RECEIVED

3:10 pm, Apr 27, 2009

Alameda County Environmental Health

Prepared for

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

BROADBENT & ASSOCIATES, INC. ENGINEERING, WATER RESOURCES & ENVIRONMENTAL

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

16 April 2009

Project No. 09-88-602

Compliance Soil Sampling Report for Site Renovation Activities Atlantic Richfield Company Station No.9535 3400 San Pablo Avenue Oakland, California

16 April 2009

Project No. 09-88-602

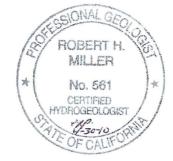
Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re: Compliance Soil Sampling Report for Site Renovation Activities Atlantic Richfield Company (a BP affiliated company) Station No.9535 3400 San Pablo Avenue, Oakland, California; ACEH Case # RO0000004

Dear Mr. Supple:

Attached is the *Compliance Soil Sampling Report for Site Renovation Activities* at Atlantic Richfield Company Station No.9535 located at 3400 San Pablo Avenue, Oakland, California (Site). This report presents results of the soil sampling conducted at Station No.9535 in March 2009 during relocation of vent risers and installation of a Healy EVR Phase 2 fuel system at the Site as observed by the Oakland Fire Department.


Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely, BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E. Senior Engineer

but 71. 2

Robert H. Miller, P.G., C.HG Principal Hydrogeologist

Enclosure

 cc: Inspector Keith Mathews, Oakland Fire Department, 150 Frank H. Ogawa Plaza, Suite 3354, Oakland, California 94612
 Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site) Mr. Chris Panaitescu, Thrifty Oil Company, 13116 Imperial Springs Highway, Santa Fe Springs, California 90670-00138

COMPLIANCE SOIL SAMPLING REPORT FOR SITE RENOVATION ACTIVITIES

Atlantic Richfield Company Station No.9535 3400 San Pablo Avenue Oakland, California

TABLE OF CONTENTS

No. Section Page Introduction.....1 1.0 2.0 Site Background......1 3.0 Vent Line Excavation Soil Sampling.....1 Derived Soils Management and Sampling......2 4.0 5.0 6.0 7.0 8.0

ATTACHMENTS

Drawing 1	Site Location Map
Drawing 2	Site Layout Plan with Soil Sample Locations
Table 1	Soil Sampling Analytical Data

APPENDICES

Appendix A Stratus Vent Line Upgrade Compliance Soil Sampling Data Package (Includes Field Data Sheets, Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)

COMPLIANCE SOIL SAMPLING REPORT FOR SITE RENOVATION ACTIVITIES

Atlantic Richfield Company Station No.9535 3400 San Pablo Avenue Oakland, California

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company, RM – a BP affiliated company, Broadbent & Associates, Inc. (BAI) has prepared this *Compliance Soil Sampling Report for Site Renovation Activities* for the soil sampling activities conducted during the vent line upgrades at the Atlantic Richfield Company Station No.9535, located at 3400 San Pablo Avenue, Oakland, California (Site). Soil sampling was conducted to fulfill the requirements of the Oakland Fire Department regarding vent line upgrades. This report includes discussions on the Site Background, Field Activities Performed, Analytical Results of the Soil Sampling, and Conclusions.

2.0 SITE BACKGROUND

The Site is an active ARCO-brand gasoline retail outlet located at 3400 San Pablo Avenue, on the northeastern corner of San Pablo Avenue and 34th Street in Oakland, California (Drawing 1 and Drawing 2). The land use in the immediate vicinity of the Site is mixed commercial and residential. The Site consists of a cashier's station building and two 20,000-gallon gasoline underground storage tanks (USTs) with associated piping and dispensers. The Site is covered with asphalt or concrete surfacing except for planters along the southern and northeast property boundaries containing river rock.

The former Thrifty Oil Company Station No.49 historically operated at this location and retains the environmental liability for the open release case (GeoTracker Global ID T0600101365 / Alameda County Environmental Health Case RO0000004). Numerous subsurface investigations and remedial activities have been conducted on-site since 1986. A comprehensive history of remediation activities can be found within the *Feasibility Study and Corrective Action Plan* (GeoHydrologic Consultants, Inc., 9/22/2008) as submitted to Alameda County Environmental Health Services and available on GeoTracker.

3.0 VENT LINE EXCAVATION SOIL SAMPLING

On behalf of Atlantic Richfield Company, RM, Stratus Environmental, Inc. (Stratus) collected compliance soil samples in conjunction with Paradiso Mechanical, Inc. (the contractor renovating the service station). Samples were collected under the direction of City of Oakland Fire Department personnel. Soil samples were collected on 16 March 2009 following removal of the existing vent lines. Two soil samples were collected from approximate depths of 22 inches bgs (VL-1) and 44 inches (VL-2) beneath the vent line trench. Specific soil sampling locations are depicted in Drawing 2. Detailed field sketches are provided within Appendix A.

Soil samples were submitted to Calscience Environmental Laboratories, Inc. (Garden Grove), a California State-certified laboratory, under standard chain-of-custody protocol. Samples were analyzed for Gasoline Range Organics (GRO, hydrocarbon chain lengths between C6-C12) by EPA Method 8015B; for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME),

Di-Isopropyl Ether (DIPE), Tert-Butyl Alcohol (TBA), and Ethanol using EPA Method 8260B; and for Total Lead by EPA Method 6010B. Analyses were requested on a 48-hour rush turn-around basis.

4.0 DERIVED SOILS MANAGEMENT AND SAMPLING

The soil excavated during the equipment renovation activities was temporarily placed within bins onsite prior to characterization and transportation for disposal/treatment. On 16 March 2009, Stratus personnel collected two waste composite soil samples from the excavated material. Sample 'TLC- 1' was collected from the pea gravel and soil excavated during removal of the former vent lines. Sample 'SWC' was collected from the soil generated during construction activities. Soil waste composite samples were shipped to Calscience Environmental Laboratories, Inc. under standard chain-of-custody protocol and analyzed for the same constituents as previously discussed with the excepted deletions of ETBE, TAME, DIPE, TBA, and Ethanol. Following characterization and profiling, Paradiso Mechanical, Inc. scheduled Belshire Environmental Services (Belshire) to transport the derived residual soil to Forward Incorporated Allied Waste Services disposal facility in Manteca, California facility for treatment or disposal.

