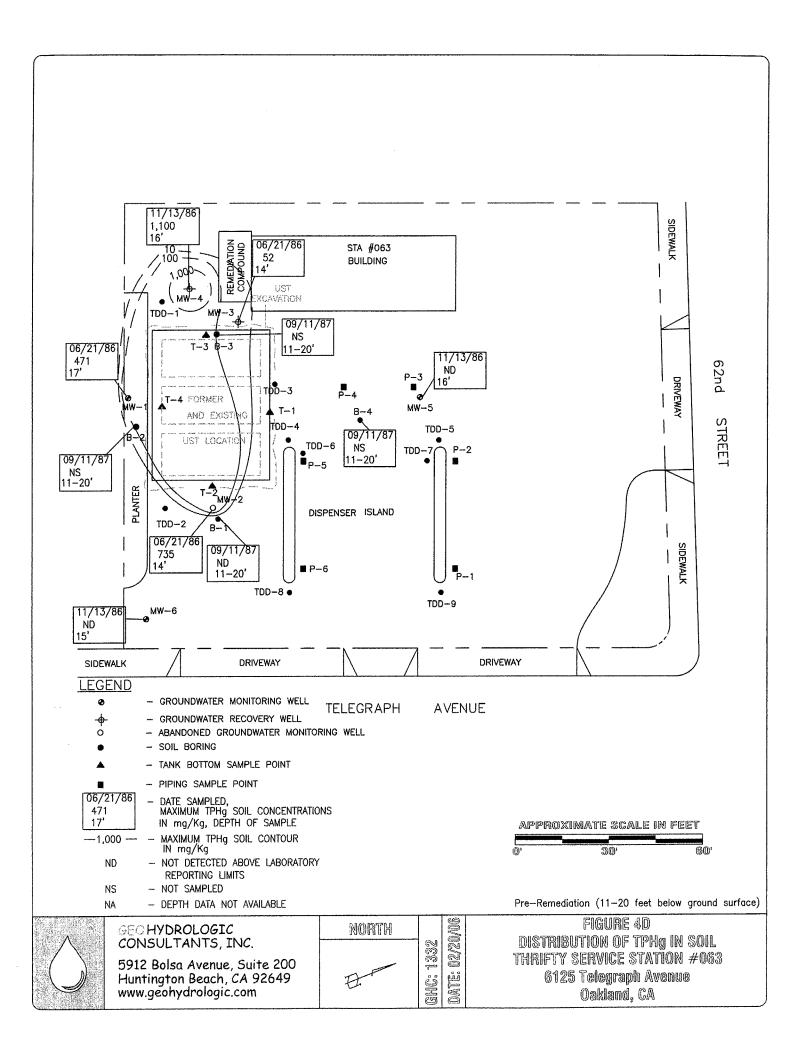
ND/ND/ND - TPHg/BENZENE/MTBE CONCENTRATIONS in mg/Kg

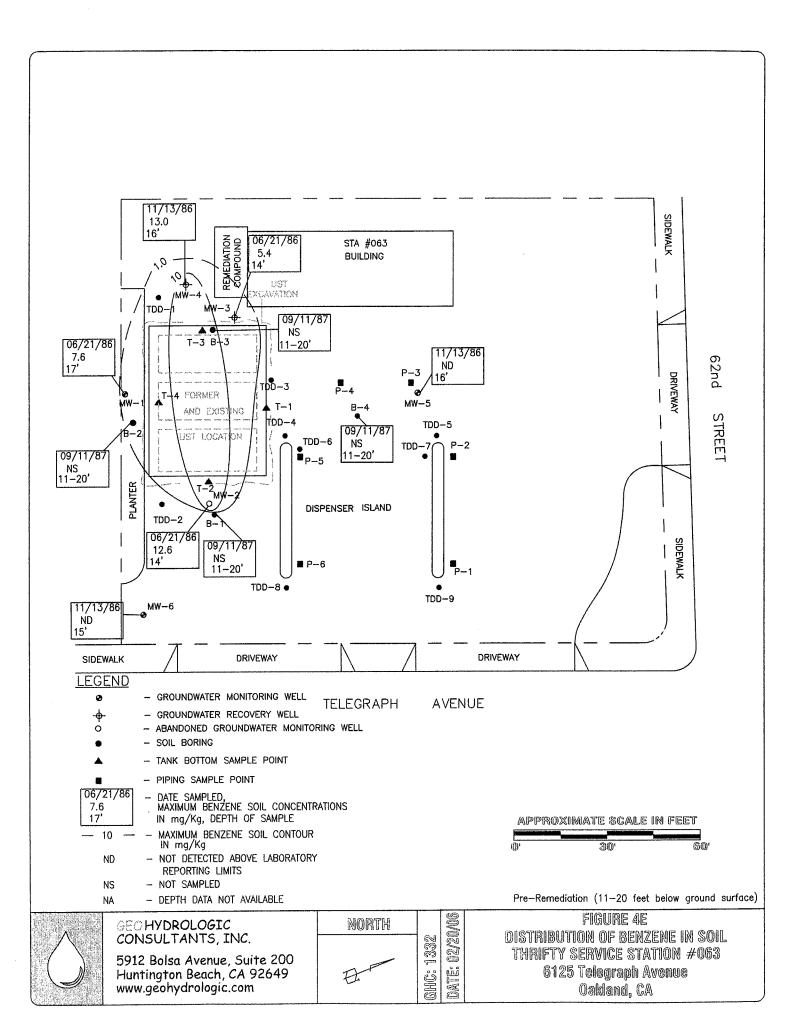
ND -- NOT DETECTED ABOVE LABORATORY REPORTING LIMITS

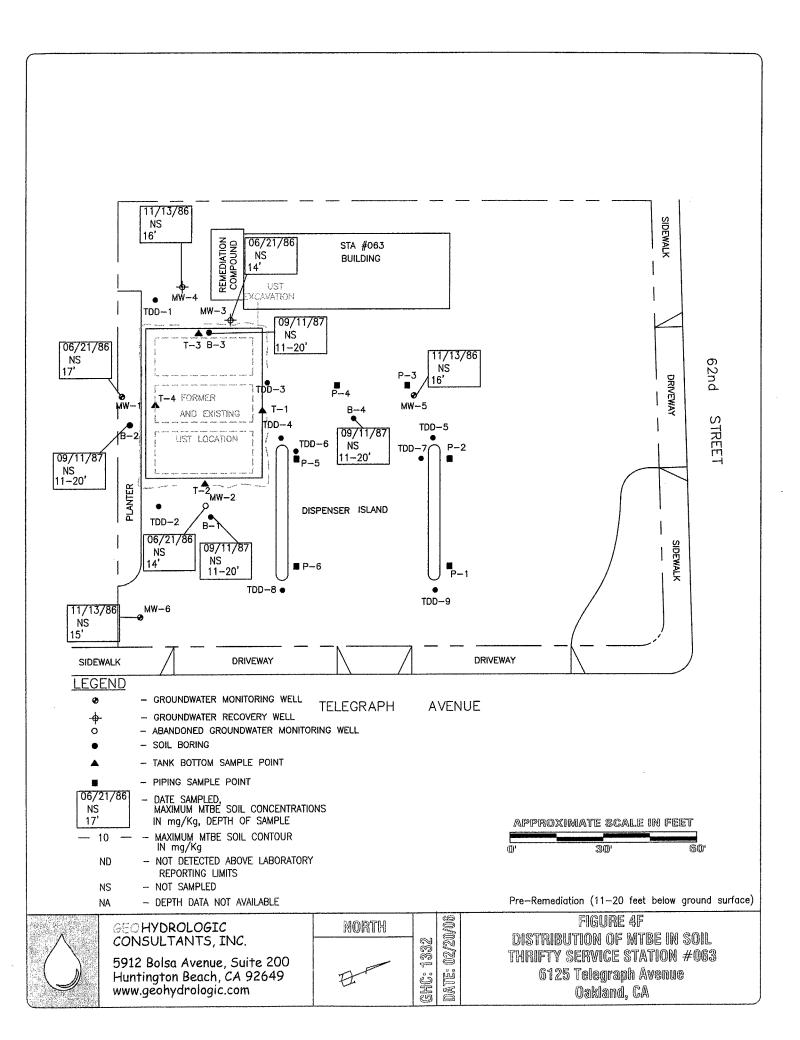

NS - NOT SAMPLED
- 10 - BENZENE SOIL
CONTOUR in mg/L

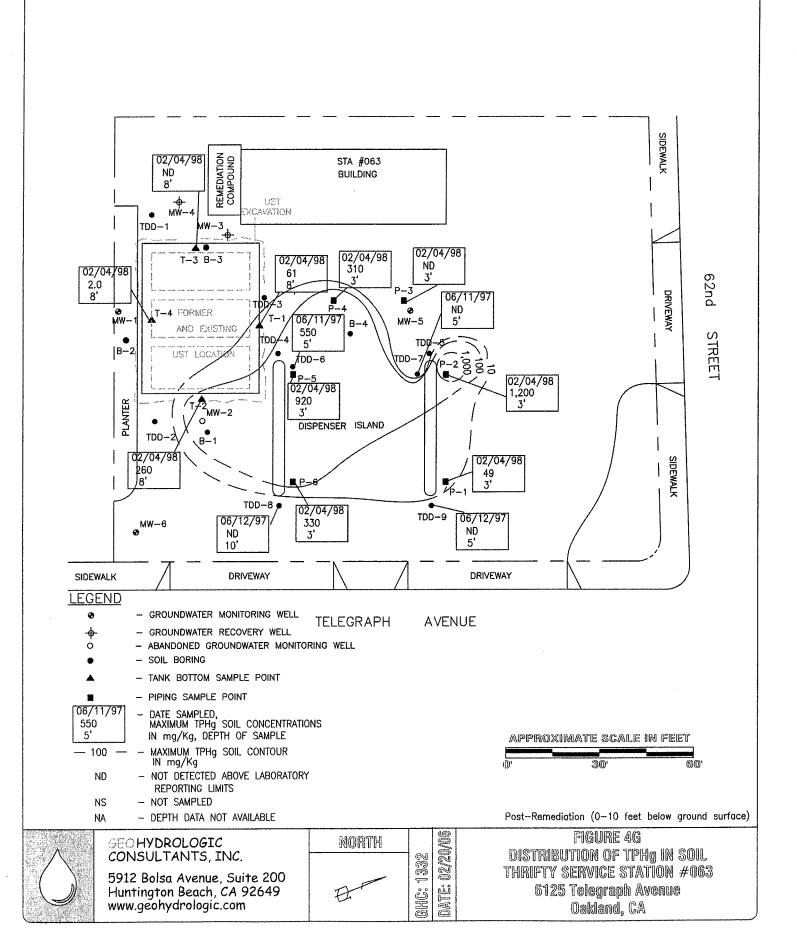

GHC: 1332 DATE: 03/27/NG

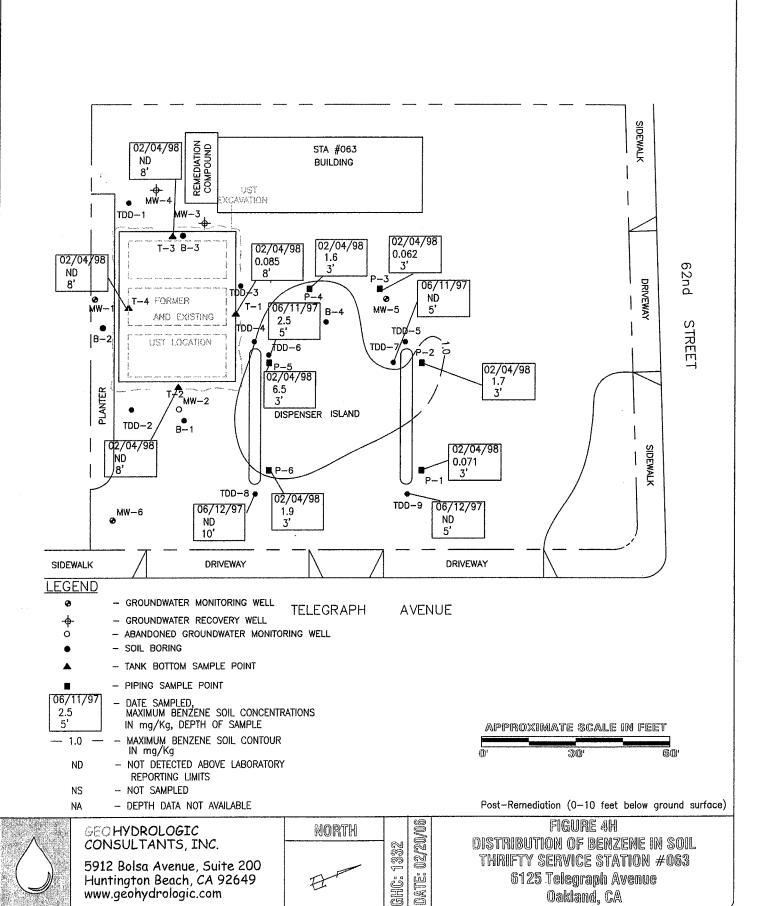


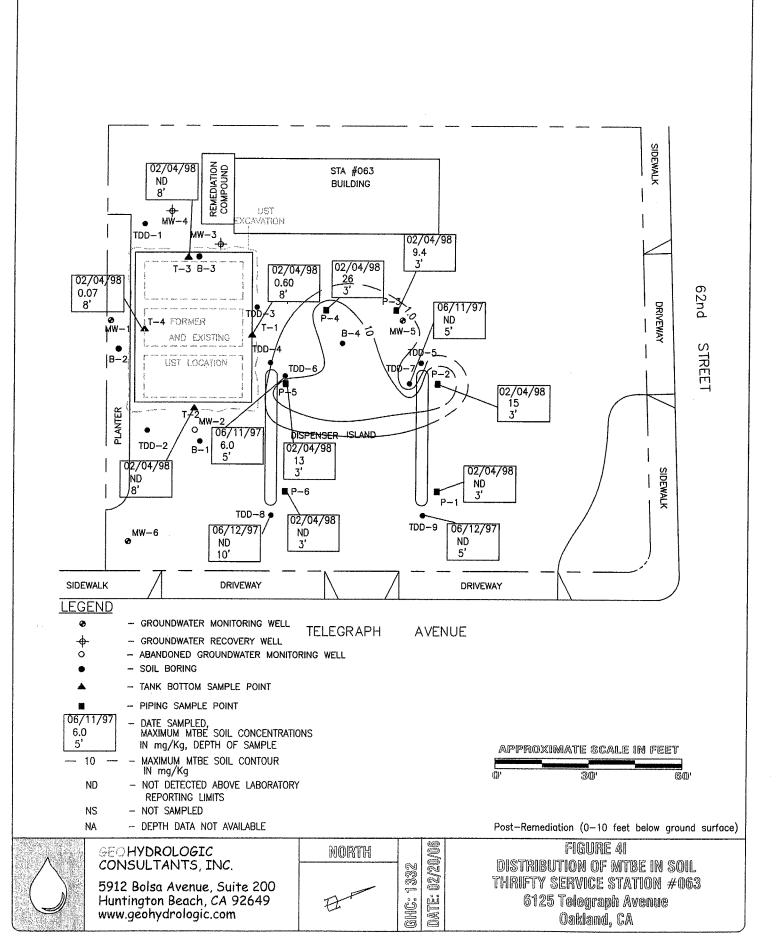

GEOHYDROLOGIC CONSULTANTS, INC.

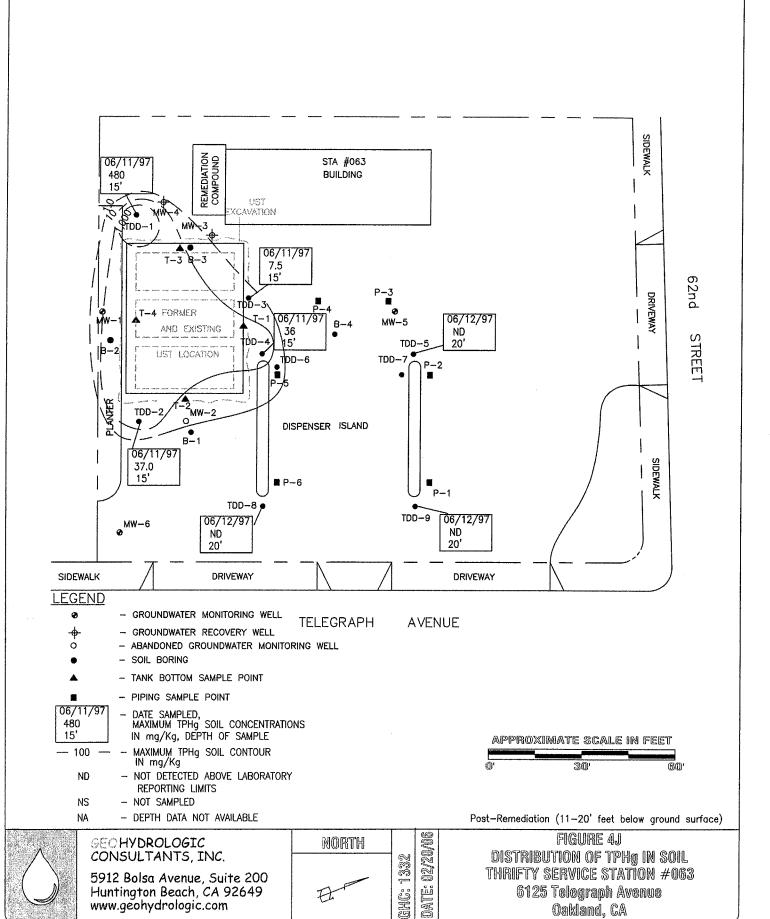

5912 Bolsa Avenue, Suite 200 Huntington Beach, CA 92649 www.geohydrologic.com Figure 3c Geologic Cross-Section c-c' Thrifty Service Station #063 6125 Telegraph Avanus Oakland, CA

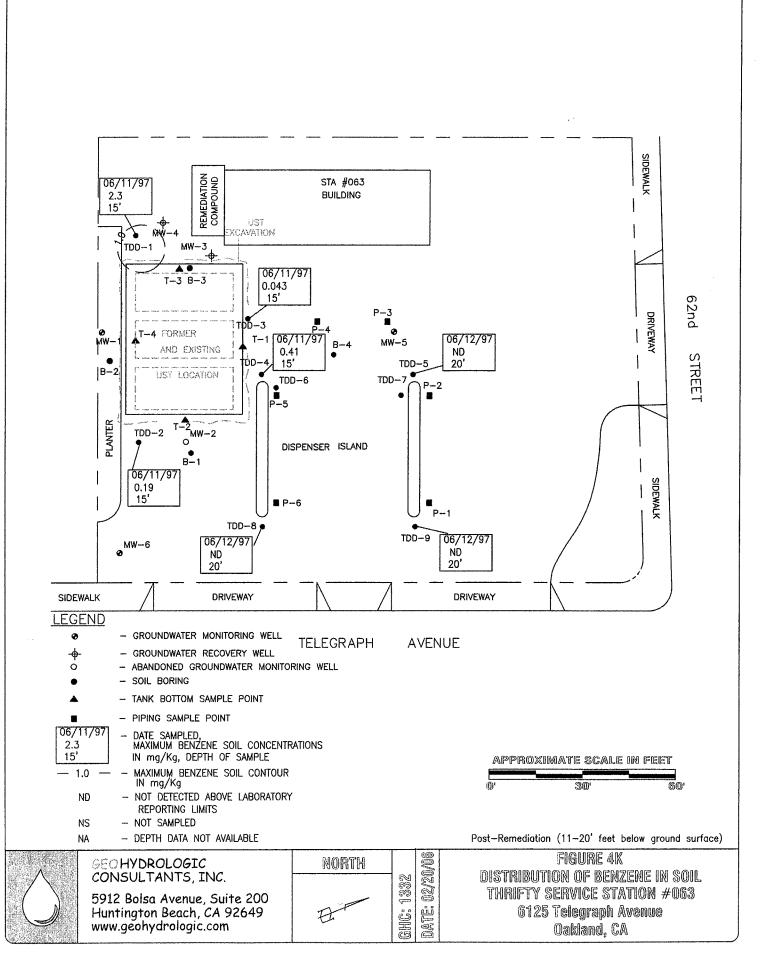


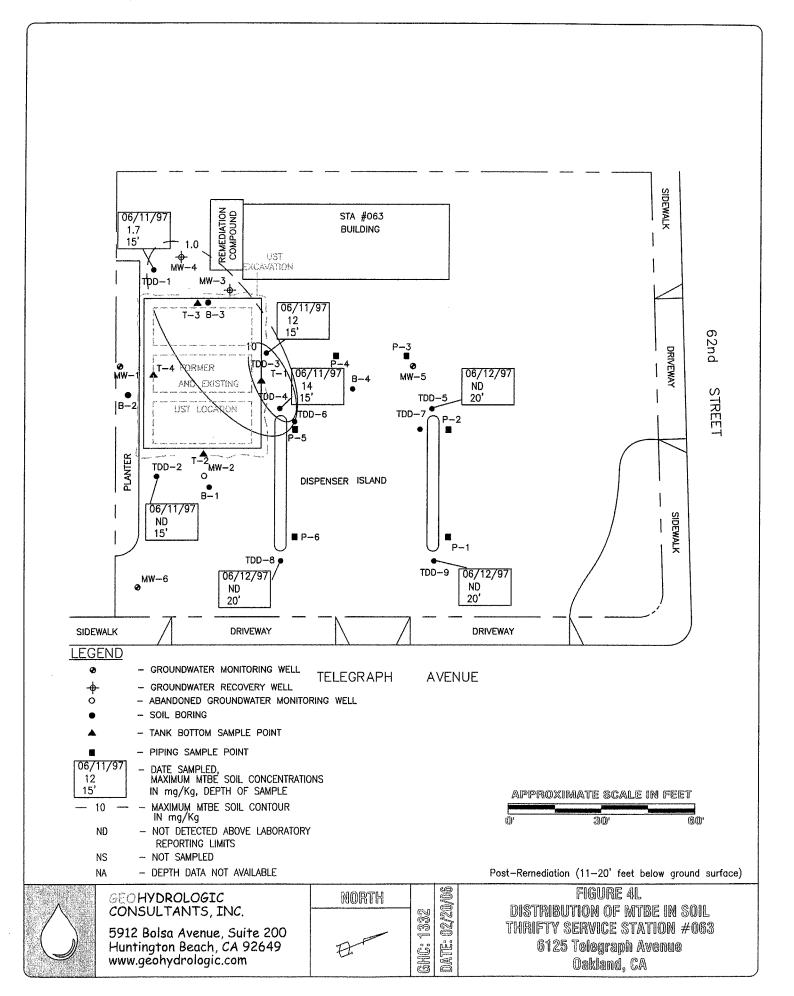


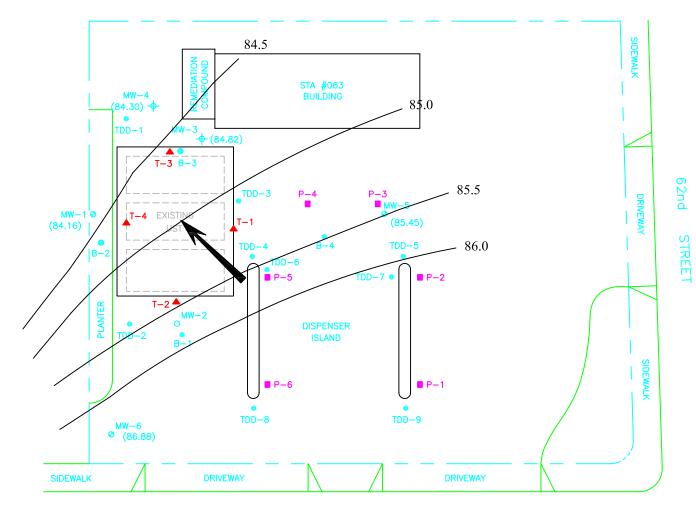












TELEGRAPH AVENUE

LEGEND

- GROUNDWATER MONITORING WELL

- GROUNDWATER RECOVERY WELL

- ABANDONED GROUNDWATER MONITORING WELL

- SOIL BORING

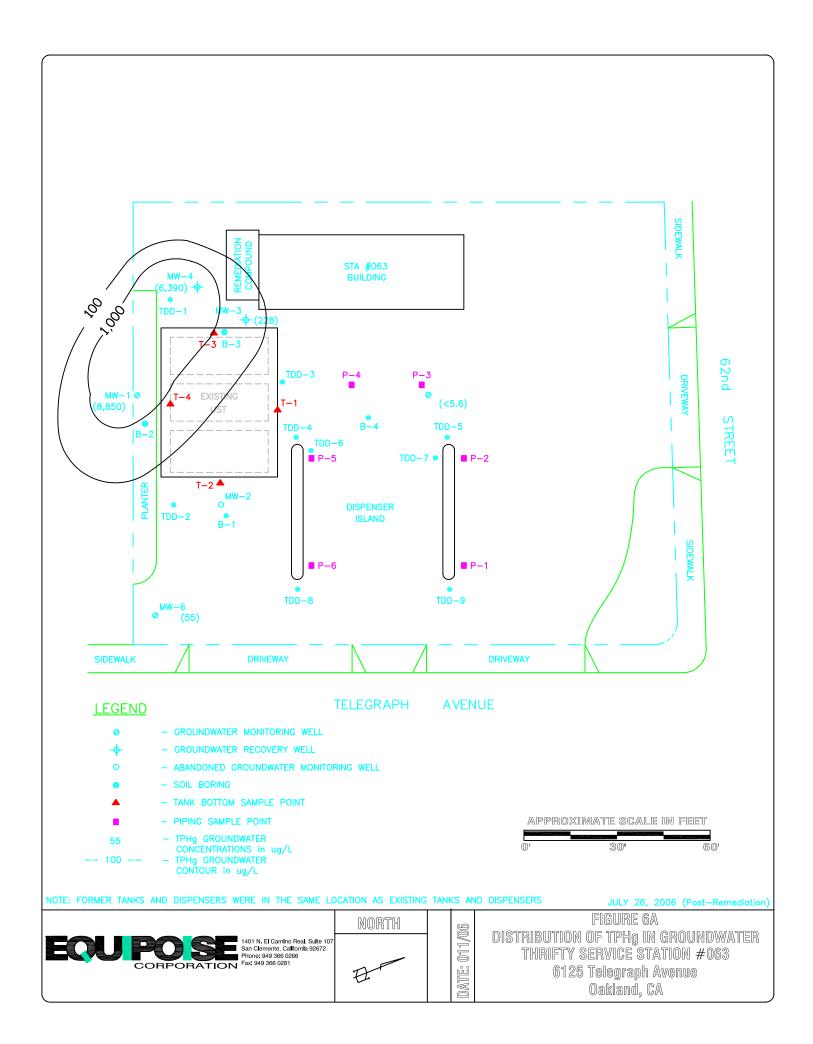
- TANK BOTTOM SAMPLE POINT

- PIPING SAMPLE POINT

APPROXIMATE SCALE IN FEET

NOTE: ALL MONITORING WELL ELEVATION DATA BASED ON AN ONSITE REFERENCE POINT FORMER TANKS AND DISPENSERS WERE IN THE SAME LOCATION AS EXISTING TANKS AND DISPENSERS

