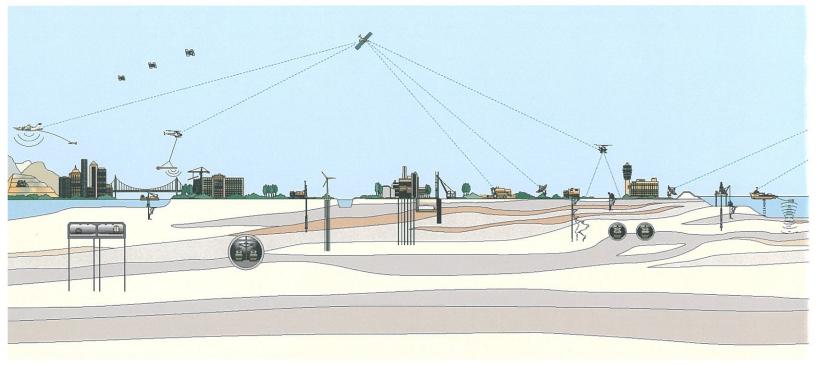
RECEIVED

By dehloptoxic at 3:50 pm, Aug 01, 2006

FUGRO WEST, INC.



ADDITIONAL SITE STUDY REPORT 2801 MacARTHUR BOULEVARD OAKLAND, CALIFORNIA StID 23

Prepared for: ALAMEDA COUNTY ENVIRONMENTAL HEALTH

JULY 2006

Fugro Project No. 838.006

FUGRO WEST, INC.

1000 Broadway, Suite 200 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0137

July 28, 2006 Project No. 838.006

Alameda County Environmental Health 1161 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Donald Hwang, Hazardous Materials Specialist

Subject: Additional Site Study Report, 2801 MacArthur Boulevard, Oakland, California StID Number 23

Dear Mr. Hwang:

Please find attached Fugro West, Inc.'s, Additional Site Study Report documenting the additional investigation activities conducted at 2801 MacArthur Boulevard in Oakland, California (Site). This investigation was conducted as requested by the Alameda County Environmental Health, to further characterize soil and groundwater conditions onsite. This investigation and resulting report were completed in accordance with Fugro's Work Plan dated October 11, 2005, as approved by the Alameda County Environmental Health (ACEH) in their letter dated March 31, 2006. The results of the site activities described herein are in our professional judgment, representative of the soil and groundwater conditions at the Site.

Should you have any questions, comments, or require additional information, please do not hesitate to contact us at (510) 268-0461.

Sincerely,

FUGRO WEST, INC.

Nee

Obi Nzewi Project Geologist

siann alexander

Jeriann Alexander, P.E., R.E.A.

CALIFORNIA OF CALIFORNIA

Civil Engineer 40469 (exp. 3/31/07) Registered Environmental Assessor 03130 (exp. 07/07)

ON/JNA:tm

Copies Submitted:

(1) Addressee(2) Aniko Molnar(1) Raymond Yu

CONTENTS

			F	Page
1.0	INTF	RODUC	TION	1
2.0	LIMI		۱S	1
3.0	SITE	DESC	RIPTION	1
4.0	OVE	RVIEW	OF UST REMOVAL, REMEDIATION, AND INVESTIGATIONS	2
5.0	FIEL	D ACT	IVITIES	3
6.0	SUB	SURFA	CE CONDITIONS	5
7.0	CHE	MICAL	TESTING PROGRAM	6
	7.1	Soil Sa	amples	6
	7.2	Grab (Groundwater Samples	7
	7.3	Groun	dwater Samples	7
8.0	RES	ULTS (DF ANALYSES	7
	8.1	Data (Quality	8
	8.2	Result	s of Chemical Analysis - Soil	8
		8.2.1	Results of Physical Property Tests	9
		8.2.2	Comparison of Detected Chemicals of Concern to Regulatory Guidance	9
	8.3	Result	s of Chemical Analysis - Groundwater	11
		8.3.1	Grab Groundwater	11
		8.3.2	Groundwater Wells	11
		8.3.3	Comparison of Detected Chemicals of Concern to Regulatory Guidance	12
9.0	SUM	IMARY	OF FINDINGS	13
10.0	CON	ICLUSI	ONS AND RECOMMENDATIONS	14
11.0	REF	ERENC	ES	15

TABLES

Table

Summary of Analytical Data - Soil Samples	1
Summary of Analytical Data - Grab Groundwater Samples	2
Summary of Analytical Results - Groundwater Well Samples	3
Groundwater Elevation Data	4
Summary of Quality Control Data - Soil and Grab Groundwater Samples	5

ÂĈ

CONTENTS – CONTINUED

PLATES

Plate

Vicinity Map	. 1
Site Plan	.2
Groundwater Surface Map - June 2006	. 3
Distribution of TPHg in Groundwater - June 2006	.4
Distribution of TPHd in Groundwater - June 2006	5
Distribution of MTBE Concentrations in Groundwater - June 2006	. 6
Distribution of Benzene Concentrations in Groundwater - June 2006	.7
Distribution of Toluene in Groundwater - June 2006	. 8
Distribution of Ethylbenzene in Groundwater - June 2006	. 9
Distribution of Total Xylenes in Groundwater - June 20061	0
Distribution of TBA Concentrations in Groundwater - June 2006	1
Distribution of DCA Concentrations in Groundwater - June 2006	12

APPENDICES

APPENDIX A	PERMITS	
APPENDIX B	USCS AND LOGS OF BORINGS	
	Key to Soil Classification and Test Data Test Boring Logs	Plate B-1 B-13 through B-18
APPENDIX C	LABORATORY REPORTS	
APPENDIX D	FIELD FORMS	
APPENDIX E	ADDITIONAL HISTORICAL DATA	
APPENDIX F	AGENCY LETTERS	

LIST OF ACRONYMS AND ABBREVIATIONS

- ACEH Alameda County Environmental Health
- bgs below ground surface
- BTEX benzene, toluene, ethylbenzene, and xylenes
- DCA 1,2-Dichloroethane, also know as EDC
- DIPE Di-isopropyl ether
- EDB 1,2-Dibromoethane
- EDC 1,2-Dichloroethane
- ETBE ethyl tert-butyl ether
- ESLs Environmental Screening Levels
- mg/kg milligrams per kilogram = ppm
- MCL Maximum Contaminant Levels
- MTBE Methyl tert butyl ether
- OVM organic vapor meter
- ppm parts per million
- QA/QC Quality Assurance/Quality Control
- RWQCB Regional Water Quality Control Board
- RPD Relative Percentage Difference
- TBA tert-butanol
- TAME tert amyl methyl ether
- TPH total petroleum hydrocarbons
- TPHd total petroleum hydrocarbons as diesel fuel
- TPHg total petroleum hydrocarbons as gasoline
- TPHmo total petroleum hydrocarbons as motor oil
- μg/kg micrograms per kilogram
- μg/l micrograms per liter
- ULR Urban Land Redevelopment
- USA Underground Services Alert
- UST underground storage tank
- USCS Unified Soil Classification System

1.0 INTRODUCTION

With this report, Fugro West, Inc., (Fugro) presents the results of the Additional Site Study at 2801 MacArthur Boulevard in Oakland, California (Site). The Site location is shown on the vicinity map (Plate 1). Results of this investigation are to be used to supplement data gaps and assess the vertical and horizontal extent of impacts onsite. This investigation was completed in accordance with Fugro's Work Plan dated October 11, 2005, as approved by Alameda County Environmental Health (ACEH) in their letter dated March 31, 2006. Fugro was retained by The APA Fund to conduct this investigation. The APA Fund was the former Site owner.

2.0 LIMITATIONS

Fugro has prepared this report in a professional manner, using that degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. Fugro shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the report was prepared. Fugro also notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. Fugro believes that conclusions stated herein to be factual, but no guarantee is made or implied. This report has been prepared for the benefit of our client, The APA Fund and ACEH.

3.0 SITE DESCRIPTION

The Site occupies the western third of the parcel bounded by MacArthur Boulevard to the north, Coolidge Avenue to the west, Georgia Street to the south, and residential properties to the east. Remnants of a former gasoline service station, including the station building and canopy, occupy this portion of the parcel. Currently, the station building is being used by an auto repair business. The eastern portion of the parcel is occupied by a strip mall shopping center. Asphalt concrete paved parking areas occupy the open portions of the parcel. The Site is commercially zoned, and surrounding properties are primarily commercial; however, residential structures exist northwest along Coolidge Avenue, south and southwest of the Site across Georgia Street.

The Site is located within an upland area near the western flank of the Oakland Hills. The topography of the area is characterized by rolling terrace deposits. The Site is underlain by interbedded alluvial soils comprising stiff to very hard sandy clays, clayey and sandy silts, dense clayey sands and gravels.

Historical groundwater depths have ranged from approximately 21 to 41 feet below ground surface (bgs). The groundwater flow direction based on historical data has consistently been to the south and southeast. Based on the most recent groundwater-monitoring event (June 2006), the depth to groundwater ranged from approximately 23 to 31 feet bgs, and the

groundwater flow direction was towards the south and southeast. The current data is consistent with the historical range in depth to groundwater and flow directions.

4.0 OVERVIEW OF UST REMOVAL, REMEDIATION, AND INVESTIGATIONS

In May 1989, three underground storage tanks (USTs) and associated fuel dispensing equipment were removed from the Site (Plate 2). Approximately 435 cubic yards of fuelimpacted soils were also subsequently excavated, and removed from the Site and clean fill was replaced into the resulting excavation. Groundwater monitoring performed at the Site between 1990 and 1996 showed that a dissolved gasoline plume had migrated about 150 feet down gradient from the source area. Subsurface Consultants, Inc., (SCI) (a wholly-owned subsidiary of Fugro West, Inc.) performed a Tier 2 Risk Assessment (October 28, 1997), which indicated that the impacted material onsite appeared to pose no significant risk to human health or the environment considering the commercial use of the property.

Following discussions with ACEH regarding their concerns with respect to a lack of data in the area of the former pump islands; SCI prepared a Work Plan (April 7, 1998) to perform an additional subsurface investigation to evaluate soil and soil gas concentrations in the area of the former Boring B-9 and the pump islands. Results of the field investigation presented in the SCI report dated February 1, 1999, suggested that soil impacts in the area of the former waste oil tank had decreased as a result of source removal and ongoing natural degradation; however, residual soils containing elevated concentrations of gasoline and BTEX still remained in place below the former pump island area.

SCI prepared a Corrective Action Plan (CAP) dated August 13, 1999, which was approved by the ACEH in their letter dated August 20, 1999. Remedial actions, including excavation of impacted soils north of the former station building and in the vicinity of the former pump islands, were implemented in November 2000 by WRS Consultants, and observed by Chaney, Walton and McCall LLC. Review of reports documenting remediation suggests the following:

- Approximately 800 cubic yards of impacted soil to a depth of 15 to 18 feet bgs was excavated and removed from the area north of the former station building as shown on Plate 2.
- The resulting excavation was backfilled with clean, imported soil.
- Piezometer P-3 was decommissioned during remediation activities (Fugro contacted the Alameda County Department of Public Works and retrieved a copy of the well decommissioning permit. A copy of the permit is included in Appendix A).

It was subsequently observed that the backfilled area failed to meet the required specifications resulting in subsidence of the former excavation area. In 2001, Geomatrix was retained to observe the re-excavation and re-compaction of imported materials in the excavation area north of the existing building. Geomatrix (January 2, 2002) confirmed that the previous excavation measured approximately 30 feet by 50 feet in plan dimension and extended to a depth of between 15 to 18 feet bgs. Additional historical data is presented in Appendix E.

In June 2005, Fugro was retained by The APA Fund to participate in discussions with the ACEH and representatives of The APA Fund regarding Site conditions, regulatory concerns, and future redevelopment plans. In their letter dated July 2005, ACEH requested a Work Plan for supplemental soil and groundwater characterization, including implementation of groundwater monitoring for wells onsite.

Fugro prepared a Work Plan to address ACEH requirements for additional site study. In our Work Plan dated October 11, 2005, Fugro proposed the following:

- Locate and rehabilitate existing monitoring wells onsite;
- Decommission monitoring well M-3 located approximately 160 feet east of the former tank area;
- Advance five to eight borings (depending on our ability to locate wells M-1 and M-2), to facilitate collection of soil and grab groundwater samples;
- Conduct concurrent groundwater monitoring; and
- Preparing this report.

In their March 31, 2006, letter, ACEH approved Fugro's Work Plan on condition that additional soil samples be collected and analyzed at changes in lithology. Copies of pertinent ACEH letters are included in Appendix F. The intent of this condition has substantially been met by the study described in Sections 5.0, 6.0, 7.0, and 8.0.

5.0 FIELD ACTIVITIES

Fugro retained the services of OHJ Subsurface Locators (OHJ), a private utility locator, to screen the suspected locations of monitoring wells M-1, M-2, and P-1. OHJ located metallic anomalies in the locations of M-1 and P-1 but was unable to locate any subsurface anomaly in the area of well M-2. Once located, Fugro retained Controlled Environmental Services (CES), a State of California licensed contractor, to confirm that wells were still present and to rehabilitate wells M-1 and P-1, which had been paved over. CES also restored and rehabilitated the well boxes at wells P-2 and M-4. Monitoring wells were rehabilitated by digging out, replacing, and raising the well boxes. The respective well casings were not disturbed.

Prior to commencement of subsurface drilling activities, Fugro obtained drilling permits from the Alameda County Water Resources Department (County). Copies of these permits are presented in Appendix A. Fugro alerted the Underground Service Alert (USA) at least 48 hours prior to intrusive field activities and retained OHJ to clear all proposed sampling locations.

Clearheart Drilling Inc., (Clearheart), a State of California licensed drilling contractor, conducted drilling activities. Field activities were conducted between June 19 and 23, 2006, under the supervision of Fugro field personnel. Field activities were conducted using standard industry practices regarding worker health and safety. Clearheart advanced six soil borings (B-13 to B-18) to depths ranging from 45 to 60 feet bgs using hollow-stem-auger drilling methods. Soil samples were collected using clean stainless steel tubes, sealed with Teflon[®] tape and plastic end caps, and stored in an ice-chilled chest pending delivery to the analytical

testing laboratory. In general, discrete soil samples were collected and retained from observed changes in lithology and areas of potential contamination. Sampling equipment was steam cleaned between holes to prevent cross contamination. Fugro's field geologist screened soil samples in the field using an organic vapor meter (OVM), and logged and classified the samples in accordance with the Unified Soil Classification System (USCS). The USCS key and boring logs for each of the six borings are presented in Appendix B. Boring locations are illustrated on Plate 2.

Following completion of drilling activities, slotted PVC casings were installed in each boring to facilitate groundwater collection. Fugro collected seven grab groundwater samples. One grab sample was collected from each of the following borings: B-13, B-14, B-16, B-17, and B-18. Two grab samples were collected from Boring B-15. Water was immediately observed during drilling activities in Borings B-13, B-14, and B-18, and sufficient groundwater infiltration allowed these borings to be sampled upon completion of drilling activities the same day. Initially Fugro observed that groundwater was recharging slowly in Boring B-15, the water level encountered during drilling activities was at 45 feet bgs. To check whether the concentrations would be significantly altered once the boring fully recharged, the casing was left in the ground overnight. The stabilized water level in Boring B-15 the next day was 24 feet bgs and a second sample was collected. No groundwater was encountered during drilling activities at Borings B-16 and B-17. The casings were left in place; the borehole was secured and left open overnight to facilitate groundwater recharge. Groundwater samples were collected from these boring the following day, when observed water levels were approximately 25 to 30 feet bgs. Grab groundwater samples were collected using clean disposable bailers, decanted into clean laboratory provided containers, and stored in an ice-chilled chest pending delivery to the analytical testing laboratory. After collection of grab groundwater samples, the casings were removed and each boring was backfilled with neat cement grout and the surface restored to previous conditions.

Fugro also conducted concurrent groundwater monitoring for four wells onsite (M-1, M-4, P-1, and P-2), as well as two offsite down-gradient wells (M-5 and M-6). Depth to groundwater during this event ranged from 23 to 31 feet bgs. Groundwater elevation data is presented in Table 4.

Prior to sampling activities, depth to groundwater was measured, and each well was purged of at least 3 well casing volumes while monitoring dissolved oxygen, pH, and conductivity. Each well was allowed to recharge to at least 80 percent of the measured pre-purge groundwater elevation prior to sample collection. Well sampling forms are presented in Appendix D. Groundwater samples were collected using clean disposable bailers and decanted into laboratory prepared containers. Samples were stored in an ice-chilled chest pending delivery to the chemical testing laboratory.

Fugro retained Clearheart to decommission former monitoring well M-3 in accordance with our Work Plan and County requirements. Prior to field activities, Fugro obtained a well decommissioning permit from the County. A copy of the permit is included in Appendix A. Prior to decommissioning; the well was sounded to ensure that no obstructions were present. Total depth of this well prior to decommissioning was approximately 40 feet bgs. The original

installation depth was approximately 45 feet bgs. The well was decommissioned using a tremie hose and neat cement grout. After grouting up the well casing and well box, Clearheart overdrilled the metal well box and filled the resulting hole with quick setting concrete. A copy of the DWR –188 well decommissioning form is included in Appendix D.

Investigation derived soil cuttings, purge and decontamination water was placed in labeled Department of Transportation approved 55-gallon drums, which were stored south of the former station building, pending chemical classification and offsite disposal.

6.0 SUBSURFACE CONDITIONS

This section describes the soil, groundwater, and field observations made during the site investigation.

Investigation activities generally encountered a pavement section comprising of surface asphalt over baserock with a combined thickness ranging from 6 to 8 inches across the site. Except for Boring B-18 located in the former remediation area, the pavement section was underlain by firm to stiff alluvial soils grading between sandy and gravely clays to depths of about 25 to 30 feet bgs. At Borings B-13 and B-14, located southwest of the former remediation excavation area, sandy to gravely clays were underlain by silty sand and gravel (B-13), and silty sand (B-14) to about 35 and 34 feet bgs, respectively. These deep layers were in-turn underlain at both boring locations by hard clay to the maximum depth explored. At Borings B-15, B-16, and B-17, the pavement section was underlain by hard sandy clays and dense clayey sands to the maximum depth explored. At Boring B-18, located within the former remediation excavation area, the pavement section was underlain by packed excavation backfill material to a depth of about 15 feet bgs. This material was underlain by very stiff to hard sandy clays and dense clayey sands to the maximum depth explored.

Fugro's field geologist observed discolored (green) clayey sand, and sandy clay, possessing mild to strong hydrocarbon odors and OVM readings of up to 252, 359, and 350 parts per million (ppm) in Borings B-15, B-16, and B-18, respectively. Discolored soils with staining, hydrocarbon odors, and elevated OVM readings were encountered between 30 and 40 feet bgs in Borings B-15 and B-16, and were encountered between 15 and 45 feet bgs in Boring B-18. No odors or OVM readings were detected in any of the other soil samples screened during this investigation.

Groundwater was encountered at 15 feet bgs in Boring B-18, and between 36 and 60 feet bgs in the remaining boring locations. With the exception of Boring B-18, we generally observed slow groundwater recharge during drilling activities. Borings B-16 and B-17 had to be allowed to recharge overnight prior to sample collection.

Groundwater depths, during the June 2006 groundwater monitoring activities, ranged from 23 to 41 feet bgs. During this monitoring, event wells M-1, M-5, and M-6 had to recharge overnight prior to sample collection. Fugro's field geologist observed strong hydrocarbon odors from well P-2. Slow recharge of groundwater as observed during drilling activities, and slow recharge of groundwater monitoring wells is consistent with characteristics of a tight soil

formation with low transmissivity. The slow recharge conditions at this site have historically been observed and documented by Fugro and other consultants over the past 15 years.

7.0 CHEMICAL TESTING PROGRAM

Select soil and groundwater samples were delivered under chain-of-custody documentation to Advanced Technology Laboratories, a State of California certified chemical testing laboratory.

7.1 SOIL SAMPLES

A total of 50 soil samples were submitted for chemical analyses. Samples were analyzed for all of the following:

- Total petroleum hydrocarbons as gasoline (TPHg) using EPA Method 8015m;
- Total petroleum hydrocarbons as diesel (TPHd) and total petroleum hydrocarbons TPH) as motor oil (TPHmo) using EPA Method 8015m with silica-gel cleanup;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260;
- Five fuel oxygenates using EPA Method 8260 including:
 - Methyl tert butyl ether (MTBE);
 - Di-isopropyl ether (DIPE);
 - Ethyl tert-butyl ether (ETBE);
 - Tert-amyl methyl ether (TAME); and
 - Tert-butanol (TBA).
- Lead scavengers using EPA Method 8260 including:
 - 1-2, Dibromoethane (EDB); and
 - 1-2, Dichloroethane (DCA).

In addition five of the fifty samples were re-analyzed for TPHg as duplicates for purposes of our QA/QC program. One specific duplicate sample was selected for each day of field sampling.

Five soil samples were also tested for the following soil properties to further evaluate the ability of the groundwater fluctuation zone to transmit flow:

- Grain size distribution;
- Bulk density;
- Moisture content; and
- Porosity.

7.2 GRAB GROUNDWATER SAMPLES

A total of 11 grab groundwater samples including four duplicate samples (one for each day of field sampling) were submitted for chemical analysis. Samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) using EPA Method 8015m;
- Total petroleum hydrocarbons as diesel (TPHd) and total petroleum hydrocarbons (TPH) as motor oil (TPHmo) using EPA Method 8015m with silica-gel cleanup;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260;
- Five fuel oxygenates using EPA Method 8260 including:
 - Methyl tert butyl ether (MTBE);
 - Di-isopropyl ether (DIPE);
 - Ethyl tert-butyl ether (ETBE);
 - Tert-amyl methyl ether (TAME); and
 - Tert-butanol (TBA).
- Lead scavengers using EPA Method 8260 including:
 - 1-2, Dibromoethane (EDB); and
 - 1-2, Dichloroethane (DCA).

7.3 GROUNDWATER SAMPLES

A total of six groundwater samples were collected from four monitoring wells onsite, and two wells offsite, and submitted for chemical analysis. Samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) using EPA Method 8015m;
- Total petroleum hydrocarbons as diesel (TPHd) and total petroleum hydrocarbons (TPH) as motor oil (TPHmo) using EPA Method 8015m with silica-gel cleanup;
- Five fuel oxygenates using EPA Method 8260 including:
 - Methyl tert butyl ether (MTBE);
 - Di-isopropyl ether (DIPE);
 - Ethyl tert-butyl ether (ETBE);
 - Tert-amyl methyl ether (TAME); and
 - Tert-butanol (TBA).
- Lead scavengers using EPA Method 8260 including:
 - 1-2, Dibromoethane (EDB); and
 - 1-2, Dichloroethane (DCA).

8.0 RESULTS OF ANALYSES

This section presents the results of chemical analyses on soil and groundwater samples.

8.1 DATA QUALITY

Fugro reviewed the laboratory quality assurance and quality control (QA/QC) report, and confirmed that all samples were received intact and at the proper temperature. The laboratory QA/QC report also indicated that no analytical or quality control issues were encountered during analysis and reporting of these results. To assess the completeness of the data, Fugro cross-checked all chain-of-custody documents and the laboratory reports, and verified that all requested tests were completed.

Fugro also instructed the chemical testing laboratory to analyze five duplicate soil samples and four duplicate groundwater samples. Duplicate samples were collected at a rate of one sample per day of field sampling. The resulting Relative Percentage Difference (RPD) values for these soil samples ranged from 0 percent to 21 percent while resulting RPD values for the groundwater range from 0 percent to 16 percent. These results indicate that the testing laboratory results are considered to be accurate and valid. Results of RPD calculations are presented in Table 5.

8.2 RESULTS OF CHEMICAL ANALYSIS - SOIL

Laboratory analytical reports are presented in Appendix C. Results of chemical analyses on soil samples are presented in Table 1 and summarized below. The table includes various regulatory threshold concentrations for comparison purposes.

Analysis detected TPHd concentrations ranging from 1.2 to 43 milligrams per kilogram (mg/kg) in samples from Borings B-13, B-14, B-15, B-16, and B-17. Detected TPHd concentrations in Boring B-18 ranged from 1.2 mg/kg in B-18 @41 feet to 460 mg/kg in B-18 @18 feet. Detected TPHmo concentrations ranged from 1.2 mg/kg to 64 mg/kg in all soil samples tested. No TPHg was detected in any of the samples from Borings B-13, B-14, and B-17. Detected TPHg concentrations in the remaining samples ranged from 1.0 mg/kg in B-16 @35 feet to 2,000 mg/kg in B-18 @20 feet.

No BTEX was detected in any of the samples from Borings B-13, B-14, and B-17. No benzene or toluene was detected in any samples from Boring B-15. For the remaining borings, analysis detected benzene concentrations ranging from 11 micrograms per kilogram (μ g/kg) (B-16 @35) to 18,000 μ g/kg (B-18 @20). Detected toluene concentrations in Borings B-16 and B-18 ranged from 18 μ g/kg (B-18 @41) to 130,000 μ g/kg (B-18 @20). Analysis detected ethylbenzene concentrations ranging from 5.4 μ g/kg (B-16 @25) to 34,000 μ g/kg (B-18 @20). Except for 29 μ g/kg of total xylenes detected in sample B-15 @30, no total xylenes concentrations were detected in any of the remaining samples from Borings B-13, B-14, B-15 or B-17. For Borings B-16 and B-18, detected total xylenes concentrations ranged from 38 μ g/kg (B-16 @35.5) to 180,000 μ g/kg (B-18 @20).

None of the five fuel oxygenates (including MTBE, DIPE, ETBE, TAME, and TBA), or two lead scavengers (EDB and DCA), were detected in any of the soil samples tested during this investigation.