5.0 ANALYTICAL RESULTS OF SOIL SAMPLES

A total of four soil samples were collected during the product piping and dispenser upgrade activities, including composite waste soil samples. The following summarizes the laboratory results obtained following analysis of the samples:

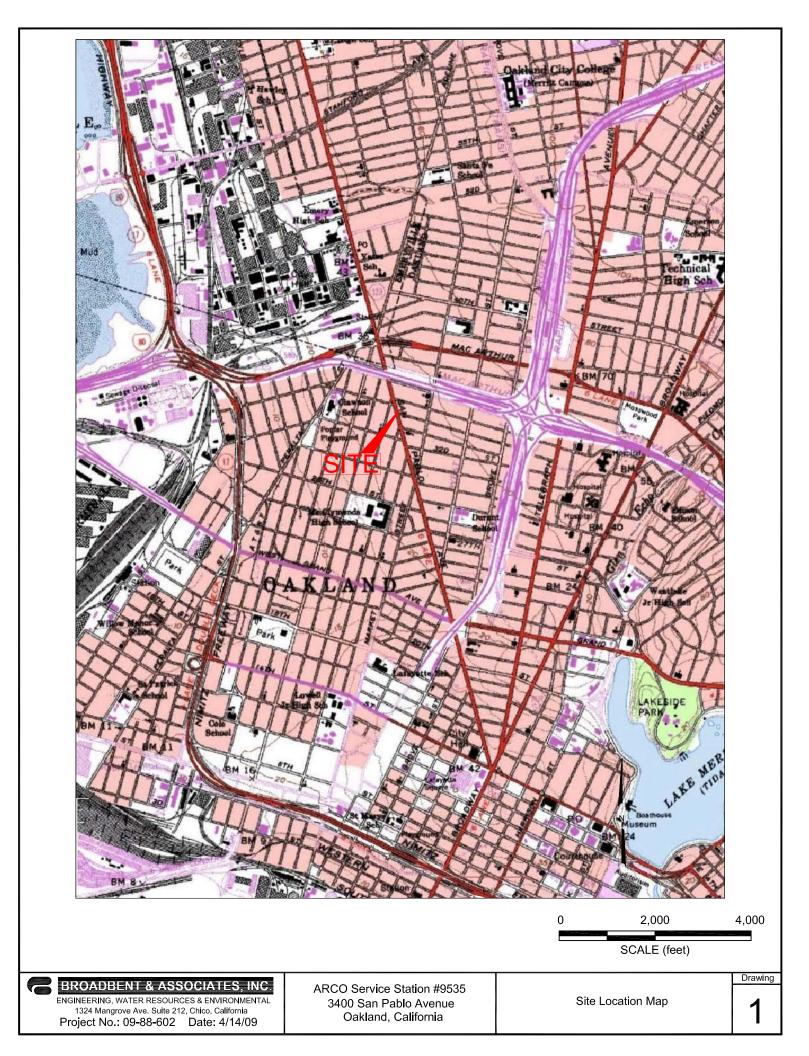
- GRO, BTEX, MTBE, ETBE, TAME, DIPE, TBA, nor Ethanol was detected above the laboratory reporting limits in compliance soil samples VL-1 or VL-2, or pea gravel composite sample TLC-1.
- Total Lead was detected in the two compliance soil samples at concentrations up of 10.2 milligrams per kilogram (mg/kg) in sample VL-1, and 44.4 mg/kg in sample VL-2.
- GRO nor BTEX was detected above the reporting limits in the soil waste composite sample SWC. MTBE was detected above the laboratory reporting limit in sample SWC at a concentration of 0.0024 mg/kg.

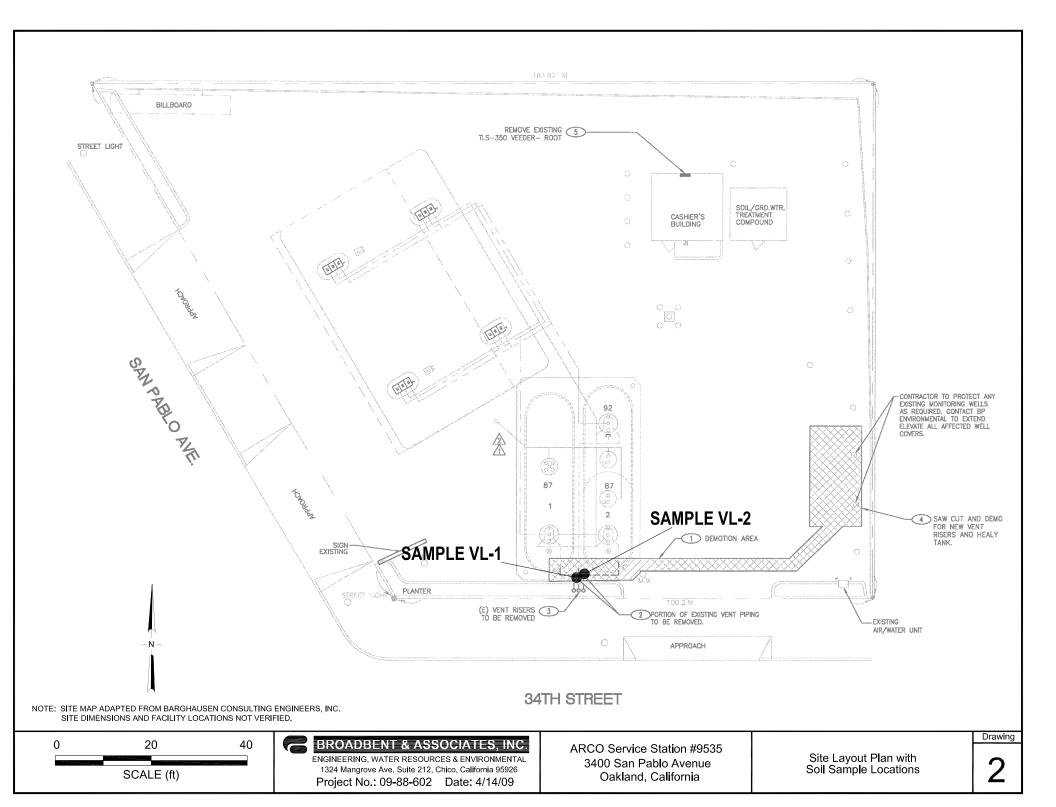
Soil sample analytical results are summarized in Table 1. A copy of the laboratory analytical report with chain-of-custody documentation is provided in Appendix A.