NORTH


#

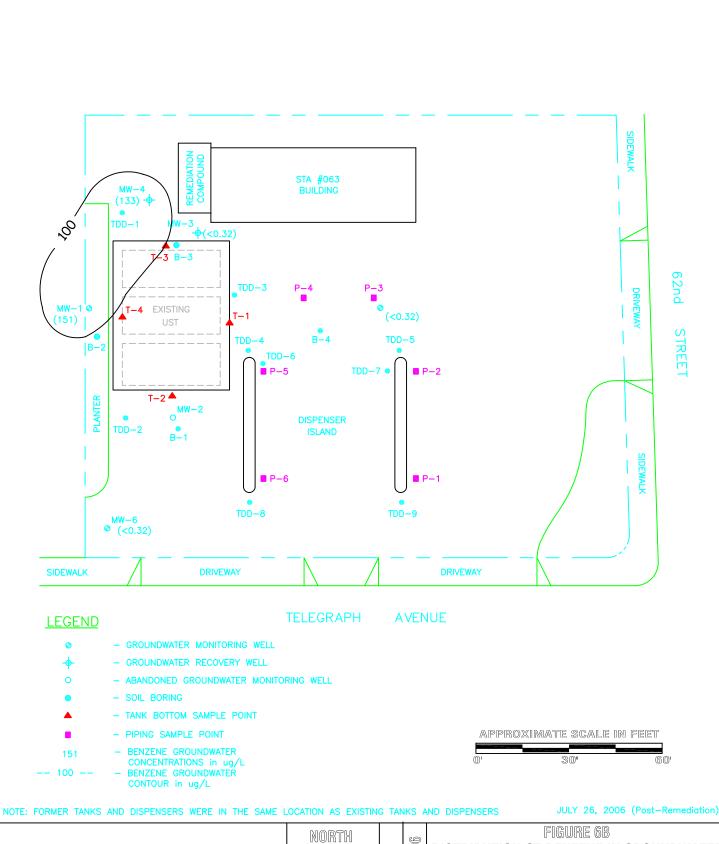
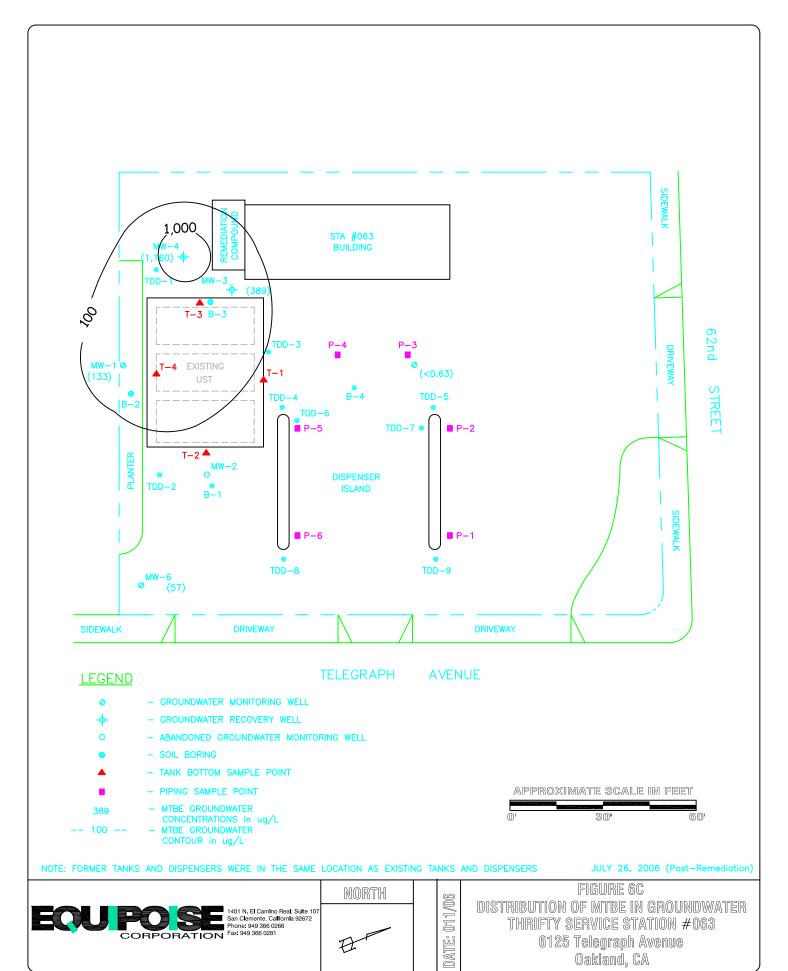
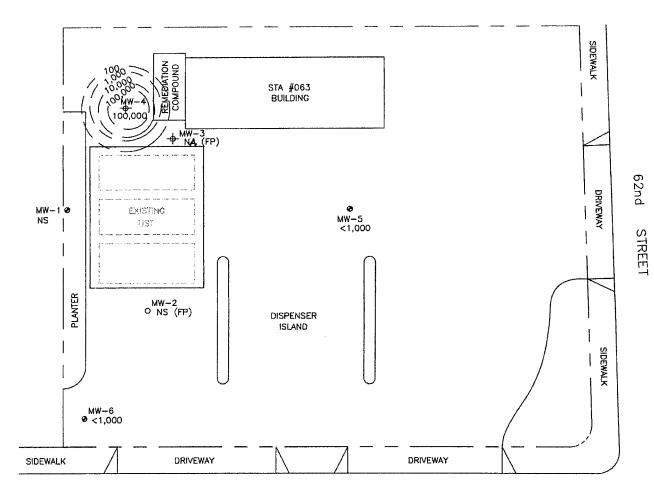


FIGURE 5 **ELEVATION CONTOUR MAP** THRIFTY SERVICE STATION #063 6125 Telegraph Avenue Oakland, CA





1401 N. El Camlno Real, Sulte 107 San Clemente, Calfornia 92672 Phone: 949 366 0266 Fax: 949 366 0281

011/06 DATE: DISTRIBUTION OF BENZENE IN GROUNDWATER THRIFTY SERVICE STATION #063 6125 Telegraph Avenue Oakland, CA

TELEGRAPH AVENUE

LEGEND

- GROUNDWATER MONITORING WELL - GROUNDWATER RECOVERY WELL

- ABANDONED GROUNDWATER MONITORING WELL o

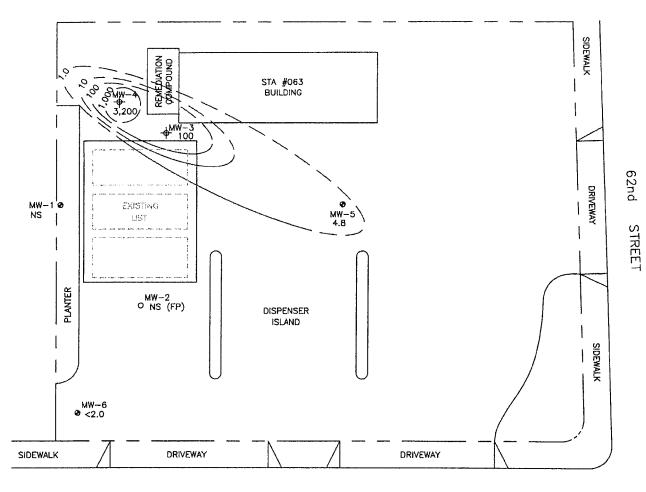
TPHg GROUNDWATER CONCENTRATIONS in μg/L 100,000 -- 100,000 ---

- TPHg GROUNDWATER CONTOUR in µg/L - NOT SAMPLED NS - FREE PRODUCT PRESENT

FP NA - NOT ANALYZED

NOVEMBER 21, 1986 (Pre-Remediation)

GEOHYDROLOGIC CONSULTANTS, INC.


5912 Bolsa Avenue, Suite 200 Huntington Beach, CA 92649 www.geohydrologic.com

NORTH	
D.F.	

DATE: 02/20/06 CHC: 1332

FIGURE 6D

DISTRIBUTION OF TPHg IN GROUNDWATER THRIFTY SERVICE STATION #063 6125 Telegraph Avenue Oakland, CA

TELEGRAPH AVENUE

LEGEND

GROUNDWATER MONITORING WELL

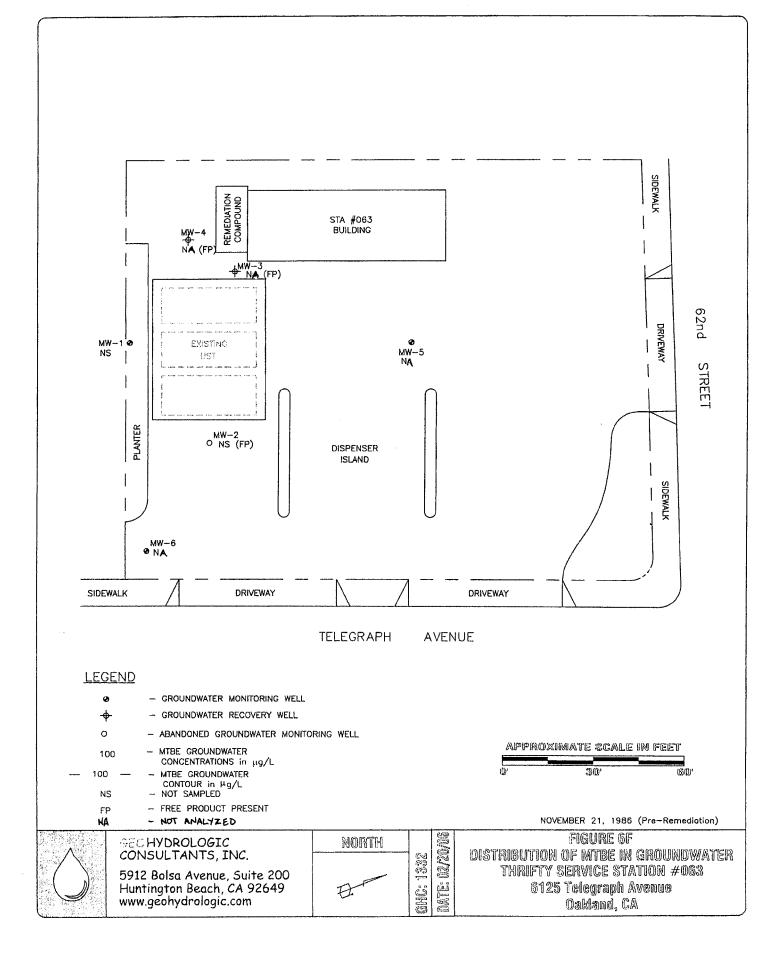
- GROUNDWATER RECOVERY WELL

O - ABANDONED GROUNDWATER MONITORING WELL

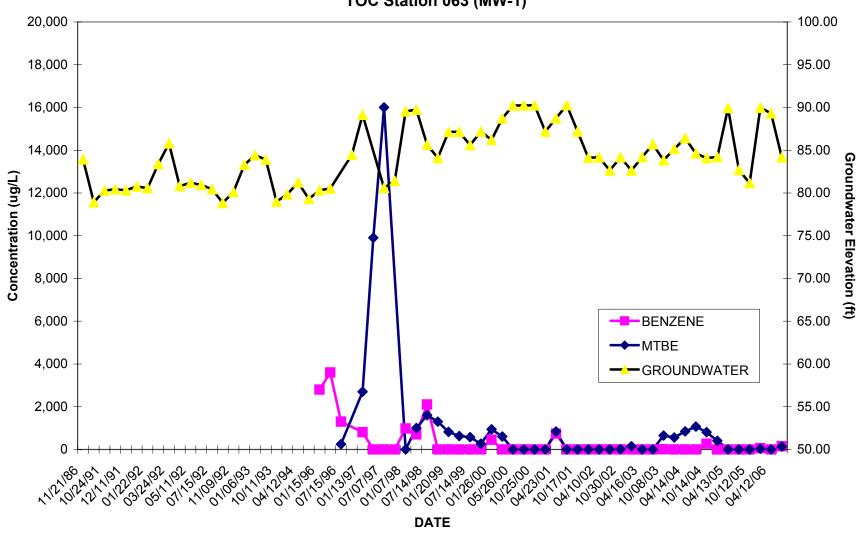
3,200 - BENZENE GROUNDWATER CONCENTRATIONS in μg/L
1,000 -- TPHG GROUNDWATER CONTOUR in μg/L
NS - NOT SAMPLED

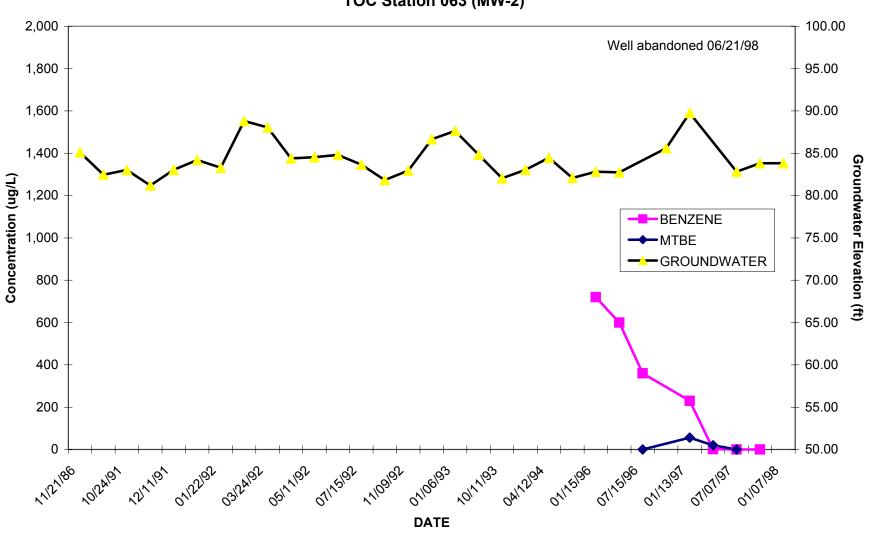
FP - FREE PRODUCT PRESENT

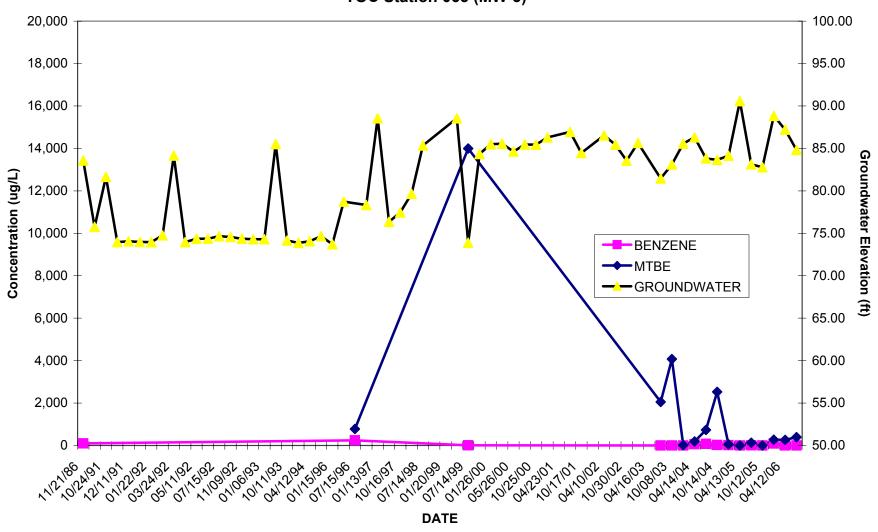
NOVEMBER 21, 1986 (Pre-Remediation)



GEOHYDROLOGIC CONSULTANTS, INC.


5912 Bolsa Avenue, Suite 200 Huntington Beach, CA 92649 www.geohydrologic.com


GHC: 1332 DATE: 02/20/06 FIGURE 6E DISTRIBUTION OF BENZENE IN GROUNDWATER THRIFTY SERVICE STATION #063 6125 Telegraph Avenue Oakland, CA


FIGURE 7A: BENZENE / MTBE CONCENTRATIONS and GROUNDWATER ELEVATIONS vs. TIME TOC Station 063 (MW-1)

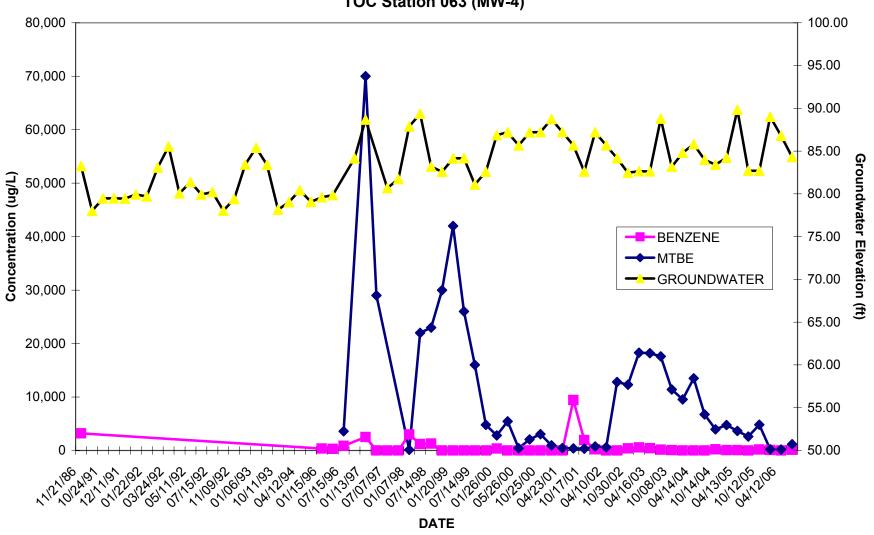
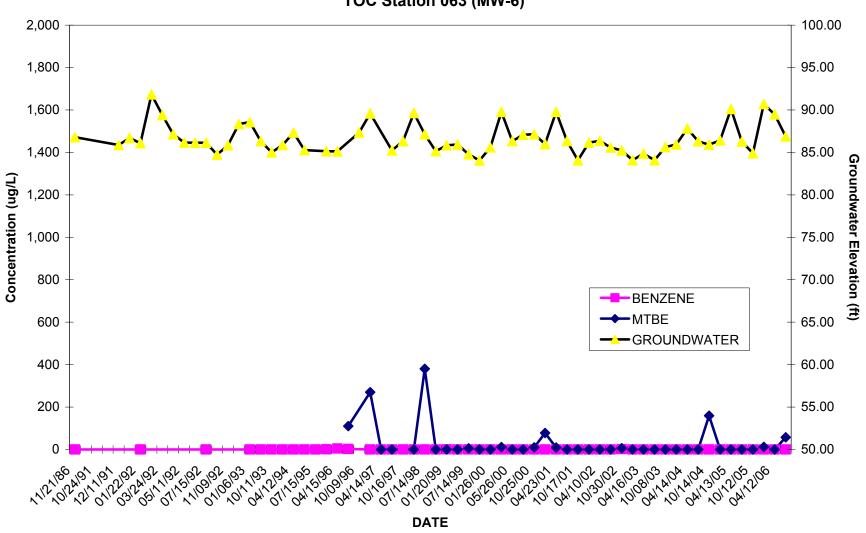

FIGURE 7B: BENZENE / MTBE CONCENTRATIONS and GROUNDWATER ELEVATIONS vs. TIME TOC Station 063 (MW-2)

FIGURE 7C: BENZENE / MTBE CONCENTRATIONS and GROUNDWATER ELEVATIONS vs. TIME TOC Station 063 (MW-3)


FIGURE 7D: BENZENE / MTBE CONCENTRATIONS and GROUNDWATER ELEVATIONS vs. TIME TOC Station 063 (MW-4)

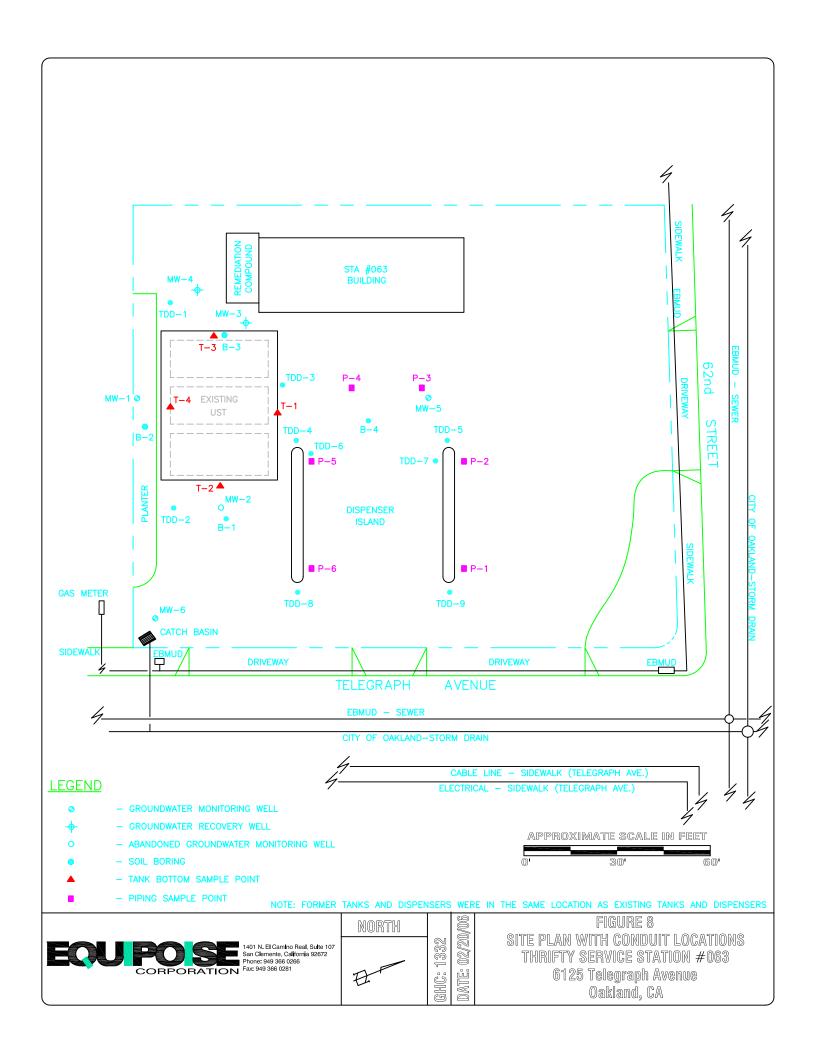


FIGURE 7E: BENZENE / MTBE CONCENTRATIONS and GROUNDWATER ELEVATIONS vs. TIME TOC Station 063 (MW-5)

FIGURE 7F: BENZENE / MTBE CONCENTRATIONS and GROUNDWATER ELEVATIONS vs. TIME TOC Station 063 (MW-6)

APPENDIX A

STATUS UPDATE REPORT DATED MARCH 19, 1994

151CE 063

THRIFTY OIL CO.