8.2.1 Results of Physical Property Tests

Results of grain size distribution and hydrometer tests on selected soil samples from the groundwater fluctuation zone present in Boring B-13 (15.5, 25.5 and 30 feet bgs) indicates that these samples would be classified as clay with sand, clayey sand, and silty clayey sand, respectively. Two samples tested from Boring B-14 (15 and 30 feet bgs) would be classified as sandy clay and silty clayey sand, respectively. These classifications are generally consistent with soils observed during the site investigation and as indicated on our boring logs for soils situated between depths of 15 and 45 feet bgs. Results of soil property analysis are presented in Appendix C.

The results of the specific gravity, porosity and dry unit weight tests further suggests that the subsurface soils are denser than the default soil profiles used in development of the Environmental Screening Levels (ESLs) established by the San Francisco Regional Water Quality Control Board (RWQCB) and Urban Land Redevelopment (ULR) threshold values established by the City of Oakland Public Works Agency. A denser soil would effectively imply that a tighter formation material is present. In addition, the results of the hydrometer tests suggest that the onsite soils have a higher percentage of fine-grained materials (silt and clay sized particles) than the default soil profiles.

A comparison of selected physical characteristics of onsite soils, to characteristics of soil used to create indoor air URL and ESL screening levels to which comparisons of the Site data have been made, are presented below.

	URL Tier 2 Default Parameters For Indoor Air Infiltration Model	ESL Default Parameters For Indoor Air Infiltration Model	Site Range
Porosity	0.50	0.43	0.30 - 0.33
Bulk Density	1.33	1.5	1.78 - 1.89
% Passing #200 Sieve (aka Percent Fines)	10% ^a	10% ^a	34-55%

^a = For comparison, inferred input parameters for clean sand with less than 10% fines.

The presence of tighter formation materials would suggest that 1) lower vapor emissions would be expected from the formation than the levels presented in the ESL and ULR documentation, and 2) the formation materials would tend to retard vapor and groundwater migration. These data further support our findings that the plume is relatively stable and stationary, as it is being controlled by site stratigraphy.

8.2.2 Comparison of Detected Chemicals of Concern to Regulatory Guidance

Based on the results of physical properties tests, and field observations, detected concentrations of chemicals of concern in soil were compared to screening values established for sites underlain by characteristic fine-grained materials. Comparisons have been made to ESLs values for sites with "Low/moderate Permeability", while ULR comparisons were made to

Tier 2 screening levels established for "Clayey Silts". The onsite data, however, suggests that these selected profiles would effectively over-estimate emission data.

Results of this site study and a review of data from previous studies suggest that residual petroleum hydrocarbon impacted soil with elevated gasoline and BTEX concentrations is limited to two areas: vicinity of Borings B-18 and B-16. At Boring B-18 below the former pump islands impacted soil exists from the bottom of the previous remediation investigation area (about 15 feet bgs) to a depth of 36 feet bgs. Residual impacted soil was also observed at Boring B-16 at 30 feet bgs. Fugro understands that the Site is being considered for redevelopment by the current property owner. However, no commercial or living areas will be located below grade or in any proximity to the impacted soil located at least 15 feet bgs. As a result, hydrocarbon impacted soils do not pose a risk to human health via a direct contact pathway in either a residential or a commercial scenario. Potential human direct contact with these impacted soils is thus substantially limited to future construction/trench workers.

Another exposure pathway to evaluate is the potential infiltration of resulting soil gas vapors into indoor air. No applicable indoor air ESLs currently exist for TPHd, TPHmo, and TPHg in soil. No applicable TPHd, TPHmo or TPHg City of Oakland ULR screening levels currently exist.

None of the detected TPHd, TPHmo, or TPHg concentrations exceeded the ESLs established by the San Francisco RWQCB for protection of a construction/trench worker.

Only one of the 55 soil samples analyzed, (B-18 @20.0 (18,000 μ g/kg)), detected benzene concentrations just above the 16,000 μ g/kg direct contact ESL for protection of a construction/trench worker. Detected concentrations of benzene in one sample from Boring B-16 (B-16 @30'), and four samples from B-18 (samples between 18 and 30.5 feet bgs), exceed the ESL indoor air guidance criteria for protection of human health in residential and/or commercial scenarios. However, only the one sample from Boring B-16 (30 feet bgs) and two of the samples from Boring B-18 (18 and 20 feet bgs) exceed the 1,900 μ g/kg benzene concentration indicated by the City of Oakland ULR guidance level for protection of indoor air in a residential scenario.

Toluene, ethylbenzene, and total xylene concentrations are all below their respective direct contact ESLs for protection of a construction/trench worker. Detected toluene, ethylbenzene, and total xylenes concentrations were all below their respective indoor air ESLs for residential and commercial scenarios. Detected concentrations of these compounds are also below their respective ULR screening levels for the protection of indoor air in a residential scenario.

No MTBE, DIPE, ETBE, TAME, TBA, EDB, or DCA were detected and as such neither the established ESL and/or ULR direct contact values for construction/trench workers, nor indoor air guidance for protection of human health in residential or commercial scenarios was exceeded.

8.3 RESULTS OF CHEMICAL ANALYSIS - GROUNDWATER

Laboratory analytical reports are presented in Appendix C. Results of chemical analysis conducted for groundwater samples during this investigation are presented in Tables 2 and 3, and summarized below. The tables include various regulatory concentrations for comparison purposes.

As requested by ACEH, detected chemicals of concern in groundwater are presented on individual iso-concentration plots. Plots are presented on Plates 4 through 12.

8.3.1 Grab Groundwater

Analysis detected TPHd concentrations ranging from 55 micrograms per liter (μ g/l) to 5,000 μ g/l. No TPHmo was detected in samples B-13, B-14, or B-15. Detected TPHmo concentrations for the remaining samples ranged from 100 μ g/l to 130 μ g/l. Analyses also detected no TPHg in sample B-13. Detected TPHg concentrations in the remaining borings ranged from 59 μ g/l to 34,000 μ g/l.

Fugro collected two grab groundwater samples from Boring B-15. One sample (B-15) was collected directly following drilling activities, and the second sample (B-15 @24) was collected from the same boring the following day when an increase in the static water level elevation was noted from the value recorded the previous day. Groundwater was encountered at 45 feet during drilling, recovered to approximately 34 feet prior to obtaining the first sample, and was recorded at 24 feet bgs the following day. Data suggests that there is no appreciable difference in the samples from different depths, and recovery time has no significant effect on data. This provides supplemental concurrence with the findings presented in Fugro's Evaluation of Submerged Monitoring Wells Screens dated December 2005.

No BTEX was detected in samples B-13 or B-14. No benzene, toluene or total xylenes concentrations were detected in the sample from Boring B-17. For the remaining samples, analysis detected benzene concentrations ranging from 6.2 μ g/l to 2,200 μ g/l, ethylbenzene concentrations ranging from 36 μ g/l to 1,800 μ g/l, toluene concentrations of 1,300 μ g/l and 2,600 μ g/l, and total xylenes concentrations ranging from 29 μ g/l to 5,500 μ g/l.

Except for 4.4 μ g/l (B-15 @24), 6.8 μ g/l (B-15), and 32 μ g/l (B-16), no MTBE was detected in any of the samples tested. None of the remaining fuel oxygenates including; DIPE, ETBE, TAME, or TBA was detected in any of the samples tested.

No EDB was detected in any of the samples tested; however analysis detected DCA concentrations ranging from 0.98 μ g/l to 4.6 μ g/l.

8.3.2 Groundwater Wells

During this event, TPHg was detected in samples from wells P-1 (3,200 μ g/l), P-2 (37,000 μ g/l), M-1 (2,800 μ g/l), M-4 (3,000 μ g/l), and M-6 (67 μ g/l). TPHd was detected in samples from wells P-1 (610 μ g/l), P-2 (2,600 μ g/l), M-1 (250 μ g/l), M-4 (260 μ g/l), and M-6 (69

 μ g/l). TPHmo was detected in samples from well P-1 (90 μ g/l), P-2 (75 μ g/l), M-4 (71 μ g/l), and M-6 (160 μ g/l). No TPHg, TPHd or TPHmo was detected in well M-5.

Analysis detected benzene concentrations in wells P-1 (430 μ g/l), P-2 (850 μ g/l), and M-4 (480 μ g/l). No benzene was detected in wells M-1, M-5, and M-6. Toluene was detected in samples from wells P-1 (2.6 μ g/l), P-2 (2,100 μ g/l), and M-4 (9.6 μ g/l). No toluene was detected in the remaining wells. Analysis detected ethylbenzene in samples from wells P-1 (31 μ g/l), P-2 (1,400 μ g/l), M-1 (0.53 μ g/l), and M-4 (10 μ g/l). Total xylenes were detected in samples from wells P-1 (6.4 μ g/l), P-2 (6,700 μ g/l), M-1 (1.91 μ g/l), and M-4 (17.5 μ g/l). No ethylbenzene or xylenes were detected in M-5 or M-6.

With the exception of 6.4 μ g/l detected in P-1 and 2.3 μ g/l detected in M-1, no MTBE concentrations were detected in any of the remaining samples tested during this event. Analysis also detected TBA in P-1 (80 μ g/l) and M-4 (32 μ g/l). None of the remaining fuel oxygenates were detected in any of the samples analyzed. Except for 2.7 μ g/l of DCA in P-2, no lead scavengers (EDB or DCA) were detected in any of the samples tested.

8.3.3 Comparison of Detected Chemicals of Concern to Regulatory Guidance

To select regulatory guidance values with which to compare Site data, Fugro reviewed site conditions, various historical investigations completed onsite, and relied upon our experience with similar sites in the City of Oakland. Based on this analysis, we noted the following;

- No drinking water (municipal, production) or irrigation wells are located onsite. SCI previously conducted a well and sensitive receptor survey indicating that the closest well (an industrial well) was located approximately 1,100 feet north-northwest of the Site. No other wells were noted to exist within 2,000 feet of the Site.
- Results of soil properties tests, historical groundwater monitoring, review of historical boring logs, and boring logs from this investigation indicate that the site is underlain by stiff to very hard sandy clay and clayey silts which have very low permeability and transmissivity. This impedes the rate of migration of the impacted groundwater plume.
- According to a report prepared by David Keith Todd Consulting Engineers, Inc. (1986), groundwater in the Oakland metropolitan area is generally non-portable, due to low transmissivity, low storativity, and the potential for contamination from this densely urbanized location. Consequently no ingestion pathway exists for groundwater onsite, and as a result comparison to Maximum Contaminant Levels (MCL) values has not been included.
- Depth to groundwater in monitoring wells during this investigation ranged from 23 feet to 31 feet bgs (Table 4). Consequently no dermal contact pathway exists for groundwater onsite.

• The site is currently covered by a building and paved parking areas. There are no known ecological receptors onsite. The Curran and Laguna branches of the Peralta Creek are located approximately 600 feet east and west of the site.

Consequently, we believe that detected chemicals of concern in groundwater do not currently pose a risk to the environment, and do not pose a risk to human health through an ingestion pathway. The exposure pathway of potential concern is, in our opinion, inhalation due to vapor intrusion to indoor spaces. Based on the results of physical properties tests, and field observations, detected concentrations of chemicals of concern in groundwater were compared to screening values established for sites underlain by characteristic fine-grained materials. Comparisons have been made to ESLs values for sites with "Low/moderate Permeability", while ULR comparisons were made to Tier 2 screening levels established for "Clayey Silts". The onsite data, however, suggests that these selected profiles would effectively over-estimate emission data.

No applicable indoor air ESLs currently exist for TPHd, TPHmo and TPHg in groundwater. Analysis detected concentrations of benzene in one sample, B-16 (2,200 μ g/l), which just exceeds the indoor air ESL of 1,900 μ g/l for a residential scenario but is less than the ESL for a commercial scenario (6,400 μ g/l), and the ULR screening level (5,600 μ g/l) for a residential scenario. No other detected benzene concentrations in either grab samples or samples from groundwater monitoring wells exceeded the indoor air ESL for a residential or commercial scenario.

Detected concentrations of toluene, ethylbenzene, total xylenes, fuel oxygenates, and lead scavengers are all well below their respective ESL and ULRs guidance for the protection of indoor air in both residential and commercial scenarios.

9.0 SUMMARY OF FINDINGS

Results of our additional soil and groundwater study indicate the following:

- Elevated concentrations of chemicals of concern in soil during this investigation appear to be limited to the vicinity of the former remediation excavation area.
- Residual TPH and BTEX impacted soil exist within the former remediation excavation area as indicated by Boring B-18, from approximately 15 to 36 feet bgs.
- Residual TPH and BTEX impacted soils also exist from approximately 30 to 36 feet bgs as indicated by Boring B-16, directly southeast of the former remediation excavation area.
- Residual hydrocarbon impacted soils located between 15 and 35 feet bgs within the former remediation area continue to impact groundwater onsite.
- Groundwater within the vicinity of the former remediation area is impacted by TPHg, TPHd, and BTEX.

- Low levels of TPHg and TPHd were detected in monitoring well M-6. However, these concentrations are similar to historically detected concentrations, suggesting that the plume is stable and not migrating significantly.
- Detected concentrations in monitoring wells sampled during this event are lower than concentrations detected during the last monitoring event conducted in Spring 2003, with the exception of benzene and ethylbenzene concentrations in P-2 (which are slightly higher).
- Results of field observations recorded on boring logs during this investigation, results
 of physical property tests conducted on select soil samples, and historical documents
 indicate that soils onsite consist of native alluvial soils which are very stiff to very
 hard sandy and silty clays.
- Results of physical property tests conducted on select soil samples, indicate that the soils located within the groundwater fluctuation zone and to depths of about 30 feet bgs are classified as silty, clayey sand, and sandy clay. This is consistent with various field observations conducted onsite by Fugro staff and other consultants over the past 15 years. This data substantiates the claim that the Site is underlain by a very low transmissivity aquifer.
- Results of our current investigation, including soil and grab groundwater sampling as well as groundwater monitoring, in addition to previously conducted site investigations and groundwater monitoring events, indicate that Site conditions have remained stable.

10.0 CONCLUSIONS AND RECOMMENDATIONS

To date, remedial actions have included the following activities aimed at reducing source materials at the Site.

- Tank removal in 1989;
- Removal of pump islands and associated piping in 2000;
- Excavation and offsite disposal of approximately 1,235 cubic yards of soil from the remediation area (2000) and the former tank area (1989); and
- Site excavation areas restored with clean fill and capped.

Although chemicals of concern were detected in soil samples during this investigation, elevated concentrations appeared to be limited to the vicinity of the former remediation excavation area between approximately 15 and 36 feet bgs as observed in Boring B-18.

Remedial actions undertaken by The APA Fund have sufficiently addressed the potential risks posed due to vapor migration given the current commercial use of the Site.

Current and historical groundwater monitoring events suggest that the Site is underlain by a tight, low transmissivity aquifer, with characteristic slow recharge. In the 15 years following various excavation activities, no significant change has been observed in groundwater plume conditions. Consequently, we conclude that the plume is stable.

No drinking water wells, or other ecological receptors exist on or in close proximity to the Site. Results of this investigation and review of historical groundwater data also indicates that groundwater flow direction onsite has consistently been towards the south to southeast. The groundwater flow direction observed during this investigation is presented on Plate 3. Historical groundwater flow direction is presented in a Rose Diagram also presented on Plate 3. Consequently, monitoring wells M-5 and M-6 are properly located down gradient of the Site.

Based on the results of our additional investigation study, and review of available data, Fugro recommends the following:

- Continued groundwater monitoring on a semi-annual basis to monitor Site conditions and confirm continued plume stability.
- Future investigation and cleanup of the Site should be directly related to planned redevelopment. Fugro understands that the current property owner has conceptual plans to redevelop the property for mixed commercial/residential use.
- The scope of any additional investigation and study related to planned redevelopment would include:
 - Collection of soil gas samples to identify whether residual concentrations in source materials pose a threat to the planned future site occupants.
 - If necessary (depending on results of the soil gas sampling study) conduct a human health risk assessment for planned Site occupants given the proposed redevelopment design.

The next semi-annual groundwater monitoring event is scheduled for December 2006. Results of this event will be presented in a stand-alone report to the ACEH in the first quarter of 2007. After the December 2006 semi-annual event, the monitoring program will be re-evaluated to determine the appropriateness of the frequency, testing program and duration of the program.

11.0 REFERENCES

- Chaney, Walton & McCall (LLC), Petroleum Affected Soils Removal and Disposition Report, APA Fund Site Oakland California, dated January 29, 2001.
- Fugro West Inc., Work Plan Additional Site Study, 2801 MacArthur Blvd, Oakland California, dated October 11, 2005.
- Fugro West Inc., Evaluation of Submerged Monitoring Well Screens, 2801 MacArthur Blvd, Oakland California, dated October 11, 2005.
- Geomatrix Consultants, Inc., Results of October 2001 Environmental Soil Sampling, 2801 MacArthur Boulevard Oakland California, dated January 29, 2001.
- Oakland, City of, Oakland Urban Land Redevelopment Program: Guidance Documents, dated January 1, 2000.

San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater-Interim Final –July 2003.

TABLES

Table 1 Summary of Analytical Data - Soil Samples 2801 MacArthur Blvd Oakland, CA 838.006

										Sam	ples									Environmenta	al Screening L	evels (ESLs)	ULR
Analyte	Units	B-13 @5.0	B-13 @10.0	B-13 @11.0	B-13 @15.5	B-13 @20.5	B-13 @25.5	B-13 @25.5 Split Sample	B-13 @30.0	B-13 @35.5	B-13 @45.5	B-13 @60.5	B-14 @5.0	B-14 @15.0	B-14 @25.0	B-14 @26.0	B-14 @30.0	B-14 @30.0 Split Sample	B-14 @35.0	Construction Worker Direct Contact*	Residential Indoor Air Impact**	Commercial Indoor Air Impact***	Residential Indoor Air Impact
Hydrocarbons																							
TPHd	mg/kg	1.2	1.2	<1	<1	<1	1.4		1.3	1.1	1.3	1.3	1.1	1.3	<1.0	1.3	1.4		<1.0	6,000	NA	NA	NE
TPHmo	mg/kg	2.2	<1.0	<1.0	<1.0	<1.0	1.2		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	15,000	NA	NA	NE
TPHg	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1.0	6,000	NA	NA	NE
Benzene	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	16,000	180	510	1,900
Toluene	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	650,000	130,000	310,000	930,000
Ethylbenzene	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	400,000	390,000	390,000	SAT
Total Xylenes	ug/kg	<15	<15	<15	<15	<15	<15		<15	<15	<15	<15	<15	<15	<15	<15	<15		<15	420,000	310,000	420,000	SAT
5 Fuel Oxygenates																							
МТВЕ	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5		<5	2,500,000	2,000	5,600	14,000,000
1-2, Dibromoethane (EDB)	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5		<5	4,600	7	20	NE
1,2-Dichloroethane (EDC/DCA)	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5		<5	31,000	25	70	5,400
Di- isopropyl ether (DIPE)	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5		<5	NE	NE	NE	NE
Ethyl tert-butyl ether (ETBE)		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5		<5	NE	NE	NE	NE
Lead Scavengers																							
Tert-amyl methyl ether (TAME)	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5		<5	NE	NE	NE	NE
Tert -Butanol (TBA)	ug/kg	<100	<100	<100	<100	<100	<100		<100	<100	<100	<100	<100	<100	<100	<100	<100		<100	NE	NE	NE	NE

 $\label{eq:states} \frac{\text{Notes}}{\text{TPHg} = \text{Total volatile hydrocarbons in the gasoline range.}} \\ \text{TPHd} = \text{Total volatile hydrocarbons in the diesel range.} \\ \end{array}$

TPHmo = Total volatile hydrocarbons in the motor oil range.

MTBE = Methyl tert butyl ether

ug/kg = Micrograms per kilogram = parts per billion

mg/kg = Milligrams per kilogram = parts per million

<5 = Analyte not present at a concentration above the stated detection limit.

-- = Sample not analyzed for analyte.

NE = Not Established

SAT = value exceeds saturated soil concentration of chemical

ESL= Environmental Screening Levels Established by The SFRWQCB, February 2005. SFRWQCB = San Francisco Bay Regional Water Quality Control Board NA = No applicable value, SFRWQCB requires use of soil gas values to determine potential risk

* = Table K-3: Direct Exposure Screening Levels Construction/Trench Worker Exposure Scenario Interim Final - February 2005 ** = Table E-1b: Soil Screening Levels For Evaluation of Residential Indoor Air Impacts Interim Final - February 2005 *** = Table E-1b: Soil Screening Levels For Evaluation of Commercial Indoor Air Impacts Interim Final - February 2006 ULR = City of Oakland Urban Land Reuse Risk Based Screening Levels for Residential Impact, January 2001

Table 7. Oakland Tier 2 Site Specific Target Levels for Clayey Silts

Table 1
Summary of Analytical Data - Soil Samples
2801 MacArthur Blvd
Oakland CA
838.006

										s	amples												Environmer	ntal Screening L	evels (ESLs).	ULR
Analyte	Units	B-14 @45.0	B-15 @ 5.5	B-15 @ 10.5	B-15 @ 16.0	B-15 @ 20.5	B-15 @ 25.0	B-15 @ 25.0 Split Sample	B-15 @ 30.0	B-15 @ 35.0	B-15 @ 40.5	B-15 @ 45.0	B-16 @5.0	B-16 @15.0	B-16 @20.0	B-16 @25.5	B-16 @30.5	B-16 @30.5 Split sample	B-16 @35.5	B-16 @40.0	B-16 @45.0	B-17 @10	Construction Worker Direct Contact*	Residential Indoor Air Impact**	Commercial Indoor Air Impact***	Residential Indoor Air Impact
Hydrocarbons																										
TPHd	mg/kg	1.2	1	1.2	<1.0	1.2	<1.0		<1.0	1.1	3.7	<1.0	10	<1.0	<1.0	1.3	43		2.1	1.4	1.2	1.5	6,000	NA	NA	NE
TPHmo		<1.0	1.5	<1	1.7	2.7	1.5		1.5	1.5	<1	1.5	44	1.5	1.4	2.4	2.9		3	1.9	1.7	2.4	15,000	NA	NA	NE
TPHg	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	9.6	57	150	<1.0	<1.0	<1.0	<1.0	<1.0	630	780	1.0	<1.0	<1.0	<1.0	6,000	NA	NA	NE
Benzene	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2,000		11	<5.0	<5.0	<5.0	16,000	180	510	1,900
Toluene	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	650		<5.0	<5.0	<5.0	<5.0	650,000	130,000	310,000	930,000
Ethylbenzene	ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		29	43	<5.0	<5.0	<5.0	<5.0	<5.0	5.4	32,000		29	<5.0	<5.0	<5.0	400,000	390,000	390,000	SAT
Total Xylenes	ug/kg	<15	<15	<15	<15	<15	<15		28	<15	<15	<15	<15	<15	<15	<15	118,500		38	<15	<15	<15	420,000	310,000	420,000	SAT
5 Fuel Oxygenates																										
МТВЕ	ug/kg	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	2,500,000	2,000	5,600	14,000,000
1-2, Dibromoethane (EDB)	ug/kg	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	4,600	7	20	NE
1,2-Dichloroethane (EDC/DCA)	ug/kg	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	31,000	25	70	5,400
Di- isopropyl ether (DIPE)	ug/kg	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	NE	NE	NE	NE
Ethyl tert-butyl ether (ETBE)	ug/kg	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	NE	NE	NE	NE
Lead Scavengers																										
Tert-amyl methyl ether (TAME)	ug/kg	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	NE	NE	NE	NE
Tert -Butanol (TBA)	ug/kg	<100	<100	<100	<100	<100	<100		<100	<100	<100	<100	<100	<100	<100	<100	<100		<100	<100	<100	<100	NE	NE	NE	NE

Notes

TPHg = Total volatile hydrocarbons in the gasoline range. TPHd = Total volatile hydrocarbons in the diesel range.

TPHmo = Total volatile hydrocarbons in the motor oil range.

MTBE = Methyl tert butyl ether

ug/kg = Micrograms per kilogram = parts per billion

mg/kg = Milligrams per kilogram = parts per million

<5 = Analyte not present at a concentration above the stated detection limit.</p>

-- = Sample not analyzed for analyte.

NE = Not Established

SAT = value exceeds saturated soil concentration of chemical

ESL= Environmental Screening Levels Established by The SFRWQCB, February 2005. SFRWQCB = San Francisco Bay Regional Water Quality Control Board

NA = No applicable value, SFRWQCB requires use of soil gas values to determine potential risk

* = Table K-3: Direct Exposure Screening Levels Construction/Trench Worker Exposure Scenario Interim Final - February 2005

** = Table E-1b: Soil Screening Levels For Evaluation of Residential Indoor Air Impacts Interim Final - February 2005

*** = Table E-1b: Soil Screening Levels For Evaluation of Commercial Indoor Air Impacts Interim Final - February 2006 ULR = City of Oakland Urban Land Reuse Risk Based Screening Levels for Residential Impact, January 2001

Table 7. Oakland Tier 2 Site Specific Target Levels for Clayey Silts

Table 1
Summary of Analytical Data - Soil Samples
2801 MacArthur Blvd
Oakland CA
838.006

								Sam	nples								Environmen	tal Screening L	evels (ESLs)	ULR
Analyte Units	B-17 @19.0	B-17 @25.0	B-17 @30.	5 B-17 @35.0	B-17 @40.0	B-17 @45.0	B-18 @10.0	B-18 @15.0	B-18 @15.0 Split Sample	B-18 @18.0	B-18 @20.0	B-18 @25.0	B-18 @30.5	B-18 @36.0	B-18 @41.0	B-18 @46.0	Construction Worker Direct Contact*	Residential Indoor Air Impact***	Commercial Indoor Air Impact****	Residential Indoor Air Impact*
Hydrocarbons																				
TPHd mg/kg	1.8	1.2	1.3	1.3	1.6	1.6	24	22		460	330	38	1.6	<1.0	1.2	1.4	6,000	NA	NA	NE
TPHmo mg/kg	2.9	1.5	2.3	1.6	2.4	2.6	63	2.6		7.6	16	2.4	1.9	1.2	1.2	1.6	15,000	NA	NA	NE
TPHg mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1.0	450	440	1,800	2,000	530	580	3.3	<1.0	<1.0	6,000	NA	NA	NE
Benzene ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		11,000	18,000	1,300	980	68	12	<5.0	16,000	180	510	1,900
Toluene ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		54,000	130,000	6,700	5,900	100	18	<5.0	650,000	130,000	310,000	930,000
Ethylbenzene ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	550		31,000	34,000	5,600	7,900	110	10	<5.0	400,000	390,000	390,000	SAT
Total Xylenes ug/kg	<15	<15	<15	<15	<15	<15	<15	<750		163,000	180,000	32,000	31,000	430	73	<15	420,000	310,000	420,000	SAT
5 Fuel Oxygenates																				
MTBE ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		<1000	<1000	<500	<500	<5.0	<5.0	<5.0	2,500,000	2,000	5,600	14,000,000
1-2, Dibromoethane (EDB) ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		<1000	<1000	<500	<500	<5.0	<5.0	<5.0	4,600	7	20	NE
1,2-Dichloroethane (EDC/DCA) ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		<1000	<1000	<500	<500	<5.0	<5.0	<5.0	31,000	25	70	5,400
Di- isopropyl ether (DIPE) ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		<1000	<1000	<500	<500	<5.0	<5.0	<5.0	NE	NE	NE	NE
Ethyl tert-butyl ether (ETBE) ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		<1000	<1000	<500	<500	<5.0	<5.0	<5.0	NE	NE	NE	NE
Lead Scavengers																				
Tert-amyl methyl ether (TAME) ug/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250		<1000	<1000	<500	<500	<5.0	<5.0	<5.0	NE	NE	NE	NE
Tert -Butanol (TBA) ug/kg	<100	<100	<100	<100	<100	<100	<100	<5000		<20000	<20000	<10000	<1000	<100	<100	<100	NE	NE	NE	NE

Notes TPHg = Total volatile hydrocarbons in the gasoline range. TPHd = Total volatile hydrocarbons in the diesel range.