6.0 CONCLUSIONS

Based on the results from this compliance soil sampling investigation, BAI concludes the following:

• Hydrocarbons were observed to be below the laboratory reporting limits in both compliance samples (VL-1 and VL-2) and both waste disposal characterization samples (TLC-1 and SWC), with the exception of MTBE in sample SWC at 0.0024 mg/kg.


• Additional over-excavation was not performed due to the non-detect or low concentrations of hydrocarbons observed in the compliance and waste disposal characterization samples.


7.0 CLOSURE

This document has been prepared for the exclusive use of Atlantic Richfield Company. The findings presented in this report are based upon the observations of Stratus field personnel, points of investigation and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Services were performed in accordance with the generally accepted standard of practice at the time this report was written. No warranty, expressed or implied, is intended. It is possible that variations in the soil or groundwater conditions could exist beyond the points explored in this investigation. Also, changes in site conditions could occur at some time in the future due to variations in rainfall, temperature, regional water usage or other factors.

8.0 REFERENCES

- Barghausen Consulting Engineering, Inc., 27 February 2009. *Demolition Site Plan D-1* (*Construction Release*). Prepared by Hal P. Grubb, California Professional Civil Engineer 67814, for ARCO BP West Coast Products LLC.
- GeoHydrologic Consultants, Inc., 22 September 2008. *Feasibility Study and Corrective Action Plan, Former Thrifty Oil Co. Station No. 049, 3400 San Pablo Avenue, Oakland, California.* Prepared on behalf of Thrifty Oil Company for Alameda County Environmental Health Services.

Table 1. Soil Sampling Analytical DataAtlantic Richfield Company Station No.95353400 San Pablo Avenue, Oakland, California

	Sampling			Laboratory Analytical Results (mg/kg)										
Soil Sample ID	Depth	Sampling					Total							
	(inches)	Date	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	Lead
VL-1	22	3/16/2009	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	10.2
VL-2	44	3/16/2009	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	< 0.0020	< 0.0002	< 0.0020	< 0.10	44.4
TLC-1	NA	3/16/2009	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010						3.32
SWC	NA	3/16/2009	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0024						7.92

NOTES:

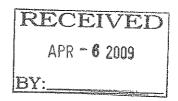
Concentrations detected above laboratory reporting limits are in bold

bgs = Below ground surface

mg/kg = Milligrams per kilogram

--- = Not analyzed

GRO = Gasoline Range Organics


MTBE = Methyl Tert-Butyl Ether TBA = Tert-Butyl Alcohol DIPE = Di-Isopropyl Ether ETBE = Ethyl Tert-Butyl Ether TAME = Tert-Amyl Methyl Ether

APPENDIX A

STRATUS VENT LINE UPGRADE COMPLIANCE SOIL SAMPLING DATA PACKAGE (Includes Field Data Sheets, Site Sketch, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

March 31, 2009

Mr. Tom Venus Broadbent & Associates, Inc. 1324 Mangrove Ave., Suite 212 Chico, CA 95926

 Re: Vent Line Upgrade Compliance Soil Sampling Data Package ARCO Service Station No. 9535
 3400 San Pablo Avenue, Oakland, California.

General Information

Data Submittal Prepared / Reviewed by: Scott Bittinger / Jay Johnson

Phone Number: (530) 676-6000

On-Site Supplier Representative: Collin Fischer

Date: March 16, 2009

Weather Conditions: Raining

Unusual Field Conditions: None noted.

Scope of Work Performed: Stratus was onsite to collect compliance soil samples, in conjunction with Paradiso Mechanical Inc. (the contractor renovating the service station). Under the direction of City of Oakland Fire Department personnel, 2 soil samples were collected from beneath the vent line trench. The samples were collected at a depth of 22-inches below surface grade (VL-1), and 44-inches below surface grade (VL-2). A waste composite sample of soil/pea gravel mixture generated during uncovering of the vent lines was collected for the purpose of waste disposal characterization. A separate waste composite soil sample was collected from the soil generated during construction, also for the purpose of waste disposal characterization.

Variations from Work Scope: None Noted

This submittal presents information associated with the collection of compliance soil samples during the replacement of vent lines at the subject site. The attachments include field data sheets generated during the sampling event, a sketch depicting soil sampling locations, a site plan, an Inspection Report prepared by the City of Oakland Fire Department, certified analytical results for the soil samples, and chain-of-custody

March 31, 2009

Mr. Tom Venus, Broadbent & Associates, Inc. Vent Line Upgrade Compliance Soil Sampling Data Package ARCO Station No. 9535, Oakland, CA Page 2

records. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations.

Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P.G. Project Geologist

Attachments:

- Field Data Sheets
- Site Plan
- Sketch of Soil Sampling Locations
- City of Oakland Fire Department Inspection Report
- Certified Analytical Report
- Chain-of-Custody Documentation