March 19, 1994

Ms. Susan L. Hugo Alameda County Health Care Services Dept. of Environmental Heath UST Local Oversight Program 80 Swan Way, Rm. 200 Oakland, CA 94621

RE:

Thrifty Oil Co. Station #063 6125 Telegraph Avenue Oakland, California 94609 Status Update - Remedial Activities

Dear Ms. Hugo,

This letter report presents the findings of groundwater monitoring, sampling and analyses performed at the subject site. In addition, the status of groundwater clean-up is discussed. The following sections present our findings and observations.

GROUNDWATER MONITORING AND SAMPLING

Since about July of 1991, groundwater depth measurements were generally obtained from the on-site wells on a monthly basis (Figure 1) by a representative from Earth Management Co. (EMC). An Oil Recovery Systems interface probe was used to collect depth to groundwater information. The depth to groundwater data was recorded by EMC on project status sheets. Copies of the field project status reports for each visit are presented in Appendix A.

In addition, several sets of groundwater samples have been collected from the site wells, MW-5 and MW-6. Each existing well was monitored for depth to groundwater and depth to well bottom by EMC personnel. The information was used to determine the casing volume of the wells. With the information, about three to four casing volumes of water were generally removed from two of the six wells using an air operated double-diaphragm pump and dedicated tubing. The purged water was placed in the on-site treatment system.

Samples were collected after groundwater had recovered to at least 80 percent of the initial level. Generally, no samples were collected from MW-1 through MW-4 due to the presence of hydrocarbon film on the water in these wells. The sampling device was a 350 cc teflon bailer, which was washed with an aqueous solution of Alconox, using the three bucket method, prior to each sample. The collected sample was transferred into laboratory supplied vials, labelled and chilled until delivery to American Analytics Laboratory or Smith-Emery Company for analysis. Each water sample was logged on a Chain-of-Custody form to be analyzed for total hydrocarbons (TPH) and volatile aromatic compounds (BETX) by EPA method 8015 and 602, respectively. Copies of the analytical reports and Chain-of-Custody cards are presented in Appendix B.

TREATMENT UNIT OPERATION

The groundwater treatment unit designed by WCC was installed and operational in April, 1991. At this time, groundwater is recovered from a six inch diameter well located down-gradient from the tank pit prior to being treated using activated carbon. Monthly sampling and analysis of the influent/effluent is being conducted by EMC and quarterly status reports submitted to East Bay Municipal Water District. To date, about 360,000 gallons of groundwater has been recovered, treated and discharge to the sewer.

FREE PRODUCT REMOVAL

In 1989, WCC reported the removal of about 14 gallons of free product through hand bailing. This practice was apparently discontinued due to the lack of appreciable product remaining on the water table in the wells. During EMC monitoring of the site, about 1.9 gallons of product was removed through hand bailing bringing the total to about 16 gallons.

FINDINGS

Prior to system start-up, depth to groundwater beneath the site ranged from 12.64 to 16.22 feet below ground surface. Based on the data collected and surveyed well head elevations by WCC, the groundwater flow direction was estimated to be westerly toward MW-4. Figure 1 presents a groundwater contour map prior to treatment system start-up. Figures 2 through 7 present groundwater contour maps a various times during treatment system operation. These figures clearly show the pumping depression near MW-3.

A summary of the analytical data of groundwater samples collected prior to and during system operation are included Table 1. Complete Analytical reports are included in Appendix B.

CLOSING

We will continue to monitor and sample the existing wells on a Quarterly basis in order to monitoring the clean-up progress. In addition, a workplan for off-site investigation west of MW-4 will be prepared. However, the April 16, 1994 deadline may not be possible as a site plan of the surrounding properties will be required to provide your office with an appropriate monitoring well location. An extension to the deadline of two weeks would be appreciated. Lastly, we are reviewing our files with regard to the closure of the waste oil tank. As soon as this information is retrieved, it will be forwarded to your office. If you have any questions, please contact me or Mr. Karl Kerner at (310) 923-9876.

Very truly yours,

Peter D'Amico Manager

Environmental Affairs

cc:

Luft Coord. RWQCB-SF

2101 Webster St., Ste. 500

Oakland, CA 94612

TABLES

TABLE 2 - Summary of Groundwater Monitoring Data Thrifty Oil Co. Station #063 Oakland, California

	Cantilla, California										
Well I.D.	Date	SWE	DTW	E-WATER	TPH	Benzene	Toluene	E-benzene	Xylenes		
√ _{MW-1}	11-21-86	99.34	15.42	83.92	NSC						
	/ 07-22-91		20.41(Film)	78.93	LPH						
	/ 07-15-92		18.90(Film)	80.44	LPH						
	⁷ 01-06-93		14.93(Film)	84.41	LPH						
	⁷ 07-13-93		15.44(Film)	83.90	LPH						
	/ 10-11-93		20.36(Film)	78.98	LPH						
	√01-11- 94		19.50(Film)	7 9.84	LPH						
√MW-2	/ 11-21-86	100.01	14.99(0.11)	85.10	LPH						
	/ 07-22-91		17.84(0.38)	82.45	LPH						
	(07-15-92		16.37(Film)	83.64	LPH						
	(01-06-93		12.37(Film)	87.64	LPH						
	07-13-93		15.19(Film)	84.82	LPH						
	⁴ 10-11-93		18.05(0.10)	82.03	LPH						
	/ 01-11-94		16.98(0.03)	83.05	LPH						

NOTE: TPH and BTEX concentrations in ug/L.

TABLE 2 - Summary of Groundwater Monitoring Data Thrifty Oil Co. Station #063 Oakland, California

Well I.D.	Date	SWE	DTW	E-WATER	TPH	Benzene	Toluene	E-benzene	Xylenes
√ MW-3	√ 11 -21-86	99.76	16.25(0.10)	83.59	LPH	100	5.1	<1.0	25
	8 07-22-91		24.00	75.76					
	→ 07-15-92		25.10(Film)	74.66	NSC				
	₹01-06-93		25.45	74.31	NSC				
	¥ 07-13-93		14.24	85.52	NSC				
	† 10-11 -93		25.60	74.16	NSC				
	≻01-11-94		25.90	73.86	NSC				
MW-4	[√] 11-21-86	99.48	16.22(Film)	83.26	100000	3200	2700	2400	14000
	†,07-22-91		21.80(0.45)	78.02	LPH				
	√07-15-92		19.27(Film)	80.21	LPH				
	→ 01-06-93		14.08(Film)	85.40	LPH				
	¹ √07-13-93		16.09(Film)	83.39	LPH				
	√10-11-93		21.33(Film)	78.15	LPH				
	→ 01-11-94		20.45(Film)	79.03	LPH				

SWE - Surveyed well elevation, arbitrary datum established for MW-3. If LPH present, 0.755 specific gravity correction used for gasoline.

DTW - Depth to water.

TPH - Total petroleum hydrocarbons, EPA 5030/8015.

E-Water - Elevation of water (specific gravity of 0.755 used for corrected depth if product present).

- - No data recorded.

NOTE: TPH and BTEX concentrations in ug/L.

TABLE 2 - Summary of Groundwater Monitoring Data Thrifty Oil Co. Station #063 Oakland, California

Well I.D.	Date	SWE	DTW	E-WATER	TPH	Benzene	Toluene	E-benzene	Xylenes
MW-5	/ 11-21-86	100.98	16.10	84.88	<1000	4.8	2.1	<0.5	7.4
	07-22-91		18.20	82.78		< 0.5	1.6	<1.0	2.0
	(01-22-92				600	21.0	8.0	2.0	17.0
	07-15-92		17.29	83.69	<200	<0.5	< 0.5	< 0.5	< 0.5
	/ 01-06-93		13.12	87.86	300	2.7	< 0.5	1.3	26.0
	/ 07-13-93		16.15	84.83	<100	1.1	0.5	1.0	1.5
	/10-11-93		18.75	82.23	130	1.2	< 0.3	< 0.3	< 0.6
	01-11-94		17.80	83.18	<50	1.5	< 0.3	<0.3	<0.5
MW-6	/ 11-21-86 / 07-22-91	99.44	12.64	86.80	<1000 NSC	<2.0	<2.0	<2.0	<2.0
	(01-22-92				<200	< 0.5	< 0.5	< 0.5	1.5
	/ 07-15-92		13.29	86.15	<200	< 0.5	< 0.5	< 0.5	< 0.5
	01-06-93		10.87	88.57	<200	< 0.5	< 0.5	< 0.5	<1.0
	07-13-93		13.10	86.34	<100	< 0.5	< 0.5	< 0.5	<1.0
	10-11-93		14.43	85.01	<60	<0.3	< 0.3	< 0.3	< 0.6
	01-11-94		13.56	85.88	<50	<0.3	< 0.3	<0.3	<0.5

SWE - Surveyed well elevation, arbitrary datum established for MW-3. If LPH present, 0.755 specific gravity correction used for gasoline.

DTW - Depth to water.

TPH - Total petroleum hydrocarbons, EPA 5030/8015.

E-Water - Elevation of water (specific gravity of 0.755 used for corrected depth if product present).

-- - No data recorded.

NOTE: TPH and BTEX concentrations in ug/L

PROJECT STATUS REPORT
THRIFTY OIL CO. S.S. #063
6125 TELEGRAPH AVENUE
OAKLAND, CA. 94609

OBSERVATION WELLS

NO.	DTW	DTP	PT	DTB	DIA.	C	DORS		P/	P		
	ONTHL	Y				YES	NO	s	YES	NO		
	19.50							X		Y	-	-
	18.98			 		y			70		-	-
	25.90			 			74	•	<u> </u>	y	_	-
	20.45			 		×				/	-	-
MW-5 /							y			×	-	-
	13.5%					-	×		-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-
	۵,۰۰۶			 		 	•		 	├		\vdash
				 					 		-	-
							-	 	 			
					 	}	 		 			
				 			<u> </u>	 	 	<u> </u>	 	-
<u></u>						 			-			
								-	 			
						ļ		 	├			
<u> </u>						ļ		ļ	ļ			
		<u> </u>				 			 			
									ļ			
<u></u>											_	
	<u> </u>											

EXPLANATION

DTW - DEPTH	TO WATER FROM SURFACE	DTP - DEPTH TO PRODUCT FROM SURFACE
PT - PRODUC	T THICKNESS	S - SLIGHT
MEASUREMENT	1 0	
REMARKS:	anaterly sample	'ue ·
FREE PRODUC	T REMOVED: APPROX O.OO/ GALLONS	WATER REMOVED: APPROX. 60 GALLONS
DATA RECOR	DED BY: E. CARMAN	INPUT BY: M.M.

FIELD DATA - GROUNDWATER WELL SAMPLING PROGRAM

DATE	01/11/	1994	8	STATION N	0. 08	3	
PERSO	ONNEL	E. CAIM	۹	ì. Rotu			
WELL	NO	1W 5		VEATHER _	Svr	лид	
Befor	e Sampli	.ng				u	
Total	Well De	pth 26.4	55 F	t. Well	Diamete:	2 3 gul	<u> </u>
Depth	to Wate	r	\$0 P	t. Purg	e Volume	23 gel	lous
Samp]	ing Data	<u>.</u>				_	
Time	9:50	3:22	10:00	10:05	10:10	10:15	
						770	
рН	6.75	6.72	670	6.66	6.66	6.68	
Temp	71.6	70.5	70	69.7	69.6	69.6 23	
Gal.	3_	7	10	14	12	23	

Gal.							
After	: Samplir	īđ					
Depth	to Wate	<u>2. 81</u>	o Pt	Total	Well Dept	th 26.55	Pt.

FIELD DATA - GROUNDWATER WELL SAMPLING PROGRAM

DATE _	01/1	1/199	4 1	STATION N	o	63	
PERSON	NNEL	É,C,	ASMAN	7. Ru	.1 O		
WELL 1	10. <u>/</u>	4W.B	1	WEATHER _	SHINA	,	
SAMPLI	EQUIP	MENT	TEF	ELON I	BAILER		
Before Total	Sampli	ing apth 27.	53 _F	t. Well	Diameter	4 4 36 gillo	• .
Depth	to Wate	13.	56 P	t. Purg	e Volume _	36 gillo	us
	ing Data					3	
	115.	11110	11:20	11:30	11:40	11:50	
EC	430	410	420	410	410	410	
Ha .	6.78	6.63	6.63	6.63	6.62	6.62	
Temp	64.7	65.2	66.1	66.5	66.6	66.5	
Gal.	Ģ	12	18	24	30	410 6.62 66.5 36	
		***************************************				••••••••••••••••••••••••••••••••••••••	
EC _							
pH _							
Temp_	·-···						
Gal			•				
After Depth	Sampli:	ng / (j:	<i>10</i> Pt	. Total	Well Depth	27.53	Ft.

APPENDIX B

PRODUCTION WELL LOCATION MAP

Figure 2. LOCAL WATER WELL LOCATIONS

APPENDIX C

EXISTING AND POTENTIAL BENEFICIAL USES OF GROUNDWATER IN IDENTIFIED BASINS

TABLE 2-9 EXISTING AND POTENTIAL BENEFICIAL USES OF GROUNDWATER IN IDENTIFIED BASINS

GROUNDWATER BASIN	COUNTY	DWR BASIN NO.	MUN®	PROC ²³	IND ⁽³⁾	AGR ⁽⁴⁾	FRESH®
Alameda Creek (Niles Cone)	Alameda	2 - 9.01	E ⁽⁶⁾	E	Ε	E	
Castro Valley	Alameda	2 - 8	Pm	P	P	P	
East Bay Plain	Alameda	2 - 9.01	E	Ε	E	E	
Livermore Valley	Alameda	2 - 10	E	E	E	E	
Sunol Valley	Alameda	2 - 11	E	E	E	E	
Arroyo Del Hambre Valley	Contra Costa	2 - 31	Р	Р	Р	P	
Clayton Valley	Contra Costa	2-5	E	P	P	P	
Pittsburg Plain	Contra Costa	2-4	P	P	P	₽	
San Ramon Valley	Contra Costa	2-7	E	P	P	E	
Ygnacio Valley	Contra Costa	2 - 6	P	P	P	P	
Novato Valley	Marin	2 - 30	P	Р	Р	Р	
Sand Point Area	Marin	2 - 27	E	P	P	P	
San Rafael	Marin	2 - 29	P	P	P	P	
Ross Valley	Marin	2 - 28	E	P	P	E	
Napa Valley	Napa	2.2 & 2 - 2.01	E	E	E	Ε	
Islais Valley	San Francisco	2 - 33	P	E	Ę	P	
Merced Valley (North)	San Francisco	2 - 35	P	P	P	E	
San Francisco Sands	San Francisco	2 - 34	E	P	P	E	
Visitation Valley	San Francisco	2 - 32	P	Ε	E	P	
Half Moon Bay Terrace	San Mateo	2 - 22	E	P	P	E	
Merced Valley (South)	San Mateo	2 - 35A	E	Р	Р	E	
Pescadero Valley	San Mateo	2 - 26	E	P	P	E	
San Gregorio Valley	San Mateo	2 - 24	£	P	P	E	
San Mateo Plain	San Mateo	2 - 9A	E	E	E	P	
San Pedro Valley	San Mateo	2 - 36	P	P	P	P	
Santa Clara Valley (& Coyote)	Santa Clara	2 - 9B	E	E	E	E	
Suisun/Fairfield Valley	Solano	2-3	Ę	E	E	E	
Kenwood Valley	Sonoma	2 - 19	E	P	P	E	
Petaluma Valley	Sonoma	2 - 1	E	P	P	E	
Sebastopol-Merced Fm. Highlands	Sonoma	2 - 25	E	P	P	E	
Sonoma Valley	Sonoma	2 - 2.022	E	P	P	E	

NOTES:

- NOTES:

 (1) MIN = Municipal and domestic water supply.

 (2) PROC = Industrial process water supply.

 (3) IND = Industrial process water supply.

 (4) AGR = Agricultural water supply.

 (5) FRESH = Freshwater replenishment to surface water.

 (Designation will be determined at a later date; for the interim, a site-by-site determination will be made).

 (6) E = Existing beneficial use; based on available information (see references listed in Table 2-8).

 (7) P = Potential beneficial use; based on available information. There is no known use of the basin for this category; however, the basin could be used for this purpose (see references listed in Table 2-8).

APPENDIX D

HISTORIC BORING AND WELL LOGS

			•	Well Numb	er <u>Mw 1</u>	Drilling Lo
Project <u>Arco</u>	/ Telegra	aph	_ Owner	Arco Petrol	eum	Sketch Map
Location 6125	Telegraph	h Ave.	_ Project	Number <u>20-06</u>	51-301	
Date Drilled 6/2	21/86	Total Depti	of Hole	30 ft. Diamete	r <u>7.5 in.</u>	
					and the same of th	
Screen: Dia. <u>2</u>	<u>in</u> l	_ength2	0 ft.	Slot Size	.020 in.	
Casing: Dia2	<u>in</u> .	ength 1	0 <u>ft.</u>	Туре	PVC	
Drilling Company	Sierra Pa	cific_	. Drilling	Method h. s.	auger	Notes
	era		Log by	B. Channell		
Depth (Feet) Well Construction	Si	ē ē	Log			
epth (Notes	Sample Number	Graphic		Description/So (Color, Textur	il Classification e. Structures)
<u> </u>		0, 2	Gra		•	
0-127 57			0.000			
B			ML		•	silt, dry, no odor
- 2- 3° 6°			_ SM _		Light brown s	silty sand, damp, no odor
i					Plack alon -	
4-10			CL		odor	moist, medium stiff, no
					Brown clay, n	noist, medium stiff, no
F 6-189 189					odor	·
		A 7			Brown gray cl	ay, dry, stiff, very
- 8-		ا ا و			slight odor	wy, dry, scrir, very
- 10-		4				
		в 6 П				
- 12-		7			Blue gray gra	welly clay, dry, stiff,
		87			moderate odor	•
_ 14					•	
- 16-				_		
		2 15		6/21/86	_	
- 18-		12			Blue gray gravery stiff, m	velly (coarse) clay, dry,
		10			Control Doming Inc.	Sacrate (MO)
- 20-					•	
					Nation To see	,
- 22					Note: Increa	se in gravel
- 24					Brown silty	gravelly clay, dry, very
					stiff, no odo	

To the state of th

6	GROUNDWATER
	TECHNOLOGY
	Division of Oil Recovery Systems, Inc.

Well Number <u>MW 1</u>

Drilling Log

Brown silty, gravelly clay, dry, very stiff, no odor Rnd of hole - 30 ft.	Depth (Feet)	Well	Notes	Sampte Number	Graphic Log	Description/Soil Classification (Color, Texture, Structures)
	-28 -				GL	Brown silty, gravelly clay, dry, very stiff, no odor
	-30 -					End of hole - 30 ft.
					 	·
	 				 	·
	- - - - - - - - - - - - -					
					_]	
	- -					•
						•
	- -				- -	

02100144

Page 2 of 2

Drilling Log Well Number __ MW 2___ Sketch Map Project Arco / Telegraph Owner Arco Petroleum Location 6125 Telegraph Ave. Project Number 20-0651-301 Date Drilled 6/21/86 Total Depth of Hole 30 ft. Diameter 7.5 in Surface Elevation _____ Water Level, Initial 15.01 ft24-hrs. _____ Screen: Dia. 2 in. Length 15 ft. Slot Size 020 in. Casing: Dia. 2 in. Length 15 ft. Type PVC Notes Drilling Company Sierra Pacific Drilling Method h. s. auger Driller __ L. Pera ____ Log by _ B. Channell ____ Well Construction Depth (Feet Sample Number Notes Description/Soil Classification Graphic (Color, Texture, Structures) 0 Asphalt Gray sand (fine), moist, slight odor 2 Gray sand (fine), moist, slight odor 2 2 Gray sand (fine), moist, loose, slight 10odor 12-Brown silty clay, damp, stiff, moderate odor 14-Brown silty, gravelly (coarse) clay, - 6/21/86 wet, stiff, moderate odor 16. Brown clayey sand, damp, moderate odor 18-Brown silty, gravelly clay, very stiff 20 15 no odor 22 24 Brown silty, gravelly clay, very stiff no odor

Drilling Log

Well Number MW 2

Depth (Feet) Well Construction Notes	Sample Number Graphic Log	Description/Soil Classification (Color, Texture, Structures)
-28 -	, CL	Brown silty, gravelly clay, very stiff, no odor
-30		End of hole - 30 ft.
	- , -	
		·
		·

6	GROUNDWATER
	TECHNOLOGY
	Division of Oil Recovery Systems, Inc.

145.00

Well Number MW 3	Drilling Log
Project Arco / Telegraph Owner Arco Petroleum Sketch Map	
Location 6125 Telegraph Ave. Project Number 20-0651-301	
Date Drilled 6/21/86 Total Depth of Hole 30 ft. Diameter 7.5 in.	
Surface Elevation Water Level, Initial 16.3 ft.24-hrs	
Screen: Dia. 2 in. Length 20 ft. Slot Size .020 in.	: .
Casing: Dia. 2 in. Length 10 ft. Type PVC	
Drilling Company Sierra Pacific Drilling Method h.s. auger Notes	
Driller L. Pera Log by B. Channell	
Opettinction Notes Number Color, Texture, Structures) Opettinction Color, Texture, Structures)	
0 - 26 PT	
Asphalt	
Peagravel, no odor	
Black clay, stiff, no cdor	
Brown tan clay, dry, stiff, i	no odor
A 4 CL Brown gray silty clay, dry, sodor	stiff, no
Note: Odor detected	İ
Brown gray silty clay, dry, n	nedium
stiff, moderate odor	
6/21/86	
Brown gray gravelly (coarse) moist, stiff, no odor	clay,
- 22-[:	
Brown gray gravelly (coarse) moist, stiff, no odor	clay,

6	GROUNDWATER
	TECHNOLOGY
	Division of Oil Recovery Systems, Inc.

Well Number MW 3

Drilling Log

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	,	,	yyen rumber
Depth (Feet)	Well	Notes	Sample	Graphic Log	Description/Soil Classification (Color, Texture, Structures)
-28 -				GL	Brown gray gravelly (coarse) clay, moist, stiff, no odor
-30		·			End of hole - 30 ft.
-					
-		·			·
					·
				_	·
				- -	
					,
				- 1 - 1	
				_	
		<u> </u>			

02100144

Elevation.

_				2.0	vation.	
DEPTH IN	SAMPLE	LOG & SRMPLE	PENE. RESIS.	DESCRIPTION		DESIGN 3 SAND
FEET	ა ¥	7 %	/ FT.		4"10-0.	. 02 SLOT
				Existing Ground Surface	1 =	
10 -				Black Topsoil	555555	555555
- 1 - - 2 - - 3 - - 4 -	-			Brown Silty Clay - Crumbly - Dry - No - Odor -		
- 5 - - 6 - - 7 - - 8 - - 9 -	4-1		12	Headspace = No Sample Recovery - Same but stiffer -		
10-				Olive/Grn Silty Clay-Moist-No Odor 10 -		
-11-	4-2			n Olive/Grn Silty Sand-SatPoss. Odor -		
- 12 - - 13 -				Black Gravelly Sandy Silty Clay - Satur- ated - Very Slight HC Odor - Headspace = 80 ppm		
- 14 - - 15 - - 16 - - 17 -	4-3	X	20	Brown and Olive Green Silty Clay - 15- Very Moist to Saturated - Moderate HC Odor Headspace = > 1000 ppm		¥
- 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 -				Brown Gravelly Sandy Silty Clay - Very - Moist - No Odor		
- 26 - - 27 -				Lighter Brown Sandy Silty Clay - Satura ted - No Odor		

Figure 3A - Test Boring Log No. 1
- Monitoring Well No. MW-4

Woodward-Clyde Consultants

Project No.: 90390A

Date: 11-13-86

Elevation.