TPHmo = Total volatile hydrocarbons in the motor oil range.

MTBE = Methyl tert butyl ether

ug/kg = Micrograms per kilogram = parts per billion

mg/kg = Milligrams per kilogram = parts per million

<5 = Analyte not present at a concentration above the stated detection limit.

-- = Sample not analyzed for analyte.

NE = Not Established

SAT = value exceeds saturated soil concentration of chemical

ESL= Environmental Screening Levels Established by The SFRWQCB, February 2005. SFRWQCB = San Francisco Bay Regional Water Quality Control Board NA = No applicable value, SFRWQCB requires use of soil gas values to determine potential risk * = Table K-3: Direct Exposure Screening Levels Construction/Trench Worker Exposure Scenario Interim Final - February 2005 ** = Table E-1b: Soil Screening Levels For Evaluation of Residential Indoor Air Impacts Interim Final - February 2005 *** = Table E-1b: Soil Screening Levels For Evaluation of Commercial Indoor Air Impacts Interim Final - February 2006 ULR = City of Oakland Urban Land Reuse Risk Based Screening Levels for Residential Impact, January 2001

Table 7. Oakland Tier 2 Site Specific Target Levels for Clayey Silts

			НДТ			втех	¥			Five	Five Fuel Oxygenates	enates		Lead Scavengers	vengers
Boring Number	Date Sampled	трнց	TPHd*	TPHmo*	Benzene E	TPHg TPHd* TPHmo* Benzene Ethylbenzene Toluene		Total Xylenes	MTBE	Di- isopropyl ether (DIPE)	Ethyl tert- butyl ether (ETBE)	Tert-amyl methyl ether (TAME)	Tert - Butanol (TBA)	1-2, Dibromoethane Dichloroethane (EDB) (EDC/DCA)	1,2- Dichloroethane (EDC/DCA)
		(I/gn)	(I/ɓn)	(I/ɓn)	(l/ɓn)	(I/ɓn)	(l/ßn)	(l/ĝn)	(I/ɓn)	(I/ɓn)	(l/ɓn)	(I/ɓn)	(I/ɓn)	(l/gn)	(l/bn)
B-13	6/19/2006	<50	55	<53	<0.5	<0.5	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	0.98
B-13 Duplicate		<50	;	I	:	ı	:	:	ı	:	:	ı	1	:	ł
B-14	6/20/2006	78	63	<59	<0.5	<0.5	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
B-15	6/20/2006 7,000	7,000	1,500	<56	6.2	36	<1.0	29	6.8	<1.0	<1.0	<1.0	<20	<1.0	<1.0
B-15 Duplicate	6/20/2006 6,900	6,900	:	I	:	ı	:	:	ł	:	:	ł	1	:	;
B-15 @24	6/21/2006 10,000	10,000	1,200	<50	19	78	<1.0	72	4.4	<1.0	<1.0	<1.0	<20	<1.0	2.1
B-16	6/21/2006 33,000	33,000	5,000	100	2,200	1,800	1,300	5,500	32	<0.5	<0.5	<0.5	<10	<0.5	4.6
B-17	6/21/2006	59	88	230	<0.5	9.0	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.6
B-17 Duplicate	6/21/2006	59	;	I	:	ı	:	:	ı	:	:	ı	1	:	ł
B-18	6/23/2006 29,000	29,000	5,200	130	940	470	2,600	2,980	<5.0	<0.5	<0.5	<0.5	<100	<0.5	<0.5
B-18 Duplicate	6/23/2006	34,000	1	I	:	ı	:	!	I	1	:	I	-	:	-
Commercial ESLs (Indoor Air)*	Indoor Air)*	ΝA	NA	NA	6,400	170,000	530,000 160,000	160,000	150,000	NE	NE	NE	NA	022	1,700
Residential ESLs (Indoor Air) **	Idoor Air) **	ΝA	ΝA	NA	1,900	170,000	530,000 160,000	160,000	45,000	ШN	NE	NE	NA	230	490
Residential ULRs (Indoor Air)***	Idoor Air)***	NE	NE	NE	5,600	>Sol	>Sol	>Sol	36,000	NE	NE	NE	NE	NE	15,000

Notes

TPHg = Total volatile hydrocarbons in the gasoline range. TPHd = Total volatile hydrocarbons in the diesel range.

TPHmo = Total volatile hydrocarbons in the motor oil range.

ug/I = Micrograms per liter = parts per billion. MTBE = Methyl tert butyl ether

<50 = Analyte not present at a concentration above the stated detection limit.

* = Sample exhibits a fuel pattern which does not resemble the standard.

-- = Sample not analyzed for analyte.

NE = Not established

NA = No applicable value, SFRWQCB requires use of soil gas values to determine potential risk

ESL= Environmental Screening Levels Established by The SFRWQCB, February 2005. * = Table E-1a: Groundwater Screening Levels for Evaluation of Potential SFRWQCB = San Francisco Bay Regional Water Quality Control Board

Commercial Indoor Air Impacts Interim Final - February 2005

** = Table E-1a: Groundwater Screening Levels for Evaluation of Potential

Residential Indoor Air Impacts Interim Final - February 2005

*** = City of Oakland Urban Land Reuse (ULR) Risk Based Screening Levels for Residential Indoor Air Impact January 2001, Table 7. Oakland Tier 2 Site Specific Target Levels for Clayey Silts

>Sol = Value exceeds solubility of chemical in water

				TPH			BT	ΈX			Fiv	e Fuel Oxygenat	25		Lead Scavengers		
								Ethyl	Total		Di- isopropyl ether (DIPE)	Ethyl tert- butyl ether (ETBE)	Tert-amyl methyl ether (TAME)	Tert -Butanol (TBA)	1-2, Dibromoethane	1,2- Dichloroethane	
Sample	Sample	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	benzene	Xylenes	MTBE		, ,	· · /		(EDB)	(DCA)	
Location	Date	(feet)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
P-1	1/16/1992	963.0	6,700			500	4.4	80	40								
	3/9/1993	966.8	5,600			1,100	29	63	120								
	6/21/2006	973.5	3,200	610	90	430	2.6	31	6.4	6.4	1.8	<0.5	<0.5	80	<0.5	<0.5	
P-2	11/6/1990	960.4	33,000			4,700	2,100	380	630								
	1/16/1992	964.1	99,000			6,500	12,000	2,000	16,000								
	3/9/1993	974.2	70,000			5,900	11,000	2,100	12,000								
	5/17/1993	974.1	87,000			6,600	13,000	2,200	13,000								
	8/17/1993	969.5	80,000			5,800	12,000	2,000	12,000								
	12/13/1993	966.8	100,000			5,600	12,000	2,200	14,000								
	3/7/1994	972.4	77,000			5,100	11,000	2,000	12,000								
	8/23/1994	967.5	70,000			3,800	8,700	1,500	9,900								
	4/27/1995	977.5	44,000			3,600	8,500	1,500	9,300								
	10/30/1995	968.2	66,000			4,600	11,000	2,100	13,600								
	4/17/1996 6/23/1999	976.5 973.0	58,000 57,000			4,800 1,800	9,900 4,700	1,900 1,300	12,900 9,300	<25							
	12/9/1999	973.0 966.6	32,000			1,800	3,200	700	9,300 5,100	<25 <0.5							
	3/24/2003	900.0 972.0	54,000			750	3,200	1,200	7,100	<0.5							
	6/21/2006	975.2	37,000	2,600	75	850	2,100	1,200	6,700	<0.5	<0.5	<0.5	< 0.5	<10	<0.5	2.7	
	0/21/2000	575.2	57,000	2,000	10	000	2,100	1,400	0,100	~0.0	NO.0	NO.0	NO.0		20.0	2.7	
P-3	8/17/1993	970.6	900			180	65	10	93								
	10/30/1995	971.3	2000			650	45	31	156								
	6/23/1999	974.6	14,000			3,300	190	140	756	<10							
	12/9/1999	967.8	1,500			3,700	52	57	210	<0.5							
								Well	Abandoned								
M-1	6/22/2006	974.4	2,800	250	<50	<0.5	<0.5	0.53	1.91	2.3	<0.5	<0.5	<0.5	<10	<0.5	<0.5	
M-2	5/7/1991	968.3	16,000			1,300	950	170	890								
	1/16/1992	964.5	22,000			960	570	370	1,800								
	3/9/1993	966.0	27,000			1,100	970	490	1,400								
	5/17/1993	972.4	17,000			1,200	770	480	1,300								
	8/17/1993	969.2	20,000			1,700	910	540	1,400								
	12/13/1993	965.6	51,000			2,200	1,400	700	2,600								
	3/7/1994	969.5	28,000			1,400	900	640	1,800								
	8/23/1994	967.3	21,000			1,600	540	520	1,100								
	4/26/1995	975.2	14,000			1,200	510	490	870								
	10/30/1995	968.2	16,000			1,700	830	470	1,120								
	4/17/1996	974.0	10,000			1,300	610	380	810								
	6/23/1999	972.4	1,900			150	19	32	24.8	410							
	12/9/1999	965.9	11,000			560	130	240 Unable	265 to Locate Well	<0.5							
Comme	ercial ESLs (Indo	or Air)*	NA	NA	NA	6,400	530,000	170,000	160,000	150,000	NE	NE	NE	NA	770	1,700	
	ntial ESLs (Indo	,	NA	NA	NA	1,900	530,000	170,000	160,000	45,000	NE	NE	NE	NA	230	490	
	tial ULRs (Indoo		NE	NE	NE	5,600	>Sol	>Sol	>Sol	>Sol	NE	NE	NE	NE	NE	15,000	

Table 3 Summary of Analytical Results - Groundwater Well Samples 2801 MacArthur Boulevard Oakland, California

Notes TPHg = Total volatile hydrocarbons in the gasoline range.

TPHd = Total volatile hydrocarbons in the diesel range.

TPHmo = Total volatile hydrocarbons in the motor oil range.

MTBE = Methyl tert butyl ether

ug/I = Micrograms per liter = parts per billion.

<50 = Analyte not present at a concentration above the stated detection limit.

* = Sample exhibits a fuel pattern which does not resemble the standard.

-- = Sample not analyzed for analyte.

NE = Not established

NA = No applicable value, SFRWQCB requires use of soil gas values to determine potential risk

ESL= Environmental Screening Levels Established by The SFRWQCB, February 2005. SFRWQCB = San Francisco Bay Regional Water Quality Control Board * = Table E-1a: Groundwater Screening Levels for Evaluation of Potential Commercial Indoor Air Impacts Interim Final - February 2005

** = Table E-1a: Groundwater Screening Levels for Evaluation of Potential Residential Indoor Air Impacts Interim Final - February 2005

*** = City of Oakland Urban Land Reuse (ULR) Risk Based Screening Levels

for Residential Indoor Air Impact January 2001, Table 7. Oakland Tier 2 Site Specific Target Levels for Clayey Silts **** = Table F-1a: Groundwater Screening Levels where groundwater is a potential drinking water resource

>Sol = Value exceeds solubility of chemical in water

								Oakland, Cali	rornia					
				TPH			ВТ	ΓEX			Fiv	e Fuel Oxygenat	tes	
Sample	Sample	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethyl benzene	Total Xylenes	МТВЕ	Di- isopropyl ether (DIPE)	Ethyl tert- butyl ether (ETBE)	Tert-amyl methyl ether (TAME)	(164)
Location	Date	(feet)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
M-3	5/17/1993	970.6	<50			<0.5	<0.5	<0.5	<0.5					
IVI-5	8/17/1993	970.0 967.8	<50			<0.5	<0.5	<0.5	< 0.5					
	12/13/1993	967.0	<50 <50			<0.5	<0.5	<0.5	<0.5					
	3/7/1993	967.0 969.7	<50 <50			< 0.5	< 0.5	<0.5 <0.5	<0.5 <0.5					
	8/23/1994	967.0	<50			<0.5	<0.5	<0.5	<0.5					
	4/27/1995	973.2	<50			<0.5	<0.5	<0.5	<0.5					
	3/24/2003	968.9	<50			<0.5	<0.5	<0.5	<0.5					
			1			1		Wel	Abandoned	1				
	E /4 7 /4 000	005.0	7 500			1 000	000	44	050					
M-4	5/17/1993	965.8	7,500			1,200	230	11	350					
	8/17/1993		13,000			3,000	330	130	700					
	12/13/1993	962.8	11,000			2,700	190	90	360					
	3/7/1994	966.6	3,800			980	33	49	140					
	8/23/1994	964.2	19,000			5,800	200	460	630					
	4/27/1995	969.8	2,300			510	40	69	120					
	11/1/1995	965.4	1,100			470	14	23	26					
	4/17/1996	969.5	550*			330	<2.5	5.9	16.1					
	6/23/1999	967.8	4,000			<0.5	69	190	195	<0.5				
	12/9/1999	964.3	1,500			2,500	32	140	88	<0.5				
	3/24/2003	966.2	6,500			1,900	35	92	58	<7.1				
	6/21/2006	969.0	3,000	260	71	480	9.6	10	17.5	<0.5	1.3	<0.5	<0.5	32
M-5	8/23/1994	961.1	<50			<0.5	<0.5	<0.5	<0.5					
	4/27/1995	972.4	<50			<0.5	<0.5	<0.5	<0.5					
	11/1/1995	961.4	<50			<0.5	<0.5	<0.5	<0.5					
	4/17/1996	971.2	<50			< 0.5	<0.5	<0.5	<0.5					
	6/23/1999	966.4	<50			<0.5	<0.5	<0.5	<0.5	<0.5				
	12/9/1999	960.9	<50			<0.5	<0.5	<0.5	<0.5	<0.5				
	3/24/2006	967.0	<50			<0.5	<0.5	<0.5	<0.5	<0.5				
	6/22/2006	969.0	<50	<50	<50	< 0.5	<0.5	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<10
	0,22,2000	00010	100	100	100	1010	1010	1010	1110	1010	1010	1010	1010	
M-6	10/11/1994	959.5	3,600			340	27	65	240					
10-101	4/26/1995	959.5 969.9	150			9.3		5.6	240 1.7					
							<0.5							
	11/1/1995	962.8	170			0.6	<0.5	<0.5	0.6					
	1/22/1996	975.7	<50			<0.5	<0.5	<0.5	<0.5					
	4/17/1996	969.2	<50			<0.5	<0.5	<0.5	1					
	7/12/1996	965.1	<50			<0.5	<0.5	<0.5	<0.5					
	11/7/1996		<50			<0.5	<0.5	<0.5	<0.5					
	6/23/1999	966.0	340			14	<0.5	19	<0.5	<0.5				
	12/9/1999	961.4	120			3.7	<0.5	<0.5	<0.5	<0.5				
	3/24/2003	964.8	<50			<0.5	<0.5	<0.5	<0.5	<0.5				
	6/22/2006	968.1	67	69	160	<0.5	<0.5	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<10
Comme	rcial ESLs (Indo	or Air) *	NA	NA	NA	6,400	530,000	170,000	160,000	150,000	NE	NE	NE	NA
Resider	ntial ESLs (Indoc	or Air) **	NA	NA	NA	1,900	530,000	170,000	160,000	45,000	NE	NE	NE	NA
	•	,												
Residen	itial ULRs (Indoc	л AII)	NE	NE	NE	5,600	>Sol	>Sol	>Sol	>Sol	NE	NE	NE	NE

Table 3 Summary of Analytical Results - Groundwater Well Samples 2801 MacArthur Boulevard Oakland, California

Notes TPHg = Total volatile hydrocarbons in the gasoline range. TPHd = Total volatile hydrocarbons in the diesel range. TPHmo = Total volatile hydrocarbons in the motor oil range. MTBE = Methyl tert butyl ether Missource por liter = parts per billion

MTBE = Methyl tert butyl ether ug/l = Micrograms per liter = parts per billion. <50 = Analyte not present at a concentration above the stated detection limit * = Sample exhibits a fuel pattern which does not resemble the standard -- = Sample not analyzed for analyte. NE = Not established NA = No applicable value, SFRWQCB requires use of soil gas values to determine potential risk

ESL= Environmental Screening Levels Established by The SFRWQCB, February 2005.
SFRWQCB = San Francisco Bay Regional Water Quality Control Board
* = Table E-1a: Groundwater Screening Levels for Evaluation of Potential Commercial Indoor Air Impacts Interim Final - February 2005
** = Table E-1a: Groundwater Screening Levels for Evaluation of Potential Residential Indoor Air Impacts Interim Final - February 2005
*** = City of Oakland Urban Land Reuse (ULR) Risk Based Screening Levels for Residential Indoor Air Impact January 2001, Table 7. Oakland Tier 2 Site Specific Target Levels for Clayey Silts
>Sol = Value exceeds solubility of chemical in water

Lead Sca	ivengers
1-2, Dibromoethane	1,2- Dichloroethane
(EDB)	(DCA)
(ug/l)	(ug/l)
<0.5	<0.5
1010	1010
<0.5	<0.5
<0.5	<0.5
770	1,700
230	490
NE	15,000

	TOC ¹		Groundwater	Groundwater		
]	Elevation		Depth	Elevation		
ell	(feet)	Date	(feet)	(feet)		
1-1	1000	10/24/1990	36.1	963.9		
		10/25/1990	36.1	963.9		
		11/2/1990	36.4	963.6		
		11/6/1990	36.8	963.2		
		11/16/1990	36.8	963.2		
		11/23/1990	36.9	963.1		
		11/28/1990	37.0	963.0		
		12/5/1990	37.2	962.8		
		3/18/1991	35.8	964.2		
		3/29/1991	32.4	967.6		
		4/3/1991	31.9	968.1		
		4/9/1991	31.6	968.4		
		4/16/1991	31.2	968.8		
		1/23/1992	35.5	964.5		
		3/9/1993	29.1	970.9		
		6/1/1993	27.5	972.5		
		12/13/1993	33.9	966.1		
		3/7/1994	32.3	967.7		
		8/23/1994	32.3	967.7		
		10/11/1994	34.1	965.9		
		4/26/1995	24.4	975.6		
		10/27/1995	31.3	968.7		
		1/22/1996	31.1	968.9		
		4/15/1996	25.6	974.4		
		7/10/1996	27.7	972.3		
		12/1/1998		Paved Over		
		6/22/2006	25.6	974.4		
2	999.6	4/30/1991	31.1	968.5		
		5/7/1991	31.3	968.3		
		1/16/1992	35.1	964.5		
		3/9/1993	33.6	966.0		
		5/17/1993	27.2	972.4		
		6/1/1993	27.6	972.0		
		8/17/1993	30.4	969.2		
		12/13/1993	34.0	965.6		
		3/7/1994	30.1	969.5		
		8/23/1994	32.3	967.3		
		10/11/1994	34.2	965.4		
		4/26/1995	24.4	975.2		
		10/27/1995	31.4	968.2		

ТС	D C ¹		Groundwater	Groundwater
Eleva	ation		Depth	Elevation
/ell (fe	et)	Date	(feet)	(feet)
4.0		1/22/1000	24.0	000.4
1-2		1/22/1996 4/15/1996	31.2	968.4
ont.)			25.6	974.0
		7/10/1996	27.8	971.8
		12/1/1998	30.9	968.7
		6/23/1999	27.3	972.4
		12/8/1999	33.7	965.9
			Unable to Locate W	Vell
1-3	992.8	5/17/1993	22.2	970.6
		6/1/1993	23.3	969.5
		8/17/1993	25.0	967.8
		12/13/1993	25.8	967.0
		3/7/1994	23.1	969.7
		8/23/1994	25.8	967.0
		10/11/1994	27.4	965.4
		4/26/1995	19.6	973.2
		10/27/1995	25.4	967.4
		1/22/1996	24.2	968.6
		4/15/1996	20.9	971.9
		7/10/1996	22.9	969.9
		12/1/1998	23.5	969.3
		12/8/1999	26.3	966.5
		3/24/2003*	23.9	968.9
		5/24/2005	Well Abandoned	
-4	999.6	5/17/1993	33.8	965.8
		6/1/1993	32.5	967.1
		12/13/1993	36.8	962.8
		3/7/1994	33.0	966.6
		8/23/1994	35.4	964.2
		10/11/1994	37.1	962.5
		4/26/1995	29.8	969.8
		10/27/1995	34.2	965.4
		1/22/1996	30.1	969.5
		4/15/1996	30.1	969.5
		7/10/1996	32.0	967.6
		12/1/1998	34.5	965.1
		6/23/1999	31.8	967.8
		12/8/1999	35.4	964.3
		3/24/2003*	33.4	966.2
		6/21/2006	30.6	969.0

		Oakl	and, California	
Well	TOC ¹ Elevation (feet)	Date	Groundwater Depth (feet)	Groundwater Elevation (feet)
M-5	992.9	8/23/1994	31.8	961.1
		10/11/1994	33.6	959.3
		4/26/1995	20.5	972.4
		10/27/1995	31.5	961.4
		1/22/1996	25.6	967.3
		4/15/1996	21.7	971.2
		7/10/1996	26.8	966.1
		12/1/1998	28.8	964.1
		6/23/1999	26.5	966.4
		12/8/1999	32.1	960.9
		3/24/2003*	25.9	967.0
		6/22/2006	23.9	969.0
M-6	997.7	8/23/1994	41.2	956.5
n o	001.1	10/11/1994	38.2	959.5
		4/26/1995	27.8	969.9
		10/27/1995	34.9	962.8
		1/22/1996	22.0	975.7
		4/15/1996	28.5	969.2
		7/10/1996	32.6	965.1
		12/1/1998		inaccessible
		6/23/1999	31.7	966.0
		12/8/1999	36.3	961.4
		3/24/2003*	32.9	964.8
		6/22/2006	29.6	968.1
P-1	999.6	10/24/1990	37.9	961.7
		10/25/1990	38.0	961.6
		11/2/1990	38.4	961.2
		11/6/1990	38.7	960.9
		11/16/1990	38.3	961.3
		11/23/1990	38.1	961.5
		11/28/1990	38.3	961.3
		12/5/1990	38.2	961.4
		3/18/1991	37.8	961.8
		3/29/1991	36.9	962.7
		4/3/1991	36.8	962.8
		4/9/1991	36.9	962.7
		4/16/1991	36.7	962.9
		4/18/1991	36.8	962.8
		4/30/1991	36.3	963.3

	TOC ¹ Elevation		Groundwater Depth	Groundwater Elevation
Well	(feet)	Date	(feet)	(feet)
P-1		5/7/1991	36.2	963.4
(cont.)		1/16/1992	36.6	963.0
(00111.)		3/9/1993	32.8	966.8
		6/1/1993	30.0	969.6
		12/13/1993	33.7	965.9
		3/7/1994	32.6	967.0
		8/23/1994	32.7	966.9
		10/11/1994	33.5	966.1
		4/26/1995	27.6	972.0
		10/27/1995	31.8	967.8
		1/22/1996	33.3	966.3
		4/15/1996	28.2	971.4
		7/10/1996	29.3	970.3
		12/1/1998	31.9	967.7
		12/8/1999	32.7	967.0
		6/21/2006	26.1	973.5
P-2	997.8	10/24/1990	41.1	956.7
		10/25/1990	40.6	957.2
		11/2/1990	38.4	959.4
		11/6/1990	37.0	960.8
		11/16/1990	37.4	960.4
		11/23/1990	35.9	961.9
		11/28/1990	35.4	962.4
		2/5/1990	35.0	962.8
		3/18/1991	31.4	966.4
		3/29/1991	28.2	969.6
		4/3/1991	26.8	971.0
		4/9/1991	26.5	971.3
		4/16/1991	26.5	971.3
		4/18/1991	26.5	971.3
		4/30/1991	26.7	971.1
		5/7/1991	27.0	970.8
		1/16/1992	33.7	964.1
		3/9/1993	23.6	974.2
		5/17/1993	23.7	974.1
		6/1/1993	24.4	973.4
		8/17/1993	28.3	969.5
		12/13/1993	31.0	966.8
		3/7/1994 8/23/1994	25.4 30.3	972.4 967.5

E	ΓΟC ¹ evation (feet)	Date	Groundwater Depth (feet)	Groundwater Elevation (feet)
	()		()	()
P-2		10/11/1994	32.3	965.5
(cont.)		4/26/1995	19.9	977.9
		10/27/1995	29.6	968.2
		1/22/1996	27.4	970.4
		4/15/1996	21.3	976.5
		7/10/1996	25.0	972.8
		12/1/1998	28.2	969.6
		6/23/1999	24.8	973.0
		12/8/1999	31.2	966.6
		3/24/2003	25.8	972.0
		6/21/2006	22.7	975.2
P-3	999.1	3/29/1991	24.7	974.4
F-3	999.1	4/3/1991	24.7 25.1	974.4
		4/9/1991	25.9	974.0
		4/16/1991	26.2	973.2
		4/18/1991	26.2	972.9
		4/30/1991	26.8	972.9
		5/7/1991	20.8	972.3
		1/23/1992	32.5	966.6
		3/9/1993	24.8	974.3
		6/4/1993	23.9	974.3
		8/17/1993	28.5	970.6
		12/13/1993	29.3	969.8
		3/7/1994	25.0	974.1
		8/23/1994	30.1	969.0
		10/11/1994	32.0	967.1
		4/26/1995	20.5	978.6
		10/27/1995	20.3	970.0
		1/22/1996	26.7	971.3
		4/15/1996	20.7 21.4	972.4 977.7
		7/10/1996	21.4 25.1	974.0
		12/1/1998	27.2	974.0 971.9
		6/23/1999	24.5	971.9 974.6
		12/8/1999	31.3	967.8
		12/0/1333	Well Abandoned	

Note 1 - Elevations relative to site-specific datum. Temporary Bench Mark No. 1, top of concrete at west corner of northernmost pump island. Assumed elevation = 1,000.0 feet.