cc: Mr. Paul Supple, BP/ARCO

mson, P.G. Project Manager

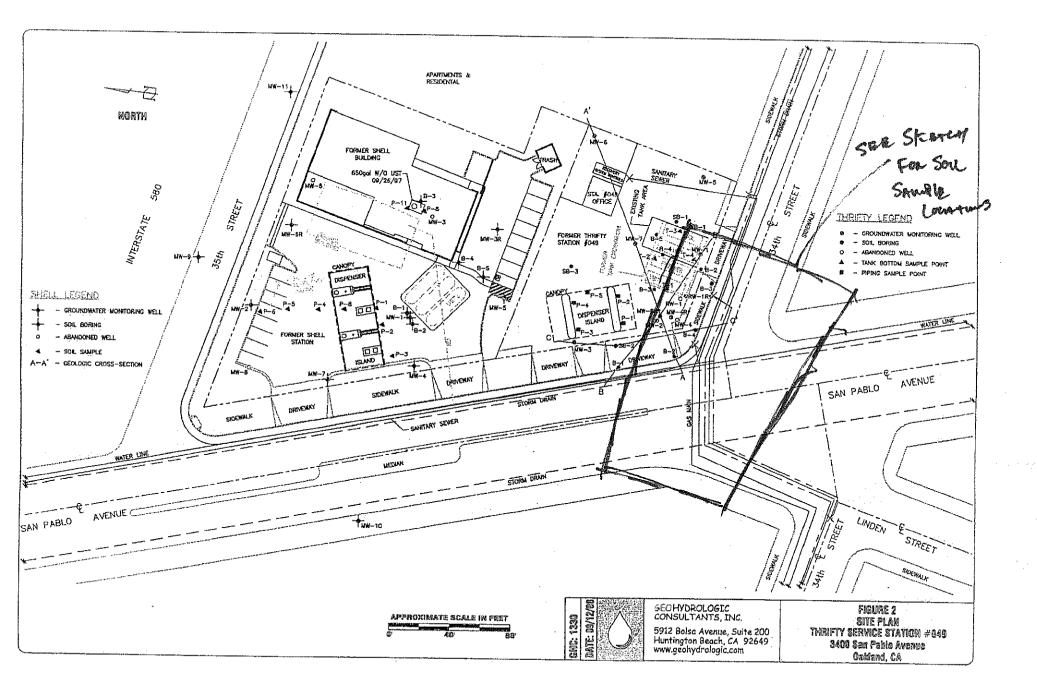
ARLO 9535

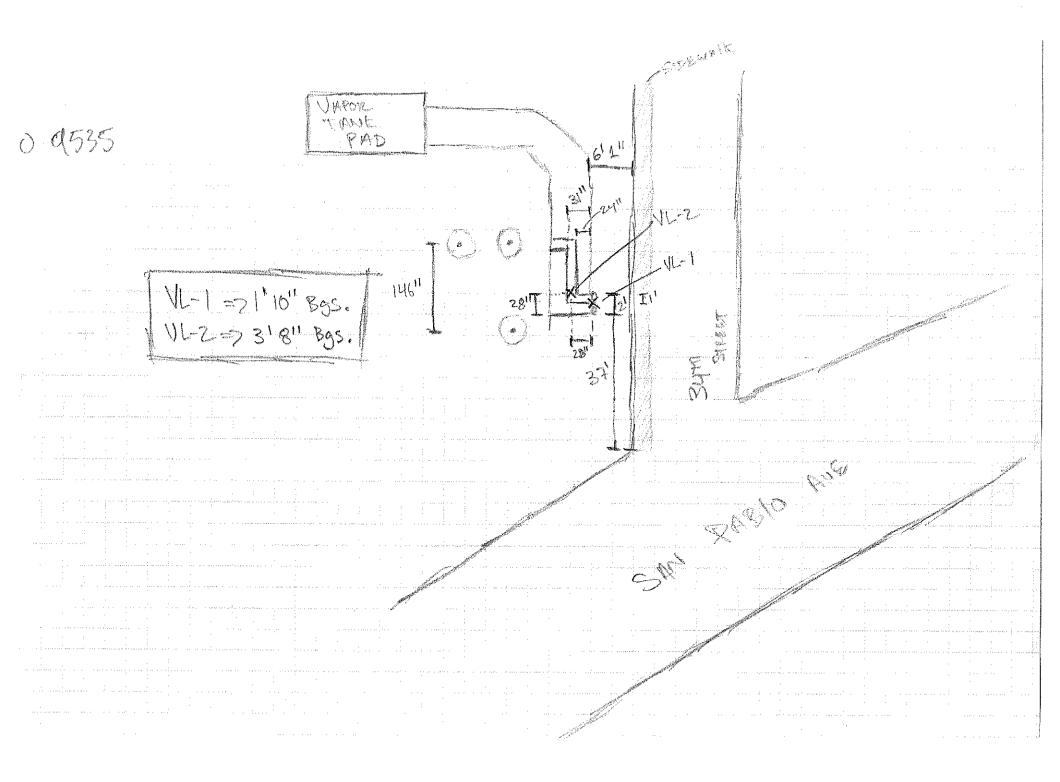
0845 -> ONSITE, SAFER MEETING.

- CARS-S THERE SCHEMENCES OF VENT LINES & TOWTS, Elipson & map of licancer.
 - 5945-3 CAN OFFICE TO A TALK ABOUT SAMPLING PROCEDURE, ALEO S PRESET SHET BELOW UENTSO

FACH HANN

Fielog


1000 - 5 ACCONDING TO WORK PLAN, ONLY I SAMPLE NELOS TO BE TAKEN, DIMENTY BELOW WHICH VENT MISELS COME OUT OF MINIMO. WANTING FOR CAM EACH & FOR PEGULATOR TO MISILE BLECKE SHAMPLING.


1200 -> Gring Americans, INSPECTOR ARALVES / 2 SALVOLES (UL-1 3. UL-2) THEEN, (UL-2) ? 1'10" Egs (UL-2) ? 3'8" Bgs (TLC-1) -> COMPOSITE OF PERT GENNEL

- 1230-) LATOR & STORE SAMPLES, DISCUSS PROJECT & STATCH MAPFIX Projumpor.
- 1300 S TAFE SOIL WARRE COMPOSITE SAMPLY
- 1315 -> OFFSITE

Mifi

STRATUS ENU. WC

OAKLAND FIRE DEPARMENT/FIRE PREVENTION BUREAU HAZARDOUS MATERIALS UNIT

250 FRANK H. OGAWA PLAZA, SUITE 3341, OAKLAND, CA 94612-2032 • (510) 238-3927

HAZARDOUS MATERIALS INSPECTION REPORT

Site Number	Facilty Name	Facilty Adress	Zip Code
	Arco 9535	3400 SamPatho Ave	6
	Inspect	tion Report	
	PERMISSION 1	O INSPECT GRANTED	
	New Yeste		
		EUR construction materia	
		Perudica her mine makes	
	the second secon	Strate Of the	<i></i>
• • •			
	had a		
		1104	
		Steel	
	\sim		
2009g	the second s		
	Del Gampling vin	Nitive Sort beneating	,
	Former Vent pipe	re / Venter.	
200	Samples taken , y, y	V. 2. B. 110 4 38" P	ŝą.S
1ea	4 pt 10m point filler	poer burger MC,	0
l			
Collin	Facility Contact/Print Name:	Inspected By: Insp. Griffin	238-7759 238-2396

Facility Contact/Signature:	5306767292	238-3927		Insp. Krupers	238-7054
Minifica			Date:	H. Marci	h 89
538-156 (03/08)			11 A.		· · · · · · · · · · · · · · · · · · ·

K

March 20, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-03-1452 Client Reference: ARCO 9535

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/17/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

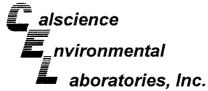
Richard Villey.