			1	C16.	vation.	
DEPTH	E E	% Ä	PENE.		WELL DESIGN	4
IN FEET	SAMPLE	LOG & SAMPLE	RESIS.	DESCRIPTION:	#3 SA 4"ID-0.02 SL	AND
20				28 Feet Below Existing Ground Surface		، ب.
28 –						1 2020
- 29 - - 30 -				Light Brown Sandy Sandy Silty Clay Saturated - No Odor		
- 31 -	·	·		Bottom of Boring at 30 ft.		2 2 2 2 2
- 32 -				-		
- 33 -				•		
- 34 -				_		
- 35 ÷						
- 36 -				. 35 -		
- 37 -				·		
- 38 -				_		
- 39 -				_		
- 40 -				-		
- 41 -				40 -		
42			1	_		
- 43 -						
- 44 -				_		l
- 45 -				45 -		
- 46 -						
- 4 7 -		}				
- 48 -						
- 49 -		İ				
- 50 -			ļ	50 -		1
- 51 -				30		
- 52 -			1	-		
- 53 -						
- 54 -						İ
- 55 -				55 -		
						1

Figure 3B - Test Soring Log No. 1

- Monitoring Well No. MW-4

Date: 11-13-86

Elevation.

DESCRIPTION #3 SAND #3 SAND #10-0.02 SLOT #3 SAND #3 S					L I E	vation.	
Existing Ground Surface	114	SAMPLE	LOG & SAMPLE	RESIS.	DESCRIPTION	#3	SAND
AC Pavement Black Loamy Clay - Dry - No Odor Black to Dark Brown Silty Clay - Moist - No Odor Headspace = 0 5 - 5 - 1 12 Brown Silty Clay w/ some Dlive Mottling - Moist - No Odor Headspace = 0 10 - 11 - 5 - 2 28 Dlive Silty Clay w/ some Brown Mottling - Moist - No Odor Headspace = 0 Brown and Grey/Grn Sandy Silty Clay w/ some Dk. Grey Streaks - Very Moist - No Odor Headspace = 0 Brown Silty Sandy Clay - Moist - No Odor Brown Silty Sandy Clay - Moist - No Odor Light Brown Silty Sandy Clay - Very Moist - No Odor Light Brown Silty Sandy Clay - Very Moist - No Odor Light Brown Silty Sandy Clay - Very Moist - No Odor 25 - 26 - 27				·	Existing Ground Surface		
Black Loamy Clay - Dry - No Odor 1			25525			रायस	रारारारा
Black to Dark Brown Silty Clay - Moist - No Odar	h 1 -						
12 Brown Silty Clay w/ some Olive Mottling Maist - No Odor Moist - No Odor Moist - No Odor Moist - No Odor Meadspace = 0 Moist - No Odor Moist - No Od	- 3 - - 4 -				Black to Dark Brown Silty Clay - Moist -		
12	F 5 -		(222)]	Headspace = 0 5-		
Dive Silty Clay w/ some Brown Mottling	7 -	5-1		12	Brown Silty Clay w/ some Olive Mottling		
Some Dk. Grey Streaks - Very Moist - No Odor 15	- 9 - - 10 - - 11 - - 12 -	5-2		28	- Moist - No Odor		
Headspace = 0 - 17 18 19 20 21 22 23 24 25 26 27 -	- 15 -	5-7		16	some Dk. Grey Streaks - Very Moist		
Brown Silty Sandy Clay - Moist - No Odor - 19 20 21 22 23 24 25 26 27	16	3 3	ΔM	-	Headspace = 0 -	THE TENTH OF THE PERSON OF THE	
- 21 22 23 24 25 25 27 - 27 27 27 27 20 - 20 -	- 18 -				Brown Silty Sandy Clay - Moist - No Odor -		
- 21 22 23 24 25 25 27 - 27 27 27 27 20 - 20 -	- 20 -			1			
- 22 - - 23 - - 24 - - 25 - - 26 - - 27 - Light Brown Silty Sandy Clay - Very Moist - No Odar	1		<i>////</i>		20-		
- 23 - - 24 - - 25 - - 26 - - 27	1				-		
- 24		ŀ			Light Photon Silter Course Ci		
- 25 - - 26 - - 27 -	1 1				Moist - No Odar		
26 - 27 - 27 - 25 - 25 - 27 - 27 - 27 - 27	1)			-		
26 - 27 -	- 25 -	Ì			25-		
	- 25	ļ					
Bottom of Hole at 27 ft.	- 27		1///				
					Bottom of Hole at 27 ft.		

Figure 4 - Test Boring Log No. 2

⁻ Monitoring Well No. MW-5

Project No.: 90390A

Jate: 11-13-86

Elevation. WELL DESIGN SAMPLE LOG & SAMPLE DEPTH PENE. DESCRIPTION IN RESIS. #3 SAND FEET / FT. 4"ID-0.02SLOT Existing Ground Surface - 0 -AC Pavement and Base Brown Silty Clay, Stiff - Moist - No Odor _ Brown Silty Clay, Crumbly - Slightly Moist - No Odor 6-1 36 Headspace = No Sample Recovery Olive Green to Blue Green Silty Clay -- 8 -Moist - No Odor - 9 --10.-10 -Headspace = 0-11-6-2 Brown Silty Clay - Moist - No Odor -12 --13 --14 --15 -Headspace = 0 6-3 28 -18 -Brown Silty Sandy Clay - Saturated --17 -No Odor -18 --19 -- 20 -Brown Silty Clay w/ Little Sand - Very 20 - 21 -Maist - No Odon

Brown Silty Sandy Clay w/ some Gravel -

Bottom of Boring at 27 ft.

Very Moist - No Odor

Figure 5 - Test Boring Log No. 3

- 22 -- 23 -

- 24 -

- 25 -

- 26 -- 27 - 25-

DAT	DATE OBSERVED: 9-11-87 METHOD OF DRILLING: HOLLOW STEM AUGER											
LOG		BY:	SAW		GROU	ND EL	EVATION: 145' LOCATION: SEE PLOT PL	AN FIGURE B-1				
БЕРТН (FEET)	CLASSIFICATION	BLOWS/FOOT	UNDISTURBED SAMPLE	BULK SAMPLE	MOISTURE CONTENT (%)	IN PLACE DRY DENSITY (PCF)	BORING NO. B-1 DESCRIPTION	SOIL TEST GASTECHTOR READING in ppm				
0	3					·	ASPHALT COVER FILL: Brown, fine SAND, damp, No petroleum odor					
5-	SP	12					@ 5' color change to green-gray, becomes medium dense	70 ppm				
10		5					@ 10' strong petroleum odor noted	500 ppm				
15-	Ss	29					NATURAL GROUND: BEDROCK: Green, weathered SILTSTONE with Reddish brown siltstone fragments wet, very stiff, strong petroleum pdor noted	500 ppm				
20-		14					@ 20' strong petroleum odor noted	500 ppm				
25-							TOTAL DEPTH: 21 FEET NO GROUNDWATER					
30- 35-												
40-	3 40				018-		LOG OF BORING	FIGURE: 3-3				

DATE OBSERVED: 9-11-87 METHOD OF DRILLING: HOLLOW STEM AUGER										
LOG	GED	BY:	SAW		GROU	ND EL	EVATION: 150' LOCATION: SEE PLOT PL	AN FIGURE B-1		
ОЕРТН (FEET)	CLASSIFICATION		UNDISTURBED SAMPLE	BULK SAMPLE	MOISTURE CONTENT (%)	IN PLACE DRY DENSITY (PCF)	BORING NOB-2 DESCRIPTION	SOL TEST GASTECHTOR READING in ppm		
- 0-	고 -	ш)	_			ΞΩ	ACDVIA COLUMN	TELES TO THE PERSON		
-							ASPHALT COVER FILL: Brown CLAY with silt, damp stiff, no petroleum odor			
5	CL	13					@ 5' drive sample not recovered	250 ppm		
10-		28			·		NATURAL GROUND: BEDROCK: Green-gray weathered SILTSTONE with reddish brown siltstone fragments, damp to moist, very stiff, slight petroleum odor	220 ppm ,		
15— - -	Ss	32					@ 15' slight petroleum odor noted	200 ppm		
20		38					@ 19' Groundwater noted	_		
30-							TOTAL DEPTH: 21 FEET GROUNDWATER @ 19'			
40-	<u>i</u>	1 .	1 - 5 - 6	1)18-0	10-00	LOG OF BORING	FIGURE: 3-4		

DATE	DATE OBSERVED: 9-11-87 METHOD OF DRILLING: HOLLOW STEM AUGER											
LOG		BY:	SAV	<u> </u>	GROU	ND EL	EVATION: 150' LOCATION: SEE PLOT PL	AN FIGURE B-1				
DEPTH (FEET)	CLASSIFICATION	BLOWS/FOOT	UNDISTURBED SAMPLE	BULK SAMPLE	MOISTURE CONTENT (%)	ICE DRY IY (PCF)	BORING NO. B-3	SOIL TEST				
O DEPTI	CLASSI	вгом	NNDIS 8AI	BULK	CONT	IN PLACE I	DESCRIPTION	GASTECHTOR READING in ppm				
-	CL						ASPHALT COVER FILL: Dark brown to black CLAY with silt, damp, stiff, no petroleum odor					
5-		13					NATURAL GROUND: WEATHERED BEDROCK Brown CLAY with silt, damp, stiff slight petroleum odor					
10-	CL	14					@ 10' becomes moist, slight petroleum odor noted	60 ppm				
15-		10	:				@ 15' drive sample not recovered slight petroleum odor noted	160 ppm				
20-		15					@ 20' drive sample not recovered slight petroleum odor noted	170 ppm				
25-							TOTAL DEPTH: 21 FEET NO GROUNDWATER					
30 -	:											
35-												
40-			The same of the sa									
	NO.	177	<u> </u>	32~	<u></u> 019-	<u> </u>	LOG OF BORING	FIGURE: 3-5				

..

DATE	DATE OBSERVED: 9-11-87 METHOD OF DRILLING: HOLLOW STEM AUGER											
LOG	GED	BY:	SAW		GROU	ND EL	EVATION: 150 LOCATION: SEE PLOT P	LAN FIGURE B-1				
ОЕРТН (FEET)	CLASSIFICATION	BLOWS/FOOT	UNDISTURBED SAMPLE	BULK SAMPLE	MOISTURE CONTENT (%)	IN PLACE DRY DENSITY (PCF)	BORING NO. B-4	SOIL TEST				
DEPT	CLASS	BLOW	NDIS	BULK	CONT	IN PL	DESCRIPTION	GASTECHTOR READING in ppm				
-	l						ASPHALT COVER					
5-	CL						FILL: Dark brown-black CLAY with SILT, damp, stiff, construction debris Noted, no petroleum odor					
		12						50 ppm				
							NATURAL GROUND: WEATHERED BEDROCK					
10-		15					Grey mottled Red-Brown, silty CLAY, damp, stiff,					
		3					no petroleum odor	100 ppm				
-							•					
15-		12						150 ppm				
1												
20-		2.1					BEDROCK: Reddish brown weathered SILTSTON; wet, hard, no petroleum odor	.50 ppm				
1		36					acc, marc, mo pour orden. Coor	, 30 pp.m				
4							TOTAL DEPTH: 21 FEET					
25-							NO GROUNDWATER					
-					·							
-								·				
30						!						
-												
35-												
_												
40-												
JOB	NO.:	13.	-675	32-	018-0	00-00	LOG OF BORING	FIGURE: 3-5				

LOCATION M	IAP				PACIFI	C ENV	IROI	NMENTAL GROUP, INC. BORING NO. TDD-1 PAGE 1 OF 1	
				•	PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 20.5'				
WELL COMPLETION		MOISTURE CONTENT	PID	PENETRATION (BLOWS/FT)	DEPTH (FEET) RECOVERY	SAMPLE INTERVAL GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS	
Backfilled					_			ASPHALT 3"; FILL MATERIAL 2'	
With Grout		Dp	0	36	2 - 4 -		CL	SILTY CLAY: yellowish brown; no product odor.	
		טט	U	30	6		CL	GRAVELLY CLAY: olive brown; moderate plasticity; very stiff; no product odor.	
<u> </u>	}				8	H	ML	CLAYEY SILT: dark greenish gray; moderate	
	-	Mst	27	34	10-	777	GC	plasticity; very stiff; faint product odor. CLAYEY GRAVEL: dark greenish gray; medium	
	1				12	1833		dense; faint product odor.	
	1				14	122			
-	lacksquare	Wt- Sat	1,27	39	16			@15': as above; moderate product odor.	
					18				
		Sat	10	40	20 –	000	GP	SANDY GRAVEL: reddish brown; dense; no product odor.	
F -	-				22	\blacksquare		BOTTOM OF BORING AT 20.5'	
	1				24.	\blacksquare			
<u> </u>	7				26				
	}				28				
<u> </u>	}				30	\pm			
E -	_				32				
	-				34	出			
	-				36-				
	-				38				
_	-				40	1	1		
	-				42				
<u></u>	_				-4-				

LOCATION M	IAP	•		,	PACIFIC	PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-2 PAGE 1 OF 1					
					LOGGED DRILLER DRILLING	PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 20.5'					
WELL COMPLETION	·	MOISTURE CONTENT	PID	PENETRATION (BLOWS/FT)	DEPTH (FEET) RECOVERY	SAMPLE INTERVAL GRAPHIC	SOIL TYPE	LITHOLOGY / REMA	RKS		
Backfilled With Grout		Dр	0	13	2 4 6 8		FL	ASPHALT 3" SAND - FILL MATERIAL: no product o	odor.		
		Mst	705	24	10 - 12 - 14 - 16		SM	SILTY SAND: dark olvie gray; medium to moderate product odor.			
	立	Sat		38	16		GP	GRAVELLY CLAY: dark greenish gray plasticity; moderate product odor. SANDY GRAVEL: yellowish brown; de product odor.			
					22			BOTTOM OF BORING A	Γ 20.5'		

LOCATION M.	AP			PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-3 PAGE 1 OF 1							
				PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 20.5'							
WELL COMPLETION	MOISTURE	PID	PENETRATION (BLOWS/FT)	ОЕРТН (FEET)	RECOVERY SAMPLE INTERVAL	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS			
Backfilled With Grout —	Dp	0	4	2 — 4 — 6 — 8 —			FL	ASPHALT 4" SAND - FILL MATERIAL: no product odor. @5': as above; no product odor.			
	Mst	93	8	10 — 12 —				@10': as above; faint product odor.			
 	Wt- Sat		27	14 — 16 — 18 —			CL	SANDY CLAY: olive; moderate plasticity; very stiff; faint to moderate product odor.			
	Sat	32	16	20 — 22 — 24 — 26 — 30 — 32 — 34 — 36 — 38 — 40 — 42 —		0 0	GP	SILTY GRAVEL: dark reddish brown; medium dense; no product odor. BOTTOM OF BORING AT 20.5'			

LOCATION M			PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-4 PAGE 1 OF 1								
		PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 0 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph HOLE DIAMETER: 8" HOLE DEPTH: 20.5'									
WELL COMPLETION		MOISTURE CONTENT	PID	PENETRATION (BLOWS/FT)	ОЕРТН (FEET)	RECOVERY SAMPLE INTERVAL	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS		
Backfilled With Grout —		Dp	15	22	2 - 4 - 6 -			CL	ASPHALT SILTY CLAY: yellowish brown with greenish gray mottling; very stiff; faint product odor.		
 		Mst	127	30	8 – 10 – 12 –			CL ·	SANDY CLAY: olive brown; moderate plasticity; very stiff; moderate product odor.		
	▼ ▽	Wt- Sat	832	38	14 — 16 — 18 —			SC SM	CLAYEY SAND: olive; medium dense; moderate product odor.		
		Sat	10	29	20 22 24			SIVI	SILTY SAND: strong brown; medium dense; no product odor. BOTTOM OF BORING AT 20.5'		
					26- - 28-						
					30-						
					36-				The Straight of the Straight o		
-					42-						

LOCATION MA			PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-5 PAGE 1 OF 1							
			PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 20'							
WELL COMPLETION		MOISTURE CONTENT	PID	PENETRATION (BLOWS/FT)	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS	
Backfilled With Grout 		Mst	0	41	2 4 6 8			CL	ASPHALT 3" CLAY: black; moderate to high plasticity; no product odor. SILTY CLAY: pale brown with yellowish brown mottling; hard; no product odor.	
		Mst	8	36	10 -			CL	GRAVELLY CLAY: light olive brown; very stiff; no to faint product odor. CLAYEY GRAVEL: light olive brown; low plasticity;	
	▼ ▽	Wt	0	34	16			CL	very stiff; no product odor. SILTY CLAY: pale olive; hard; no product odor.	
				31	20 22 24 26 26				BOTTOM OF BORING AT 20'	
					28- 30- 32- 34-					
				Andrews spatial a sale of the secondary community community community community community community community	36- 38- 40- 42-					
	- -		!		44.		-	<u> </u>		

LOCATION M			PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-6 PAGE 1 OF 1						
			PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station №. 063 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 10'						
WELL COMPLETION		MOISTURE CONTENT	PID	PENETRATION (BLOWS/FT)	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS	
Backfilled With Grout		Dp	721		2 — 4 — 6 —		CL	CONCRETE 5" CLAY: black; high plasticity; moderate product odor. GRAVELLY CLAY: light yellowish brown with gray staining; low to moderate plasticity; moderate product odor.	
		Mst	0		8 — 10 — 12 —		CL	SILTY CLAY: dark olive with gray mottling; moderate plasticity; no product odor.	
 					14 -			BOTTOM OF BORING AT 10'	
					18 20 22				
- - - -					24 - 26 - 28 -				
- - - -					30- 32- 34-				
- - - - -	1 1 1 1 1 1				36- 38- 40-				
			***************************************		42-		e i man i deli della coma i mano della coma i della coma i della coma i della coma i della coma i della coma i		

BORING NO. TDD-7 PACIFIC ENVIRONMENTAL GROUP, INC. LOCATION MAP PAGE 1 OF 1 PROJECT NO. 331-008.1A CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-11-97 LOGGED BY: D.A. LOCATION: 3400 San Pablo AVe. DRILLER: MDE HOLE DIAMETER: 8" DRILLING METHOD: HSA SAMPLING METHOD: CALMOD HOLE DEPTH: 10' PENETRATION (BLOWS/FT) MOISTURE CONTENT SOIL TYPE GRAPHIC WELL LITHOLOGY / REMARKS DEPTH (FEET) COMPLETION 品 CONCRETE 5"; FILL MATERIAL 1' CL CLAY: black; high plasticity; faint product odor. Backfilled With Grout Mst 27 SILTY CLAY: light olive brown with gray staining along CL rootholes; no product odor. Mst 0 @10': as above; no product odor. 12 **BOTTOM OF BORING AT 10'** 14 16 18 20 22 24 26 28 30 32 34 36 38

LOCATION M			PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-8 PAGE 1 OF 1								
			PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-11-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 20'								
WELL COMPLETION		MOISTURE CONTENT	PID .	PENETRATION (BLOWS/FT)	OEPTH (FEET)	RECOVERY SAMPLE INTERVAL	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS		
Backfilled With Grout		Mst	0	24	2 — 4 — 6 —			CL CL	CONCRETE 4"; FILL MATERIAL 8" CLAY: black; high plasticity; no product odor. SILTY CLAY: dark yellowish brown with gray mottling; no product odor.		
		Mst	32	29	8 -			CL	GRAVELLY CLAY: olive; very stiff; faint product odor.		
 	▼ ▽	Wt	0	41	'-				@15': as above; medium dense; no product odor.		
		Mst	0	30	22 -			CL	SILTY CLAY WITH GRAVEL: pale olive with strong brown mottling; low plasticity; very stiff; no product odor. BOTTOM OF BORING AT 20'		
	 				24- 26- 28-						
 					30-						
					36- 38- 40-						
	——————————————————————————————————————				42- 44-	-					

LOCATION M		PACIFIC ENVIRONMENTAL GROUP, INC. BORING NO. TDD-9 PAGE 1 OF 1								
		PROJECT NO. 331-008.1A LOGGED BY: D.A. DRILLER: MDE DRILLING METHOD: HSA SAMPLING METHOD: CALMOD CLIENT: Thrifty Station No. 063 DATE DRILLED: 6-12-97 LOCATION: 6125 Telegraph Road HOLE DIAMETER: 8" HOLE DEPTH: 20.5'								
WELL COMPLETION		MOISTURE CONTENT	PID	PENETRATION (BLOWS/FT)	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	GRAPHIC	SOIL TYPE	LITHOLOGY / F	REMARKS
Backfilled Backfilled With Grout		Mst	132	24	2 4 6			CL	CONCRETE 5" CLAY: black; moderate to high odor. SILTY CLAY: olive gray with light very stiff; faint to moderate produced.	nt bluish gray staining;
 		Mst	237	32	8 10 12			GC	CLAYEY GRAVEL: dark olive g moderate product odor.	ray; medium dense;
- - -	▼ ▽	Wt	0	35	14 16			SC	CLAYEY SAND: yellowish brow product odor.	n; medium dense; no
		Sat	0	22	18 20 22		0000	GP CL	SANDY GRAVEL: strong brown product odor. SILTY CLAY: pale olive; very si	
					24- 26- 28- 30- 32- 34- 36- 38- 40- 42- 44-				BOTTOM OF BOR	NG AT 20.5'

APPENDIX E ESLs FOR SOIL AND BASIN PLAN OBJECTIVES FOR GROUNDWATER

TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water

	¹ Shal	low Soil	
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater
ACENAPHTHENE			(ug/L)
ACENAPHTHENE	1.6E+01	1.6E+01	2.0E+01
ACETONE	1.3E+01	1.3E+01	3.0E+01
ALDRIN	5.0E-01	5.0E-01	1.5E+03
ANTHRACENE	3.2E-02	1.3E-01	2.0E-03
ANTIMONY	2.8E+00	2.8E+00	7.3E-01
ARSENIC	6.1E+00	4.0E+01	6.0E+00
BARIUM	5.5E+00	5.5E+00	3.6E+01
BENZENE	7.5E+02	1.5E+03	1.0E+03
BENZO(a)ANTHRACENE	4.4E-02	4.4E-02	1.0E+00
BENZO(b)FLUORANTHENE	3.8E-01 3.8E-01	1.3E+00 1.3E+00	2.7E-02
BENZO(k)FLUORANTHENE	3.8E-01	1.3E+00	2.9E-02 2.9E-02
BENZO(g,h,i)PERYLENE	2.7E+01	2.7E+01	
BENZO(a)PYRENE	3.8E-02	·	1.0E-01
BERYLLIUM		1.3E-01	1.4E-02
BIPHENYL, 1,1-	4.0E+00 6.5E-01	8.0E+00 6.5E-01	2.7E+00
BIS(2-CHLOROETHYL)ETHER	1.8E-04	1.8E-04	5.0E-01
BIS(2-CHLOROISOPROPYL)ETHER	5.4E-03	5.4E-03	1.4E-02 5.0E-01
BIS(2-ETHYLHEXYL)PHTHALATE	6.6E+01	6.6E+01	4.0E+00
BORON	1.6E+00	2.0E+00	1.6E+00
BROMODICHLOROMETHANE	1.4E-02	3.9E-02	1.0E+02
BROMOFORM	2.2E+00	2.2E+00	1.0E+02
BROMOMETHANE	2.2E-01	3.9E-01	9.8E+00
CADMIUM	1.7E+00	7.4E+00	1.1E+00
CARBON TETRACHLORIDE	1.2E-02	3.4E-02	5.0E-01
CHLORDANE	4.4E-01	1.7E+00	4.0E-03
CHLOROANILINE, p-	5.3E-02	5.3E-02	5.0E+00
CHLOROBENZENE	1.5E+00	1.5E+00	2.5E+01
CHLOROETHANE	6.3E-01	8.5E-01	1,2E+01
CHLOROFORM	8.8E-01	1.9E+00	7.0E+01
CHLOROMETHANE	7.0E-02	2.0E-01	1.3E+00
CHLOROPHENOL, 2-	1.2E-02	1.2E-02	1.8E-01
CHROMIUM (Total)	5.8E+01	5.8E+01	5.0E+01
CHROMIUM III	7.5E+02	7.5E+02	1.8E+02
CHROMIUM VI	1.8E+00	1.8E+00	1.1E+01
CHRYSENE	3.8E+00	1.3E+01	2.9E-01
COBALT	1.0E+01	1.0E+01	3,0E+00
COPPER	2.3E+02	2.3E+02	3.1E+00
CYANIDE (Free)	3.6E-03	3.6E-03	1.0E+00
DIBENZO(a,h)ANTHTRACENE	1.1E-01	3.8E-01	8.5E-03
DIBROMOCHLOROMETHANE	1.9E-02	5.4E-02	1.0E+02
1,2-DIBROMO-3-CHLOROPROPANE	4.5E-03	4.5E-03	2.0E-01
DIBROMOETHANE, 1,2-	3.3E-04	3.3E-04	5.0E-02
DICHLOROBENZENE, 1,2-	1.1E+00	1.1E+00	1.0E+01

TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (≤3m bgs)

Groundwater IS Current or Potential Source of Drinking Water

	¹ Shai	low Soil	
CHEMICAL PARAMETER	² Residentlal Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L)
DICHLOROBENZENE, 1,3-	7.4E+00	7.4E+00	6.5E+01
DICHLOROBENZENE, 1,4-	4.6E-02	1.3E-01	5.0E+00
DICHLOROBENZIDINE, 3,3-	7.7E-03	7.7E-03	2.9E-02
DICHLORODIPHENYLDICHLOROETHANE (DDD)	2.3E+00	9.0E+00	1.0E-03
DICHLORODIPHENYLDICHLOROETHYLENE (DDE)	1.6E+00	4.0E+00	1.0E-03
DICHLORODIPHENYLTRICHLOROETHANE (DDT)	1.6E+00	4.0E+00	1.0E-03
DICHLOROETHANE, 1,1-	2.0E-01	2.0E-01	5.0E+00
DICHLOROETHANE, 1,2-	4.5E-03	4.5E-03	5.0E-01
DICHLOROETHYLENE, 1,1-	1.0E+00	1.0E+00	6.0E+00
DICHLOROETHYLENE, Cis 1,2-	1.9E-01	1.9E-01	6,0E+00
DICHLOROETHYLENE, Trans 1,2-	6.7E-01	6.7E-01	1.0E+01
DICHLOROPHENOL, 2,4-	3.0E-01	3.0E-01	3.0E-01
DICHLOROPROPANE, 1,2-	5.1E-02	1.2E-01	5.0E+00
DICHLOROPROPENE, 1,3-	3.3E-02	5.9E-02	5.0E-01
DIELDRIN	2.3E-03	2.3E-03	1.9E-03
DIETHYLPHTHALATE	3.5E-02	3.5E-02	1.5E+00
DIMETHYLPHTHALATE	3.5E-02	3.5E-02	1.5E+00
DIMETHYLPHENOL, 2.4-	6.7E-01	6.7E-01	1.0E+02
DINITROPHENOL, 2,4-	4.0E-02	4.0E-02	1.4E+01
DINITROTOLUENE, 2,4-	8.5E-04	8.5E-04	1.1E-01
1,4 DIOXANE	1.8E-03	1.8E-03	3.0E+00
DIOXIN (2,3,7,8-TCDD)	4.6E-06	1.9E-05	5.0E-06
ENDOSULFAN	4.6E-03	4.6E-03	8.7E-03
ENDRIN	6.5E-04	6.5E-04	2.3E-03
ETHANOL	4.5E+01	4.5E+01	5.0E+04
ETHYLBENZENE	3.3E+00	3.3E+00	3.0E+01
FLUORANTHENE	4.0E+01	4.0E+01	8.0E+00
FLUORENE	8.9E+00	8.9E+00	3.9E+00
HEPTACHLOR	1.4E-02	1.4E-02	3.8E-03
HEPTACHLOR EPOXIDE	1.5E-02	1.5E-02	3.8E-03
HEXACHLOROBENZENE	2.7E-01	9.6E-01	1.0E+00
HEXACHLOROBUTADIENE	1.0E+00	1.0E+00	2.1E-01
HEXACHLOROCYCLOHEXANE (gamma) LINDANE	4.9E-02	4.9E-02	8.0E-02
HEXACHLOROETHANE	2.4E+00	2.4E+00	7.0E-01
INDENO(1,2,3-∞I)PYRENE	3.8E-01	1.3E+00	2.9E-02
LEAD	1.5E+02	7.5E+02	2.5E+00
MERCURY	3.7E+00	1.0E+01	1.2E-02
METHOXYCHLOR	1.9E+01	1.9E+01	1.9E-02
METHYLENE CHLORIDE	7.7E-02	7.7E-02	5.0E+00
METHYL ETHYL KETONE	3.9E+00	3.9E+00	4.2E+03
METHYL ISOBUTYL KETONE	2.8E+00	2.8E+00	1.2E+02
METHYL MERCURY	1.2E+00	1.0E+01	3.0E-03
METHYLNAPHTHALENE (total 1- & 2-)	2.5E-01	2.5E-01	2.1E+00
METHYL TERT BUTYL ETHER	2.3E-02	2.3E-02	5.0E+00

TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water

	1 _{Chal}	low Soil	
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³Groundwater (ug/L)
MOLYBDENUM	4.0E+01	4.0E+01	3.5E+01
NAPHTHALENE	4.6E-01	1.5E+00	1.7E+01
NICKEL	1.5E+02	1.5E+02	8.2E+00
PENTACHLOROPHENOL	4.4E+00	5.0E+00	1.0E+00
PERCHLORATE	1.0E-02	1.0E-02	6.0E+00
PHENANTHRENE	1.1E+01	1.1E+01	4.6E+00
PHENOL	7.6E-02	7.6E-02	5.0E+00
POLYCHLORINATED BIPHENYLS (PCBs)	2.2E-01	7.4E-01	1.4E-02
PYRENE	8.5E+01	8.5E+01	2.0E+00
SELENIUM	1.0E+01	1.0E+01	5.0E+00
SILVER	2.0E+01	4.0E+01	1.9E-01
STYRENE	1.5E+00	1.5E+00	1.0E+01
tert-BUTYL ALCOHOL	7.3E-02	7.3E-02	1.2E+01
TETRACHLOROETHANE, 1,1,1,2-	2.4E-02	2.4E-02	1.3E+00
TETRACHLOROETHANE, 1,1,2,2-	9.1E-03	1.8E-02	1.0E+00
TETRACHLOROETHYLENE	8.7E-02	2.4E-01	5.0E+00
THALLIUM	1.0E+00	1.3E+01	2.0E+00
TOLUENE	2.9E+00	2.9E+00	4.0E+01
TOXAPHENE	4.2E-04	4.2E-04	2.0E-04
TPH (gasolines)	1.0E+02	1.0E+02	1.0E+02
TPH (middle distillates)	1.0E+02	1.0E+02	1.0E+02
TPH (residual fuels)	5.0E+02	1.0E+03	1.0E+02
TRICHLOROBENZENE, 1,2,4-	3.8E-01	1.0E+00	2.5E+01
TRICHLOROETHANE, 1,1,1-	7.8E+00	7.8E+00	6.2E+01
TRICHLOROETHANE, 1,1,2-	3.2E-02	7.0E-02	5.0E+00
TRICHLOROETHYLENE	2.6E-01	4.6E-01	5.0E+00
TRICHLOROPHENOL, 2,4,5-	1.8E-01	1.8E-01	1.1E+01
TRICHLOROPHENOL, 2,4,6-	1.7E-01	1.7E-01	5.0E-01
VANADIUM	1.1E+02	2.0E+02	1.5E+01
VINYL CHLORIDE	6.7E-03	1.9E-02	5.0E-01
XYLENES	2.3E+00	2.3E+00	2.0E+01
ZINC	6.0E+02	6.0E+02	8.1E+01

TABLE A. ENVIRONMENTAL SCREENING LEVELS (ESLs) Shallow Soils (≤3m bgs)

Groundwater IS Current or Potential Source of Drinking Water

	¹ Shal	low Soil	
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³Groundwater (ug/L)
Electrical Conductivity (mS/cm, USEPA Method 120.1 MOD)	2.0	4.0	not applicable
Sodium Adsorption Ratio	5.0	12	not applicable

Red: Updated with respect to ESLs presented in July 2003 document.

Notes:

- 1. Shallow soils defined as soils less than or equal to 3 meters (approximately 10 feet) below ground surface.
- 2. Category "Residential Land Use" generally considered adequate for other sensitive uses (e.g., day-care centers, hospitals, etc.)
- Assumes potential discharge of groundwater into a freshwater, marine or estuary surface water system.

Source of soil ESLs: Refer to Appendix 1, Tables A-1 and A-2.

Source of groundwater ESLs: Refer to Appendix 1, Table F-1a.

Soil data should be reported on dry-weight basis (see Appendix 1, Section 6.2).

Soil ESLs intended to address direct-exposure, groundwater protection, ecologic (urban areas) and nuisance concerns under noted land-use scenarios. Soil gas data should be collected for additional evaluation of potential indoor-air impacts at sites with significant areas of VOC-impacted soil. See Section 2.6 and Table E.

Groundwater ESLs intended to be address drinking water, surface water, Indoor-air and nuisance concerns. Use in conjunction with soil gas screening levels to more closely evaluate potential impacts to indoor-air if groundwater screening levels for this concern approached or exceeded (refer to Section 2.6 and Appendix 1, Table F-1a).

Aquatic habitat goals for bloaccumulation concerns not considered in selection of groundwater goals (refer to Section 2.7). Refer to appendices for summary of ESL components.

Soil and water ESLs for ethanol based on gross contamination concerns (see Appendix 1, Chapter 5 and related tables).
TPH -Total Petroleum Hydrocarbons. TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g., BTEX, PAHs, oxidizers, etc.). See Volume 1, Section 2.2 and Appendix 1, Chapter 5.

TABLE C. ENVIRONMENTAL SCREENING LEVELS (ESLs) Deep Soils (>3m bgs)

Groundwater IS a Current or Potential Source of Drinking Water

	¹ Dec	ep Soil	
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L)
ACENAPHTHENE	1.6E+01	1.6E+01	2.0E+01
ACENAPHTHYLENE	1.3E+01	1.3E+01	3.0E+01
ACETONE	5.0E-01	5.0E-01	1.5E+03
ALDRIN	1.5E+00	1.5E+00	2.0E-03
ANTHRACENE	2.8E+00	2.8E+00	7.3E-01
ANTIMONY	2.8E+02	2.8E+02	6.0E+00
ARSENIC	5.5E+00	5.5E+00	3.6E+01
BARIUM	2.5E+03	2.5E+03	1.0E+03
BENZENE	4.4E-02	4.4E-02	1.0E+00
BENZO(a)ANTHRACENE	1.2E+01	1.2E+01	2.7E-02
BENZO(b)FLUORANTHENE	1.5E+01	1.5E+01	2.9E-02
BENZO(k)FLUORANTHENE	2.7E+00	2.7E+00	2.9E-02
BENZO(g,h,i)PERYLENE	2.7E+01	2.7E+01	1.0E-01
BENZO(a)PYRENE	1.5E+00	1.5E+00	1.4E-02
BERYLLIUM	3.6E+01	3,6E+01	2.7E+00
BIPHENYL, 1,1-	6.5E-01	6.5E-01	5.0E-01
BIS(2-CHLOROETHYL)ETHER	1.8E-04	1.8E-04	1.4E-02
BIS(2-CHLOROISOPROPYL)ETHER	5.4E-03	5.4E-03	5.0E-01
BIS(2-ETHYLHEXYL)PHTHALATE	6.6E+01	6.6E+01	4.0E+00
BORON	4.6E+04	4.6E+04	1.6E+00
BROMODICHLOROMETHANE	1.4E-02	3.9E-02	1.0E+02
BROMOFORM	2.2E+00	2.2E+00	1.0E+02
BROMOMETHANE	2.2E-01	3.9E-01	9.8E+00
CADMIUM	3,8E+01	3.8E+01	1.1E+00
CARBON TETRACHLORIDE	1.2E-02	3,4E-02	5.0E-01
CHLORDANE	1.5E+01	1.5E+01	4.0E-03
CHLOROANILINE, p-	5.3E-02	5.3E-02	5.0E+00
CHLOROBENZENE	1.5E+00	1.5E+00	2.5E+01
CHLOROETHANE	6.3E-01	8.5E-01	1.2E+01
CHLOROFORM	2.1E+00	2.1E+00	7.0E+01
CHLOROMETHANE	7.0E-02	2.0E-01	1.3E+00
CHLOROPHENOL. 2-	1,2E-02	1.2E-02	1.8E-01
CHROMIUM (Total)	5.8E+01	5.8E+01	5.0E+01
CHROMIUM III	2.5E+03	5.0E+03	1.8E+02
CHROMIUM VI	1.8E+00	1.8E+00	1.1E+01
CHRYSENE	1.9E+01	1.9E+01	2.9E-01
COBALT	1.0E+01	1.0E+01	3.0E+00
COPPER	2.5E+03	5.0E+03	3.1E+00
CYANIDE (Free)	3.6E-03	3.6E-03	1.0E+00
DIBENZO(a,h)ANTHTRACENE	4.3E+00	4.3E+00	8.5E-03
DIBROMOCHLOROMETHANE	1.9E-02	5.4E-02	1.0E+02
1,2-DIBROMO-3-CHLOROPROPANE	4.5E-03	4.5E-03	2.0E-01
DIBROMOETHANE, 1,2-	3.3E-04	3.3E-04	5.0E-02
DICHLOROBENZENE, 1,2-	1.1E+00	1.1E+00	1.0E+01

TABLE C. ENVIRONMENTAL SCREENING LEVELS (ESLs) Deep Soils (>3m bgs)

Groundwater IS a Current or Potential Source of Drinking Water

	¹ Dec	ep Soil	
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³Groundwater (ug/L)
DICHLOROBENZENE, 1,3-	7.4E+00	7.4E+00	6.5E+01
DICHLOROBENZENE, 1,4-	4.6E-02	1.3E-01	5.0E+00
DICHLOROBENZIDINE, 3,3-	7.7E-03	7,7E-03	2.9E-02
DICHLORODIPHENYLDICHLOROETHANE (DDD)	1.1E+02	1.1E+02	1.0E-03
DICHLORODIPHENYLDICHLOROETHYLENE (DDE)	7.6E+01	7.6E+01	1.0E-03
DICHLORODIPHENYLTRICHLOROETHANE (DDT)	4.3E+00	4.3E+00	1.0E-03
DICHLOROETHANE, 1,1-	2.0E-01	2.0E-01	5.0E+00
DICHLOROETHANE, 1,2-	4.5E-03	4.5E-03	5.0E-01
DICHLOROETHYLENE, 1,1-	1.0E+00	1.0E+00	6.0E+00
DICHLOROETHYLENE, Cis 1,2-	1.9E-01	1.9E-01	6.0E+00
DICHLOROETHYLENE, Trans 1,2-	6.7E-01	6.7E-01	1.0E+01
DICHLOROPHENOL, 2,4-	3.0E-01	3.0E-01	3.0E-01
DICHLOROPROPANE, 1,2-	5.1E-02	1.2E-01	5.0E+00
DICHLOROPROPENE, 1,3-	3.3E-02	5.9E-02	5.0E-01
DIELDRIN	2.3E-03	2.3E-03	1.9E-03
DIETHYLPHTHALATE	3.5E-02	3.5E-02	1.5E+00
DIMETHYLPHTHALATE	3.5E-02	3.5E-02	1,5E+00
DIMETHYLPHENOL, 2,4-	6.7E-01	6.7E-01	1.0E+02
DINITROPHENOL, 2,4-	4.0E-02	4.0E-02	1.4E+01
DINITROTOLUENE, 2,4-	8.5E-04	8.5E-04	1.1E-01
1,4 DIOXANE	1.8E-03	1.8E-03	3.0E+00
DIOXIN (2,3,7,8-TCDD)	2.4E-04	2.4E-04	5.0E-06
ENDOSULFAN	4.6E-03	4.6E-03	8.7E-03
ENDRIN	6.5E-04	6.5E-04	2.3E-03
ETHANOL	4.5E+01	4.5E+01	5.0E+04
ETHYLBENZENE	3.3E+00	3.3E+00	3.0E+01
FLUORANTHENE	6.0E+01	6.0E+01	8.0E+00
FLUORENE	8.9E+00	8.9E+00	3.9E+00
HEPTACHLOR	1.4E-02	1.4E-02	3.8E-03
HEPTACHLOR EPOXIDE	1.5E-02	1.5E-02	3.8E-03
HEXACHLOROBENZENE	1.1E+01	1.1E+01	1.0E+00
HEXACHLOROBUTADIENE	1.0E+00	1.0E+00	2.1E-01
HEXACHLOROCYCLOHEXANE (gamma) LINDANE	4.9E-02	4.9E-02	8.0E-02
HEXACHLOROETHANE	2.4E+00	2.4E+00	7.0E-01
INDENO(1,2,3-∞d)PYRENE	7.7E+00	7.7E+00	2.9E-02
LEAD	7.5E+02	7.5E+02	2.5E+00
MERCURY	9.8E+01	9.8E+01	1.2E-02
METHOXYCHLOR	1.9E+01	1.9E+01	1.9E-02
METHYLENE CHLORIDE	7.7E-02	7.7E-02	5.0E+00
METHYL ETHYL KETONE	3.9E+00	3.9E+00	4.2E+03
METHYL ISOBUTYL KETONE	2.8E+00	2.8E+00	1.2E+02
METHYL MERCURY	4.1E+01	4.1E+01	3.0E-03
METHYLNAPHTHALENE (total 1- & 2-)	2.5E-01	2.5E-01	2.1E+00
METHYL TERT BUTYL ETHER	2.3E-02	2.3E-02	5.0 E+00

TABLE C. ENVIRONMENTAL SCREENING LEVELS (ESLs) Deep Soils (>3m bgs)

Groundwater IS a Current or Potential Source of Drinking Water

	¹ Dec	ep Soil	
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L.)
MOLYBDENUM	2.5E+03	3.6E+03	3.5E+01
NAPHTHALENE	4.6E-01	1.5E+00	1.7E+01
NICKEL	1.0E+03	1.0E+03	8.2E+00
PENTACHLOROPHENOL	5.3E+00	5.3E+00	1.0E+00
PERCHLORATE	1.0E-02	1.0E-02	6.0E+00
PHENANTHRENE	1.1E+01	1.1E+01	4.6E+00
PHENOL	7.6E-02	7.6E-02	5.0E+00
POLYCHLORINATED BIPHENYLS (PCBs)	6.3E+00	6.3E+00	1.4E-02
PYRENE	8.5E+01	8.5E+01	2.0E+00
SELENIUM	2.5E+03	3.4E+03	5.0E+00
SILVER	2.5E+03	3.6E+03	1.9E-01
STYRENE	1.5E+00	1.5E+00	1.0E+01
tert-BUTYL ALCOHOL *	7.3E-02	7.3E-02	1.2E+01
TETRACHLOROETHANE, 1,1,1,2-	2.4E-02	2.4E-02	1.3E+00
TETRACHLOROETHANE, 1,1,2,2-	9.1E-03	1.8E-02	1.0E+00
TETRACHLOROETHYLENE	8.7E-02	2.4E-01	5.0E+00
THALLIUM	4.7E+01	4.7E+01	2.0E+00
TOLUENE	2.9E+00	2.9E+00	4.0E+01
TOXAPHENE	4.2E-04	4.2E-04	2.0E-04
TPH (gasotines)	4. 1.0E+02	1.0E+02	1.0E+02
TPH (middle distillates)	1.0E+02	1.0E+02	1.0E+02
TPH (residual fuels)	1.0E+03	1.0E+03	1.0E+02
TRICHLOROBENZENE, 1,2,4-	3.8E-01	1.0E+00	2.5E+01
TRICHLOROETHANE, 1,1,1-	7.8E+00	7.8E+00	6.2E+01
TRICHLOROETHANE, 1,1,2-	3.2E-02	7.0E-02	5.0E+00
TRICHLOROETHYLENE	2.6E-01	4.6E-01	5.0E+00
TRICHLOROPHENOL, 2,4,5-	1.8E-01	1.8E-01	1.1E+01
TRICHLOROPHENOL, 2,4,6-	1.7E-01	1.7E-01	5.0E-01
VANADIUM	2.5E+03	5.0E+03	1.5E+01

TABLE C. ENVIRONMENTAL SCREENING LEVELS (ESLs)

Deep Soils (>3m bgs)

Groundwater IS a Current or Potential Source of Drinking Water

	¹ Dec		
CHEMICAL PARAMETER	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L)
VINYL CHLORIDE	6.7E-03	1.9E-02	5.0E-01
XYLENES	2.3E+00	2.3E+00	2.0E+01
ZINC	2.5E+03	5.0E+03	8.1E+01
Electrical Conductivity (mS/cm, USEPA Method 120.1 MOD)	not applicable	not applicable	not applicable
Sodium Adsorption Ratio	not applcable	not applicable	not applicable

Red: Updated with respect to ESLs presented in July 2003 document.

Notes:

- 1. Deep soils defined as soils greater than 3 meters (approximately 10 feet) below ground surface.
- Category "Residential Land Use" generally considered adequate for other sensitive uses (e.g., day-care centers, hospitals, etc.)
- 3. Assumes potential discharge of groundwater into a freshwater, marine or estuary surface water system.

Source of soil ESLs: Refer to Appendix 1, Tables C-1 and C-2.

Source of groundwater ESLs: Refer to Appendix 1, Table F-1a.

Soil data should be reported on dry-weight basis (see Appendix 1, Section 6.2).

Soil ESLs intended to address human health, groundwater protection and nuisance concerns under a construction/trench worker exposure scenario and noted land-use scenarios. Soil gas data should be collected for additional evaluation of potential indoor-air impacts at sites with significant areas of VOC-impacted soil. See Section 2.6 and Table E. Groundwater ESLs intended to be address drinking water, surface water, indoor-air and nuisance concerns. Use in conjunction with soil gas screening levels to more closely evaluate potential impacts to indoor-air if groundwater screening levels for more closely evaluate potential impacts to indoor-air if groundwater screening levels for this concern approached or exceeded (refer to Section 2.6 and Appendix 1, Table F-1a).

Aquatic habitat goals for bioaccumulation concems not considered in selection of groundwater goals (refer to Section 2.7).
Refer to appendices for summary of ESL components.

Soil and water ESLs for ethanol based on gross contamination concerns (see Appendix 1, Chapter 5 and related tables).
TPH -Total Petroleum Hydrocarbons. TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g., BTEX, PAHs, oxidizers, etc.). See Volume 1, Section 2.2 and Appendix 1, Chapter 5.