Table 5 Summary of Quality Control Data - Soil and Grab Groundwater Samples 2801 Macarthur Boulevard Oakland, California Project No 838.006

Soil Samples

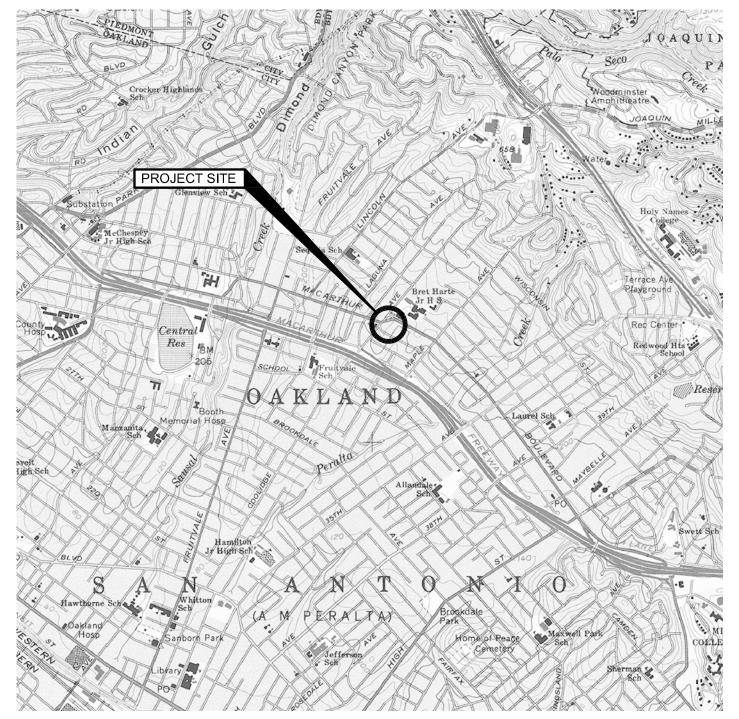
Hydrocarbons	1	Analytes	B-13 @25.5	Split Sample	% RPD	B-14 @30.0	Split Sample	% RPD	B-15 @25	Split Sample	% RPD	B-16 @30.5	Split Sample	% RPD	B-18 @15	Sample	% RPD
TPHg (mg/kg) 0.5 0.5 0 0.5 0.5 0 630 780 -21 450	drocarbons	a (ma/ka)	0.5	0.5	0	0.5	0.5	0	0.5	0.5	0	620	700	04	450	440	0

Groundwater

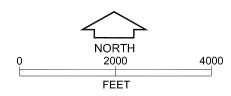
		B-13			B-14			B-17			B-18	
Analytes	B-13	Duplicate	% RPD	B-15	Duplicate	% RPD	B-17	Duplicate	% RPD	B-18	Duplicate	% RPD
Hydrocarbons												
TPHg (ug/l)	25	25	0	7,000	6,900	1	59	59	0	29,000	34,000	-16

Notes

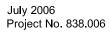
TPHg = Total petroleum hydrocarbons as gasoline

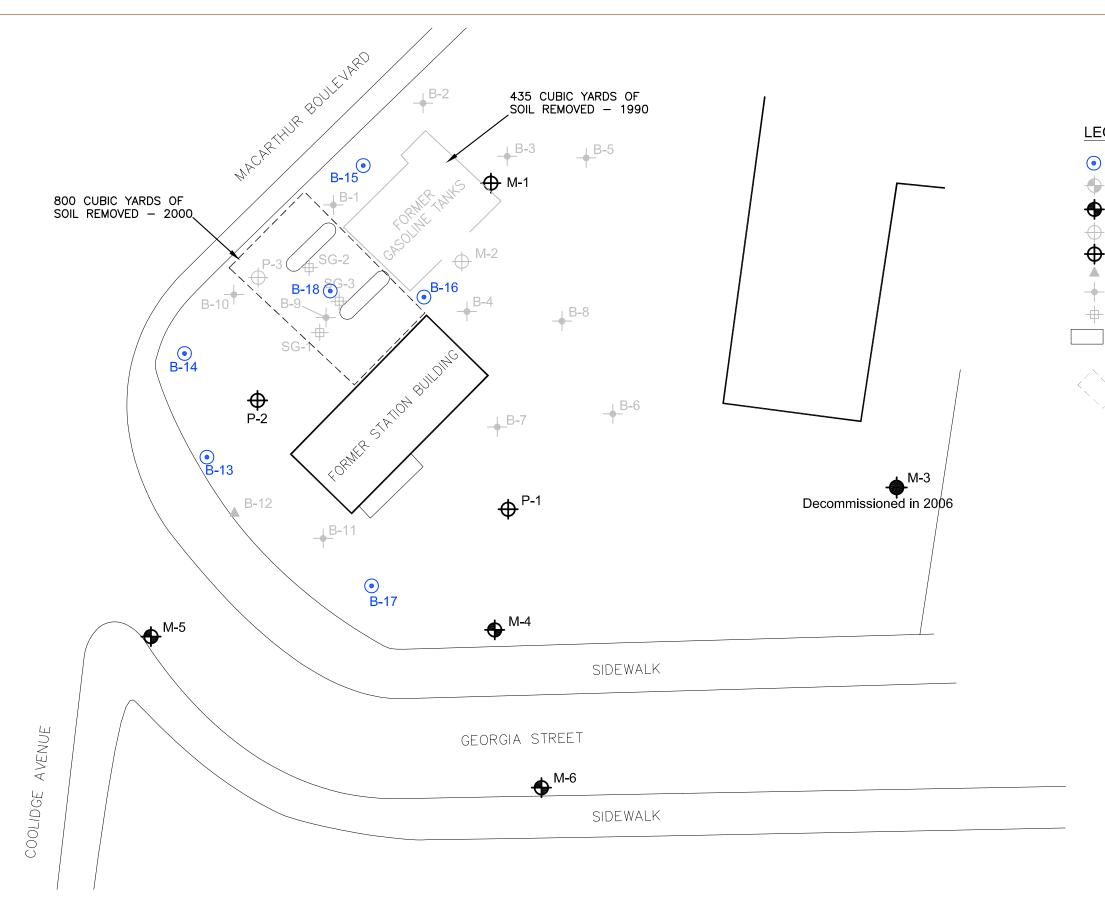

ug/l = microgram per liter

Detected concentrations are shown in bold


RPD = Relative Percentage Difference

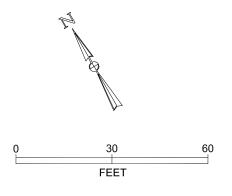
PLATES



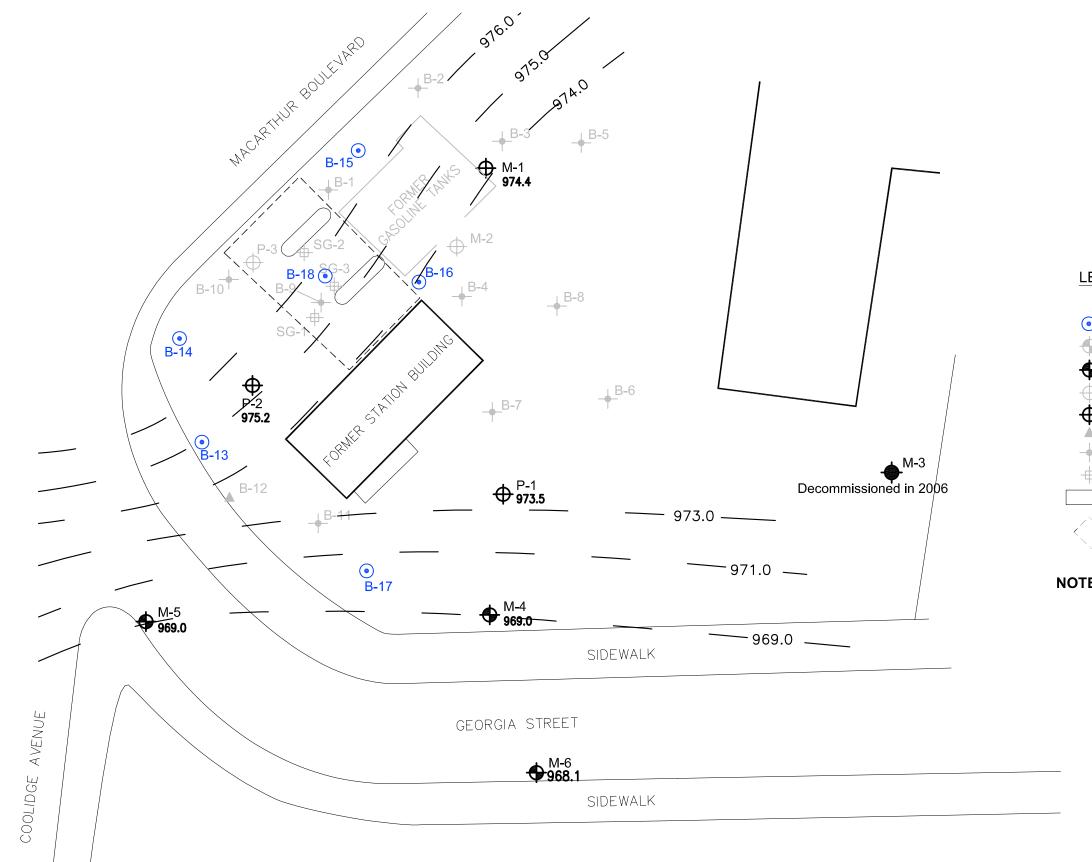

SOURCE: This Vicinity Map is based on Subsurface Consultants, Inc., Plate 1 dated 08/99.

VICINITY MAP 2801 MacArthur Blvd. Oakland, California

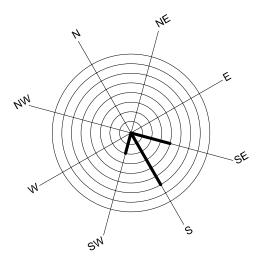
PLATE 1



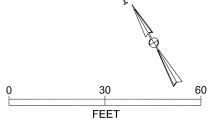
-25



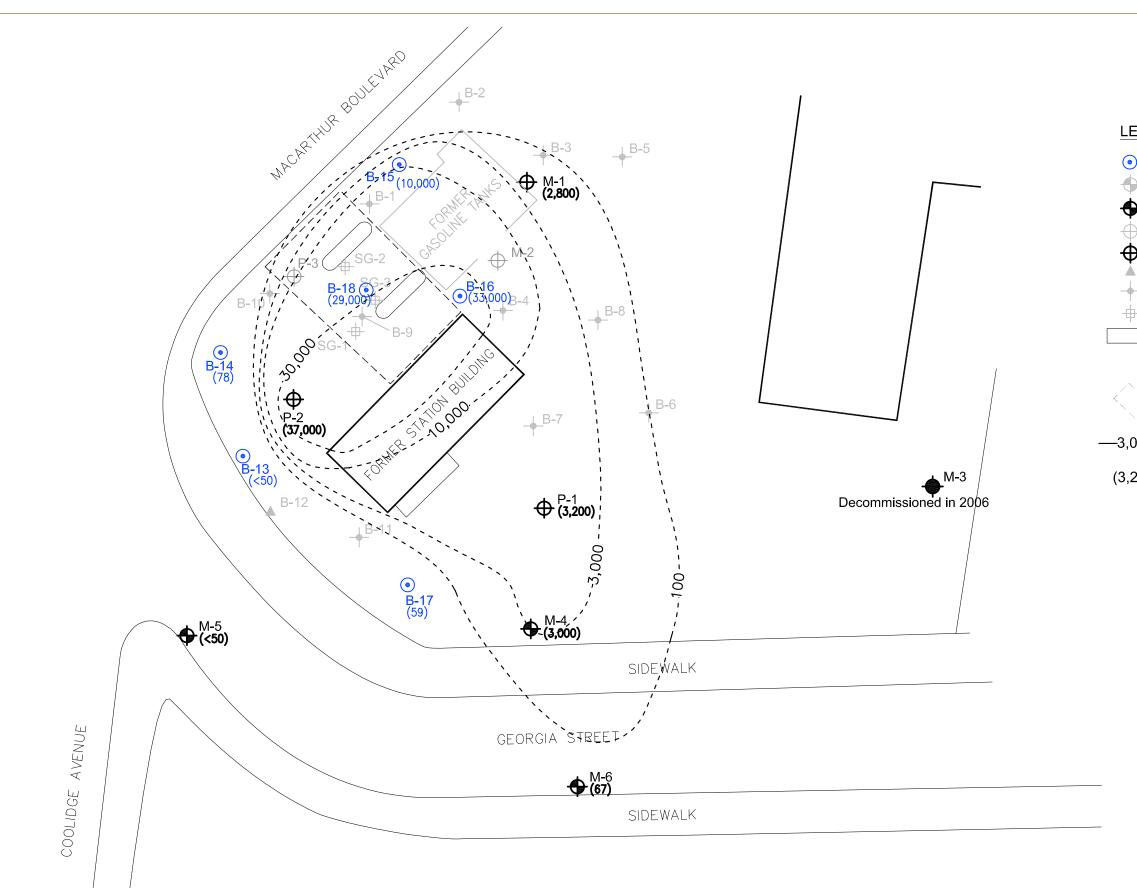
GEND	Explanation:
)	Approximate Location Of Fugro Boring (2006)
-	Monitoring Well by SCI
→	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
)	Monitoring Well by Others Sampled (2006) Test Boring by SCI
_	Test Boring by Others
F	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)


CAP Excavation Area

SITE PLAN 2801 MacArthur Blvd. Oakland, California



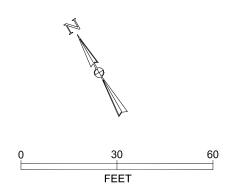
LEGEND

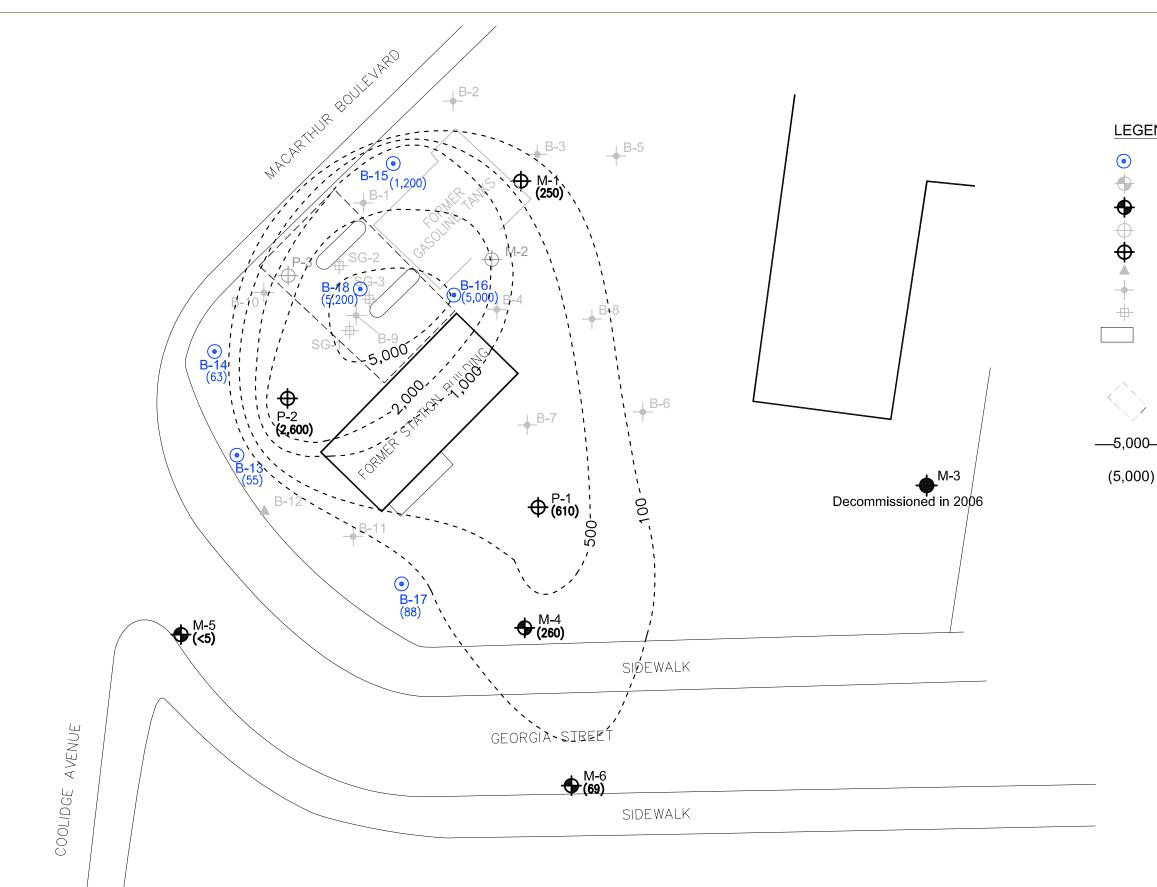

EGEND	
	Explanation:
	Approximate Location Of Fugro Boring (2006)
	Monitoring Well by SCI
₽	Monitoring Well Sampled (2006)
Ð	Monitoring Well by Others
₽	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI
-	Test Boring by Others
þ -	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)

CAP Excavation Area

NOTE: GROUNDWATER ELEVATIONS BASED ON SURVEY FROM ASSUMED DATUM (CORNER OF NORTHERN PUMP ISLAND) NORTHERN PUMP ISLAND DEMOLISHED (2003)

GROUNDWATER SURFACE MAP JUNE 2006 2801 MacArthur Blvd. Oakland, California

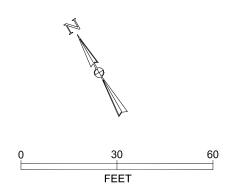

<u>Z</u>Ş


EGEND	Explanation:
	Approximate Location Of Fugro Boring (2006)
	Monitoring Well by SCI
	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
₽	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI
-	Test Boring by Others
3-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)

CAP Excavation Area	a
---------------------	---

- —3,000— TPHg Contour in µg/L
- (3,200) Detected TPHg Concentration in µg/L

DISTRIBUTION OF TPHg IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California



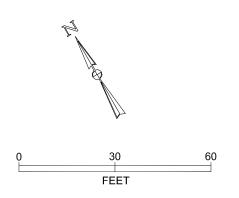
<u>Z</u>Ş

EGEND	Explanation:
\mathbf{O}	Approximate Location Of Fugro Boring (2006)
\rightarrow	Monitoring Well by SCI
•	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
)	Monitoring Well by Others Sampled (2006) Test Boring by SCI
-	Test Boring by Others
}-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
	CAP Excavation Area
000—	TPHd Contour in µg/L

00) Detected TPHd Concentration in µg/L

DISTRIBUTION OF TPHd IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California

PLATE 5


G: \jobdocs\838\838.006\Plates _ Drawings\B838_006_006.dwg 7-25-06 03:47:56 PM rkanda

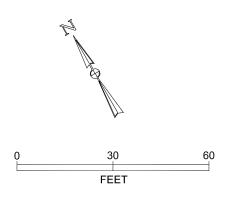
-23



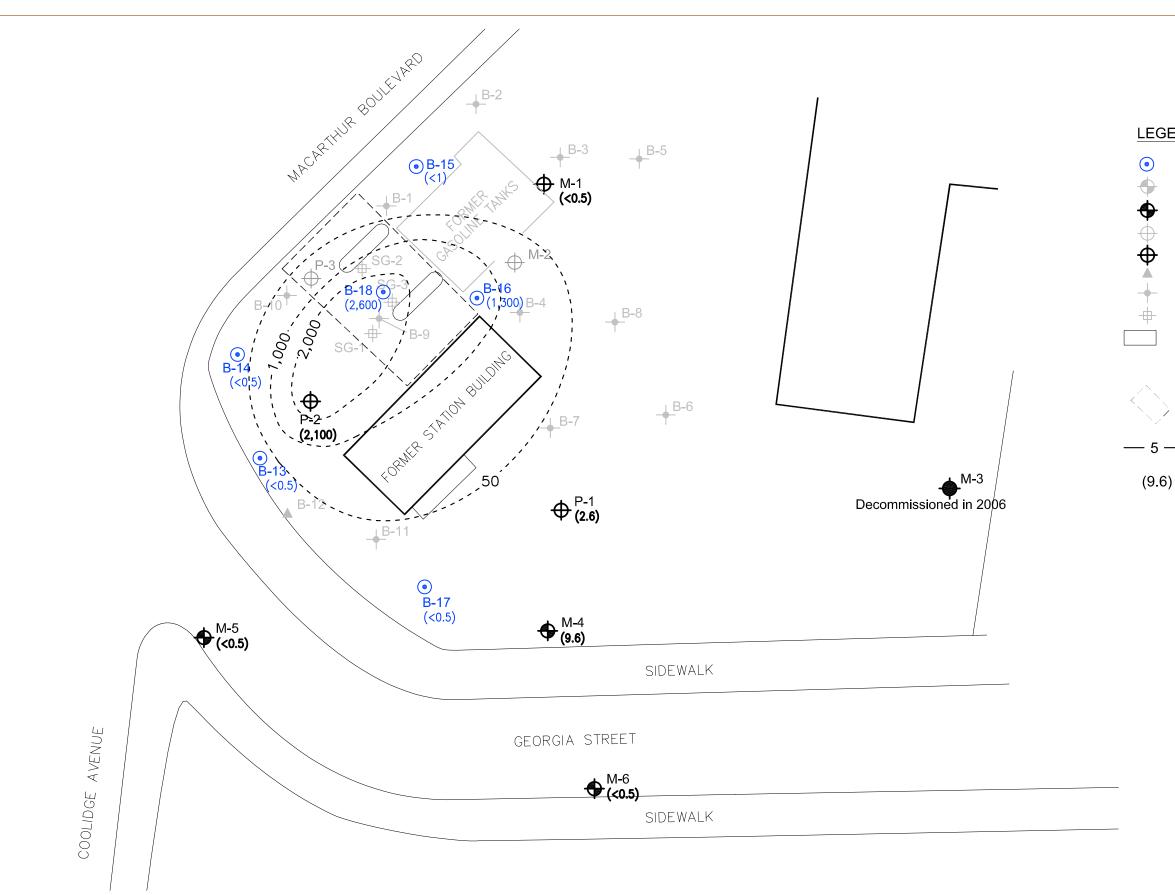
EGEND	Explanation:
\mathbf{D}	Approximate Location Of Fugro Boring (2006)
	Monitoring Well by SCI
\rightarrow	Monitoring Well Sampled (2006)
\geq	Monitoring Well by Others
₽	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI
-	Test Boring by Others
3-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
	CAP Excavation Area
2 —	MTBE Contour in µg/L

(32) Detected MTBE Concentration in µg/L

DISTRIBUTION OF MTBE CONCENTRATIONS IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California



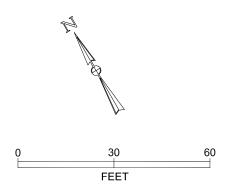
<u>Z</u>Ş



EGEND	Explanation:
\mathbf{D}	Approximate Location Of Fugro Boring (2006)
\rightarrow	Monitoring Well by SCI
•	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
€	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI
-	Test Boring by Others
3-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
\sum	CAP Excavation Area