Calscience Environmental Laboratories, Inc. Richard Villafania Project Manager

CA-ELAP ID: 1230

 230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501


Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861		Date Rec Work Orc Preparati	der No:			03/17/09 09-03-1452 EPA 3050B			
Project: ARCO 9535		Method:					PA 6010B		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
VL-1	09-03-1452-1-A	03/16/09 12:20	Solid	ICP 5300	03/17/09	03/18/09 11:55	090317L03A		

·.			12:20				11:55	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Lead	ad 10.2		1		mg/kg			
VL-2		09-03-1452-2-A	03/16/09 12:15	Solid	ICP 5300	03/17/09	03/18/09 11:58	090317L03A
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
ead	44.4	0.500	1		mg/kg			
TLC-1		09-03-1452-3-A	03/16/09 12:35	Solid	ICP 5300	03/17/09	03/18/09 12:00	090317L03A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
_ead	3.32	0.500	1		mg/kg			
SWC		09-03-1452-4-A	03/16/09 12:45	Solid	ICP 5300	03/17/09	03/18/09 12:03	090317L03A
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Lead	7.92	0.500	1		mg/kg			
Method Blank		097-01-002-12,125	N/A	Solid	ICP 5300	03/17/09	03/18/09 11:23	090317L03A
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Stratus Environmental, inc.	Date Received:	03/17/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)
Project: ARCO 9535		Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VL-1		09-03-1452-1-A	03/16/09 12:20	Solid	GC 1	03/17/09	03/18/09 02:52	090318B01
Parameter	<u>Result</u>	RL	DE	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	91	42-126						
VL-2		09-03-1452-2-A	03/16/09 12:15	Solid	GC 1	03/17/09	03/18/09 05:31	090318B01
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofiuorobenzene	92	42-126						
TLC-1		09-03-1452-3-A	03/16/09 12:35	Solid	GC 1	03/17/09	03/18/09 04:28	090318B01
Parameter	Result	<u>RL</u>	DE	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	91	42-126						
SWC		09-03-1452-4-A	03/16/09 12:45	Solid	GC 1	03/17/09	03/18/09 04:59	090318B01
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	93	42-126						

RL - Reporting Limit , DF - Ditution Factor , Qual - Qualifiers

MM

Stratus Environmental, inc.	Date Received:	03/17/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Lab Sample Date/Time Date Date/Time							ige 2 of 2	
Client Sample Number				Matrix	Instrument			QC Batch ID
Method Blank		099-12-697-89	N/A	Solid	GC 1	03/18/09		090318B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	92	42-126						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	03/17/09
Work Order No:	09-03-1452
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg
	Page 1 of 2

Project: ARCO 9535

					~ . ~			D = 1 =	D-1- 0	imac	
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
VL-1			09-03-	1452-1-A	03/16/09 12:20	Solid	GC/MS Z	03/19/09	03/19/ 15:1		090319L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl I	Ether (MTB	E)	ND	0.0010	1	
Ethylbenzene	ND	0.0010	1		Tert-Butyl Alco	hol (TBA)	· · ·	ND	0.010	1	
Ethanol	ND	0.10	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.0020	1	
Xylenes (total)	ND	0.0010	1		Tert-Amyl-Meth	nyl Ether (T.	AME)	ND	0.0020	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			<u>REC (%)</u>	Control		Qual
		Limits							Limits		
Dibromofluoromethane	117	75-141			1,2-Dichloroeth	nane-d4		82	73-151		
Toluene-d8	97	87-111			1,4-Bromofluor	obenzene		87	71-113		
VL-2			09-03-	1452-2-A	03/16/09 12:15	Solid	GC/MS Z	03/19/09	03/19/ 16:5		090319L01
Parameter	Result	RL	DF	Qual	Parameter	·		Result	RL	DE	Quai
Benzene	ND	0.0010	1		Methyl-t-Butyl I	Ether (MTB	E)	ND	0.0010	1	
Ethylbenzene	ND	0.0010	1		Tert-Butyl Alco	•	_,	ND	0.010	1	
Ethanol	ND	0.10	1		Diisopropyl Eth	• •		ND	0.0020	1	
Toluene	ND	0.0010	1		Ethyl-t-Butyl Et		L	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1		Tert-Amyl-Met	. ,		ND	0.0020	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	.j	,	REC (%)	Control	•	Qual
<u>ourrogados.</u>	<u>1100 (70)</u>	Limits		<u>Securit</u>	ganga ang			1.000 (70)	Limits		
Dibromofluoromethane	112	75-141			1.2-Dichloroeth	nane-d4		83	73-151		
Toluene-d8	95	87-111			1.4-Bromofluor			87	71-113		
TLC-1			09-03-	1452-3-A	03/16/09 12:35	Solid	GC/MS Z	03/19/09	03/19/ 17:2		090319L01
Parameter	Result	<u>RL</u>	DE	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl I	Ether (MTR	E)	ND	0.0010	1	
Ethylbenzene	ND	0.0010	1		Tert-Butyl Alco	•	-,	ND	0.0010	1	
Ethanol	ND	0.0010	1		Diisopropyl Eth			ND	0.0020	1	
Toluene	ND	0.0010	1		Ethyl-t-Butyl Et			ND	0.0020	. 1	
Xylenes (total)	ND	0.0010	1		Tert-Amyl-Meth			ND	0.0020	1	
Surrogates:	REC (%)	Control	I	Qual	Surrogates:	Greener (D	r 11#1⊑j	REC (%)	Control	+	Qual
Surroyales.	NEU (70)	Limits		QUAI	ounvgales.			<u>ILCO 1</u> M	Limits		<u>aaaa</u>
Dibromofluoromethane	90	<u>111115</u> 75-141			1.2-Dichloroeth	ane-d4		82	73-151		
Toluene-d8	90 97	87-111			1.4-Bromofluor			88	71-113		
I GIUCHERUU	UT .	07-111			.,- 5.000000	0000000		~~			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	03/17/09
Work Order No:	09-03-1452
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg
	Page 2 of 2