APPENDIX F

GROUNDWATER REMEDIATION SYSTEM DATA

		Total/Cum.				OUTLET!	EFFLUENT								
Date	Totalizer (gallons)	Discharge	Flow	TPH-g	В	T	E	X	MTBE	TPH-g	В	T	E	Х	MTBE
	(данинь)	(gallons)	(gal/day)	ug/L	ug/L	ug/L	ug/L	ug∦Ļ	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
4/0/4004	4.000														
4/8/1991 4/15/1991	1,669	4.073			<0.3	<0.3	<0.3	<0.9	-	-	1300	120	<7.5	1300	-
	5,742	4,073	582 643		<0.3	<0.3	<0.3	<0.3	-	-	700	140	<15	500	-
4/22/1991 4/29/1991	10,240 15,510	8,571 13,841	753		<0.3 <0.3	<0.3 <0.3	<0.3	<0.9 <0.9	-	•	850	100	34	860	-
5/6/1991	20,200	18,531	670	-	<0.3	<0.3	<0.3 <0.3	<0.9	-		220 280	8.4 0.8	<0.3 <0.3	42 56	-
5/13/1991	24,430	22,761	604		<0.3	<0.3	<0.3	<0.9	-		190	5.6	<0.3	37	-
5/20/1991	28,480	26,811	579		<0.3	<0.3	<0.3	<0.9	-	-	150	0.83	1.4	29	-
5/28/1991	29,310	27,641	104	-	<0.3	<0.3	<0.3	<0.9	-	-	<0.3	<0.3	<0.3	<0.9	-
6/3/1991	33,080	31,411	628	-	<0.3	<0.3	<0.3	<0.9			58	4	<0.3	33	-
6/10/1991	36,939	35,270	551		<0.3	<0.3	<0.3	<0.9	-	-	45	<0.3	<0.3	16	-
6/17/1991	40,673	39,004	533	<u> </u>	<0.3	<0.3	<0.3	<0.9	-		69	4.9	0.9	21	
6/24/1991	44,453	42,784	540	<u> </u>	<0.3	<0.3	<0.3	<0.9	-	<u>-</u>	5.4	2	<0.3	6.6	-
7/1/1991	48,173	46,504	531		<0.5	<0.5	<1	<1			14	15	<1	9.1	-
7/8/1991	51,681	50,012	501	_	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	6.9	
7/15/1991	55,186	53,517	501	-	<0.5	<0.5	<1	<1	-	-	<0.5	0.6	<1	6.3	-
7/22/1991	62,150	60,481	995	-	<0.5	<0.5	<1	<1		-	<0.5	<0.5	<1	2.6	-
7/29/1991	62,150	60,481		-	<0.5	<0.5	<1	<1	_	_	<0.5	<0.5	1.2	19	-
8/5/1991	63,241	61,572	156	-	<0.5	<0.5	<1	<1			<0.5	<0.5	<1	<1	
8/12/1991	66,091	64,422	407	_	<0.5	<0.5	<1	<1			2.6	<0.5	<1	12	_
8/19/1991	67,649	65,980	223	-	<0.5	<0.5	<1	<1			20	3.3	2.8	70	_
8/26/1991	70,514	68,845	409	-	<0.5	<0.5	<1	<1			<0.5	<0.5	1.2	19	-
9/9/1991	70,564	68,895	4	-	<0.5	<0.5	<1	<1	-	_	270	10	13	69	-
9/16/1991	73,526	71,857	423	System shut dow	n due to damaged	compressor pum	p		-						-
10/7/1991	73,526	71,857	-	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	3.8	-
10/14/1991	74,516	72,847	141	-	<0.5	<0.5	<1	<1	-	-	60	1.1	<1	23	-
10/21/1991	76,091	74,422	225	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	<1	-
10/28/1991	83,242	81,573	1,022	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	14	-
11/3/1991	83,242	81,573	-	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	3.1	-
11/11/1991	84,351	82,682	139	-	<0.5	<0.5	<1	<1	-	-	99	1.9	<1	14	-
11/18/1991	85,647	83,978	185	-	<0.5	<0.5	<1	<1	•	-	42	1	1	10	-
11/25/1991	89,512	87,843	552	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	3.9	-
12/3/1991	93,407	91,738	487	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	3,8	-
12/9/1991	96,210	94,541	467	-	<0.5	<0.5	<1	<1	-	-	<0.5	<0.5	<1	3.2	-
12/16/1991	99,045	97,376	405	•	<0.5	<0.5	<0,5	<0.5	-	-	1.3	<0.5	<0.5	1.5	-
12/23/1991	102,334	100,665	470	•	<0.5	<0.5	<0.5	<0.5	-	-	1.7	<0.5	<0.5	2.4	-
12/30/1991	105,124	103,455	399	-	<0.5	<0.5	<0.5	<0.5	-		22.6	1.2	0.7	4.9	-
1/15/1992	115,691	114,022	660	-	<0.5	<0.5	<0.5	<0.5	-	-	130	11	<0.5	50	-
2/10/1992	124,846	123,177	352	-	<0.5	<0.5	<0.5	<0.5	-	-	20	0.51	<0.5	3.6	-
3/9/1992	149,965	148,296	897	<200	<0.5	<0.5	<0.5	<0.5	-	12,000	2,100	400	170	2,100	-
4/13/1992	168,567	166,898	531	<200	<0.5	<0.5	<0.5	<0.5	-	2,100	280	3.9	<2.5	98	-
5/11/1992	187,170	185,501	664	<200	<0.5	0.7	<0.5	<0.5	-	<200	<0.5	<0.5	<0.5	<0.5	-
6/8/1992	190,490	188,821	119	-	<0.5	<0.5	<0.5	<0.5	-	-	44	3.7	0.7	64	-
7/6/1992	197,080	195,411	235		-	-	-	-	-						-
7/13/1992	197,890	196,221	116	<u>-</u>	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-
7/13/1992	197,890	196,221	-	Sytem shut down	for repair of electi	ical motor									
8/10/1992	197,890	196,221		Restart the system											
8/17/1992	201,300	199,631	487	[<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	•

		Total/Cum.				OUTLET /	EFFLUENT					INLET/I	NFLUENT		
Date	Totalizer	Discharge	Flow	TPH-g	В	T	Ε	X	MTBE	TPH-g	В	т	E	l x	MTBE
	(galions)	(gallons)	(gal/day)	ug/L	นต/เ	ug/L	ug/L	ug/L	ug/L	ugtL	ug/L	ug/L	ug/L	ug/L	
9/14/1992	209.647	207,978	298		<0.5	<0.5	<0.5	<1	- ugic	- bg/c	<0.5	<0.5	<0.5	<1 <1	ug/L
10/5/1992	217,360	215,691	367	<200	<0.5	<0.5	<0.5	<1		<200	<0.5	<0.5	<0.5	<1	-
11/09/92	225,780	224,111	241		<0.5	<0.5	<0.5	<1		-200	1.1	0.5	<0.5	10	
12/14/92	243,048	241,379	493		<0.5	<0.5	<0.5	<1			720	46	<10	1,700	
01/04/93	252,510	250,841	451	-	<0.5	<0.5	<0.5	<1	-	-	400	32	<25	520	
02/15/93	266,210	264,541	326	<200	<0.5	<0.5	<0.5	<1	_	9,000	1,400	330	260	1,200	•
03/08/93	269,330	267,661	149		<0.5	<0.5	<0.5	<1	-	-	1,100	150	7.5	1,000	
04/26/93	271,290	269,621	40	<100	<0.5	<0.5	<0.5	<1	-	7,200	1,100	100	25	780	-
04/26/93	271,290	269,621	-	System shut dow	n fo repair					· · · · · · · · · · · · · · · · · · ·					
07/15/93	272,577	270,908	16	Restart the syste	m .										
08/11/93	284,230	282,561	432	-	<0.5	<0.5	<0.5	<1	-	-	1.3	<0.5	<0.5	1.6	-
09/16/93	298,832	297,163	406	<60	<0.3	<0.3	<0.3	<0.6	-	<60	<0.3	<0.3	<0.3	<0.6	-
10/08/93	305,641	303,972	310	-	-	-	-	-	-	-	-	-	-	-,	-
10/11/93	307,068	305,399	476	<60	<0.3	<0.3	<0.3	<0.6	-	<60	<0.3	<0.3	<0.3	<0.6	
10/15/93	308,495	306,826	357	-	-	-	-	-	-	-	-	-	-	-	-
11/12/93	318,203	316,534	347	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	-
12/10/93	329,947	328,278	419	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	-
01/13/94	345,860	344,191	468	-	<0.3	<0.3	<0.3	<0.5	-		<0.3	<0.3	<0.3	<0.5	-
02/10/94	359,662	357,993	493	-	<0.3	<0.3	<0.3	<0.5	-	-	430	41	36	480	-
02/18/94	618,620	357,993	-	Changed air filter	s. The water flow	neter jumped fron	n 359,662 to 618,6	20.							
03/10/94	627,540	366,913	446	-	<0.3	<0.3	<0.3	<0.5	-	-	<0.3	<0.3	<0.3	7.7	-
04/14/94	645,330	384,703	508	<50	<0.3	<0.3	<0.3	<0.5	-	170	1.5	<0.3	0.38	0.73	-
05/19/94	653,520	392,893	234	<50	<0.3	<0.3	<0.3	<0.5	-	1,500	46	4.1	0.5	84	-
06/16/94	664,015	403,388	375	<50	<0.3	<0.3	<0.3	<0.5	-	12,000	860	37	<13	1,600	-
07/14/94	672,750	412,123	312	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	•
08/11/94	681,920	421,293	328	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	-
09/15/94	692,083	431,456	290	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	-
10/17/94	699,979	439,352	247	<50	<0.3	<0.3	<0.5	<0.5	-	<50	<0.3	<0.3	<0.5	<0.5	-
11/14/94	712,539	451,912	449	<50	<0.3	<0.3	<0.5	<0.5	-	<50	<0.3	<0.3	<0.5	<0.5	
12/19/94	734,620	473,993	631	<50	<0.3	<0.3	<0.5	<0.5	-	<50	<0.3	<0.3	<0.5	<0.5	-
01/10/95	742,072	481,445	339	-	- 1	-	-	<u> </u>	-	-					
01/16/95	742,074	481,447	0		for repair of comp	ressor pump									
02/06/95	742,074	481,447		Restart the syster			ļ								
02/13/95	744,063	483,436	284	<50	<0.3	<0.3	<0.5	<0.5	-	<50	<0.3	<0.3	<0.5	<0.5	-
03/13/95	758,930	498,303	531	<100	<0.5	<0.5	<0.5	<1	-	1,300	<0.5	<0.5	<0.5	<1	-
04/17/95 05/15/95	768,276 780,716	507,649	267 444	<100	<0.5	<0.5	<0.5	<1	-	6,200	410	73	97	280	-
06/12/95	784,514	520,089 523,887	136	<100	<0.5	<0.5	<0.5	<1	-	1,300	0.6	<0.5	<0.5	<1	-
06/12/95	784,514	523,887	136 268	<100 <100	<0.5 <0.5	<0.5	<0.5	<1	-	<100	<0.5	<0.5	<0.5	<1	-
08/14/95	794,158	533,531	268	<100	<0.5	<0.5 <0.5	<0.5	<1		1,100	<0.5	<0.5	<0.5	<1	
08/14/95	795,216	534,589	105	<100	<0.5	<0.5	<0.5 <0.5	<1 <1		170	<0.5 <0.5	<0.5	<0.5	<1 <1	-
10/17/95	800,316	537,004	65	<100	<0.5	<0.5	<0.5	<1	-	1,320	<0.5 26	<0.5 2.7	<0.5 3.9	<1 46	
11/20/95	806,264	545,637	175	150	<0.3	<0.3	<0.3	<0.5	-	2,400 450	0.31	<0.3	<0.3	46 <0.5	
12/11/95	809,236	548,609	142	300	<0.3	<0.3	<0.3	0.59		450	<0.3	<0.3	<0.3	<0.5 <0.5	
01/15/96	822,734	562,107	386	510	<0.3	<0.3	<0.3	<0.5		900	0.39	<0.3	<0.3	<0.5	
02/19/96	848,213	587,586	728	800	<0.3	0.57	<0.3	0.83		1700	23	3.7	<0.3	<0.5 80	
03/19/96	849,587	588,960	47	930	<0.3	<0.3	<0.3	<0.5	-	1,600	5.5	1.4	<0.3	94	· ·
04/15/96	852,042	591,415	91	990	<0.3	<0.3	<0.3	<0.5		1,100	0.43	<0.3	<0.3	<0.5	-
	,					7.0				1,,100	0.40	-5.5	-0.0	-0.0	-

		Total/Cum.				OUTLET /	EFFLUENT					INLET / I	NFLUENT			
Date	Totalizer	Discharge	Flow	TPH-g	В	T	E	X	MTBE	TPH-q	8	T	E	X	MTBE	
	(gallons)	(gallons)	(gal/day)	ug/L_	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
05/13/96	890,214	629.587	1 262	840	<0.3	<0.3	•	<0.5			1		1	<0.5	_	
05/13/96	890,214	629,587	1,363	_	1	L	<0.3	V0.5	-	910	<0.3	<0.3	<0.3	<0.5	-	
			•	4-:	n for carbon chan	ge I										
06/14/96	890,214	629,587	-	Restart the syste		.0.0				4.000			ļ			
06/18/96	890,818	630,191	151	<50	<0.3	<0.3	<0.3	<0.5	-	1,000	92	8.7	3.4	55	-	
07/01/96	892,781	632,154	151		L	<u> </u>		•								
07/08/96	894,210	633,583	204	·	n due to burglary	and damaged air	compressor									
08/05/96	894,210	633,583	-	Restart the syste			ļ									
08/13/96	896,220	635,593	251	<50	<0.3	<0.3	<0.3	<0.5	-	3,500	160	110	220	650	-	
09/23/96	899,410	638,783	78	<50	<0.3	<0.3	<0.3	<0.5	-	<50	0.49	<0.3	<0.3	<0.5		
10/09/96	899,845	639,218	27	<50	<0.3	<0.3	<0.3	<0.5	-	730	1.7	0.42	2.1	2.5	-	
11/11/96	901,348	640,721	46	<50	<0.3	<0.3	<0.3	<0.5	-	81	<0.3	<0.3	<0.3	<0.5	-	
12/09/96	901,576	640,949	8	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	•	
01/13/97	904,630	644,003	87	<50	<0.3	<0.3	<0.3	<0.5	-	13,000	590	250	180	850	-	
02/10/97	912,610	651,983	285	82	<0.3	0.38	<0.3	<0.5	-	700	0.92	0.75	<0.3	4.1	-	
03/10/97	921,020	660,393	300	<50	<0.3	<0.3	<0.3	<0.5	-	600	<0.3	<0.3	<0.3	<0.5	-	
04/14/97	932,410	671,783	325	<50	<0.3	<0.3	<0.3	<0.5	-	4,400	<0.3	<0.3	<0.3	<0.5	-	
05/12/97	941,028	680,401	308	<50	<0.3	<0.3	<0.3	<0.5		5,600	7.3	0.32	<0.3	17		
06/23/97	943,183	682,556	51	-	-	-	-	-	-	-	-		-		-	
07/07/97	945,821	685,194	188	<50	<0.3	<0.3	<0.3	<0,5	-	1,500	3.4	<0.3	<0.3	26	-	
08/04/97	951,020	690,393	186	-		-	-	-	-	-		-	-		•	
09/02/97	957,933	697,306	238	System shut dow	n due to stolen air	compressor					-	-	-	-	-	
10/06/97	961,030	700,403	91	-	-	•	-	-	-	-	-	-	-	-		
10/16/97	961,077	700,450	5	<50	<0.3	<0.3	<0.3	<0.5	-	550	<0.3	<0.3	<0.3	<0.5	-	
11/17/97	970,920	710,293	308	•	-	-	-	-		<u>-</u>	-	-	-	-	-	
12/23/97	986,016	725,389	419	-	-	-	-	-	-	-	-	-	-	-	-	
01/05/98	991,520	730,893	423	-	-	-	-	-	-	-	-	-	-	-	-	
01/07/98	992,365	731,738	423	<50	<0.3	<0.3	<0.3	<0.5	-	65,000	690	8,400	3,100	20,000	-	
02/02/98	996,874	736,247	173	-	-	-	-	-	-	-	-	-	-	-	-	
02/09/98		736,247	-	System shut dow	n due to the UST i	replacement and	station remodeling						_		1100000	
02/17/98		736,247	-	<50	<0.3	<0.3	<0.3	<0.5	-	35,000	150	<15	<15	8,900	-	
04/13/98	53,000	736,247	-	Replaced carbon	s and restarted sy	stem with new me	eter (53,000)							-		
4/13 - 6/1/98	-	736,247	-	System was unde	ergoing several ma	intenance / piping	g / hose replaceme	ent								
06/01/98	53,780	737,027	16	-	-	-	-	-	-	-	-	-	-	-	-	
07/14/98	56,905	740,152	73	<50	<0.3	<0.3	<0.3	<0.5	-	3,500	14	0.56	<0.3	26	-	
08/13/98	59,426	742,673	84	-	-	_	-	-	-			_	-	•	-	
09/11/98	62,356	745,603	101	-	-	-	-	-	•	-	-	-	-	-	-	
10/15/98	62,714	745,961	11	<50	<0.3	<0.3	<0.3	<0.5	-	2,200	21	4	<0.3	100	-	
11/06/98	62,952	746,199	11	_		-	_	-	-	-	-	-	-	-	-	
11/20/98		746,199	-	System shut dow	n for flowmeter rep	placement										
12/01/98	0.0	746,199	-		m with flowmeter											
12/31/98	5,340.0	751,539	178	-	_	-		-				<u>-</u>				
01/11/99	15,020.0	761,219		System shut dow	n		-				_			-	-	
1/11 - 2/1/99		761,219			rgoing maintenar	ice for the compr	essor					-			-	
01/20/99		761,219		<50	<0.3	<0.3	<0.3	<0.5		110	0.43	0.42	<0.3	<0.5	260	
02/01/99	15,600.0	761,799		Restart system	-0.3	-0.0		-0.0	-	110	0.43	0.42		-5,5	200	
02/01/99	22.840.0	769,039	658	. Colari ayalelil						_		-			-	
02/12/99	22,840.0	769,039	- 000	System shirt down	n for carbon canist	er replacement		<u>-</u>		-	-	-	-	<u>-</u>		
02/22/99	22,840.0	769,039				er replacement										
03/20/99	22,040.0	709,038	-	Restart the syste	···						L					

	_	Total/Cum.				OUTLET /	EFFLUENT			INLET / INFLUENT					
Date	Totalizer	Discharge	Flow	TPH-g	В	Т	E	X	MTBE	TPH-g	8	Т	i e	X	MTBE
	(gallons)	(gallons)	(gel/day)	ug/L	ug∕L	ug/L	tig/L	ug/L		υg/L	nd\r	ugAL	ug/L	ug/L	ug/L
03/31/99	24,620.0	770,819	356	_	_	_	_	-	-	_	I	_	T	1	1
04/16/99	29,605.0	775,804	312	<50	<0.3	<0.3	<0.3	<0.5	- <5	- <50	<0.3	<0.3	<0.3	<0.5	- <5
05/11/99	36,010.0	782,209	256	-	10.0	10.5				-30	-0.5				
05/25/99	46,000.0	792,199		System shut dow	n due to carbon	ranister leaking				1		 	<u> </u>	 	
09/02/99	46,000.0	792,199		Restart system	I					 					
09/17/99	46,217.0	792,416	14	-		-		-		l			<u> </u>		
10/07/99	46,809.0	793,008	30	<50	<0.3	<0.3	<0.3	<0.5	11	65	<0.3	<0.3	<0.3	<0.5	120
10/21/99	47,278.0	793,477	34	System shut dow	n for carbon char	.1			<u> </u>		0.0	1	1	1	125
11/24/99	47,283.0	793,482	0	Restart system		Ĭ						 			
12/30/99	49,386.0	795,585	58	-	-	-	_	_	-	-	_		-		<u> </u>
01/26/00	50,569.0	796,768	44	<50	<0.3	<0.3	<0.3	<0.5	-	<50	<0.3	<0.3	<0.3	<0.5	-
02/25/00	51,983.0	798,182	47	-	-	-	_	-	-	_			-		-
03/24/00	54,603.0	800,802	94	-	-	-	-	-	_		-	_	-		_
04/19/00	56,754.0	802,953	83	<5	<0.25	<0.25	<0.25	<0.5	-	<50	1.3	<0.25	<0.25	<0.5	<5
04/30/00	58,022.0	804,221	115	-		-	-		_	_	-	-	-		
05/26/00	60,086.0	806,285	79	-	-	-	-	-	-	923	<0.6	2	85	80	*8,350/4,810
06/16/00	61,889.0	808,088	86	<50	<0.3	<0.3	<0.3	<0.6	<5	3,820	<0.3	<0.3	<0.3	<0.6	3,740
07/26/00	65,987.0	812,186	102	<50	<0.3	<0,3	<0.3	<0.6	<5	<50	<0.3	<0.3	<0.3	<0.6	<5
08/25/00	68,630.0	814,829	88	-	-	-	_	-	_	-		-	_		_
09/29/00	85,661.0	831,860	487	-	-	-	-	-	-		_	_		-	-
10/13/00	96,212.0	842,411	754	-	-	-		-	-	_	-			_	-
10/20/00	99,700.0	845,899	498	Shut down syster	n for QWS and re	placed flowmeter s	starting at 000 (old	f meter estimated	at 99,700). Sytem	restarted on 10/2	5/00 after QWS				
10/25/00	0.0	845,899	-	<50	<0.18	<0.14	<0.18	<0.26	<0.24	17,100	111	121	141	972	998
10/27/00	2,160	848,059	1,080	-	-	-	-	-	-	-	-	-	-	-	-
11/03/00	7,420	853,319	751	-	-	-	-	-	-	-	-	_	-	-	-
11/24/00	16,560	862,459	435	-	-	-	-	-	-	-	_	-	-	_	-
12/22/00	51,530	897,429	1,249	-	-	-	-	-	-	-	-	-	-	-	-
01/10/01	54,520	900,419	157	<50	<0.18	<0.14	<0.18	<0.26	<0.24	10,000	384	223	<0.18	1,330	11,600
02/19/01	99,640	945,539	1,128	-	-	-	-	-	-	-	-	-	-	-	-
03/19/01	144,170	990,069	1,590	-	-	-	-	-	-	-	-	-	-	-	-
04/09/01	167,050	1,012,949	1,090	378	<0.18	<0.14	<0.18	<0.26	475	4,040	191	4	42	38	4,990
04/13/01	169,210	1,015,109	540	Shut down syster	n for replacement	of carbon drums									
04/18/01	169,210	1,015,109		Restart system											
04/23/01	177,140	1,023,039	1,586	93	<0.18	<0.14	<0.18	<0.26	132	1,400	<0.18	<0.14	<0.18	<0.26	3,240
05/02/01	186,800	1,032,699	1,073	Shut down syster	n for carbon chan	ge									
05/18/01	186,900	1,032,799	6	Restart system											
05/30/01	200,850	1,046,749	1,163	<50	<0.18	<0.14	<0.18	<0.26	<0.24	3,100	15	<0.14	1	2	*8,510 / 5,780
06/25/01	266,720	1,112,619	2,533	-	-	-	-	-	-	-	-	-	-	-	-
07/09/01	278,760	1,124,659	860	<50	<0.18	<0.14	<0.18	<0.26	<0.24	748	15	<0.14	2	2.7	1,440
08/13/01	399,700	1,245,599	3,455	-	-	-	-	-	-	-	-	-	-	-	-
09/24/01	451,240	1,297,139	1,227	-	-	-	-	-	-	-	-	-	-	-	-
10/01/01	488,310	1,334,209	5,296	<50	<0.18	<0.14	<0.18	<0.26	<0.24	956	1.2	<0.14	<0.18	<0.26	878
11/12/01	636,260	1,482,159	3,523	-	-	-	-	-	-	-	-	-	-	-	-
12/31/01	674,080	1,519,979	772	-	-	-	-	•	-	-	-	-	-	-	-
01/14/02	688,450	1,534,349	1,026	<50	<0.18	<0.14	<0.18	<0.26	<0.24	232	1	1	<0.18	<0.26	363
02/18/02	738,420	1,584,319	1,428	-	-	-		-	-	-		-	-	-	
03/25/02	814,570	1,660,469	2,176	-	-	-		-	-	-	•	-	-	-	-
04/08/02	828,510	1,674,409	996	<50	<0.18	<0.14	<0.18	<0.26	<0.24	105	<0.18	<0.14	<0.18	<0.26	157