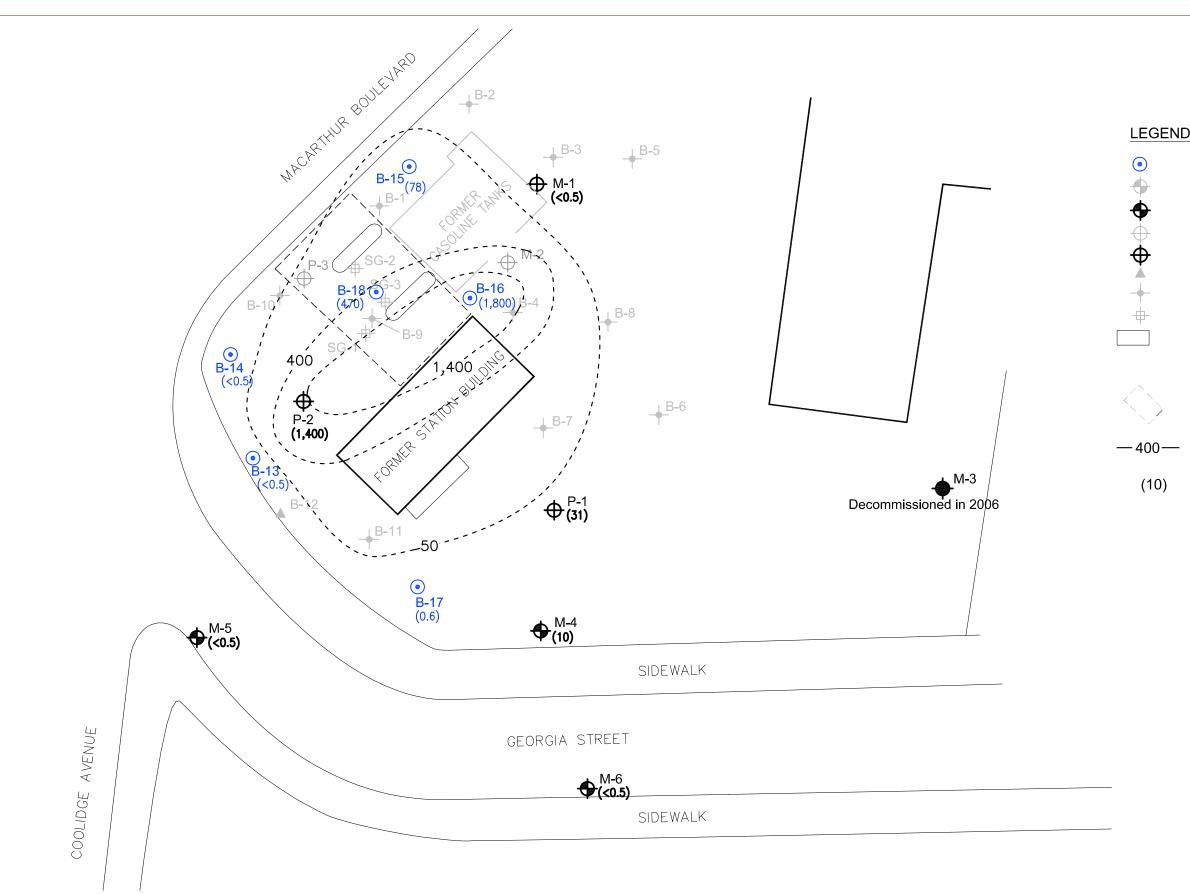
- —500 Benzene Contour in μg/L
- (480) Detected Benzene Concentration in µg/L

DISTRIBUTION OF BENZENE CONCENTRATIONS IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California



G: □jobdocs□838□838.006□Plates _ Drawings□8838_006_008.dwg 7-25-06 03:39:53 PM rkand

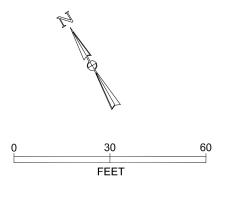
-23



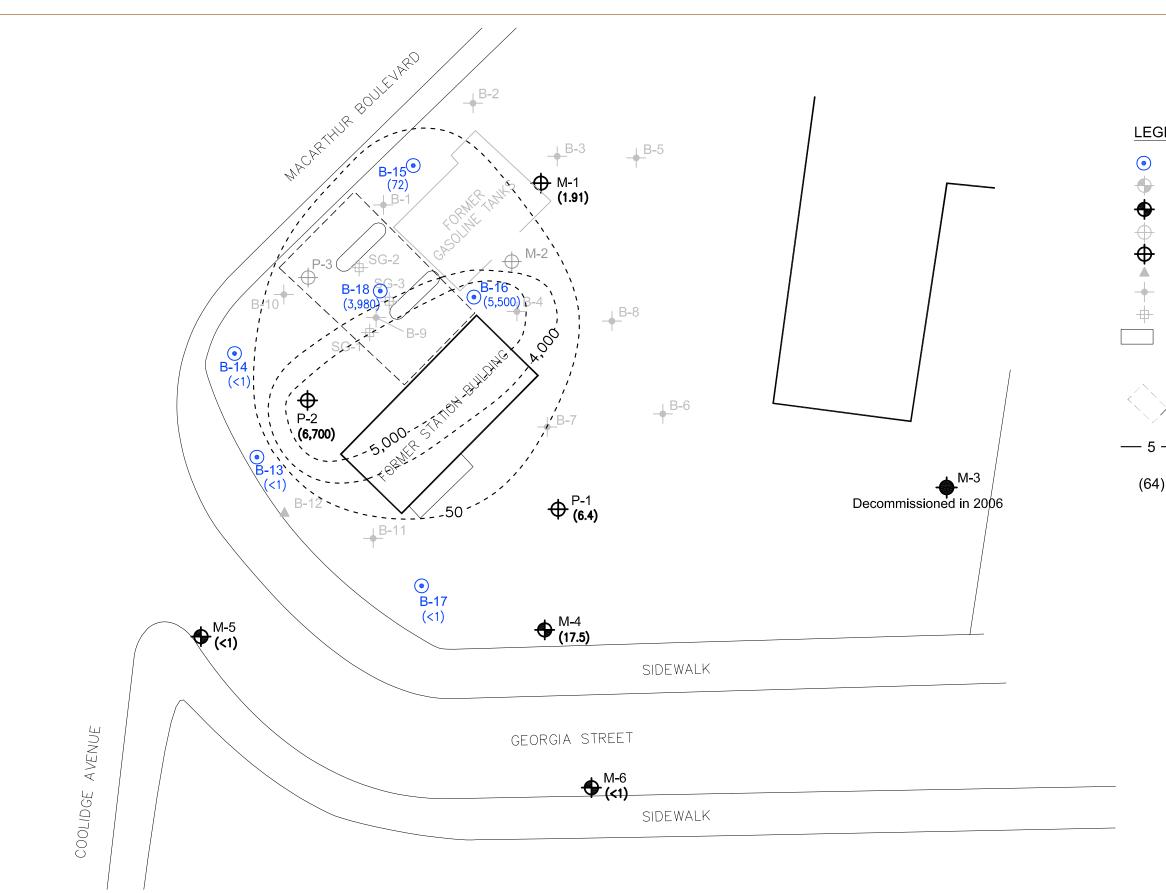
EGEND	Explanation:
)	Approximate Location Of Fugro Boring (2006)
\rightarrow	Monitoring Well by SCI
\rightarrow	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
)	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI
<u> </u>	Test Boring by Others
}-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
`	
	CAP Excavation Area
5 — .	Toluene Contour in μg/L
9.6) l	Detected Toluene Concentration in µg/L

DISTRIBUTION OF TOLUENE IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California

PLATE 8



<u>Z</u>Ş



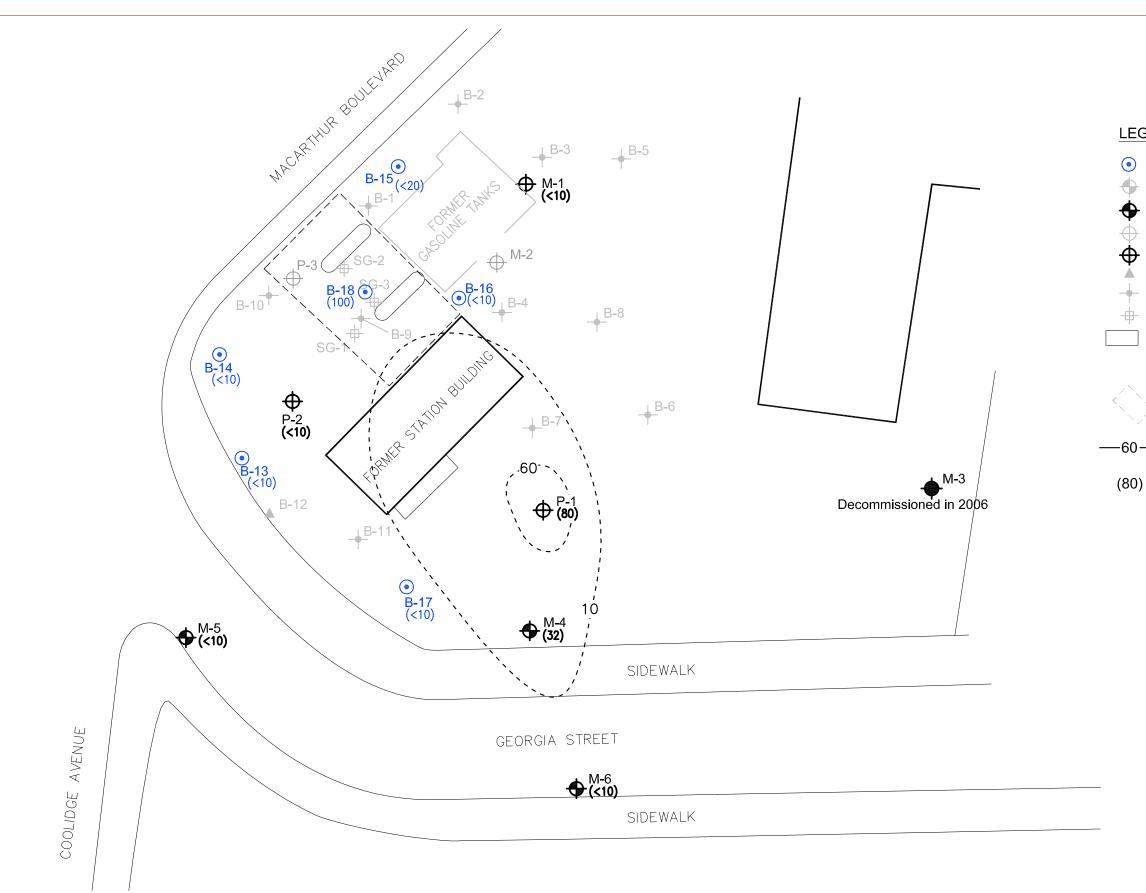
EGEND	Explanation:
\mathbf{D}	Approximate Location Of Fugro Boring (2006)
\rightarrow	Monitoring Well by SCI
•	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
€	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI
-	Test Boring by Others
}-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
	CAP Excavation Area
-00	Ethylbenzene Concentration in µg/L

- (10) Detected Ethylbenzene Concentration in µg/L

DISTRIBUTION OF ETHYLBENZENE IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California


G: \jobdocs\838\838.006\Plates _ Drawings\B838_006_010.dwg 7-25-06 03:44:23 PM rkand

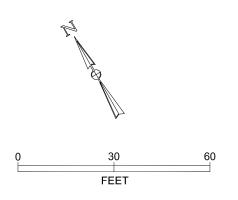
-23



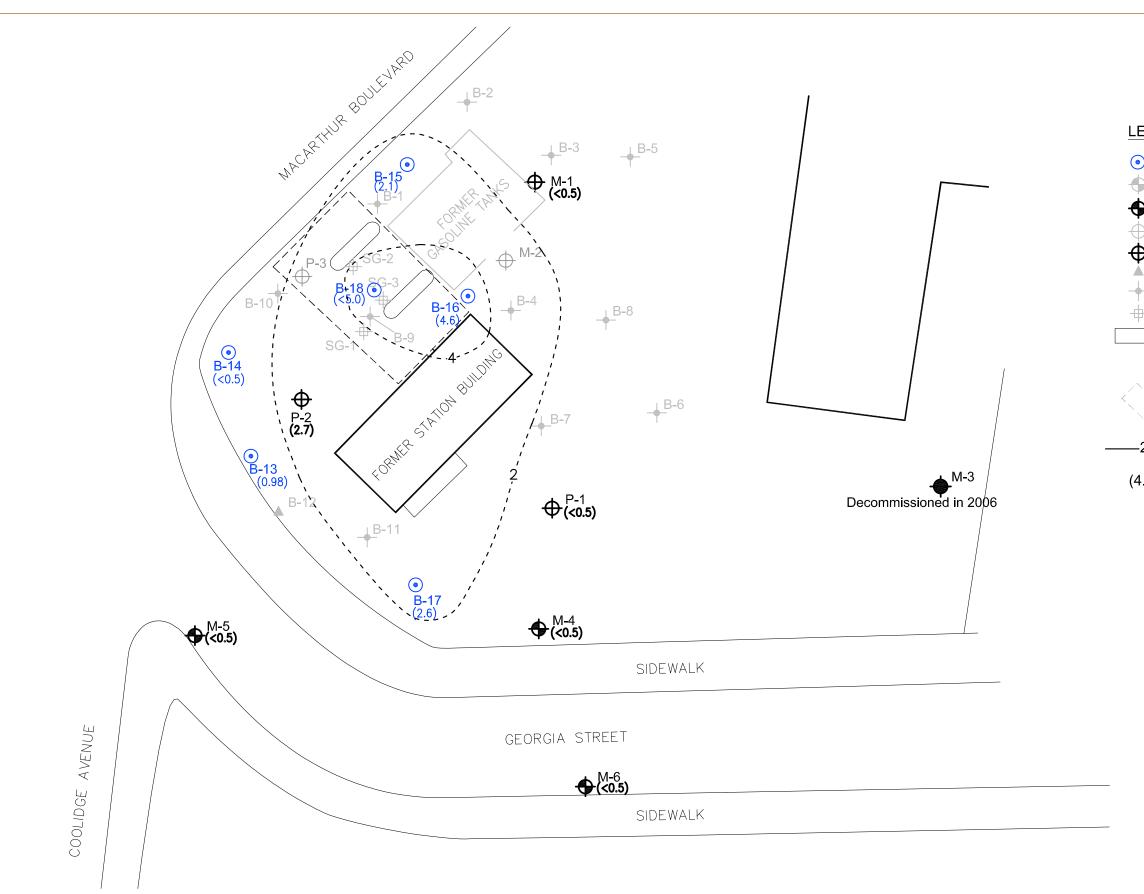
EGEND	Explanation:
	Approximate Location Of Fugro Boring (2006)
\rightarrow	Monitoring Well by SCI
	Monitoring Well Sampled (2006)
Ð	Monitoring Well by Others
₽	Monitoring Well by Others Sampled (2006)
	Test Boring by SCI Test Boring by Others
ř 	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
	CAP Excavation Area
5 —	Total Xylene Contour in μg/L

4) Detected Total Xylene Concentration in µg/L

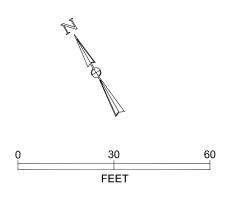
DISTRIBUTION OF TOTAL XYLENES IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California



<u>Z</u>Ş



EGEND	Explanation:
	Approximate Location Of Fugro Boring (2006)
\rightarrow	Monitoring Well by SCI
}	Monitoring Well Sampled (2006)
\rightarrow	Monitoring Well by Others
€	Monitoring Well by Others Sampled (2006) Test Boring by SCI
)—	Test Boring by Others
}-	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
	CAP Excavation Area
0—	TBA Contour in µg/L
0)	Detected TBA Concentration in ug/


DISTRIBUTION OF TBA CONCENTRATIONS IN GROUNDWATER JUNE 2006 Fund 2801 MacArthur Blvd. Oakland, California

<u>Z</u>Ş

EGEND	Explanation: Approximate Location Of Fugro Boring (2006)
-	Monitoring Well by SCI
	Monitoring Well Sampled (2006)
Þ	Monitoring Well by Others
Þ	Monitoring Well by Others Sampled (2006) Test Boring by SCI
-	Test Boring by Others
	Soil Vapor and Soil Sampling Location by SCI
	Former Tank Excavation (1989)
	CAP Excavation Area
-2——	DCA Contour in µg/L
4.6)	Detected DCA Concentrations in µg/L

DISTRIBUTION OF DCA CONCENTRATIONS IN GROUNDWATER JUNE 2006 2801 MacArthur Blvd. Oakland, California

PLATE 12

APPENDIX A PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

Puelo	399 Elmhurst Street Hayward, CA 94544-13 Telephone: (510)670-6633 Fax:(5	95 i10)782-1939
Application Approved Permits Issued:	d on: 06/02/2006 By jamesy W2006-0545 to W2006-0546	Receipt Number: WR2006-0271 Permits Valid from 06/19/2006 to 06/22/2006
Application Id: Site Location:	1149187920092 Within the Parking Lot of:	City of Project Site:Oakland
Project Start Date:	2801 MacArthur Blvd, Oakland CA 06/19/2006	Completion Date:06/22/2006
Applicant:	Fugro West Inc - Obi Nzewi 1000 Broadway Suite 200, Oakland, CA 94607	Phone: 510-267-4413
Property Owner:	Fund APA 7 Morning sun Avenue, Mill Valley, CA 94941	Phone: 415-389-0810
Client:	Aniko Molnar 7 Morning sun Avenue, Mill Valley, CA 94941	Phone: 415-389-0810

Payer Name : obiajulu Nzew	Total Due: Total Amount Paid: vi Paid By: VISA	\$500.00 <u>\$500.00</u> PAID IN FULL
----------------------------	--	---

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 8 Boreholes Driller: Clearheart Drilling - Lic #: 57780357 - Method: auger

Work Total: \$200.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2006- 0545	06/02/2006	09/17/2006	8	6.00 in.	50.00 ft

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

5. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

6. Spot Check Only

Inspector does not have to be present for grout Inspection.

Alameda County Public Works Agency - Water Resources Well Permit

Well Destruction-Monitoring - 1 Wells Driller: Clearheart Drilling - Lic #: 57780357 - Method: auger

Work Total: \$300.00

Specifications Permit # Issued Date Expire Date Owner Well Hole Diam. Casing Seal Depth Max. Depth State Well # Orig. DWR # Id Diam. Diam. Permit # Permit # Permit # W2006 06/02/2006 09/17/2006 M-3 6.00 in. 2.00 in. 5.00 ft 50.00 ft

Specific Work Permit Conditions

0546

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Sound the well to measure depth and to ensure no obstructions exist.

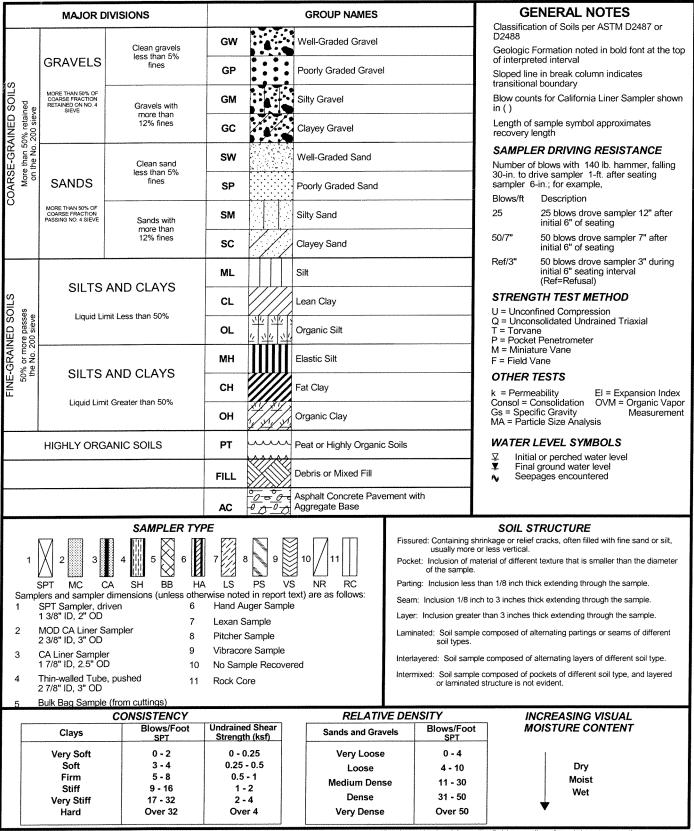
Excavate and remove existing casing 3 to 5 foot below ground surface (bgs), including vent cap and well or vault cover.

Grout neat cement with a tremie to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade.

After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.


5. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

6. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit

APPENDIX B USCS AND LOGS OF BORINGS

Information on each boring log is a compilation of subsurface conditions and soil or rock classifications obtained from the field as well as from laboratory testing of samples. Strata have been interpreted by commonly accepted procedures. The stratum lines on the logs may be transitional and approximate in nature. Water level measurements refer only to those observed at the time and places indicated, and can vary with time, geologic condition, or construction activity.

TERMS AND SYMBOLS USED ON BORING LOGS

PLATE B-1

Sheet 1 of 2

DEPTH, ft MATFRIAI	SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
	-	ŝ	SA	. ЧЯ	MATERIAL DESCRIPTION						STF	0
-	1				Asphalt Baserock: Sandy CLAY (CL): hard, dark reddish brown, moist,	1						OVM = 0
V	\square				fine- to medium-grained							OVM = 0
5-		1 2		(87)	- some gravel (fine, sub-angular) at 5 feet							OVM = 0 OVM ≠ 0
												OVM·≖·0·
10-	A	3		(50)	Sandy CLAY (CL): hard, reddish brown, moist,							OVM = 0
	A	4		(59)	fine- to medium-grained, with gravel (fine, sub-angular)	┫						OVM-=-0-
					Clayey SAND (SC): dense, reddish brown, moist,							OVM = 0
15		5		(87)	fine- to medium-grained, with gravel (fine, sub-angular)	-						OVM = 0
		0		(01)	Sandy CLAY (CL): hard, reddish brown to yellow brown mottled black, moist, fine- to medium-grained, with gravel (fine, sub-angular)							
20-	\square	6		(58)								OVM = 0
					Sandy CLAY (CL): hard, light brown to yellow brown, moist, fine- to medium-grained - increasing sand at 21.5 feet							OVM = 0
25		7		(60)	Silty SAND (SM): dense, light yellow brown, moist, fine-grained							OVM = 0
												OVM = 0
30-		8	2	(72)	Silty GRAVEL (GM): very dense, light brown - yellow brown, moist, fine, sub-angular, with sand	-						
					(fine- to medium-grained)							OVM = 0
35												OVM = 0 OVM = 0
		9		(97)	Sandy CLAY (CL): hard, brown, moist, fine- to medium-grained, with gravel (fine, sub-angular)							<u>Ovivi - U</u>
40		10		(90)								OVM = 0 OVM = 0
45-		11		(90)								OVM = 0

BORING DEPTH: 61.0 ft DEPTH TO WATER: 60.0 ft

COMPLETION DATE: June 19, 2006 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: CME DRILLED BY: Clearheart, LOGGED BY: O Nzewi

LOG OF BORING NO. B-13 2801 MacArthur Blvd Oakland, California

												Sheet 2 of 2
DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
		S	SA	ᇳᄖ	MATERIAL DESCRIPTION						N _L S	
	1.	12		(87)	Sandy CLAY (CL): hard, brown, moist							OVM = 0
- - 55		13		(80)	- with gravel (fine, sub-angular) at 55 feet							
		14		(76)	∑ Clayey SAND (SC): very dense, brown, wet,							
- - - 65-					fine-grained							
- - - - 70-												
75-	1								-			
80 -	-											
85-	-											
90-												
95-										, .		
	1											

BORING DEPTH: 61.0 ft DEPTH TO WATER: 60.0 ft

COMPLETION DATE: June 19, 2006 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: CME DRILLED BY: Clearheart, LOGGED BY: O Nzewi

LOG OF BORING NO. B-13 2801 MacArthur Blvd Oakland, California

MATERIAL SYMBOL	Ĭž		~ ⁵ ^a		ğ 1	%	QΨ	-	≥	SHEAR Su, ksf	STS
≥"	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	UNDRAINED S STRENGTH, 3	OTHER TESTS
		ŝ	шŢ	MATERIAL DESCRIPTION					L	35	
				Asphalt Baserock: CLAY (CL): hard, red brown, moist, with sand (fine-				,			
\square				to medium-grained)							
	1		(63)								OVM = 0
\square		<u></u>									
\square											OVM = 0
\square											
\square											
HA	2		(77)	Sandy CLAY (CL): hard, red brown to yellow	┥						OVM = 0
\square											
\square											
\square											OVM = 0
\square						,					
				Clavey SAND (SC): yen/ dense light vellow brown	<u> </u>						0) (M = 0
///	3 4	<u></u>	(87)	moist, fine- to medium-grained, with gravel (fine,	.						OVM = 0
\square				Sub-angular) CLAY (CL): greenish light brown, moist							
\square											
	5		(100)	Silty SAND (SM): hard, light brown to brown, moist,							
				sub-angular)							
				CLAY (CL): hard, light brown to brown with black	-						OVM = 0
\square	6		(82)	mottling, moist, fine-to medium-grained							
\square								,			
\square	-										
			(92)	Sandy CLAY (CL): hard, light brown to brown,							
				sub-angular)							
HA	0			☑ Sandy CLAY (CL): hard, brown, wet, fine- to			•••••				
//	0		(77)	medium-grained, with gravel (fine, sub-angular)							
<u> </u>					-						
			3 4 5 M	(<i>(1)</i> 3 4 (87) 5 (100) 6 (82)	1 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) 4 (87) 5 (100) 5 (100) 5 (100) 6 (82) 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 2 (92) Sandy CLAY (CL): hard, light brown to brown, wet, fine- to	1 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) 4 (87) 5 (100) 5 (100) 5 (100) 6 (82) 7 (92) 8 (77) 8 (77)	1 to medium-grained) 2 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) 4 (87) 5 (100) 5 (100) 6 (82) 7 (92) 8 (77) 2 Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (coarse, sub-angular) 6 (82) 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 8 (77) 2 Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 8 (77) 2 Sandy CLAY (CL): hard, brown, wet, fine- to medium-grained, with gravel (fine, sub-angular)	1 (63) 2 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) Clayey SAND (SC): very dense, light yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) CLAY (CL): hard, light brown, moist 5 (100) Silty SAND (SM): hard, light brown to brown, moist, fine- to medium-grained, with gravel (coarse, sub-angular) 6 (82) 7 (92) 8 (77) 8 (77)	1 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) Clayey SAND (SC): very dense, light yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 5 (100) 6 (82) 7 (82) 8 (77) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (coarse, sub-angular) 6 (82) 7 (92) Sandy CLAY (CL): hard, light brown to brown, with black motting, moist, fine- to medium-grained, with gravel (fine, sub-angular) 8 (77) 7 (92) Sandy CLAY (CL): hard, light brown, wet, fine- to medium-grained, with gravel (fine, sub-angular) 7 (77) 8 (77)	1 medium-grained) 1 medium-grained) 2 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) Clayey SAND (SC): very dense, light yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 5 (100) 5 (100) 6 (82) 7 (82) 7 (92) 8 (77) 8 (77) 2 Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 8 (77) 9 Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 8 (77)	1 to medium-grained) 2 (63) 2 (77) Sandy CLAY (CL): hard, red brown to yellow brown, moist, fine- to medium-grained, with gravel (fine sub-angular) 3 (87) Clayey SAND (SC): very dense, light yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) CLAY (CL): greenish light brown to brown, moist 5 (100) 6 (82) 7 (82) 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained 7 (92) Sandy CLAY (CL): hard, light brown to brown, moist, fine- to medium-grained, with gravel (fine, sub-angular)