Project: ARCO 9535

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T I Analyz		QC Batch ID
swc		-	09-03-1	1452-4-A	03/16/09 12:45	Solid	GC/MS Z	03/19/09	03/19. 17:5		090319L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0010	1		Xylenes (totai)			ND	0.0010	1	
Ethylbenzene	ND	0.0010	1		Methyl-t-Butyl E	Ether (MTBE	Ξ)	0.0024	0.0010	1	
Toluene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	90	75-141			1,2-Dichloroeth	ane-d4		79	73-151		
Toluene-d8	98	87-111			1,4-Bromofluore	obenzene		89	71-113		
Method Blank			000 40	-709-117	N/A	Solid	GC/MS Z	03/19/09	03/19	100	090319L01
			099-12	-/09-11/	N/A	50110	GC/WI3 Z	03/15/05	14:4		090319201
	Result	RL	099-12	<u>Qual</u>	N/A Parameter	50110	GCINISZ	Result			
Parameter	Result ND	<u>RL</u> 0.0010							14:4	4	
Parameter Benzene			DF		Parameter	Ether (MTBE		Result	14:4 <u>RL</u>	4	
<u>Parameter</u> Benzene Ethylbenzene	ND	0.0010	DF		<u>Parameter</u> Methyl-t-Butyl E	ther (MTBE		Result ND	14:4 <u>RL</u> 0.0010	4	
<u>Parameter</u> Benzene Ethylbenzene Ethanol	ND ND ND ND	0.0010 0.0010	DF		Parameter Methyl-t-Butyl E Tert-Butyl Alcol Diisopropyl Eth Ethyl-t-Butyl Eth	Ether (MTBE hol (TBA) er (DIPE) her (ETBE)	Ξ)	Result ND ND ND ND ND	RL 0.0010 0.010 0.0020 0.0020 0.0020	4	
<u>Parameter</u> Benzene Ethylbenzene Ethanol Toluene	ND ND ND ND ND	0.0010 0.0010 0.10 0.0010 0.0010	DF	Qual	Parameter Methyl-t-Butyl E Tert-Butyl Alcol Diisopropyl Eth Ethyl-t-Butyl Eth Tert-Amyl-Meth	Ether (MTBE hol (TBA) er (DIPE) her (ETBE)	Ξ)	Result ND ND ND ND ND ND	RL 0.0010 0.010 0.0020 0.0020 0.0020 0.0020	4	Qual
Parameter Benzene Ethylbenzene Ethanol Toluene Xylenes (total)	ND ND ND ND	0.0010 0.0010 0.10 0.0010	DF		Parameter Methyl-t-Butyl E Tert-Butyl Alcol Diisopropyl Eth Ethyl-t-Butyl Eth	Ether (MTBE hol (TBA) er (DIPE) her (ETBE)	Ξ)	Result ND ND ND ND ND	RL 0.0010 0.010 0.0020 0.0020 0.0020	4	
Parameter Benzene Ethylbenzene Ethanol Toluene Xylenes (total) Surrogates: Dibromofluoromethane	ND ND ND ND ND	0.0010 0.0010 0.10 0.0010 0.0010 <u>Control</u>	DF	Qual	Parameter Methyl-t-Butyl E Tert-Butyl Alcol Diisopropyl Eth Ethyl-t-Butyl Eth Tert-Amyl-Meth	Ether (MTBE hol (TBA) er (DIPE) her (ETBE) lyl Ether (TA ane-d4	Ξ)	Result ND ND ND ND ND ND	RL 0.0010 0.010 0.0020 0.0020 0.0020 <u>Control</u>	4	Qual

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

Calscience Image: nvironmental Quality Control - Spike/Spike Duplicate Aboratories, Inc.

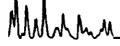
Stratus Environmental, inc.	Date Received:	03/17/09
3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861	Work Order No: Preparation:	09-03-1452 EPA 3050B
	Method:	EPA 6010B

Project ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-03-1485-1	Solid	ICP 5300	03/17/09		03/17/09	090317S03
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Lead	99	98	75-125	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan

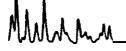


Stratus Environmental, inc.	Date Received	03/17/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation: Method:	EPA 3050B EPA 6010B

Project: ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
09-03-1485-1	Solid	ICP 5300	03/17/09	03/18/09	090317503
Parameter	PDS %REC	PDSD %REC	<u>%REC CL</u>	<u>RPD RPD</u>	CL Qualifiers
Lead	94	94	75-125	1 0-2	0

RPD - Relative Percent Difference, CL - Control Limit


Calscience nvironmental quality Control - Spike/Spike Duplicate aboratories, Inc.

		· · · · · · · · · · · · · · · · · · ·
Stratus Environmental, inc.	Date Received:	03/17/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
VL-1	Solid	GC 1	03/17/09	03/18/09	090318S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD RPD C	L Qualifiers
Gasoline Range Organics (C6-C12)	79	79	42-126	1 0-25	

RPD - Relative Percent Difference , CL - Control Limit

Calscience nvironmental aboratories, Inc.

Stratus Environmental, inc.	Date Received:	03/17/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation: Method:	EPA 5030B EPA 8260B

Project ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
VL-1	Solid	GC/MS Z	03/19/09		03/19/09	090319S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	90	87	78-114	4	0-14	
Chloroform	76	79	80-120	3	0-20	
1,1-Dichloroethane	68	70	80-120	2	0-20	
1,2-Dichloroethane	96	93	80-120	3	0-20	
1,1-Dichloroethene	66	67	73-127	2	0-21	
Ethanol	83	78	45-135	7	0-29	
Tetrachloroethene	73	70	80-120	4	0-20	
Toluene	92	88	74-116	4	0-16	
Trichloroethene	85	83	74-122	3	0-17	
Methyl-t-Butyl Ether (MTBE)	78	82	69-123	5	0-18	

RPD - Relative Percent Difference, CL - Control Limit

MM

Calscience nvironmental Quality Control - LCS/LCS Duplicate *aboratories, Inc.*

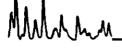
Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550	Date Received: Work Order No:	N/A 09-03-1452
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

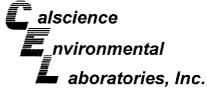
Project: ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batcl Number	n
097-01-002-12,125	Solid	ICP 5300	03/17/09	03/18/09	090317L03A	
Parameter	LCS ?		<u>%REC %F</u>	REC CL RPE	RPD CL	Qualifiers
Lead	109	107	' 8	0-120 1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan_

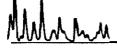

Calscience Image: nvironmental Quality Control - LCS/LCS Duplicate Laboratories, Inc.