		Total/Cum.		OUTLET / EFFLUENT INLET / INFLUENT											
Date	Totalizer (gallons)	Discharge	Flow (gal/day)	TPH-g	В	Ŧ	E	X	MTBE	TPH-g	8	T	E	X	MTBE
	(gandilə)	(gallons)	(Ganday)	ugAL	ug/L	ug/L	ug/L	ugAL	սց/Լ	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
04/22/02	895,910	1,741,809	4,814		-	_	_		-		-	_	-	-	I -
05/06/02	895,920	1,741,819	1	System off; Resta	<u> </u>	<u> </u>					-		-	 	
05/13/02	929,130	1,775,029	4,744	-			-	_	-			_	-		_
06/03/02		1,839,639	-	-	<0.5	< 0.7	< 0.8	< 3.3	_	Outlet sampling r	esults from FBMI	ID (sample collect	.ed by EBMUD ins	<u> </u>	
06/03/02	993,740	1,839,639	3,077	<50	<0.18	<0.14	<0.18	<0.26	<0.24		its (sample collec			posio.,	
06/24/02	1,001,590	1,847,489	374	-	-	-	-	-	-	-	-	-	-	_	Ι
07/08/02	-	1,847,489	-	<50	<0.18	<0.14	<0.18	<0.26	<0.24	4,710	1	1.2	<0.18	2	6,980
07/12/02	1,051,430	1,897,329	2,769	-	-	-	_	-	_	-	-	-	-		-
07/29/02	1,052,820	1,898,719	82	System shut dow	n for carbon chan	ge				-			-	-	_
08/16/02	1,052,820	1,898,719	-	Restart								<u> </u>			T
08/30/02	1,069,050	1,914,949	1,159	-	-	-	-	-	-	-	-	_	_	_	-
09/20/02	-	1,952,309	-	-	<0.5	<0.7	<0.8	<3.3	-	Outlet sampling re	esults from EBMU	JD (sample collect	ed by EBMUD ins	pector)	1
09/20/02	1,106,410	1,952,309	1,779	<50	<0.1	<0.15	<0.06	-	-	•			s by EPA 624 & 80		
09/30/02	1,110,180	1,956,079	377	-	-	-	-	-	-	- 1		-	T -	T -	-
10/07/02	1,114,720	1,960,619	649	<50	<0.18	<0.14	<0.18	<0.26	<0.24	128	<0.18	<0.14	<0.18	<0.26	95
10/28/02	1,127,540	1,973,439	610	-	-	-		-	-	-	-	-	-	-	-
11/25/02	1,149,730	1,995,629	793	-	-	-	-	-	-	-		-	-	-	-
12/20/02	1,166,840	2,012,739	684	-	-	-	-	-	-	-	-	-	-	-	-
12/30/02	1,173,420	2,019,319	658	-	-	-	-	-	-	-	-	-	-	-	-
01/06/03	1,182,610	2,028,509	1,313	<50	<0.14	1.2	<0.08	2.4	<2.0	9,860	<1.4	29	14	2,420	205
01/13/03	1,189,320	2,035,219	959	Shut down for QV	VS										
01/15/03	1,189,320	2,035,219	-	Restart											
02/24/03	1,223,450	2,069,349	853	-	-	-	-	-	-	-	-	-	-	-	-
03/10/03	1,238,640	2,084,539	1,085	-	-	-	-	-	-	-	-	-	-	-	-
03/17/03	1,257,710	2,103,609	2,724	System off	-	-	-	-	-	-	-	-	-	-	-
03/28/03	1,257,710	2,103,609	-	Restart	-	-	-	-	-	-	-	-	-	-	-
03/31/03	1,266,150	2,112,049	2,813	-	-	-	-	- "	-	-	-	-	-	-	-
04/02/03	1,272,100	2,117,999	2,975	-	-	-	-	-	-	-	-	-	-	-	-
04/07/03	1,286,160	2,132,059	2,812	<15	<0.04	2.2	<0.02	<0.06	<0.03	14,000	20	20	2.2	14	9,090
04/14/03	1,294,060	2,139,959	1,129	System shut dow	n for QWS										
04/16/03	1,294,080	2,139,979	10	Restart	-	-	-	-	-	-	-	-	-	-	-
04/21/03	1,299,660	2,145,559	1,116	-	-	-	-	-	-	-	-	-	-	-	-
04/28/03	1,302,140	2,148,039	354	-	-	-	-	-	-	-	-	-	-	-	-
05/05/03	1,302,710	2,148,609	81	System shut dow	n for carbon chang	je	-	-	-	-	-	-	-	-	-
05/07/03	1,302,710	2,148,609	-	Restart	-	-	•	-	-	-	-	-	-	-	-
05/12/03	1,303,230	2,149,129	104	-	-	-	-	-	-	-	-	-	-		-
05/19/03	1,318,460	2,164,359	2,176	-	-	•	•	-	-	-	-	-	-	-	-
05/30/03	1,321,830	2,167,729	306	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-
06/02/03	1,327,490	2,173,389	1,887	-	-	-	-	-	-	-	-	-	-	-	-
06/09/03	1,336,370	2,182,269	1,269		-	-	-	-	-	•	-	-	-	-	-
06/16/03	1,347,480	2,193,379	1,587	-	-	-	-	-	-	-		-	-	-	-
06/23/03	1,359,690	2,205,589	1,744	-	-	-	-	-	-	-		-	-	-	-
07/01/03	1,366,090	2,211,989	800	-	-	-	-	-	-	-	-	-	-	-	-
07/07/03	1,369,730	2,215,629	607	System shut down	n for QWS	-	-		-	-	-	-	-	•	-
07/15/03	1,369,730	2,215,629	•	Restart	-	-	-	-	-	-		-	-	-	-
07/21/03	1,382,630	2,228,529	2,150	<15	<0.04	1.0	<0.02	<0.06	<0.03	7,710	<0.04	<0.02	<0.02	<0.06	3,550
07/28/03	1,389,840	2,235,739	1,030	-		-	-	-	-	-	-	-	-	-	<u>-</u>
08/04/03	1,408,710	2,254,609	2,696	-		-		-	-	l <u>-</u>	-	-	-		-

	Totalizer	Total/Cum.				OUTLET / E	FFLUENT			INLET / INFLUENT					
Date	(galigns)	Discharge	Flow (gal/day)	TPH-g	В	T	E	Х	MTBE	TPH-g	В	Т	E	X	MTBE
	(ga/ldi/la)	(galions)	(genoay)	ug/L	ug/L	ug/L	ug/L	u c/ L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
08/15/03	1,411,520	2,257,419	255	System shut dov			-	_	_	_	-		T	1	T
08/29/03	1,411,560	2,257,459		Restart	T -				-	<u> </u>			-		-
09/03/03	1,419,210	2,265,109	1,530	-		-			-	-	-	-	-		
09/12/03	1,423,520	2,269,419	479	<u> </u>	<u> </u>			<u> </u>	-	<u> </u>		ļ		<u> </u>	-
09/15/03	1,427,810	2,273,709	1,430	ļ	·		<u>-</u>		- 	 		-	-	-	<u> </u>
09/22/03	1,429,700	2,275,599		System shut dov	yn for installation	of new 24-hour time			-	 	-		-	-	-
09/26/03	1,429,700	2,275,599		Restart	VITIOI II Stallation	Thew 24-11001 (III)	zı		1					<u> </u>	
09/29/03	1,430,560	2,276,459	287	roctart						 			· · · · · · · · · · · · · · · · · · ·		
10/06/03	1,431,140	2,277,039		System shut dov	In for OWS					 	-		-	_	
10/08/03	1,431,140	2,277,039	-	Restart	11101 4110	<u>-</u>			 		-	-	-	-	-
10/10/03		-		, coluit	< 0.50	< 0.70	< 0.80	< 3.30	<u> </u>	Outlet compling of		I	ted by EBMUD ins		1
10/10/03	1,432,290	2,278,189	575	<15	<0.04	<0.02	<0.02	<0.06	<0.03	16,200	<0.04	4.4	T	· r	0.700
10/17/03	1,433,790	2,279,689	214	- 13			<0.02			10,200	~0.04	4.4	4.8	46	8,700
10/22/03	- 1,400,700	-	- 219		< 0.50	< 0.70	< 0.80	< 3.30	-	Outlet campling :	aculto from EDAII	ID (sample as"==	ted by EBMUD ins		<u> </u>
10/22/03	1,434,590	2,280,489	160	<15	<0.04	<0.02	<0.02	<0.06	<0.03		esuits from EBMU lits (sample collec	` -	I BY ERMOD INS	pecior)	1
10/27/03	1,435,610	2,281,509	204	- 10	10,04	- 10.02		-0.00		Split-sample rest	nts (sample collect	led by us)	1		
11/03/03	1,438,740	2,284,639	447		-		-		ļ		-		-	-	
11/14/03	1,443,620	2,289,519	444		_	 	<u> </u>	-	 	-	-			<u>-</u>	
11/21/03	1,447,510	2,293,409	556	-				-	 	<u> </u>	-	-	<u> </u>	-	-
12/05/03	1,452,410	2,298,309	350	_			<u>-</u>		 	-		-		-	-
12/09/03	1,458,320	2,304,219	1,478			-				-	-		-	-	
12/17/03	1,462,410	2,308,309	511					_			-		-	-	
12/26/03	1,468,630	2,314,529	691	-			-		-	-		-	-	<u> </u>	
12/31/03	1,469,710	2,315,609	216				<u> </u>	-	<u> </u>	 		-	-	-	-
01/06/04	1,472,000	2,317,899	382	<15	<0.04	<0.02	<0.02	<0.06	<0.03	7,900	- 658	1,560	62	1.090	2.470
01/14/04	1,474,650	2,320,549		System shut dow			<u> </u>	<0.00	~U.U3	7,900	038	1,560	62	1,090	2,170
01/28/04	- ',' ','	-	-	-	< 0.50	< 0.70	< 0.80	< 3.30					ted by EBMUD ins		
01/28/04	1,485,790	2,331,689	857	<15	<0.04	<0.02	<0.02	<0.06	<0.03	·	its (sample collect	<u> </u>	led by EBMOD ins	T T	I
02/04/04	1,492,340	2,338,239	936		-0.04		-0.02		V0.03	Spiit-sarriple resu	ils (sample collect	ed by us)	<u> </u>		
02/10/04	1,494,550	2,340,449	368				-		·				 	-	l
02/20/04	1,498,790	2,344,689	424		-		<u> </u>	-	-	-	-	-	-	-	-
02/25/04	1,499,360	2,345,259	114	<u> </u>	-	-		-	<u> </u>	<u> </u>	-	-	-	-	-
03/03/04	1,514,700	2,360,599	2,191		-	-		-	 	-	-	-		-	-
03/09/04	1,517,300	2,363,199	433		-	-		<u> </u>	-	-	-			 	
03/17/04	1,519,100	2,364,999	225		-				-			-	-		-
03/24/04	1,524,600	2,370,499	786					-	 	-			ļ <u>-</u>	<u> </u>	
04/01/04	1,529,300	2,375,199	588					-		-	-	<u>.</u>		-	
04/07/04	1,531,200	2,377,099	317	<15	<0.22	<0.32	<0.31	<0.4	<0.18	1,380	113	93	16	76	191
04/14/04	1,533,000	2,378,899	257		n for QWS on 4/7;		~0.51	70.4	V. 10	1,360	- 113	93	16	76	191
04/22/04	1,576,400	2,422,299	5,425	-	11101 QW3 0114/7,	Nestatted 4/14					-			-	
04/28/04	1,623,500	2,469,399	7,850		-					-		-			
05/06/04	1,668,920	2,514,819	5,678		-					-	-	-	-	-	
05/13/04	1,691,100	2,536,999	3,169	-	_			-		-		•	_		-
05/20/04	1,726,500	2,572,399	5,057		-				<u> </u>	-		-		-	
05/28/04	1,748,910	2,594,809	2,801				-	-	 	-		-	<u> </u>	-	-
06/04/04	1,749,320	2,595,219		Found system off	for replacement	of on and off switch		<u> </u>	 	-		-	 	-	
06/11/04	1,749,320	2,595,219		Restarted	, ropidoement	S. SITUING OIL SWITCH			 			-	-		-
06/16/04	1,751,910	2,597,809	518						_			-	-	-	-
	014/ 0	_,,,,,,	5,5		•		· · · · · · · · · · · · · · · · · · ·	-	I				L	L	<u> </u>

		Total/Cum				OUTLET /	EFFLUENT					INLET/	NFLUENT		
Date	Totalizer	Discharge	Flow	TPH-a	В	Ŧ	E	l x	MTBE	TPH-g	8	T T	E	l x	MTBE
	(galigns)	(gallons)	(gal/day)	ugÆ	ug/L	ug/L	tig/L		ug/L		ug/L				
06/22/04	1,753,550	2,599,449	273		-			ug/t.	ugu.	ug/L	±g/∟ -	ug/L	ug/L	λ/g/L	ug/L
07/02/04	1,756,530	2,602,429	298		-	 	-		-	-			-	-	-
07/08/04	1,759,110	2,605,009	430	<15	<0.22	<0.32	<0.31	<0.4	<0.18		-	-0.00	-0.04	-	-
07/05/04	1,759,110	2,605,159	21	- 15			 	-	<u> </u>	652	31	<0.32	<0.31	2.1J	383
07/13/04	1,760,630	2,606,529	196	-	-	-	-	-	 	-	-	-		-	-
07/28/04	1,762,810	2,608,709	363	Shut down system	n for carbon chan		-		<u> </u>		-	-	-	-	
08/05/04	1,762,810	2,608,709	- 303	Restarted	Thor carbon chan	l l				-	-	-	-	-	-
08/12/04	1,765,370	2,611,269	366	-	-	 	-	_	_	-		-	-	-	-
08/20/04	1,767,950	2,613,849	323	_					-		<u>-</u>	-	-	-	-
08/27/04	1,771,100	2,616,999	450	-		-		-			<u>-</u>	-		-	
09/03/04	1,773,750	2,619,649	379				 -	-	-	<u>-</u>		-			
09/07/04	1,777,590	2,623,489	960	<u> </u>	-	-	<u> </u>	-	-	 			-	-	-
09/10/04	1,777,350	2,624,359	290	Shut down syster		vacation	 	-	-	-	-	-	-	-	
09/29/04	1,778,460	2,624,359	-	Restarted	due to operator	-acation				-	-	-	-		
10/06/04	1,779,260	2,625,159	114	<15	<0.22	<0.32	<0.31	<0.4	<0.18	<15	<0.22	<0.32	<0.31	<0.4	20
10/12/04	1,782,540	2,628,439	547		l	10.52	70.51	V0.4	~0.10	113	10.22	\U.32	70.31	V.4	20
10/21/04	1,782,680	2,628,579	16				-			 					
10/27/04	1,784,630	2,630,529	325	-		-	_	-		·		_			-
11/03/04	1,784,680	2,630,579	7			-						-	-		
11/11/04	1,787,490	2,633,389	351	_							-	-	-	-	
11/19/04	1,789,350	2,635,249	233	-	_					<u> </u>		-		-	-
12/01/04	1,789,800	2,635,699	38		-	-				 			-	-	
12/10/04	1,792,780	2,638,679	331		_	-			_	<u> </u>		-	-		
12/15/04	1,795,460	2,641,359	536	-			-					-	-		-
12/22/04	1,798,000	2,643,899	363		-				_						_
12/29/04	1,800,580	2,646,479	369	_							-		-	-	-
01/05/05	1,803,140	2,649,039	366	<15	<0.22	<0.32	<0.31	<0.4	<0.18	291	9.1	<0.32	1.2 J	<0.4	72
01/13/05	1,803,290	2,649,189	19	·		05; Restarted on 1	I		10.10	201	-	-0.02	- 1.2.5		
01/20/05	1,804,020	2,649,919	104	Shut down system			1			-	-		-		-
04/30/05	1,804,020	2,649,919	-		nding repairs and					<u> </u>					-
05/10/05	1,804,020	2,649,919	-	Restarted system		I						-			
05/20/05	1,805,010	2,650,909	99	Added MW-4 to the	<u>_</u>								-		-
05/26/05	1,807,630	2,653,529	437	-	-		-	-	_			-	-		-
06/03/05	1,812,100	2,657,999	559	-	-	-	<u>-</u>	-	-	-	-	-		<u> </u>	
06/10/05	1,816,540	2,662,439	634	-	-	-	-	•		-			-		<u> </u>
06/17/05	1,819,870	2,665,769	476	Compressor need	fs repair	-	-	_		<u> </u>	-	-	_	-	-
06/24/05	1,823,140	2,669,039		Replace with new		_	-	_	-			-			
06/29/05	1,827,540	2,673,439	880	- 1	-	-	-		-	-	_	-		-	-
07/08/05	1,829,830	2,675,729	254	_	-	_	_	-	_		-		-	-	
07/14/05	1,829,970	2,675,869	23	<2.9	<0.17	<0.22	<0.14	<0.38	-	4,270	130	3.6 J	348	188	2,790
07/22/05	1,832,760	2,678,659	349	-	-	-	-	-	-		-	-	-	-	2,700
07/26/05	1,833,920	2,679,819	290	Shut down system	n for QWS	-	-	-	-	-	_	-	_	-	-
08/05/05	1,833,970	2,679,869		Restart sytem after		-	-	-	-	-	_	-	_	-	-
08/09/05	1,836,930	2,682,829	740	-	-	-	-	-	-	· .	_	-	_	-	-
08/19/05	1,837,560	2,683,459	63	_	<0.10	<0.15	<0.06	<0.40	-	Split-sample resu	III	inspection & sam	plina		-
08/25/05	1,837,920	2,683,819		Shut down system			-	-	_	-	-	-	,	-	-
09/01/05	1,837,980	2,683,879		Restarted	- 1	-	-	-	_	-	-	_	-	-	-
09/09/05	1,838,530	2,684,429	69	-			-	-	-		-	-	-	•	-
· · · · · · · · · · · · · · · · · · ·				·							·				

		Total/Cum.				OUTLET/	EFFLUENT			Ī.		INLET / R	NFLUENT		
Date	Totalizer (gallons)	Discharge	Flow	TPH-a	В	Ŧ	E	Х	MTBE	TPH-g	8	Τ	E	l x	MTBE
	(gasions)	(gallons)	(gal/day)	⊌g/L	ug/L	ug/L		ug/L							
09/16/05	1,841,230	2,687,129	386	-	-		ug/L	***************************************	ug/t.	ug/L	ug/L_ I	ug/L	ug/L	ug/L	ug/L
09/23/05	1,843,410	2,689,309	311			<u> </u>	-	-	-	-	-		-	-	-
09/30/05	1,844,820	2,690,719	201	-				-	-	<u> </u>	-	-	<u> </u>	-	
10/06/05	1,845,250	2,691,149	72	<2.9	<0.10	<0.15	<0.06	<0.40	-		-	-			
10/11/05	1,846,030	2,691,929	156		L	1/05; Restarted or		<0.40	-	2,410	<3.2	<1.0	28 J	<3.0	1,990
10/14/05	-	2,001,020	130	-	<0.05	<0.07	<0.08	<0.33		-			-	L.,	-
10/14/05	1,846,590	2,692,489	187		<0.00	<0.07	<0.06	<0.40	-			<u> </u>	ed by EBMUD ins	<u> </u>	-
10/21/05	1,847,810	2,693,709	174		- 0,10	- 0.15			-	Split-sample resu	IIIS auring EBMUL	inspection & sam	pling	-	-
11/02/05	1,849,720	2,695,619	159			-				-	-	-	-	<u> </u>	-
11/08/05	1,040,120	2,000,010	-	<u> </u>	<0.05	0.62	<0.08	<0.33	-	Outlet easysting s	- 	- ID (2 2 2 2 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4			-
11/10/05	1,850,760	2,696,659	130			-	-0.08	-0.33	-	Outlet sampling is	esuks from EBMC	I (sample collecte	ed by EBMUD ins	1	-
11/17/05	1,851,420	2,697,319	94									<u> </u>	-		-
11/23/05	1,854,560	2,700,459	523				-			 	-		-	-	-
11/30/05	1,856,650	2,702,549	299	-	-			-	-	-	-	-	-	-	-
12/09/05	1,858,340	2,704,239	188	-			-		<u>-</u>	-	-	-	-	<u> </u>	-
12/15/05	1,859,780	2,705,679	240			_	-			-	-			 	-
12/22/05	1,860,420	2,706,319	91			_							-	-	<u>-</u>
12/30/05	1,862,470	2,708,369	256						-	<u> </u>	-	-	<u>-</u>	-	-
01/06/06	1,866,760	2,712,659	613	_	-				-		<u>-</u>	-	<u>-</u>	-	-
01/11/06	1,867,740	2,713,639	196	698	<0.32	<0.10	<0.24	<0.30		6,120	210	<0.10	419	130	649
01/18/06	1,870,240	2,716,139		Shut down syster			-0.24	-0.50		0,120	210	<0.10	419	130	049
01/27/06	1,870,280	2,716,179		Restarted after Q				-		 	-		-		
02/01/06			-	-	<0.70	<0.67	<0.65	<2.0		Outlet compling re	aculto from EDMI	ID (esmale called)	ed by EBMUD ins	l	-
02/01/06	1,870,530	2,716,429	50		<0.17	<0.22	<0.14	<0.38				inspection & sam		1	
02/10/06	1,877,370	2,723,269	760		-		-0.14	-0.00		Opiit-sample lesu	its during Ebiviou	inspection & sam	pang -	-	<u> </u>
02/17/06	1,879,230	2,725,129	266					-	-			-	-		
02/24/06	1,880,710	2,726,609	211	-	-			-		-				-	-
03/01/06	1,882,270	2,728,169	312		-	_		-	-				-		
03/10/06	1,889,370	2,735,269	789	-			-	-			-	-		-	
03/17/06	1,889,660	2,735,559	41	-	_		_	-	-			-		-	-
03/21/06	1,890,930	2,736,829	318	_	-	_	-	-		1 ···· <u>.</u>				-	
03/29/06	1,891,880	2,737,779	119	_	-	-				<u> </u>					
04/05/06	1,893,340	2,739,239	209	<5.6	<0.32	<0,10	<0.24	<0.30		1,520	72	<0.10	199	28	129
04/11/06	1,895,480	2,741,379	357	_	-	-	-	-0.00		1,520	-		- 199	- 20	- 129
04/11/06	1,895,480	2,741,379		Shut down system	n for QWS	_	-	-	-			-		-	
04/14/06	1,895,490	2,741,389		Restart sytem after		-		-	-	-	-	-			-
04/21/06	1,897,130	2,743,029	234	-	-	_	-	-	-	_					
04/26/06	1,898,330	2,744,229	240	-	_	_	-	-					-	-	
05/03/06	1,900,240	2,746,139	273	-	_	_	-	•			-		-	-	
05/12/06	1,903,700	2,749,599	384	-	-	-	-	-	-	_	-	-		-	-
05/19/06	1,905,570	2,751,469	267	•	-	-	-	-	-			-		-	
05/23/06	1,907,810	2,753,709	560	<5.6	<0.32	<0.10	<0.24	<0.30	-	683,000	3,600	135,000	25,100	165,000	
05/26/06	1,909,780	2,755,679	657	-	-	-		-	-			-	23,100	-	<u>-</u>
06/02/06	1,911,010	2,756,909	176	-	-	-	-	-	-	-					
06/09/06	1,912,670	2,758,569	237	-		-		-	-	77,300	668	19,300	1,660	8,800	-
06/16/06	1,914,330	2,760,229	237	-	-	-	-	-	-		-	-		-	
06/23/06	1,917,210	2,763,109	411	-	-	-	-		-	- 1	-		_	-	
06/27/06	1,919,740	2,765,639	633		-	-	-			_	-				
	014/ 01			I		1				I		1			

Thrifty Oil Co. Station No 063, OAKLAND, CA

	Totalizer	Total/Cum.				OUTLET/	EFFLUENT					INLET/I	NFLUENT		
Date	(galions)	Discharge (gallons)	Flow (gal/day)	TPH-g	B ug/L	T ug/L	E ug/L	X ug/L	MTBE ug/L	TPH-g ug/L	B ug/L	T ug/L	E ug/L	X ug/L	MTBE ug/L
07/06/06	1,921,470	2,767,369	192	3,730	44	874	26	503	16	4.450	8.6 J	99	34 J	149	2,780
07/14/06	1,921,980	2,767,879	64	-	-	-	-	-	_	-	-				-,
07/18/06	1,922,070	2,767,969	23	Shut down syster	n for carbon char	ige	-		-	-			_	-	-
08/04/06	1,922,090	2,767,989	1	<5.6	<0.32	<0.10	<0.24	<0.30	-	763	<0.32	<0.10	<0.24	<0.30	1040
08/18/06	1,928,690	2,774,589	471	-	-	-	-	-	-	-	-	_	-	_	_
08/25/06	1,929,580	2,775,479	127	-			-	-	-	-	-	-	-	-	-

5.0

NE

5.0

Note: <= less than laboratory detection level indicated

WD PERMIT LIMITS:

TPH is analyzed by EPA Method 8015 M

- = no sample / not analyzed

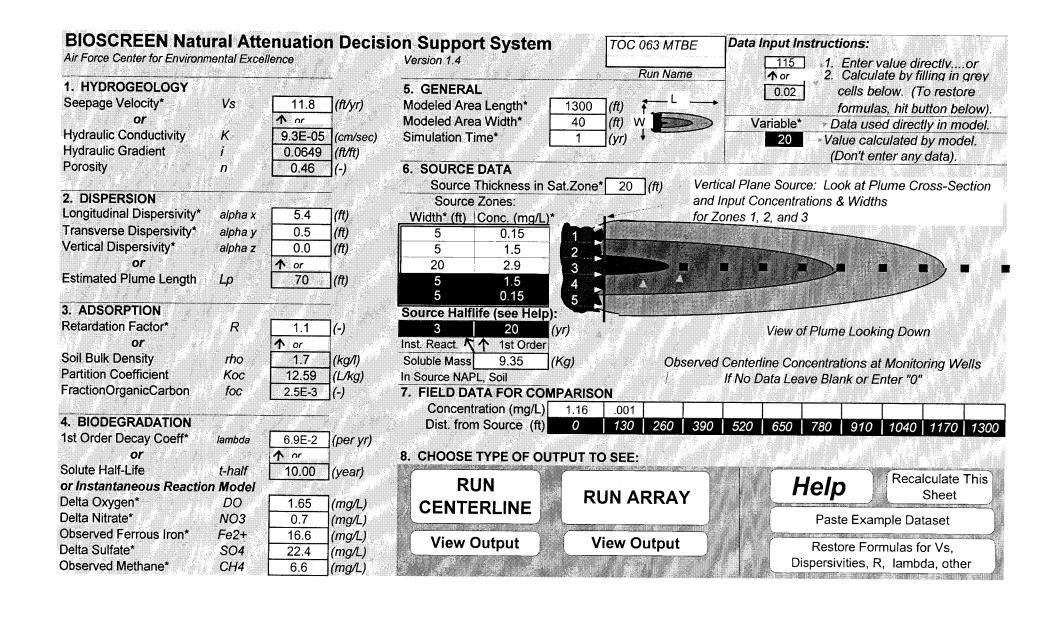
BTEX is analyzed by EPA Method 8021 or 8260

5.0

NE = Permit Limit not established

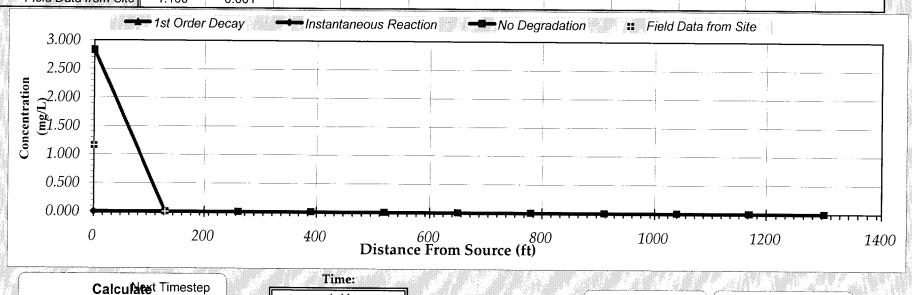
*MTBE by 8020 / 8260

5.0


In February 2000, the total cumulative discharge amount was corrected to reflect all system maintenance and flowmeter changeouts

NE

since the startup of the system. The total number may be different from previous versions of this table.