BORING DEPTH: 47.5 ft DEPTH TO WATER: 45.0 ft

COMPLETION DATE: June 20, 2006 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: CME DRILLED BY: Clearheart, LOGGED BY: O Nzewi

LOG OF BORING NO. B-14 2801 MacArthur Blvd Oakland, California

	[T	[[]		۲ <u>ـ</u>	Sheet 1 c
MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	NDRAINED SHEA TRENGTH, S _u , ks	OTHER TESTS
~ ~										50	
				Aspiral Baserock. Sandy Clay: hard, reddish brown, moist, fine- to medium-grained							
	1		(78)	Sandy CLAY (CL): hard, reddish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular)							OVM = 0
	2		(56)								OVM = 0
	3		(81)								⊙VM·≖·0·
				brown, moist, fine- to medium-grained, with gravel (fine, sub-angular)							
	4	2	(97)	Sandy CLAY (CL): hard, greenish gray, moist, fine- to medium-grained, with gravel (fine, sub-angular)							OVM = 0
	5 6		(79)	Sandy CLAY (CL): hard, light brown to green brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) - slight hydrocarbon odor				· · <i>,</i> · · · · · ·			OVM = 1.8 OVM = 0
	7 8		(81)								OVM = 236 OVM = 0
	9		(81)	Sandy CLAY (CL): hard, light brown to green	·····						OVM = 36 OVM = 35
\square				brown, wet, with hydrocarbon odor							
	10 11 12		(73)								OVM = 109 OVM = 252 OVM = 107
	13		(50/6")	- brown at 45 feet							OVM = 15
	SYMBOL	5 6 7 9 10 11 12 10 11 12 10 11 12 10 11 12 10 11 12 10 11 12 10 10 11 12 10 10 10 10 10 10 10 10 10 10		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Asphalt Baserock: Sandy CLAY (CL): hard, reddish brown, moist, fine- to medium-grained 1 (78) Sandy CLAY (CL): hard, reddish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 2 (56) 3 (81) 4 (97) 5 (97) 6 (79) 6 (79) 7 8 8 (81) 9 (81) 9 (81) 10 12 11 (73)	Understand Surface EL: Not Surveyed Image: Surface EL: Not Surveyed MATERIAL DESCRIPTION Image: Surface EL: Not Surveyed Sandy CLAY (CL): hard, reddish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Image: Surface EL: Not Surveyed Sandy CLAY (CL): hard, reddish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Image: Surface EL: Not Surveyed Sandy CLAY (CL): hard, reddish brown to yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Image: Surface EL: Not Surveyed Sandy CLAY (CL): hard, reddish brown to yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Image: Surface EL: Not Surveyed Sandy CLAY (CL): hard, fight brown to green brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Image: Surface EL: Not Surveyed Sandy CLAY (CL): hard, light brown to green brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Image: Surface EL: Not Surveyee Sandy CLAY (CL): hard, light brown to green brown, wet, with hydrocarbon odor Image: Surface EL: Not Surveyee Sandy CLAY (CL): hard, light brown to green brown, wet, with hydrocarbon odor	Normalized Surradiant Surradiant Surradiant 1 Ling Asphalt Baserock: Sandy Clay: hard, reddish brown, moist, fine- to medium-grained Asphalt Baserock: Sandy Clay: hard, reddish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) Sandy CLAY (CL): hard, reddish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 2 (56) 3 (81) 4 (97) 5 Sandy CLAY (CL): hard, reddish brown to yellow brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 5 (79) 5 Sandy CLAY (CL): hard, light brown to green brown, moist, fine- to medium-grained, with gravel (fine, sub-angular) 9 (81) 9 (81) 10 (81) 11 (73)	Number Notes Notes Notes Number Notes Notes	UDDBUNG UDDBUNG	Underword Surrence Listen Listen <thlisten< th=""> Listen Listen<td>Understand Image: Second s</td></thlisten<>	Understand Image: Second s

BORING DEPTH: 46.5 ft DEPTH TO WATER: 36.0 ft

COMPLETION DATE: June 20, 2006 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: CME DRILLED BY: Clearheart, LOGGED BY: O Nzewi

LOG OF BORING NO. B-15 2801 MacArthur Blvd Oakland, California

												Sheet 1 o
DEPTH, ft MATEDIAL	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
			S		MATERIAL DESCRIPTION						50	
					Asphalt Baserock: SAND (SP): loose, dark brown, dry, fine- to medium-grained, with gravel (fine, rounded) (Fill)	- 						
5		1	N	(26)	Silty SAND (SM): medium dense, brown, dry, fine- to medium-grained, with gravel (fine, sub-angular to sub-rounded) (Fill)							OVM = 0
 10		2		(14)	Sandy CLAY (CL): firm to stiff, reddish brown,	 						
			Z		moist, fine- to medium-grained							
15-		3		(45)	- very stiff at 15 feet							OVM = 0
20		4	IN	(50/5*)	Sandy CLAY (CL): hard, light brown to green brown, moist, fine- to medium-grained, with gravel (fine, sub-angular)							OVM = 0
25-		5 6		(94)	 slight hydrocarbon odor at 25 feet Sandy CLAY (CL): hard, brown to reddish brown, dry, fine- to medium-grained 							OVM = 1.8 OVM = 26 OVM = 1.8
30-		7 8		(50/3")	Clayey SAND (SC): medium dense, green, moist,	 						OVM = 359
			~		fine- to medium-grained, with gravel (fine, sub-angular) with strong hydrocarbon odor							
35		9	M	(89)	Gravel (GP): very dense, reddish brown, moist, fine, sub-angular]						OVM = 53
40				(91)	Sandy CLAY (CL): hard, brown, dry, fine- to							
				V1	medium-grained							
45-				(50/6")								OVM = 0
1												

BORING DEPTH: 46.5 ft DEPTH TO WATER: Not Encountered during initial drilling

COMPLETION DATE: June 21, 2006 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: CME DRILLED BY: Clearheart, LOGGED BY: O Nzewi

LOG OF BORING NO. B-16 2801 MacArthur Blvd Oakland, California

DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
	~ ~		S		MATERIAL DESCRIPTION						50	
					Asphalt Baserock: Sandy CLAY (CL): hard, reddish brown to yellow brown, dry, fine- to medium-grained, with gravel (fine, sub-angular)							
5-		1	M	(68)								OVM = (
- 10		2		(74)								OVM = (
15-			****	(50/1")								ovm = 0
20-												
25-		4		(89)	- green streaks at 25 feet							OVM = 0
- - 30- -		5		(71)	Sandy CLAY (CL): hard, green to greenish brown,							OVM = 0
		6		(04)	dry, fine- to medium-grained, with gravel (fine, sub-angular)			.,				OVM = 0
~ ~ ~ ~				(81)					• • • • • • • • •			
40- 		7		(86)								OVM = 6
- - 45- -		8		(50/5")								

BORING DEPTH: 45.0 ft DEPTH TO WATER: Not Encountered during initial drilling

COMPLETION DATE: June 20, 2006 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: CME DRILLED BY: Clearheart LOGGED BY: O Nzewi

LOG OF BORING NO. B-17 2801 MacArthur Blvd Oakland, California

			ΡE	/T/ psi	LOCATION:	ď,	%	ر) س		~	SHEAR , S., ksf	TS
DEPTH , ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: Not Surveyed	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX	UNDRAINED SI STRENGTH, S	OTHER TESTS
	-	ŝ	SA	. Ч.К.	MATERIAL DESCRIPTION	>	0	0.44			STR	0
	•••				Asphalt Baserock: Sandy GRAVEL (GP): loose to medium dense, gray brown, moist, (fine, sub-angular), (fine- to							
5-					Angle							OVM = 0
		1										
					Clayey SAND (SC): medium dense, brown to greenish brown, moist, fine- to medium-grained, with gravel (fine, sub-angular)							
- 15-		2			∑ Sandy CLAY (CL): stiff, brown, wet, fine- to	-		• • • • • • • • •				OVM = 35
-		3			medium-grained, with gravel (fine, sub-angular), with strong hydrocarbon odor							····· OVM = 21
20-		4										OVM = 7 9
		5								.,	. ,	OVM = 20
					Sandy CLAY (CL): stiff, brown to green brown, wet, fine- to medium-grained, with strong hydrocarbon odor		· · · · · · · · · ·					
30-	\square	6			Sandy CLAY (CL): stiff, brown - green brown, wet,							OVM = 16
		Ū			fine- to medium-grained, with gravel (fine, sub-angular), with strong hydrocarbon odor							
35-		7										OVM = 204
					Clayey SAND (SC): medium dense, green, wet, fine- to medium-grained, with gravel (fine, sub-angular), with hydrocarbon odor							
40-		8			Sandy CLAY (CL): stiff, reddish brown to brown, wet, fine- to medium-grained, with slight	 						OVM = 44
45-			****		hydrocarbon odor							OVM = 38
						1						

BORING DEPTH: 45.0 ft DEPTH TO WATER: 15.0 ft

COMPLETION DATE: June 23, 2006 NOTES: 1. Terms and symbols defined on Plate A-1.

> LOG OF BORING NO. B-18 2801 MacArthur Blvd

Oakland, California

DRILLING METHOD: 6-in. dia. Hollow Stem Auger HAMMER TYPE: Automatic Trip RIG TYPE: DR10K DRILLED BY: Clearheart, LOGGED BY: O Nzewi

APPENDIX C LABORATORY REPORTS

July 07, 2006

Obi Nzewi Fugro West, Inc. 1000 Broadway, Suite 200 Oakland, CA 94607 TEL: (510) 268-0461 FAX: (510) 268-0137

RE: APA Fund, 838.006

Attention: Obi Nzewi

ELAP No.: 1838 NELAP No.: 02107CA NEVADA.: CA-401 Arizona: AZ0689 CSDLAC No.: 10196 Workorder No.: 085202

Enclosed are the results for sample(s) received on June 23, 2006 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (562)989-4045 if I can be of further assistance to your company.

Sincerely,

Eddie F. Rodriguez Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories.

Advanced Technology Laboratories

Adva	anced Tee	chnology I	aborato	ories	Date: 07-Jul-06							
CLIEN Project		ugro West, Inc. PA Fund, 838.					La	ıb Orde	er:	085202		
Lab ID):	085202-001				Colle	ection Date:	6/21/2	006 8:10	:00 AM		
Client	Sample ID:	B-16					Matrix:	WATE	ER			
Analys	es		Re	sult	PQL	Qual Uni	ts	DF	Date	Analyzed		
DIESEL	L & MOTOR (DIL RANGE OF	RGANICS B PA 3510C	Y GC/FID		EPA 80	15B(M)					
RunID:	GC7_060626	iB	QC Batch:	28810			PrepDate:	6	6/26/2006	Analyst: CBR		
DRO				5.0	0.050	mg/l		1		6/26/2006		
ORO				0.10	0.050	mg/l		1		6/26/2006		
	INE RANGE	ORGANICS B										
GAGOL		Unoranico D				EPA 80	15B(M)					
RunID:	GC6 060627	В	QC Batch:	106VW1	70		PrepDate:			Analyst: TT		
GRO				33	0.050	mg/l	-	1		6/28/2006		
			S BY GC/M	S		U						
		0.000		-		EPA 8	260B					
RunID:	MS11_06062	7B	QC Batch:	A06VW	184		PrepDate:			Analyst: HH		
1.2-Dib	promoethane			ND	0.50	µg/L		1		6/28/2006		
,	chloroethane			4.6	0.50	μg/L		1		6/28/2006		
Benzer			2	200	25	μg/L		50		6/28/2006		
Di-isop	propyl ether			ND	0.50	µg/L		1		6/28/2006		
•	ert-butyl ether			ND	0.50	µg/L		1		6/28/2006		
Ethylbe	enzene		1	800	25	µg/L		50		6/28/2006		
m,p-Xy	/lene		4	200	50	µg/L		50		6/28/2006		
MTBE				32	0.50	µg/L		1		6/28/2006		
o-Xyler	ne		1	300	25	µg/L		50		6/28/2006		
Tert-an	nyl methyl ethe	r		ND	0.50	µg/L		1		6/28/2006		
Tert-Bu	-			ND	10	µg/L		1		6/28/2006		
Toluen	e		1	300	25	µg/L		50		6/28/2006		

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 1 of 38

Advanced Technology Laboratories

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

2 of 39

CLIEN Project		ugro West, I PA Fund, 83					La	b Ord	er: (085202
Lab ID);	085202-002	2			Colle	ction Date:			00 AM
Client	Sample ID:	B-17					Matrix:	WAT	ER	
Analys	es		R	esult	PQL	Qual Unit	ts	DF	Date	Analyzed
DIESEL	& MOTOR	DIL RANGE	ORGANICS I EPA 3510C	BY GC/I	FID	EPA 801	5B(M)			
RuniD:	GC7_060626	в	QC Batch	: 28	810		PrepDate:		6/26/2006	Analyst: CBR
DRO	-			0.088	0.050	mg/L		1		6/26/2006
ORO				0.23	0.050	mg/L		1		6/26/2006
	INE RANGE	ORGANICS	BY GC/FID			· ·				
						EPA 801	5B(M)			
lunID:	GC6_060629	A	QC Batch	: 100	6VW171		PrepDate:			Analyst: TT
GRO				0.059	0.050	mg/L		1		6/29/2006
GRO				0.059	0.050	mg/L		1		7/5/2006
	ILE ORGANI		NDS BY GC/	MS		-				
U LAI						EPA 82	260B			
RunID:	MS11_06062	8A	QC Batch	AC	06VW185		PrepDate:			Analyst: HH
	promoethane			ND	0.50	μg/L		1		6/28/2006
	chloroethane			2.6	0.50	μg/L		1		6/28/2006
Benze				ND	0.50	µg/L		1		6/28/2006
	propyl ether			ND	0.50	μg/L		1		6/28/2006
•	ert-butyl ether			ND	0.50	µg/L		1		6/28/2006
-	enzene			0.60	0.50	µg/L		1		6/28/2006
m,p-Xy				ND	1.0	µg/L		1		6/28/2006
MTBE				ND	0.50	µg/L		1		6/28/2006
o-Xylei	ne			ND	0.50	µg/L		1		6/28/2006
Tert-ar	myl methyl ethe	r		ND	0.50	µg/L		1		6/28/2006
Tert-B	-			ND	10	µg/L		1		6/28/2006
Toluen				ND	0.50	µg/L		1		6/28/2006

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

E Value above quantitation range

- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified
 - Page 2 of 38

Advanced Technology Laboratories

3 of 39

Adva	nced Tec	hnology La	borato	ries	Date: 07-Jul-06						
CLIEN Project		gro West, Inc. PA Fund, 838.00	6				Lat	Order:	(085202	
Lab ID):	085202-003				Collect	ion Date:	6/21/2000	5 11:4	0:00 AM	
Client	Sample ID:	M-4					Matrix:	WATER			
Analys	es		Re	sult	PQL	Qual Units		DF	Date	Analyzed	
DIESEL	L & MOTOR C	IL RANGE ORG	ANICS B	Y GC/FID		EPA 8015	B(M)				
RunID:	GC7_0606268	3	QC Batch:	28810			PrepDate:	6/26	6/2006	Analyst: CBR	
DRO				0.26	0.050	mg/L		1		6/26/2006	
ORO				.071	0.050	mg/L		1		6/26/2006	
	INE RANGE	ORGANICS BY	GC/FID			0					
07002						EPA 8015	B(M)				
RunID:	GC6_060627E	3 0	QC Batch:	106VW1	70		PrepDate:			Analyst: TT	
GRO				3.0	0.050	mg/L		1		6/28/2006	
	ILE ORGANIC	COMPOUNDS	BY GC/M	S							
						EPA 826	50B				
RunID:	MS11_060627	'B (QC Batch:	A06VW	184		PrepDate:			Analyst: HH	
1.2-Dit	promoethane			ND	0.50	µg/L		1		6/28/2006	
	chloroethane			ND	0.50	µg/L		1		6/28/2006	
Benzei				480	10	µg/L		20		6/28/2006	
Di-isop	propyl ether			1.3	0.50	µg/L		1		6/28/2006	
	ert-butyl ether			ND	0.50	μg/L		1		6/28/2006	
	enzene			10	0.50	µg/L		1		6/28/2006	
m,p-Xy				16	1.0	µg/L		1		6/28/2006	
MTBE				ND	0.50	µg/L		1		6/28/2006	
o-Xylei	ne			1.5	0.50	µg/L		1		6/28/2006	
•	nyl methyl ether			ND	0.50	µg/L		1		6/28/2006	
Tert-Bu				32	10	µg/L		1		6/28/2006	
Toluen				9.6	0.50	µg/L		1		6/28/2006	

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 3 of 38

Advanced Technology Laboratories

4 of 39

Adva	nced Technolo	ogy Laborator	ries	Date: 07-Jul-06						
CLIEN Project		est, Inc. d, 838.006				Lab Ord	ler:	085202		
Lab ID	: 085202	2-004			Collectio	on Date: 6/21/	2006 12:0	5:00 PM		
Client S	Sample ID: P-1					Matrix: WAT	ER			
Analys	es	Res	sult P	QL Q	ual Units	DF	Date	Analyzed		
DIESEL	. & MOTOR OIL RAN	IGE ORGANICS BY EPA 3510C	GC/FID		EPA 8015B	(M)				
RunID:	GC7_060626B	QC Batch:	28810		í	PrepDate:	6/26/2006	Analyst: CBR		
DRO		C	.61 0.	050	mg/L	1		6/27/2006		
ORO		-		050	mg/L	1		6/27/2006		
	INE RANGE ORGAN				Ū.					
SAUUL					EPA 8015B	(M)				
RunID:	GC6_060627B	QC Batch:	106VW170		F	PrepDate:		Analyst: TT		
GRO	autor		3.2 0.	050	mg/L	1		6/28/2006		
	ILE ORGANIC COMF				•					
		••••••	-		EPA 8260	в				
RunID:	MS11 060627B	QC Batch:	A06VW184	Ļ	F	PrepDate:		Analyst: HH		
1 2-Dih			ND (0.50	µg/L	1		6/28/2006		
	hloroethane			0.50	μg/L	1		6/28/2006		
Benzer		4	430	10	µg/L	20		6/28/2006		
	ropyl ether		1.8 (0.50	µg/L	1		6/28/2006		
	ert-butyl ether		ND (0.50	µg/L	1		6/28/2006		
Ethylbe	•		31 (0.50	µg/L	1		6/28/2006		
m,p-Xy			6.4	1.0	µg/L	1		6/28/2006		
MTBE			6.4 (0.50	µg/L	1		6/28/2006		
o-Xyler	ne		ND ().50	µg/L	1		6/28/2006		
	nyl methyl ether	i	ND ().50	µg/L	1		6/28/2006		
Tert-Bu	-		80	10	µg/L	1		6/28/2006		
Toluen	е	:	2.6 0).50	µg/L	1		6/28/2006		

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

Value above quantitation range Е

- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories

5 of 39

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

Page 4 of 38

Adva	nced Te	chnology L	aborato	ries	Date: 07-Jul-06						
CLIEN Project		ugro West, Inc. PA Fund, 838.0	006				Lab Or	der:	085202		
Lab ID):	085202-005				Collect	ion Date: 6/21	/2006 9:25	:00 AM		
Client S	Sample ID:	B-16@5.0'					Matrix: SOI	L			
Analys	-		Re	sult	PQL	Qual Units	DF	Date	e Analyzed		
DIESEL	& MOTOR	OIL RANGE OF	RGANICS B PA 3550B	Y GC/FID		EPA 8015	B(M)				
RunID:	GC7 060629)A	QC Batch:	28899			PrepDate:	6/28/2006	Analyst: CBR		
DRO				10	1.0	mg/Kg	1		6/29/2006		
ORO				44	1.0	mg/Kg	1		6/29/2006		
			GC/FID								
AGOL						EPA 8015	B(M)				
unID:	GC2_060627	'A	QC Batch:	E06VS1	30		PrepDate:		Analyst: ML		
GRO				ND	1.0	mg/Kg	1		6/27/2006		
			S BY GC/M			0.0					
ULAI			00100	•		EPA 826	0B				
RunID:	MS3_060628	B	QC Batch:	R06VS1	26		PrepDate:		Analyst: TT		
	promoethane			ND	5.0	µg/Kg	1		6/28/2006		
	chloroethane			ND	5.0	µg/Kg	1		6/28/2006		
Benzei				ND	5.0	µg/Kg	1		6/28/2006		
	propyl ether			ND	5.0	µg/Kg	1		6/28/2006		
	ert-butyl ether			ND	5.0	µg/Kg	1		6/28/2006		
Ethylbe	-			ND	5.0	µg/Kg	1		6/28/2006		
m,p-Xy				ND	10	µg/Kg	1		6/28/2006		
MTBE				ND	5.0	µg/Kg	1		6/28/2006		
o-Xyler	ne			ND	5.0	µg/Kg	1		6/28/2006		
•	nyl methyl ethe	r		ND	5.0	µg/Kg	1		6/28/2006		
Tert-Bu	•			ND	100	µg/Kg	1		6/28/2006		
	e			ND	5.0	µg/Kg	1		6/28/2006		

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 5 of 38

Advanced Technology Laboratories

6 of 39

Adva	nced Te	chnology	Laborato	ories	Date: 07-Jul-06						
CLIEN Project		Fugro West, In APA Fund, 838					Lab Or	der:	085202		
Lab ID):	085202-006				Collect	ion Date: 6/21	/2006 9:45	:00 AM		
Client S	Sample ID:	B-16@15.0'					Matrix: SOII	L			
Analys			Re	esult	PQL	Qual Units	DF	Date	e Analyzed		
DIESEL	& MOTOR	OIL RANGE	ORGANICS E EPA 3550B	BY GC/FID		EPA 8015	B(M)				
RunID:	GC7_06062	9A	QC Batch:	28899			PrepDate:	6/28/2006	Analyst: CBR		
DRO				ND	1.0	mg/Kg	1		6/29/2006		
ORO				1.5	1.0	mg/Kg	1		6/29/2006		
	INE RANGI	E ORGANICS	BY GC/FID			0.0					
SAUCE						EPA 8015	B(M)				
RunID:	GC2 06062	7A	QC Batch:	E06VS	130		PrepDate:		Analyst: ML		
GRO	_			ND	1.0	mg/Kg	1		6/27/2006		
		IC COMPOUN	DS BY GC/M	IS							
						EPA 826	60B				
RunID:	MS3 060628	3B	QC Batch:	R06VS	126		PrepDate:		Analyst: TT		
1 2_Dik	oromoethane			ND	5.0	µg/Kg	1		6/28/2006		
	chloroethane			ND	5.0	µg/Kg	1		6/28/2006		
Benzei				ND	5.0	µg/Kg	1		6/28/2006		
	propyl ether			ND	5.0	µg/Kg	1		6/28/2006		
-	ert-butyl ether			ND	5.0	µg/Kg	1		6/28/2006		
Ethylbe				ND	5.0	µg/Kg	1		6/28/2006		
m,p-Xy				ND	10	µg/Kg	1		6/28/2006		
MTBE				ND	5.0	µg/Kg	1		6/28/2006		
o-Xyler	ne			ND	5.0	µg/Kg	1		6/28/2006		
-	nyl methyl eth	ər		ND	5.0	µg/Kg	1		6/28/2006		
Tert-Bu	-			ND	100	µg/Kg	1		6/28/2006		
Toluen				ND	5.0	µg/Kg	1		6/28/2006		

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 6 of 38

Advanced Technology Laboratories

7 of 39

Adva	nced Te	chnology I	aborato	ories		Date: 07-Jul-06						
CLIEN Project		ugro West, Inc. PA Fund, 838.					Lab Ord	ler:	085202			
Lab ID:	:	085202-007				Collect	ion Date: 6/21/2	2006 10:0	0:00 AM			
Client S	Sample ID:	B-16@20.0'					Matrix: SOIL					
Analyse	es		Re	esult	PQL	Qual Units	DF	Date	Analyzed			
DIESEL	& MOTOR	OIL RANGE O	RGANICS E PA 3550B	BY GC/FID		EPA 8015	B(M)					
RunID:	GC7_060629)A	QC Batch:	28899			PrepDate:	6/28/2006	Analyst: CBR			
DRO				ND	1.0	mg/Kg	1		6/29/2006			
ORO				1.4	1.0	mg/Kg	1		6/29/2006			
	INE RANGE	ORGANICS B	Y GC/FID			0.0						
UNCOL						EPA 8015	B(M)					
RunID:	GC2 060627	A	QC Batch:	E06VS ²	130		PrepDate:		Analyst: ML			
GRO				ND	1.0	mg/Kg	1		6/27/2006			
			S BY GC/M	S		0.0						
		0 00000 00000		-		EPA 826	0B					
RunID:	MS3_060628	B	QC Batch:	R06VS	126		PrepDate:		Analyst: TT			
1 2-Dib	- romoethane			ND	5.0	µg/Kg	1		6/28/2006			
	hloroethane			ND	5.0	µg/Kg	1		6/28/2006			
Benzen				ND	5.0	µg/Kg	1		6/28/2006			
	ropyl ether			ND	5.0	µg/Kg	- 1		6/28/2006			
•	ert-butyl ether			ND	5.0	µg/Kg	1		6/28/2006			
Ethylbe	•			ND	5.0	µg/Kg	1		6/28/2006			
m,p-Xyl				ND	10	µg/Kg	1		6/28/2006			
MTBE				ND	5.0	µg/Kg	1		6/28/2006			
o-Xylen	e			ND	5.0	µg/Kg	1		6/28/2006			
Tert-am	nyl methyl ethe	r		ND	5.0	µg/Kg	1		6/28/2006			
Tert-Bu	tanol			ND	100	µg/Kg	1		6/28/2006			
Toluene	e			ND	5.0	µg/Kg	1		6/28/2006			