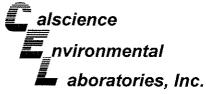

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation: Method:	EPA 5030B EPA 8015B (M)

Project: ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepar			LCS/LCSD Batcl Number	ו
099-12-697-89	Solid	GC 1	03/18/	09 03/18	3/09	090318B01	
Parameter	LCS 9	<u> AREC LCSE</u>	<u>) %REC</u>	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	95	9	6	70-118	1	0-20	

RPD - Relative Percent Difference , CL - Control Limit




Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project: ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal					
099-12-709-117	Solid	GC/MS Z	03/19/09	03/19	/09	090319L01			
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers		
Benzene	91	92	84-114	79-119	1	0-7			
Bromobenzene	104	103	80-120	73-127	1	0-20			
Bromochloromethane	96	93	80-120	73-127	4	0-20			
Bromodichloromethane	95	98	80-120	73-127	2	0-20			
Bromoform	107	107	80-120	73-127	0	0-20			
Bromomethane	121	117	80-120	73-127	3	0-20			
n-Butylbenzene	86	86	77-123	69-131	1	0-25			
sec-Butylbenzene	87	87	80-120	73-127	0	0-20			
tert-Butylbenzene	93	89	80-120	73-127	4	0-20			
Carbon Disulfide	88	84	80-120	73-127	5	0-20			
Carbon Tetrachloride	81	95	69-135	58-146	16	0-13			
Chlorobenzene	94	95	85-109	81-113	2	0-8			
Chloroethane	85	81	80-120	73-127	5	0-20			
Chloroform	98	94	80-120	73-127	4	0-20			
Chloromethane	87	82	80-120	73-127	6	0-20			
2-Chlorotoluene	95	94	80-120	73-127	0	0-20			
4-Chlorotoluene	86	86	80-120	73-127	0	0-20			
Dibromochloromethane	102	103	80-120	73-127	0	0-20			
1,2-Dibromo-3-Chloropropane	82	79	80-120	73-127	4	0-20			
1,2-Dibromoethane	101	98	80-120	73-127	3	0-20			
Dibromomethane	100	101	80-120	73-127	1	0-20			
1,2-Dichlorobenzene	94	94	80-110	75-115	0	0-10			
1,3-Dichlorobenzene	92	92	80-120	73-127	0	0-20			
1,4-Dichlorobenzene	90	90	80-120	73-127	0	0-20			
Dichlorodifluoromethane	94	89	80~120	73-127	6	0-20			
1,1-Dichloroethane	89	86	80-120	73-127	3	0-20			
1,2-Dichloroethane	93	93	80-120	73-127	0	0-20			
1,1-Dichloroethene	87	84	83-125	76-132	4	0-10			
c-1,2-Dichloroethene	91	88	80-120	73-127	2	0-20			
t-1,2-Dichloroethene	91	87	80-120	73-127	5	0-20			
1,2-Dichloropropane	91	93	79-115	73-121	1	0-25			
1.3-Dichloropropane	95	94	80-120	73-127	2	0-20			
2,2-Dichloropropane	99	94	80-120	73-127	6	0-20			
1,1-Dichloropropene	67	87	80-120	73-127	25	0-20			
c-1,3-Dichloropropene	94	95	80-120	73-127	1	0-20			
t-1,3-Dichloropropene	95	94	80-120	73-127	1	0-20			
Ethylbenzene	94	91	80-120	73-127	3	0-20			
Isopropylbenzene	96	94	80-120	73-127	1	0-20			

RPD - Relative Percent Difference, CL - Control Limit

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-1452
Cameron Park, CA 95682, 8861	Proparation:	EDA 5020B
Cameron Park, CA 95682-8861	Preparation: Method:	EPA 5030B EPA 8260B

Project: ARCO 9535

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe		
099-12-709-117 Parameter	Solid	GC/MS Z	03/19/09	03/19	/09	090319L01		
	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers	
p-Isopropyttoluene	91	91	80-120	73-127	0	0-20		
Methylene Chloride	90	86	80-120	73-127	4	0-20		
Naphthalene	87	87	80-120	73-127	0	0-20		
n-Propylbenzene	95	94	80-120	73-127	1	0-20		
Styrene	100	100	80-120	73-127	0	0-20		
Ethanol	87	83	50-134	36-148	4	0-23		
1,1,1,2-Tetrachloroethane	101	102	80-120	73-127	1	0-20		
1,1,2,2-Tetrachloroethane	102	98	80-120	73-127	4	0-20		
Tetrachloroethene	89	97	80-120	73-127	9	0-20		
Toluene	92	92	79-115	73-121	0	0-8		
1,2,3-Trichlorobenzene	90	92	80-120	73-127	2	0-20		
1,2,4-Trichlorobenzene	89	90	80-120	73-127	2	0-20		
1,1,1-Trichloroethane	99	94	80-120	73-127	5	0-20		
1,1,2-Trichloroethane	97	97	80-120	73-127	0	0-20		
Trichloroethene	89	89	87-111	83-115	0	0-7		
Trichlorofluoromethane	101	96	80-120	73-127	5	0-20		
1,2,3-Trichloropropane	103	10 4	80-120	73-127	1	0-20		
1,2,4-Trimethylbenzene	91	91	80-120	73-127	0	0-20		
1,3,5-Trimethylbenzene	98	96	80-120	73-127	3	0-20		
Vinyl Acetate	101	87	80-120	73-127	14	0-20		
Vinyl Chloride	80	78	72-126	63-135	3	0-10		
p/m-Xylene	94	94	80-120	73-127	1	0-20		
o-Xylene	93	93	80-120	73-127	0	0-20		
Methyl-t-Butyl Ether (MTBE)	99	96	75-129	66-138	4	0-13		
Tert-Butyl Alcohol (TBA)	97	95	66-126	56-136	1	0-24		
Diisopropyl Ether (DIPE)	86	84	77-125	69-133	2	0-13		
Ethyl-t-Butyl Ether (ETBE)	93	92	72-132	62-142	1	0-12		
Tert-Amyl-Methyl Ether (TAME)	98	99	77-125	69-133	1	0-10		

Total number of ME compounds : 2

Total number of ME compounds allowed : 3

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

h

Work Order Number: 09-03-1452

Qualifier	Definition
AX	Sample too dilute to quantify surrogate.
BA	There was no MS/MSD analyzed with this batch due to insufficient sample volume (NR = not reported). See Blank Spike/Blank Spike Duplicate.
BA,AY	Relative percent difference out of control, matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GS	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG	Surrogate recovery below the acceptance limit.
LH	Surrogate recovery above the acceptance limit.
LM,AY	MS and/or MSD above acceptance limits. See Blank Spike (LCS). Matrix interfence suspected.
LN,AY	MS and/or MSD below acceptance limits. See Blank Spike (LCS). Matrix interfence suspected.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.