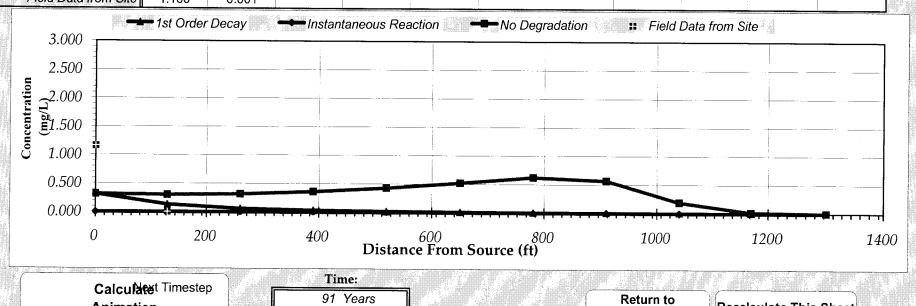

APPENDIX G

BIOSCREEN PLUME TRAVEL TIME OUTPUT

Distance from Source (ft)

						on comecy.					
TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	2.830	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1st Order Decay	2.830	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001							i		

Calculated Timestep

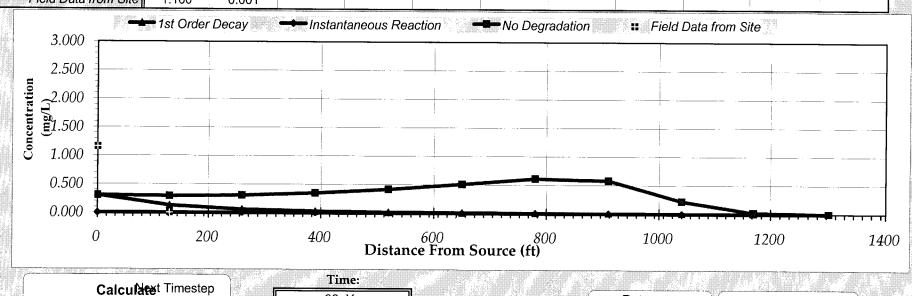

Animation Timestep

1 Years

Return to Input

Distance from Source (ft)

•		,			zoroennee ji	m comec y	7				
TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.313	0.298	0.313	0.358	0.426	0.520	0.623	0.565	0.191	0.017	0.000
1st Order Decay	0.313	0.131	0.060	0.030	0.016	0.008	0.005	0.002	0.001	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									

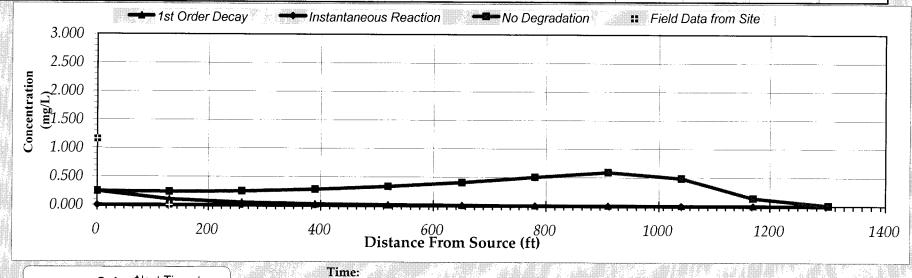


Animation Timestep

Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.305	0.291	0.306	0.349	0.416	0.508	0.612	0.578	0.220	0.022	0.001
1st Order Decay	0.305	0.128	0.059	0.029	0.015	0.008	0.004	0.002	0.001	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									

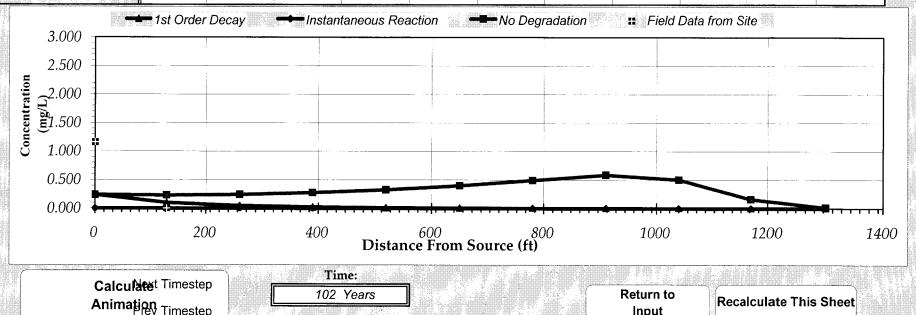

Calculated Timestep
Animation Timestep

92 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.245	0.234	0.245	0.280	0.334	0.408	0.504	0.591	0.486	0.139	0.012
1st Order Decay	0.245	0.102	0.047	0.024	0.012	0.007	0.004	0.002	0.001	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001	-								

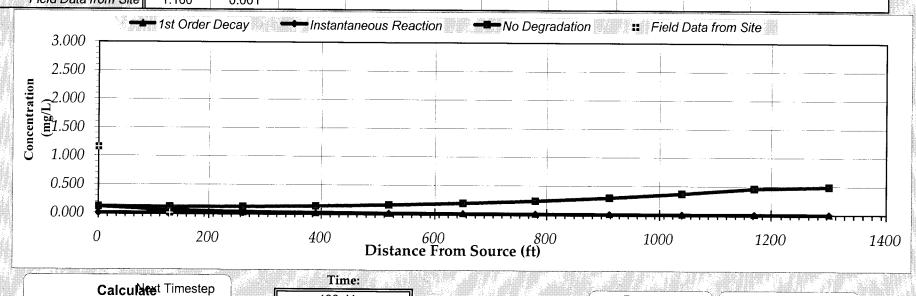

Calculated Timestep
Animation Timestep

101 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.239	0.228	0.239	0.273	0.326	0.398	0.493	0.584	0.503	0.161	0.016
1st Order Decay	0.239	0.100	0.046	0.023	0.012	0.006	0.004	0.002	0.001	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									

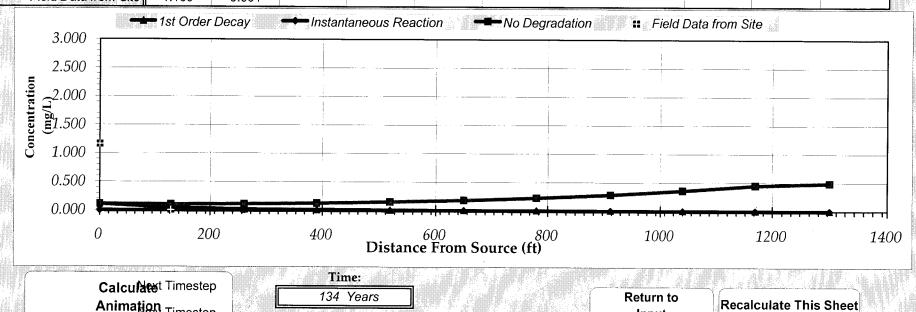


Animation Timestep

Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.112	0.107	0.112	0.128	0.152	0.186	0.231	0.291	0.369	0.459	0.488
1st Order Decay	0.112	0.047	0.022	0.011	0.006	0.003	0.002	0.001	0.001	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001								······································	

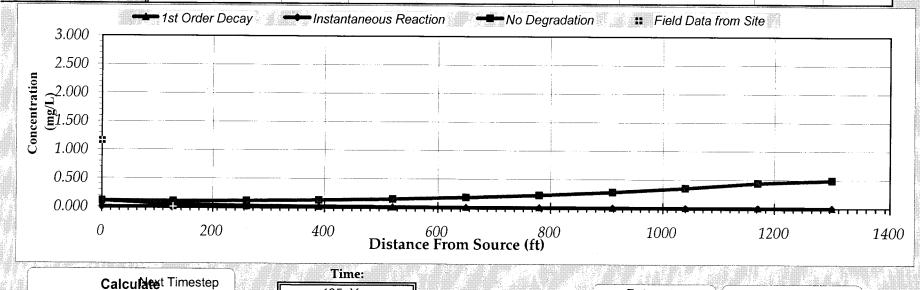

Calculatet Timestep
Animation Timestep

133 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	300	Í	050		040	4040		
TIFE OF MODEL	0	130	200	390	520	650	780	910	1040	1170	1300
No Degradation	0.109	0.104	0.109	0.125	0.149	0.182	0.226	0.284	0.360	0.450	0.489
1st Order Decay	0.109	0.046	0.021	0.011	0.006	0.003	0.002	0.001	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									

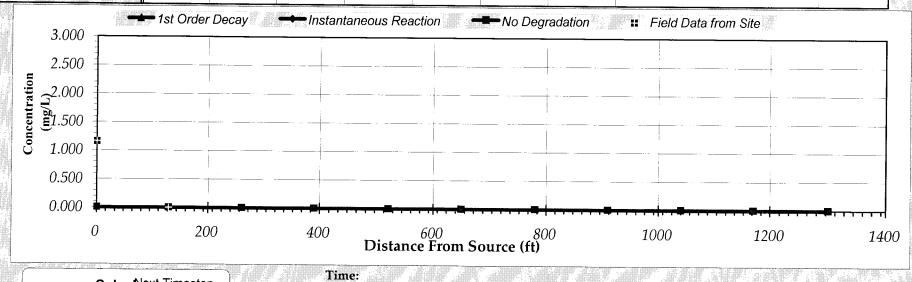


Animation Timestep

Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.106	0.102	0.107	0.122	0.145	0.177	0.220	0.277	0.351	0.441	0.489
1st Order Decay	0.106	0.045	0.021	0.010	0.005	0.003	0.002	0.001	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									


Calculated Timestep
Animation Timestep

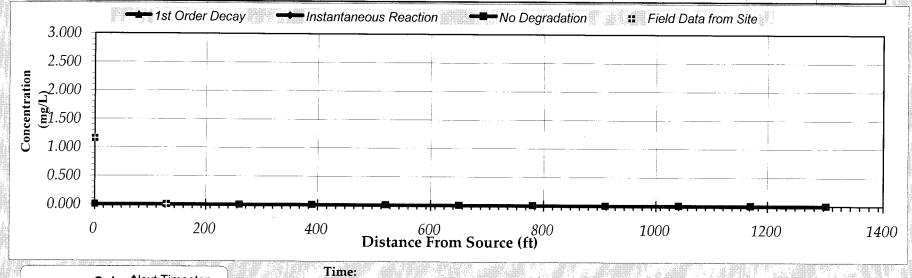
135 Years

Return to Input

Distance from Source (ft)

77 **					,						3 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 6
TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.003
1st Order Decay	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									-

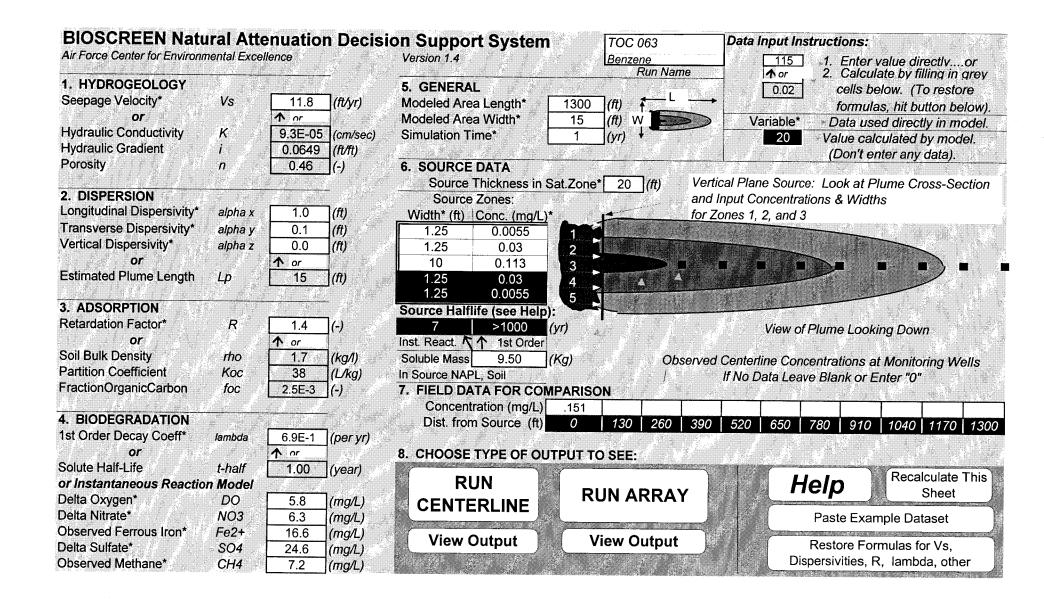
Calculate Timestep


Animation Timestep

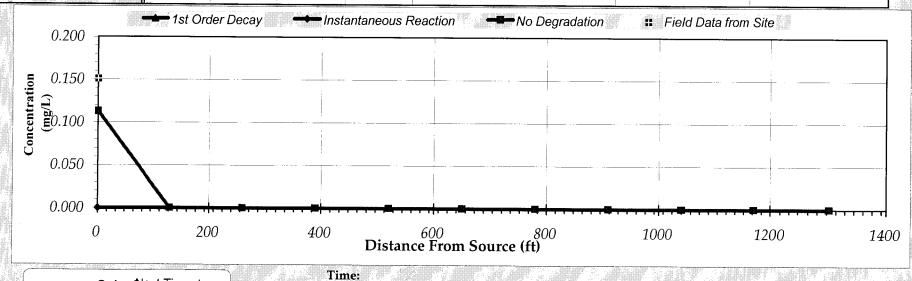
353 Years

Return to Input

Distance from Source (ft)


TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.003
1st Order Decay	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	1.160	0.001									

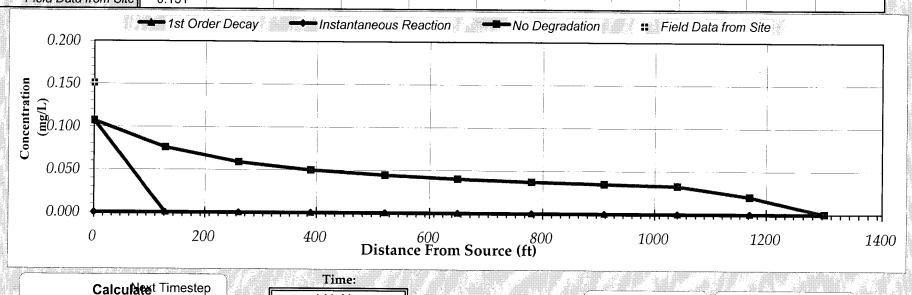
Calculate Timestep
Animation Timestep


354 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.113	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1st Order Decay	0.113	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151										

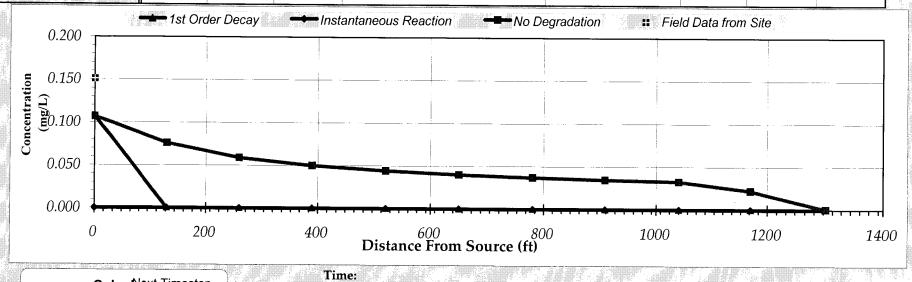

Calculated Timestep
Animation Timestep

1 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.107	0.076	0.059	0.050	0.044	0.040	0.037	0.035	0.033	0.020	0.000
1st Order Decay	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151										

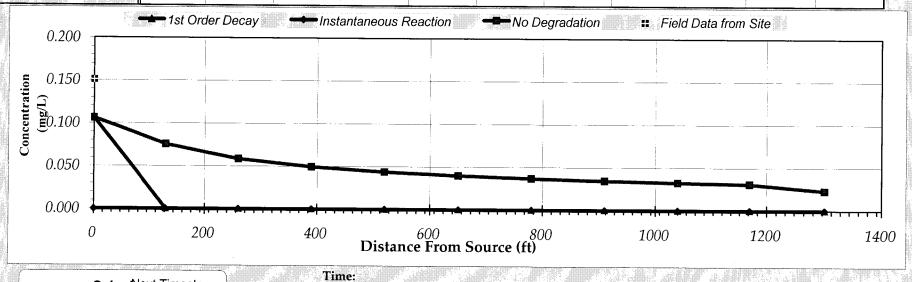

Calculate Timestep
Animation Timestep

141 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.107	0.076	0.059	0.050	0.044	0.040	0.037	0.035	0.033	0.022	0.001
1st Order Decay	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151		i i								

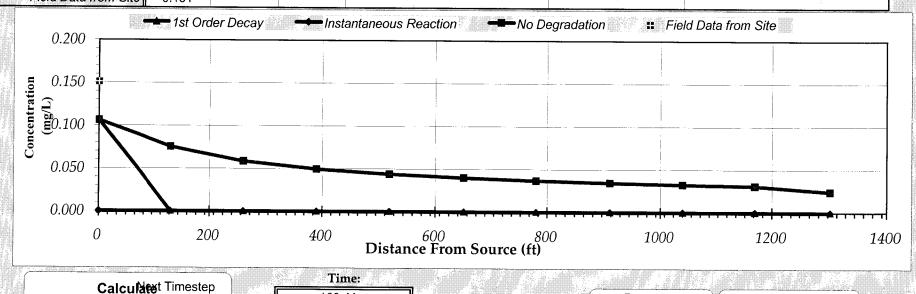

Calculate Timestep
Animation Timestep

142 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.106	0.075	0.058	0.049	0.044	0.040	0.037	0.034	0.032	0.031	0.023
1st Order Decay	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151								 		


Calculated Timestep
Animation Timestep

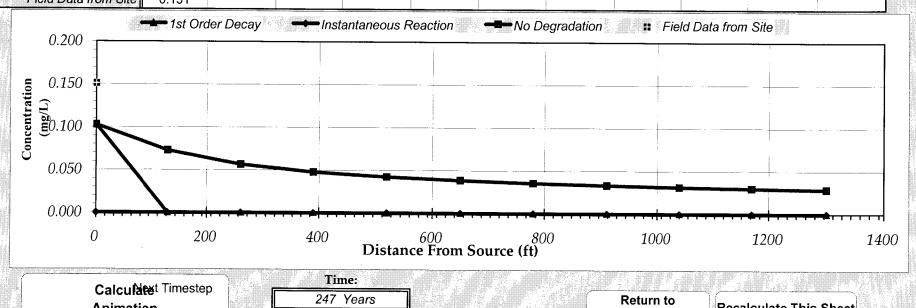
159 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.106	0.075	0.058	0.049	0.044	0.040	0.037	0.034	0.032	0.031	0.024
1st Order Decay	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151										

Calculated Timestep

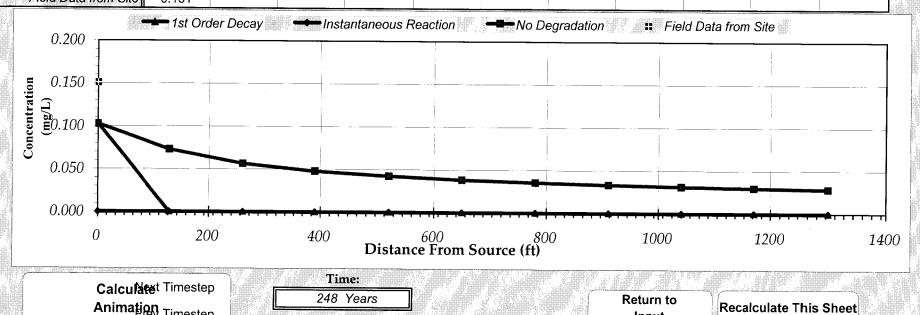

Animation Timestep

160 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.103	0.073	0.056	0.048	0.042	0.038	0.035	0.033	0.031	0.030	0.029
1st Order Decay	0.103	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151										

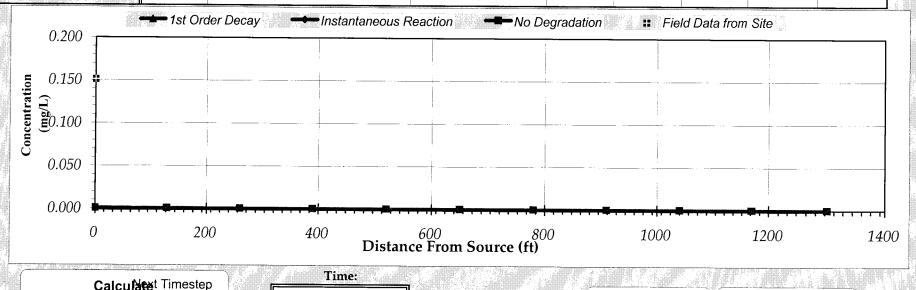


Animation Timestep

Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.102	0.073	0.056	0.048	0.042	0.038	0.035	0.033	0.031	0.030	0.028
1st Order Decay	0.102	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.151										

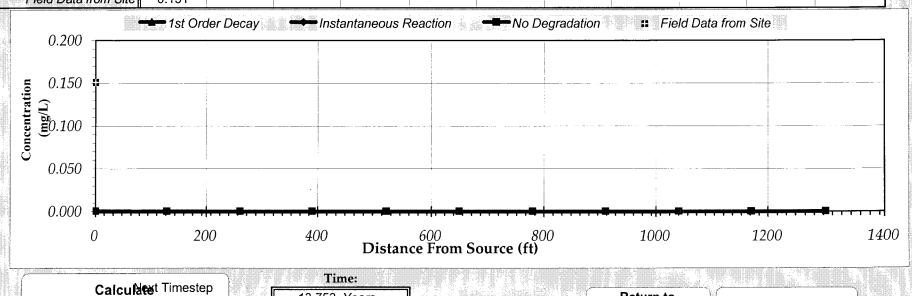


Animation Timestep

Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1st Order Decay	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Field Data from Site	0.151										


Calculated Timestep
Animation Timestep

13,752 Years

Return to Input

Distance from Source (ft)

TYPE OF MODEL	0	130	260	390	520	650	780	910	1040	1170	1300
No Degradation	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1st Order Decay	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Field Data from Site	0.151	2.70 A Maria							!		

Calculated Timestep

Animation Timestep

13,753 Years

Return to Input