В

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 7 of 38

Advanced Technology Laboratories

8 of 39

CLIENT: Project:	Fugro West, Inc. APA Fund, 838.					La	b Or	der:	085202
Lab ID:	085202-008				Collecti	on Date:	6/21/	/2006 10:1	0:00 AM
Client Sample	ID: B-16@25.5					Matrix:	SOII		
Analyses		Re	esult	PQL	Qual Units		DF	Date	Analyzed
DIESEL & MC	TOR OIL RANGE O	RGANICS E PA 3550B	BY GC/FID		EPA 8015	B(M)			
RunID: GC7_0	60629A	QC Batch:	28899			PrepDate:		6/28/2006	Analyst: CBR
DRO –			1.3	1.0	mg/Kg		1		6/29/2006
ORO			2.4	1.0	mg/Kg		1		6/29/2006
	ANGE ORGANICS B	Y GC/FID							
					EPA 8015	B(M)			
RunID: GC2_0	60627A	QC Batch:	E06VS1	30		PrepDate:			Analyst: ML
GRO			ND	1.0	mg/Kg		1		6/27/2006
	GANIC COMPOUND	S BY GC/M	S						
					EPA 826	0B			
RunID: MS3 0	60628B	QC Batch:	R06VS1	26		PrepDate:			Analyst: TT
1,2-Dibromoeth			ND	5.0	µg/Kg		1		6/28/2006
1,2-Dichloroeth			ND	5.0	µg/Kg		1		6/28/2006
Benzene			ND	5.0	µg/Kg		1		6/28/2006
Di-isopropyl eth	ner		ND	5.0	µg/Kg		1		6/28/2006
Ethyl Tert-butyl			ND	5.0	µg/Kg		1		6/28/2006
Ethylbenzene			5.4	5.0	µg/Kg		1		6/28/2006
m,p-Xylene			ND	10	µg/Kg		1		6/28/2006
MTBE			ND	5.0	µg/Kg		1.		6/28/2006
o-Xylene			ND	5.0	µg/Kg		1		6/28/2006
Tert-amyl meth	yl ether		ND	5.0	µg/Kg		1		6/28/2006
Tert-Butanol	-		ND	100	µg/Kg		1		6/28/2006
Toluene			ND	5.0	µg/Kg		1		6/28/2006

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 07-Jul-06

Page 8 of 38

Advanced Technology Laboratories 9 of 39

CLIEN Projec		ugro West, In PA Fund, 83					Lab	Order:	(085202
Lab ID);	085202-009				Collect	tion Date: 6		5 10:32	2:00 AM
Client	Sample ID:	B-16@30.5'					Matrix: S	OIL		
Analys	ses		Res	sult	PQL	Qual Units	J	DF	Date	Analyzed
DIESEI	L & MOTOR		ORGANICS B EPA 3550B	Y GC/FID	· .	EPA 8015	iB(M)			
RunID:	GC7_060629	A	QC Batch:	28899			PrepDate:	6/28	/2006	Analyst: CBR
DRO				43	1.0	mg/Kg	1	1		6/29/2006
ORO				2.9	1.0	mg/Kg	1	1		6/29/2006
	LINE RANGE		BY GC/FID							
						EPA 8015	B(M)			
RunID:	GC2_060627	'B	QC Batch:	E06VS	131		PrepDate:			Analyst: ML
GRO	_			630	50	mg/Kg	5	50		6/28/2006
GRO				780	50	mg/Kg	5	50		6/28/2006
	ILE ORGANI		IDS BY GC/MS	5		•••				
••••				×		EPA 826	50B			
RuniD:	MS3_060628	B	QC Batch:	R06VS	126		PrepDate:			Analyst: TT
1 2-Dil	bromoethane			ND	500	µg/Kg	1	00		6/28/2006
,	chloroethane			ND	500	µg/Kg	1	00		6/28/2006
Benze				000	500	µg/Kg	1	00		6/28/2006
Di-isop	propyl ether			ND	500	µg/Kg	1	00		6/28/2006
Ethyl T	Fert-butyl ether			ND	500	µg/Kg	1	00		6/28/2006
-	enzene		320	000	500	µg/Kg	1	00		6/28/2006
m,p-Xy	ylene		1100	000	5000	µg/Kg	5	600		6/29/2006
MTBE				ND	500	µg/Kg	1	00		6/28/2006
o-Xylei	ne		85	500	500	µg/Kg	1	00		6/28/2006
Tert-ar	myl methyl ethe	r		ND	500	µg/Kg		00		6/28/2006
Tert-Bu	utanol			ND	10000	µg/Kg	1	00		6/28/2006
Toluen			f	650	500	µg/Kg	1	00		6/28/2006

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Е

Advanced Technology Laboratories

В

10 of 39

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

- ND Not Detected at the Reporting Limit
- Results are wet unless otherwise specified

Page 9 of 38

Advanced	Technology	Laboratories
----------	------------	--------------

Date: 07-Jul-06

CLIEN Project	U	/est, Inc. nd, 838.006			2	La	b Or	der:	085202
Lab ID Client S	-)2-010 @35.0'			Collect	ion Date: Matrix:		/2006 10:50 L	D:00 AM
Analyse	es	Re	sult	PQL	Qual Units		DF	Date	Analyzed
DIESEL	. & MOTOR OIL R/	ANGE ORGANICS B EPA 3550B	Y GC/FID	I	EPA 8015	B(M)			
RunID:	GC7_060629A	QC Batch:	28899			PrepDate:		6/28/2006	Analyst: CBR
DRO	-		2.1	1.0	mg/Kg		1		6/29/2006
ORO			3.0	1.0	mg/Kg		1		6/29/2006
	INE RANGE ORG	ANICS BY GC/FID	0.0						
UAUUL					EPA 8015	B(M)			
RunID:	GC2_060628A	QC Batch:	E06VS	5132		PrepDate:			Analyst: ML
GRO			1.0	1.0	mg/Kg		1		6/28/2006
	ILE ORGANIC CON	POUNDS BY GC/M	s						
					EPA 826	0B			
RunID:	MS3_060628B	QC Batch:	R06VS	5126		PrepDate:			Analyst: TT
1.2-Dib	romoethane		ND	5.0	µg/Kg		1		6/28/2006
	hloroethane		ND	5.0	µg/Kg		1		6/28/2006
Benzer			11	5.0	µg/Kg		1		6/28/2006
	ropyl ether		ND	5.0	µg/Kg		1		6/28/2006
•	ert-butyl ether		ND	5.0	µg/Kg		1		6/28/2006
Ethylbe			29	5.0	µg/Kg		1		6/28/2006
m,p-Xy			38	10	µg/Kg		1		6/28/2006
MTBE			ND	5.0	µg/Kg		1		6/28/2006
o-Xyler	ne		ND	5.0	µg/Kg		1		6/28/2006
Tert-an	nyl methyl ether		ND	5.0	µg/Kg		1		6/28/2006
Tert-Bu	• •		ND	100	µg/Kg		1		6/28/2006
Toluene	e		ND	5.0	µg/Kg		1		6/28/2006

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 10 of 38

Advanced Technology Laboratories

11 of 39

CLIENT: Project:	Fugro West, Inc APA Fund, 838					La	b Or	der:	085202
Lab ID:	085202-011				Collect	ion Date:	6/21/	/2006 11:10	0:00 AM
Client Sample	e ID: B-16@40.0'					Matrix:	SOII		
Analyses		Re	sult	PQL	Qual Units		DF	Date	Analyzed
DIESEL & MC	TOR OIL RANGE (RGANICS E EPA 3550B	Y GC/FID		EPA 8015	B(M)			
RunID: GC7 ()60629A	QC Batch:	28899			PrepDate:		6/28/2006	Analyst: CBR
DRO –			1.4	1.0	mg/Kg		1		6/29/2006
ORO			1.9	1.0	mg/Kg		1		6/29/2006
	ANGE ORGANICS	BY GC/FID			2 0				
					EPA 8015	B(M)			
RunID: GC2_C	060627A	QC Batch:	E06VS1	30		PrepDate:			Analyst: ML
GRO			ND	1.0	mg/Kg		1		6/27/2006
	GANIC COMPOUN	DS BY GC/M	S		0.0				
					EPA 826	0B			
RunID: MS3 0	60628B	QC Batch:	R06VS1	26		PrepDate:			Analyst: TT
- 1,2-Dibromoeth			ND	5.0	µg/Kg		1		6/28/2006
1,2-Dichloroeth			ND	5.0	µg/Kg		1		6/28/2006
Benzene			ND	5.0	µg/Kg		1		6/28/2006
Di-isopropyl eth	ner		ND	5.0	µg/Kg		1		6/28/2006
Ethyl Tert-butyl			ND	5.0	µg/Kg		1		6/28/2006
Ethylbenzene			ND	5.0	µg/Kg		1		6/28/2006
m,p-Xylene			ND	10	µg/Kg		1		6/28/2006
MTBE			ND	5.0	µg/Kg		1		6/28/2006
o-Xylene			ND	5.0	µg/Kg		1		6/28/2006
Tert-amyl meth	yl ether		ND	5.0	µg/Kg		1		6/28/2006
Tert-Butanol			ND	100	µg/Kg		1		6/28/2006
Toluene			ND	5.0	µg/Kg		1		6/28/2006

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 07-Jul-06

Page 11 of 38

Advanced Technology Laboratories 12 of 39

Adva	anced Te	chnology L	aborato	ories		Date: 07-Jul-06						
CLIEN Project		-)06				Lab Or	der:	085202			
Lab ID):	085202-012				Collect	ion Date: 6/21	/2006 11:2	0:00 AM			
Client	Sample ID:	B-16@45.0'					Matrix: SOI	Ĺ				
Analys	Initial Strengt APA Fund, \$38.006 ab ID: 085202-012 Collection Date: 6/21/2006 11:20: tient Sample ID: B-16@45.0' Matrix: SOIL nalyses Result PQL Qual Units DF Date tiesEL & MOTOR OIL RANGE ORGANICS BY GC/FID EPA 3550B EPA 8015B(M) 6/28/2006 DRO 1.2 1.0 mg/Kg 1 ASOLINE RANGE ORGANICS BY GC/FID ORO 1.2 1.0 mg/Kg 1 ASOLINE RANGE ORGANICS BY GC/FID ORO EPA 8015B(M) EPA 8015B(M) unlD: GC2_060627A QC Batch: E06VS130 PrepDate: 6/28/2006 OD 1.0 mg/Kg 1 7 7 7 7 7 InID: GC2_060627A QC Batch: E06VS130 PrepDate: 7 GRO ND 1.0 mg/Kg 1 7 J2-Dichloroothane ND 5.0 µg/Kg 1 J2-Dichloroothane ND 5.0 µg/Kg		Analyzed									
DIESEI	& MOTOR			Y GC/FID		EPA 8015	B(M)					
RunID:	GC7 060629	9A	QC Batch:	28899			PrepDate:	6/28/2006	Analyst: CBR			
				12	1.0	ma/Ka	1		6/29/2006			
									6/29/2006			
	INE RANGE	ORGANICS B	Y GC/FID			0.0						
54001						EPA 8015	B(M)					
RunID:	GC2 060627	7A	QC Batch:	E06VS1	30		PrepDate:		Analyst: ML			
				ND	1.0	mg/Kg	1		6/27/2006			
			S BY GC/M	S		00						
				-		EPA 826	0B					
RunID:	MS3 060628	3B	QC Batch:	R06VS1	26		PrepDate:		Analyst: TT			
1 2-Dił	- bromoethane			ND	5.0	µg/Kg	1		6/29/2006			
							1		6/29/2006			
				ND	5.0	µg/Kg	1		6/29/2006			
				ND	5.0	µg/Kg	1		6/29/2006			
•				ND	5.0	µg/Kg	1		6/29/2006			
•	•			ND	5.0	µg/Kg	1		6/29/2006			
-				ND	10	µg/Kg	1		6/29/2006			
MTBE				ND	5.0	µg/Kg	1		6/29/2006			
	ne			ND	5.0	µg/Kg	1		6/29/2006			
-		ər		ND	5.0	µg/Kg	1		6/29/2006			
				ND	100	µg/Kg	1		6/29/2006			
-				ND	5.0	µg/Kg	1		6/29/2006			

В

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Ε
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 12 of 38

Advanced Technology Laboratories

13 of 39

Adva	nced Te	chnology L	aborato	ories			Date:	07-Jul-06	5	
CLIEN' Project:		ugro West, Inc. PA Fund, 838.0	006				Lab	Order:	08520)2
Lab ID:	:	085202-013				Collect	ion Date: 6	/21/2006	1:20:00 P	М
Client S	Sample ID:	B-17@10.0'					Matrix: S	SOIL		
Analyse			Re	esult	PQL	Qual Units		DF	Date Ana	lyzed
DIESEL	& MOTOR	OIL RANGE OF	RGANICS E PA 3550B	BY GC/FID		EPA 8015	B(M)			
RunID:	GC7 060629	9A	QC Batch:	28899			PrepDate:	6/28/	2006 Ana	lyst: CBF
DRO				1.5	1.0	mg/Kg		1	6/29	9/2006
ORO				2.4	1.0	mg/Kg		1		9/2006
	INE RANGE	ORGANICS B	Y GC/FID			00				
						EPA 8015	B(M)			
RunID:	GC2_060627	7A	QC Batch:	E06VS	130		PrepDate:		Ana	lyst: ML
GRO	_			ND	1.0	mg/Kg		1	6/27	7/2006
		C COMPOUND	S BY GC/N			00				
OLAIN			••••			EPA 826	0B			
RunID:	MS3 060628	3B	QC Batch:	R06VS	126		PrepDate:		Ana	lyst: TT
1 2-Dibi	- romoethane			ND	5.0	µg/Kg		1	6/29	9/2006
	hloroethane			ND	5.0	µg/Kg		1	6/29	9/2006
Benzen				ND	5.0	µg/Kg		1	6/29	9/2006
	ropyl ether			ND	5.0	µg/Kg		1	6/29	9/2006
•	ert-butyl ether			ND	5.0	µg/Kg		1	6/29	9/2006
Ethylbe	-			ND	5.0	µg/Kg		1	6/29	9/2006
m,p-Xyl				ND	10	µg/Kg		1	6/29	9/2006
MTBE				ND	5.0	µg/Kg		1	6/29	9/2006
o-Xylen	e			ND	5.0	µg/Kg		1	6/29	9/2006
Tert-am	nyl methyl ethe	ər		ND	5.0	µg/Kg		1	6/29	9/2006
Tert-But	tanol			ND	100	µg/Kg		1	6/29	9/2006
Toluene	•			ND	5.0	µg/Kg		1	6/29	9/2006

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 13 of 38

Advanced Technology Laboratories

14 of 39

Advan	ced Te	chnology L	aborato	ries	Date: 07-Jul-06						
CLIENT Project:		ugro West, Inc. PA Fund, 838.0					Lab (Order:	085202		
Lab ID:							15:00 PM				
Client Sa	mple ID:	B-17@19.0'					Matrix: SC	DIL			
Analyses			Re	sult	PQL	Qual Units	D)F Da	te Analyzed		
DIESEL	& MOTOR	OIL RANGE OI	RGANICS B PA 3550B	Y GC/FID		EPA 8015	B(M)				
RunID: G	GC7 060629)A	QC Batch:	28899			PrepDate:	6/28/200	6 Analyst: CBR		
DRO				1.8	1.0	mg/Kg	1		6/29/2006		
ORO				2.9	1.0	mg/Kg	1		6/29/2006		
	E RANGE	ORGANICS B	Y GC/FID								
GAGOLIN						EPA 8015	B(M)				
RunID: G	GC2_060627	'A	QC Batch:	E06VS1	30		PrepDate:		Analyst: ML		
GRO				ND	1.0	mg/Kg	1		6/27/2006		
		C COMPOUND	S BY GC/M			0.0					
CERTE		0 00 00		-		EPA 826	0B				
RunID: M	//\$3_060628	B	QC Batch:	R06VS1	26		PrepDate:		Analyst: TT		
	moethane			ND	5.0	µg/Kg	1		6/29/2006		
	oroethane			ND	5.0	µg/Kg	1		6/29/2006		
Benzene				ND	5.0	µg/Kg	1		6/29/2006		
Di-isoproj				ND	5.0	µg/Kg	1		6/29/2006		
	t-butyl ether			ND	5.0	µg/Kg	1		6/29/2006		
Ethylbenz				ND	5.0	µg/Kg	1		6/29/2006		
m,p-Xyler				ND	10	µg/Kg	1		6/29/2006		
MTBE				ND	5.0	µg/Kg	1		6/29/2006		
o-Xylene				ND	5.0	µg/Kg	1		6/29/2006		
Tert-amyl	l methyl ethe	r		ND	5.0	µg/Kg	1		6/29/2006		
Tert-Buta				ND	100	µg/Kg	1		6/29/2006		
Toluene				ND	5.0	µg/Kg	1		6/29/2006		

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η

Е

- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 14 of 38

Advanced Technology Laboratories

В

15 of 39

CLIENT: Project:	Fugro West, I APA Fund, 83					La	b Or	der: (085202
Lab ID:	085202-01	5			Collect	ion Date:	6/21/	/2006 2:30:	00 PM
Client Sample	e ID: B-17@25.0)'				Matrix:	SOII		
Analyses		Re	sult	PQL	Qual Units		DF	Date	Analyzed
DIESEL & MC	OTOR OIL RANGE	ORGANICS B EPA 3550B	Y GC/FID		EPA 8015	B(M)			
RunID: GC7_()60629A	QC Batch:	28899			PrepDate:		6/28/2006	Analyst: CBR
DRO			1.2	1.0	mg/Kg		1		6/29/2006
ORO			1.5	1.0	mg/Kg		1		6/29/2006
	ANGE ORGANICS	BY GC/FID							
					EPA 8015	B(M)			
RunID: GC2 ()60627A	QC Batch:	E06VS1	30		PrepDate:			Analyst: ML
GRO			ND	1.0	mg/Kg		1		6/27/2006
	GANIC COMPOU	NDS BY GC/M	S						
					EPA 826	0B			
RunID: MS3_0	060628B	QC Batch:	R06VS1	26		PrepDate:			Analyst: TT
1,2-Dibromoeth			ND	5.0	µg/Kg		1		6/29/2006
1,2-Dichloroeth			ND	5.0	µg/Kg		1		6/29/2006
Benzene			ND	5.0	µg/Kg		1		6/29/2006
Di-isopropyl ett	ner		ND	5.0	µg/Kg		1		6/29/2006
Ethyl Tert-butyl			ND	5.0	µg/Kg		1		6/29/2006
Ethylbenzene			ND	5.0	µg/Kg		1		6/29/2006
m,p-Xylene			ND	10	µg/Kg		1		6/29/2006
MTBE			ND	5.0	µg/Kg		1		6/29/2006
o-Xylene			ND	5.0	µg/Kg		1		6/29/2006
Tert-amyl meth	yl ether		ND	5.0	µg/Kg		1		6/29/2006
Tert-Butanol			ND	100	µg/Kg		1		6/29/2006
			ND	5.0	µg/Kg		1		6/29/2006

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 07-Jul-06

Page 15 of 38

Advanced Technology Laboratories

В

16 of 39

Adva	nced Te	chnology Lab	orato	ries		Date: 07-Jul-06						
CLIEN Project		ugro West, Inc. PA Fund, 838.006				-	Lal	b Order:	1	085202		
Lab ID):	085202-016				Collect	ion Date:	6/21/200	6 2:43	:00 PM		
Client S	Sample ID:	B-17@30.5'					Matrix:	SOIL				
Analys	es		Re	sult	PQL	Qual Units		DF	Date	Analyzed		
DIESEL	. & MOTOR	OIL RANGE ORG	ANICS B 3550B	Y GC/FID		EPA 8015	B(M)					
RunID:	GC7_060629	A Q	C Batch:	28899			PrepDate:	6/2	8/2006	Analyst: CBR		
DRO				1.3	1.0	mg/Kg		1		6/29/2006		
ORO				2.3	1.0	mg/Kg		1		6/29/2006		
		ORGANICS BY G	C/FID									
JAJUL						EPA 8015	B(M)					
RunID:	GC2_060628	A Q	C Batch:	E06VS1	32		PrepDate:			Analyst: ML		
GRO				ND	1.0	mg/Kg		1		6/28/2006		
		C COMPOUNDS E	BY GC/M									
				-		EPA 826	0B					
RunID:	MS3 060628	B Q	C Batch:	R06VS1	26		PrepDate:			Analyst: TT		
1 2-Dih	promoethane			ND	5.0	µg/Kg		1		6/29/2006		
	chloroethane			ND	5.0	µg/Kg		1		6/29/2006		
Benzer				ND	5.0	µg/Kg		1		6/29/2006		
	ropyl ether			ND	5.0	µg/Kg		1		6/29/2006		
	ert-butyl ether			ND	5.0	µg/Kg		1		6/29/2006		
Ethylbe	•			ND	5.0	µg/Kg		1		6/29/2006		
m,p-Xy				ND	10	µg/Kg		1		6/29/2006		
MTBE				ND	5.0	µg/Kg		1		6/29/2006		
o-Xyler	ne			ND	5.0	µg/Kg		1		6/29/2006		
	nyl methyl ethe	r		ND	5.0	µg/Kg		1		6/29/2006		
Tert-Bu				ND	100	µg/Kg		1		6/29/2006		
Toluen				ND	5.0	µg/Kg		1		6/29/2006		

В

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 16 of 38

Advanced Technology Laboratories

17 of 39

Advance	d Teo	chnology L	aborato	ories			Date:	07-Jul-	.06	
CLIENT: Project:		ugro West, Inc. PA Fund, 838.(La	b Order	•	085202
Lab ID:		085202-017				Collect	ion Date:	6/21/20	06 3:00	:00 PM
Client Samp	le ID:	B-17@35.0					Matrix:	SOIL		
Analyses			Re	sult	PQL	Qual Units		DF	Date	e Analyzed
DIESEL & M	OTOR	OIL RANGE OI E	RGANICS E PA 3550B	Y GC/FID		EPA 8015	B(M)			
RunID: GC7	060629	A	QC Batch:	28899			PrepDate:	6/2	28/2006	Analyst: CBF
DRO	_			1.3	1.0	mg/Kg		1		6/29/2006
ORO				1.6	1.0	mg/Kg		1		6/29/2006
	RANGE	ORGANICS B	Y GC/FID	-		0				
						EPA 8015	B(M)			
RunID: GC2	060627	B	QC Batch:	E06VS1	31		PrepDate:			Analyst: ML
GRO	-			ND	1.0	mg/Kg		1		6/28/2006
- · ·	RGANI		S BY GC/M	S						
						EPA 826	60B			
RunID: MS3_	060629	A	QC Batch:	R06VS1	27		PrepDate:			Analyst: TT
1,2-Dibromoe	thane			ND	5.0	µg/Kg		1		6/29/2006
1,2-Dichloroe				ND	5.0	µg/Kg		1		6/29/2006
Benzene				ND	5.0	µg/Kg		1		6/29/2006
Di-isopropyl e	ther			ND	5.0	µg/Kg		1		6/29/2006
Ethyl Tert-but				ND	5.0	µg/Kg		1		6/29/2006
Ethylbenzene	•			ND	5.0	µg/Kg		1		6/29/2006
m,p-Xylene				ND	10	µg/Kg		1		6/29/2006
MTBE				ND	5.0	µg/Kg		1		6/29/2006
o-Xylene				ND	5.0	µg/Kg		1		6/29/2006
Tert-amyl me	thyl ethe	r		ND	5.0	µg/Kg		1		6/29/2006
Tert-Butanol				ND	100	µg/Kg		1		6/29/2006
Toluene				ND	5.0	µg/Kg		1		6/29/2006

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- Surrogate Diluted Out DO

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 17 of 38

Advanced Technology Laboratories

18 of 39

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

.