Muhhm_

Qualifier	Definition
MB	Analyte present in the method blank.
MG	Analyte is a suspected lab contaminate.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.

WORK ORDER #: 0)9-03	3- ∏ [₽] ₽	180f18 1512
aboratories, inc. SAMPLE RECEIPT FOR	Мс	ooler <u> </u>	_ of <u>\</u>
CLIENT: STRATUS ENV'L.	DATE: _	3/17	109
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)			
Temperature $\underline{1} \cdot \underline{9} \circ \mathbf{C} - 0.2 \circ \mathbf{C} (CF) = \underline{1} \cdot \underline{7} \circ \mathbf{C} \square$	Blank	🗆 Sampl	e
□ Sample(s) outside temperature criteria (PM/APM contacted by:).			
\Box Sample(s) outside temperature criteria but received on ice/chilled on same day		ng.	
Received at ambient temperature, placed on ice for transport by Cour	ier.		4
Ambient Temperature: Air Filter Metals Only PCBs On	ly 	Initial	:WB_
CUSTODY SEALS INTACT:]
□ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Initia	: WB
□ Sample □ □ No (Not Intact) ⊉*Not Present		Initia	hc
SAMPLE CONDITION:		ht_	
SAMPLE CONDITION: Ye Chain-Of-Custody (COC) document(s) received with samples		No	N/A
COC document(s) received complete			
Collection date/time, matrix, and/or # of containers logged in based on sample labels.	-		L.J
□ COC not relinquished. □ No date relinquished. □ No time relinquished.			
Sampler's name indicated on COC	7		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	1		Ĺ.
Correct containers and volume for analyses requested	7		
Analyses received within holding time	Y		
Proper preservation noted on COC or sample container]		B
Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace]		Ľ
Tedlar bag(s) free of condensation]		
Solid: 04ozCGJ 08ozCGJ 016ozCGJ 05feeve 0EnCores® 0Te	erraCore	s® □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AG	Bpo₄ □	1AGB 🗆1	AGBna ₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □500	DPB 🗆 5	00PBna	1250PB
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂ □	0_	□	
Air: □Tedlar [®] □Summa [®] □ Sludge/Other: □	Checked	Labeled by:	25
Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na:NaOH po4:H ₃ PO4 s:H ₂ SO4 znna:ZnAc ₂ +NaC	R	eviewed by: Scanned by:	TWB_

SOP T100_090 (03/13/09)

Atlantic Richfield CompanyLaboratory ManOA BP affiliated companyBP/ARC Project Name: BP/ARC Facility No:	BP/ARC Facility Address: 3400 SAN PABLO AVE								ue Dat ork Or		-			<u> </u>			TAT: Ye:	°_¥_ ₿- 41			
Lab Name: CHISCIENCE ENU. LABOHATOLIES							AUF			Cons	ultant/	Contra	stor: 👟	-9	tus BNI						
Lab Address: 7440 Luncolns Way Company Grover Ca.	City, Stat	te, ZIP C	ode:	Óħ	t lu	4-10	. u	4					Cons	ultant/	Contra	tor Pro	iect No	E953	<u>v.</u> ~	<u>40</u>	<u>.</u>
· · · · ·	Lead Reg				-	<u>.</u>	.											PALL PL		Cuku	-
Lab Phone: 714 - 895 - 5494	California	a Global	ID No	τ	ما 0	001	013	365					Cons	ultant/0	ontrac	tor PM:	T	1 304	1000	<u> P4</u>	10
Lab Shipping Accnt: 1255	Enfos Pro	oposal N	lo:				<u> </u>		-				Phon	e: 5	30 6	A 6	} 6000	سه رس	UN AUN		<u></u>
Lab Bottle Order No:	Accountir	ng Mode	a:	Pro	ovisio	n	00	C-BU	X (00C-F	M	_				-		D STW	THE INT	- N	6.7
	Stage:			A	ctivity	r:								e To:		BP/AR	c K		ractor	- 14	-
BP/ARCEBM: PAUL SUPPLE	Ma	trix	I	io. Co	ontai	ners /	Pres	ervativ	/e			Requ	estec	Anal				-	rt Type &	0C I	eve
EBM Phone:					Γ	<u> </u>			-†-			Ī			Т	Т	T		Standard		
EBM Email: PULL. SUIPLED BP.COM			Contaimers									URAD						Fu∦ Dat	ta Package		-
	Soil / Solid Water / Liquid	Air / Vapor	Total Number of C	Unpreserved	H₂SO₄	HNO ₃	HCI	Methanol	(t)		* sot	1		BELM				Note: If sample Sample" in con and initial any p	ments and s	d, indica inole-s	strike
	4		1	K						11	নি	イ	*		+		+	* 5045			
2 VL-2	1		1	*							1	+	1		╈					min	
3 TLC-1 V 1235	4		(4						44	$\overline{\mathbf{x}}$	4	×	+						7.6	
4 SWC VILLS	*		l	4					1	1		X		X	+		1-		G	τB	P
																			1	BA	F
											<u> </u>		_					¥4			
				┢┈┤						+					_	-		F48H	our	TA	T
			1				_	-	╈	+			-								
								_													
ampler's Name: Collin Fischere				hed B	By / A	ffiliat	іоп			Date	Ti	ne		4	ccep	ted By	/ Affi	iation	Da	te	Ti
ampler's Company: STRIATUS ENU. INC.	al	Lin.	<u> </u>	~	-				3]	40	160	0		١	1						
hipment Method: GSO Ship Date: 3/4/04]	60	at	ĩn (Q	5~	317	109	10
pecial Instructions: 106087830																_					