Adva	nced Te	chnology	Laborato	ories			Date: 07	Jul-06	
CLIEN Project		ugro West, In PA Fund, 838					Lab Or	der:	085202
Lab ID):	085202-018		-		Collect	ion Date: 6/21	/2006 3:26	:00 PM
Client	Sample ID:	B-17@40.0'					Matrix: SOII	Ĺ	
Analys	es		Re	sult	PQL	Qual Units	DF	Date	e Analyzed
DIESEL	& MOTOR	OIL RANGE	ORGANICS E EPA 3550B	Y GC/FID		EPA 8015	B(M)		
RunID:	GC7_BACK_	060629B	QC Batch:	28920			PrepDate:	6/29/2006	Analyst: CBR
DRO		-		1.6	1.0	mg/Kg	1		6/30/2006
ORO				2.4	1.0	mg/Kg	1		6/30/2006
	INE RANGE	ORGANICS	BY GC/FID						
04001						EPA 8015	B(M)		
RuniD:	GC2_060628	A	QC Batch:	E06VS	132		PrepDate:		Analyst: ML
GRO	_			ND	1.0	mg/Kg	1		6/28/2006
	ILE ORGANI	C COMPOUN	IDS BY GC/M	S		00			
				-		EPA 826	0B		
RunID:	MS3_060628	B	QC Batch:	R06VS	126		PrepDate:		Analyst: TT
1.2-Dib	promoethane			ND	5.0	μg/Kg	1		6/29/2006
	chloroethane			ND	5.0	µg/Kg	1		6/29/2006
Benzer				ND	5.0	µg/Kg	1		6/29/2006
	ropyl ether			ND	5.0	µg/Kg	1		6/29/2006
	ert-butyl ether			ND	5.0	µg/Kg	1		6/29/2006
Ethylbe				ND	5.0	µg/Kg	1		6/29/2006
m,p-Xy	lene			ND	10	µg/Kg	1		6/29/2006
MTBE				ND	5.0	µg/Kg	1		6/29/2006
o-Xyler	ne			ND	5.0	µg/Kg	1		6/29/2006
•	nyl methyl ethe	r		ND	5.0	µg/Kg	1		6/29/2006
Tert-Bu				ND	100	µg/Kg	1		6/29/2006
	e			ND	5.0	µg/Kg	1		6/29/2006

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 18 of 38

Advanced Technology Laboratories

19 of 39

Adva	anced Tee	chnology	Laborate	ories			Date: 07-,	Jul-06	
CLIEN Projec		ugro West, Iı PA Fund, 83					Lab Or	der:	085202
Lab ID):	085202-019)			Collect	ion Date: 6/21	/2006 3:37	:00 PM
Client	Sample ID:	B-17@45.0	1				Matrix: SOI	Ĺ	
Analys	ses		R	esult	PQL	Qual Units	DF	Date	Analyzed
DIESEI	L & MOTOR	OIL RANGE	ORGANICS E EPA 3550B	BY GC/FI)	EPA 8015	B(M)		
RunID:	GC7_BACK_	060629B	QC Batch:	28920)		PrepDate:	6/29/2006	Analyst: CBF
DRO				1.6	1.0	mg/Kg	1		6/30/2006
ORO				2.6	1.0	mg/Kg	1		6/30/2006
	INE RANGE	ORGANICS	BY GC/FID						
						EPA 8015	B(M)		
RunID:	GC2_060627	В	QC Batch:	E06V	S131		PrepDate:		Analyst: ML
GRO				ND	1.0	mg/Kg	1		6/28/2006
/OLAT	ILE ORGANI		NDS BY GC/N	IS					
						EPA 826	0B		
RunID:	MS3_060628	В	QC Batch:	R06V	S126		PrepDate:		Analyst: TT
1.2-Dit	bromoethane			ND	5.0	µg/Kg	1		6/29/2006
	chloroethane			ND	5.0	µg/Kg	1		6/29/2006
Benzei				ND	5.0	µg/Kg	1		6/29/2006
Di-isop	propyl ether			ND	5.0	µg/Kg	1		6/29/2006
Ethyl T	ert-butyl ether			ND	5.0	µg/Kg	1		6/29/2006
Ethylbe	enzene			ND	5.0	µg/Kg	1		6/29/2006
m,p-Xy	/lene			ND	10	µg/Kg	1		6/29/2006
MTBE				ND	5.0	µg/Kg	1		6/29/2006
o-Xyler	ne			ND	5.0	µg/Kg	1		6/29/2006
	nyl methyl ethe	ſ		ND	5.0	µg/Kg	1		6/29/2006
Tert-Bu	utanol			ND	100	µg/Kg	1	*	6/29/2006
Toluen	e			ND	5.0	µg/Kg	1		6/29/2006

В

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified
 - Page 19 of 38

Advanced Technology Laboratories

20 of 39

CLIENT: Fugro West, Inc.

Work Order: 085202

Project: APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: LCS-28899	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/28/2006 RunNo:	65118
Client ID: LCSS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006 SeqNo:	966263
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RP	D RPDLimit Qual
DRO	19.211	1.0 33.00 0 58.2 38 106	
Sample ID: MB-28899	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/28/2006 RunNo:	65118
Client ID: PBS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006 SeqNo:	966264
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RF	D RPDLimit Qual
DRO	ND	1.0	
ORO	ND	1.0	
Sample ID: 085175-025AMS	SampType: MS	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/28/2006 RunNo:	65118
Client ID: ZZZZZZ	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006 SeqNo:	966277
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RF	D RPDLimit Qual
DRO	13.364	1.0 33.00 0 40.5 27 109	
Sample ID: 085175-025AMSD	SampType: MSD	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/28/2006 RunNo:	65118
Client ID: ZZZZZZ	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006 SeqNo:	966278
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RF	D RPDLimit Qual
DRO	13.569	1.0 33.00 0 41.1 27 109 13.36 1.4	52 30
Sample ID: MB-28899	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/28/2006 RunNo:	65118
Client ID: PBS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006 SeqNo:	966279
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RF	PD RPDLimit Qual
DRO	ND	1.0	
ORO	ND	1.0	

Qualifiers: Value above quantitation range Е

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits Calculations are based on raw values

S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 20 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: LCS-28899	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: LCSS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/29/2006	SeqNo: 966280
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	20.861	1.0 33.00 0	63.2 38 106	· · · · · ·
Sample ID: MB-28899	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: PBS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/30/2006	SeqNo: 966796
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO ORO	ND ND	1.0 1.0		
Sample ID: LCS-28899	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: LCSS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/30/2006	SeqNo: 966797
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	23.390	1.0 33.00 0	70.9 38 106	

Qualifiers: E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded
 S Spike/Surrogate outside of limits due to matrix interfere

ND Not Detected at the Reporting Limit

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 21 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: MB-28920	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/29/2006	RunNo: 65170
Client ID: PBS	Batch ID: 28920	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006	SeqNo: 967296
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	ND	1.0	
ORO	ND	1.0	N
Sample ID: LCS-28920	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/29/2006	RunNo: 65170
Client ID: LCSS	Batch ID: 28920	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006	SeqNo: 967297
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	14.276	1.0 33.00 0 43.3 38 106	MANANA ANA ANA ANA ANA ANA ANA ANA ANA A
Sample ID: 085258-003AMS	SampType: MS	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/29/2006	RunNo: 65170
Client ID: ZZZZZZ	Batch ID: 28920	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/29/2006	SeqNo: 967298
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	154.535	1.0 33.00 502.8 -1060 27 109	S
Sample ID: 085258-003AMSD	SampType: MSD	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/29/2006	RunNo: 65170
Client ID: ZZZZZZ	Batch ID: 28920	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 6/30/2006	SeqNo: 967299
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	491.014	1.0 33.00 502.8 -35.8 27 109 154.5	104 30 SRE
Sample ID: MB-28920	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg Prep Date: 6/29/2006	RunNo: 65256
Client ID: PBS	Batch ID: 28920	TestNo: EPA 8015B(M EPA 3550B Analysis Date: 7/5/2006	SeqNo: 969149
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	ND	1.0	
ORO	ND	1.0	

Qualifiers: E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded
 S Spike/Surrogate outside of limits due to matrix interference

ND Not Detected at the Reporting Limit

C DO Surrogate Diluted Out

Page 22 of 38

Project: APA Fund,	838.006		TestCode: 8015							LL	
Sample ID: 085258-003AMSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 28920			M L Units: mg/Kg B(M EPA 3550B		Prep Da Analysis Da	te: 6/29/20 te: 7/5/200		RunNo: 652 SeqNo: 969		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO	471.187	10	33.00	460.7	31.7	25	109	154.5	101	30	R

Fugro West, Inc.

085202

CLIENT:

Work Order:

Qualifiers: Е Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ANALYTICAL QC SUMMARY REPORT

Page 23 of 38

Advanced Technology Laboratories

CLIENT: Fugro West, Inc. Work Order: 085202 APA Fund, 838.006 **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: E062706MB1	SampType: MBLK	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65063
Client ID: PBS	Batch ID: E06VS130	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965349
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.211	1.0		
Sample ID: E062706MB1MS	SampType: MS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65063
Client ID: ZZZZZZ	Batch ID: E06VS130	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965350
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.779	1.0 5.000 0.2110	91.4 34 140	
Sample ID: E062706MB1MSD	SampType: MSD	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65063
Client ID: ZZZZZZ	Batch ID: E06VS130	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965351
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.889	1.0 5.000 0.2110	93.6 34 140 4.779	2.28 30
Sample ID: E062706LCS2	SampType: LCS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65063
Client ID: LCSS	Batch ID: E06VS130	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965361
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
GRO	4.853	1.0 5.000 0.2110	92.8 78 122	·

Qualifiers: Е Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: E0602706MB2	SampType: MBLK	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65064
Client ID: PBS	Batch ID: E06VS131	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965392
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.167	1.0		
Sample ID: 085219-001AMS	SampType: MS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65064
Client ID: ZZZZZZ	Batch ID: E06VS131	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965394
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.371	1.0 5.000 0	87.4 34 140	
Sample ID: 085219-001AMSD	SampType: MSD	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65064
Client ID: ZZZZZZ	Batch ID: E06VS131	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965395
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.180	1.0 5.000 0	83.6 34 140 4.371	4.47 30
Sample ID: E062706LCS4	SampType: LCS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65064
Client ID: LCSS	Batch ID: E06VS131	TestNo: EPA 8015B(M	Analysis Date: 6/28/2006	SeqNo: 965403
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.881	1.0 5.000 0.1670	94.3 78 122	
GRO	4.180	1.0 5.000 0	83.6 34 140 4.371	4.47 30

Qualifiers: Е Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

Page 25 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: E062806MB1	SampType: MBLK	TestCod	e: 8015_S_G	AS Units: mg/Kg		Prep Date	э:		RunNo: 650	88	
Client ID: PBS	Batch ID: E06VS132	TestN	o: EPA 8015	B(M		Analysis Date	e: 6/28/20	06	SeqNo: 965	789	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	ND	1.0									
Sample ID: E062806MB1MS	SampType: MS	TestCod	e: 8015_S_G	AS Units: mg/Kg		Prep Dat	e:		RunNo: 650)88	
Client ID: ZZZZZZ	Batch ID: E06VS132	TestN	lo: EPA 8015	B(M		Analysis Dat	e: 6/28/20	006	SeqNo: 965	5790	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	4.906	1.0	5.000	0	98.1	34	140				
Sample ID: E062806MB1MSD	SampType: MSD	TestCod	le: 8015_S_G	GAS Units: mg/Kg		Prep Dat	e:		RunNo: 650)88	
Sample ID: E062806MB1MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: E06VS132		le: 8015_S_G lo: EPA 8015			Prep Dat Analysis Dat		006	RunNo: 650 SeqNo: 965		
			lo: EPA 8015		%REC	Analysis Dat	e: 6/28/20	006 RPD Ref Val			Qual
Client ID: ZZZZZZ	Batch ID: E06VS132	TestN	lo: EPA 8015	B(M	%REC 99.1	Analysis Dat	e: 6/28/20		SeqNo: 965	5791	Qual
Client ID: ZZZZZZ Analyte	Batch ID: E06VS132 Result	TestN PQL 1.0	lo: EPA 8015 SPK value 5.000	B(M SPK Ref Val		Analysis Dat	e: 6/28/20 HighLimit 140	RPD Ref Val	SeqNo: 965 %RPD	5791 RPDLimit 30	Qual
Client ID: ZZZZZZ Analyte GRO	Batch ID: E06VS132 Result 4.956	TestN PQL 1.0 TestCoo	lo: EPA 8015 SPK value 5.000	B(M SPK Ref Val 0 GAS Units: mg/Kg		Analysis Dat LowLimit 34	e: 6/28/20 HighLimit 140 e:	RPD Ref Val 4.906	SeqNo: 965 %RPD 1.01	5791 RPDLimit 30 088	Qual
Client ID: ZZZZZZ Analyte GRO Sample ID: E062806LCS2	Batch ID: E06VS132 Result 4.956 SampType: LCS	TestN PQL 1.0 TestCoo	lo: EPA 8015 SPK value 5.000 de: 8015_S_C lo: EPA 8015	B(M SPK Ref Val 0 GAS Units: mg/Kg		Analysis Dat LowLimit 34 Prep Dat Analysis Dat	e: 6/28/20 HighLimit 140 e: e: 6/28/20	RPD Ref Val 4.906	SeqNo: 965 %RPD 1.01 RunNo: 656	5791 RPDLimit 30 088	Qual

Qualifiers: E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded
 S Spike/Surrogate outside of limits due to matrix inter

ND Not Detected at the Reporting Limit

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 26 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_LL

······			
Sample ID: MB-28810	SampType: MBLK	TestCode: 8015_W_DM_ Units: mg/L Prep Date: 6/26/2006	RunNo: 65070
Client ID: PBW	Batch ID: 28810	TestNo: EPA 8015B(M EPA 3510C Analysis Date: 6/26/2006	SeqNo: 965479
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO ORO	ND ND	0.050 0.050	
Sample ID: LCS-28810	SampType: LCS	TestCode: 8015_W_DM_ Units: mg/L Prep Date: 6/26/2006	RunNo: 65070
Client ID: LCSW	Batch ID: 28810	TestNo: EPA 8015B(M EPA 3510C Analysis Date: 6/26/2006	SeqNo: 965480
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.742	0.050 1.000 0 74.2 60 130	
Sample ID: MB-28810MS	SampType: MS	TestCode: 8015_W_DM_ Units: mg/L Prep Date: 6/26/2006	RunNo: 65070
Client ID: ZZZZZZ	Batch ID: 28810	TestNo: EPA 8015B(M EPA 3510C Analysis Date: 6/26/2006	SeqNo: 965481
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.664	0.050 1.000 0 66.4 60 130	
Sample ID: MB-28810MSD	SampType: MSD	TestCode: 8015_W_DM_ Units: mg/L Prep Date: 6/26/2006	RunNo: 65070
Client ID: ZZZZZZ	Batch ID: 28810	TestNo: EPA 8015B(M EPA 3510C Analysis Date: 6/26/2006	SeqNo: 965482
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.748	0.050 1.000 0 74.8 60 130	- CAN THE STORES - CONTRACT THE MERICIPALITY OF STORES

Qualifiers: Ε Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

н Holding times for preparation or analysis exceeded S

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 27 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1062706LCS4	SampType: LCS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65057
Client ID: LCSW	Batch ID: 106VW170	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965244
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.940	0.050 1.000 0	94.0 71 122	
Sample ID: 1062706MB4MS	SampType: MS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65057
Client ID: ZZZZZZ	Batch ID: 106VW170	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965245
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.913	0.050 1.000 0	91.3 71 122	· · · · · · · · · · · · · · · · · · ·
Sample ID: 1062706MB4MSD	SampType: MSD	TestCode: 8015_W_GP Units: mg/L	. Prep Date:	RunNo: 65057
Sample ID: 1062706MB4MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 106VW170	TestCode: 8015_W_GP Units: mg/L TestNo: EPA 8015B(M	. Prep Date: Analysis Date: 6/27/2006	RunNo: 65057 SeqNo: 965246
			•	
Client ID: ZZZZZZ	Batch ID: 106VW170	TestNo: EPA 8015B(M	Analysis Date: 6/27/2006	SeqNo: 965246
Client ID: ZZZZZZ Analyte	Batch ID: 106VW170 Result	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val	Analysis Date: 6/27/2006 %REC LowLimit HighLimit RPD Ref Val 92.1 71 122 0.9130	SeqNo: 965246 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte GRO	Batch ID: 106VW170 Result 0.921	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val 0.050 1.000 0	Analysis Date: 6/27/2006 %REC LowLimit HighLimit RPD Ref Val 92.1 71 122 0.9130	SeqNo: 965246 %RPD RPDLimit Qual 0.872 30
Client ID: ZZZZZZ Analyte GRO Sample ID: 1062706MB4	Batch ID: 106VW170 Result 0.921 SampType: MBLK	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val 0.050 1.000 0 TestCode: 8015_W_GP Units: mg/l	Analysis Date: 6/27/2006 %REC LowLimit HighLimit RPD Ref Val 92.1 71 122 0.9130 Prep Date:	SeqNo: 965246 %RPD RPDLimit Qual 0.872 30 RunNo: 65057

Qualifiers: Ε Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 28 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1062906LCS2	SampType: LCS	TestCode: 80	015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 651	04	
Client ID: LCSW	Batch ID: 106VW171	TestNo: E	PA 8015B(I	VI		Analysis Dat	e: 6/29/20	06	SeqNo: 966	835	
Analyte	Result	PQL SP	K value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	0.723	0.050	1.000	0	72.3	71	122				
Sample ID: 1062906MB2MS	SampType: MS	TestCode: 8	015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 651	04	
Client ID: ZZZZZZ	Batch ID: 106VW171	TestNo: E	PA 8015B(M		Analysis Dat	e: 6/29/20)06	SeqNo: 966	836	
Analyte	Result	PQL SP	YK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	0.915	0.050	1.000	0	91.5	71	122				
Sample ID: 1062906MB2MSD	SampType: MSD	TestCode: 8	015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 651	104	
Sample ID: 1062906MB2MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 106VW171		015_W_GP PA 8015B(•	tro A	Prep Dat Analysis Dat		006	RunNo: 651 SeqNo: 966		
		TestNo: E	PA 8015B(•	%REC	Analysis Dat	te: 6/29/20	006 RPD Ref Val			Qual
Client ID: ZZZZZZ	Batch ID: 106VW171	TestNo: E	PA 8015B(м		Analysis Dat	te: 6/29/20		SeqNo: 966	6837	Qual
Client ID: ZZZZZZ Analyte	Batch ID: 106VW171 Result	TestNo: E PQL SF	PK value \$	M SPK Ref Val 0	%REC	Analysis Dat	te: 6/29/20 HighLimit 122	RPD Ref Val	SeqNo: 966 %RPD	6837 RPDLimit 30	Qual
Client ID: 222222 Analyte GRO	Batch ID: 106VW171 Result 0.922	TestNo: E PQL SF 0.050 TestCode: 8	PK value \$	M SPK Ref Val 0 Units: mg/L	%REC 92.2	Analysis Dat LowLimit 71	te: 6/29/20 HighLimit 122 te:	RPD Ref Val 0.9150	SeqNo: 966 %RPD 0.762	5837 RPDLimit 30	Qual
Client ID: ZZZZZZ Analyte GRO Sample ID: 1062906MB2	Batch ID: 106VW171 Result 0.922 SampType: MBLK	TestNo: E PQL SF 0.050 TestCode: 8 TestNo: E	PK value \$ 1.000 015_W_GP PK 8015B(M SPK Ref Val 0 Units: mg/L	%REC 92.2	Analysis Dat LowLimit 71 Prep Dat Analysis Dat	te: 6/29/20 HighLimit 122 te: te: 6/29/20	RPD Ref Val 0.9150	SeqNo: 966 %RPD 0.762 RunNo: 651	5837 RPDLimit 30	Qual

Qualifiers: Е Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 29 of 38

CLIENT: Fugro West, Inc. Work Order: 085202 APA Fund, 838.006 **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1070506LCS1	SampType: LCS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65258
Client ID: LCSW	Batch ID: 106VW177	TestNo: EPA 8015B(M	Analysis Date: 7/5/2006	SeqNo: 968994
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.981	0.050 1.000 0	98.1 72 119	······································
Sample ID: 1070506MB2MS	SampType: MS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65258
Client ID: ZZZZZZ	Batch ID: 106VW177	TestNo: EPA 8015B(M	Analysis Date: 7/5/2006	SeqNo: 968995
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.883	0.050 1.000 0	88.3 72 119	
Sample ID: 1070506MB2MSD	SampType: MSD	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65258
Client ID: ZZZZZZ	Batch ID: 106VW177	TestNo: EPA 8015B(M	Analysis Date: 7/5/2006	SeqNo: 968996
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.876	0.050 1.000 0	87.6 72 119 0.8830	0.796 30
Sample ID: 1070506MB2	SampType: MBLK	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65258
Client ID: PBW	Batch ID: 106VW177	TestNo: EPA 8015B(M	Analysis Date: 7/5/2006	SeqNo: 968997
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	ND	0.050		

Qualifiers: Е Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 30 of 38

CLIENT: Fugro West, Inc. Work Order: 085202 APA Fund, 838.006 **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062806LCS2	SampType: LCS	TestCoo	ie: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 650	89	
Client ID: LCSS	Batch ID: R06VS126	Test	lo: EPA 8260	3		Analysis Dat	te: 6/28/20	06	SeqNo: 965	809	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	90.020	5.0	100.0	0	90.0	85	122				
MTBE	90.840	5.0	100.0	0	90.8	67	134				
Toluene	88.500	5.0	100.0	0	88.5	83	122				
Sample ID: R062806MB3MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 650	89	
Client ID: ZZZZZZ	Batch ID: R06VS126	Test	No: EPA 8260			Analysis Da)06	SeqNo: 965		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val		RPDLimit	Qua
Benzene	91.490	5.0	100.0	0	91.5	57	144				
MTBE	100.020	5.0	100.0	0	100	47	147				
Toluene	89.890	5.0	100.0	0	89.9	54	144				
Sample ID: R062806MB3MSD	SampType: MSD	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:	<u></u>	RunNo: 650	89	
Client ID: ZZZZZZ	Batch ID: R06VS126	Test	No: EPA 8260	в		Analysis Da	te: 6/28/20	006	SeqNo: 965	811	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	88.970	5.0	100.0	0	89.0	57	144	91.49	2.79	30	
МТВЕ	96.660	5.0	100.0	0	96.7	47	147	100.0	3.42	30	
Toluene	87.560	5.0	100.0	0	87.6	54	144	89.89	2.63	30	
Sample ID: R062806MB3	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 650)89	
Client ID: PBS	Batch ID: R06VS126	Test	No: EPA 8260	B		Analysis Da	te: 6/28/20	006	SeqNo: 965		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0				W-14-8-14-14-14-14-14-14-14-14-14-14-14-14-14-					
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
Di-isopropyl ether	ND	5.0									
Ethyl Tert-butyl ether	ND	5.0									
Ethylbenzene											

Qualifiers: Value above quantitation range Е

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits Calculations are based on raw values

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

Page 31 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062806MB3 Client ID: PBS	SampType: MBLK Batch ID: R06VS126			RunNo: 650 SeqNo: 965							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	10									
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	ND	5.0									

Qualifiers: Ε Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 32 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062906LCS1	SampType: LCS	TestCoo	le: 8260_S	Units: µg/Kg		Prep Dat	e:		RunNo: 651	34	
Client ID: LCSS	Batch ID: R06VS127	TestN	io: EPA 8260I	3		Analysis Dat	:e: 6/29/20	06	SeqNo: 966	574	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	95.940	5.0	100.0	0	95.9	85	122				
MTBE	95.720	5.0	100.0	0	95.7	67	134				
Toluene	94.920	5.0	100.0	0	94.9	83	122				
Sample ID: R062906MB1MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:	· · · ·	RunNo: 651	34	
Client ID: ZZZZZZ	Batch ID: R06VS127	Test	lo: EPA 8260	В		Analysis Da	te: 6/29/20	06	SeqNo: 966	575	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Benzene	99.150	5.0	100.0	0	99.2	57	144				
MTBE	99.070	5.0	100.0	0	99.1	47	147				
Toluene	97.230	5.0	100.0	0	97.2	54	144				
Sample ID: R062906MB1MSD	SampType: MSD	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 651	134	
Client ID: ZZZZZZ	Batch ID: R06VS127	Test	No: EPA 8260	В		Analysis Da	te: 6/29/20	06	SeqNo: 966	6576	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Benzene	96.560	5.0	100.0	0	96.6	57	144	99.15	2.65	30	
MTBE	98.180	5.0	100.0	0	98.2	47	147	99.07	0.902	30	
Toluene	94.240	5.0	100.0	0	94.2	54	144	97.23	3.12	30	
Sample ID: R062906MB1	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 65	134	
Client ID: PBS	Batch ID: R06VS127	Test	No: EPA 8260	в		Analysis Da	te: 6/29/20	006	SeqNo: 96	6577	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
1,2-Dibromoethane	ND	5.0							Whater and a second		
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
Di-isopropyl ether	ND	5.0									
E	ND	5.0									
Ethyl Tert-butyl ether	ND	5.0									

Qualifiers: Е Value above quantitation range

Holding times for preparation or analysis exceeded н S

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits Calculations are based on raw values

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 33 of 38

CLIENT:	Fugro West, Inc.
Work Order:	085202
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062906MB1 Client ID: PBS	, ,,		TestCode: 8260_S Units: µg/Kg TestNo: EPA 8260B			Prep Da Analysis Da		RunNo: 65134 SegNo: 966577			
Analyte						•			Sedino: 300	577	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	10		······································			· · · · · · · · · · · · · · · · · · ·				
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	ND	5.0									

Qualifiers: Е Value above quantitation range

RPD outside accepted recovery limits R Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 34 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062706MB6MS	SampType: MS	TestCo	de: 8260_WP_I	LL Units: µg/L		Prep Dat	e:		RunNo: 650)48	
Client ID: ZZZZZZ	Batch ID: A06VW184	Test	No: EPA 8260B	1		Analysis Dat	e: 6/28/20	06	SeqNo: 965		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.270	0.50	20.00	0	96.4	90	121				
MTBE	16.730	0.50	20.00	0	83.6	66	132				
Toluene	20.010	0.50	20.00	0	100	93	121				
Sample ID: A062706MB6MSD	SampType: MSD	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	e:		RunNo: 650)48	
Client ID: ZZZZZZ	Batch ID: A06VW184	Test	No: EPA 8260E	3		Analysis Da	te: 6/28/20	006	SeqNo: 96		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.320	0.50	20.00	0	96.6	90	121	19.27	0.259	30	
MTBE	17.110	0.50	20.00	0	85.6	66	132	16.73	2.25	30	
Toluene	20.100	0.50	20.00	0	101	93	121	20.01	0.449	30	
Sample ID: A062706MB6	SampType: MBLK	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 650)48	
Client ID: PBW	Batch ID: A06VW184	Test	No: EPA 8260E	3		Analysis Da	te: 6/28/20	006	SeqNo: 96!		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane	ND	0.50		······································							
1,2-Dichloroethane	ND	0.50									
Benzene	ND	0.50									
Di-isopropyl ether	ND	0.50									
Ethyl tert-butyl ether	ND	0.50									
Ethylbenzene	ND	0.50									
m,p-Xylene	ND	1.0									
MTBE	ND	0.50									
o-Xylene	ND	0.50									
-											
Tert-amyl methyl ether	ND	0.50									
-		0.50 10									

Qualifiers: Ε Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 35 of 38

CLIENT:	Fugro West, Inc.
Work Order:	085202
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062706LC3 Client ID: LCSW	SampType: LCS Batch ID: A06VW184		de: 8260_WP_ No: EPA 82601	LL Units: µg/L 3		Prep Da Analysis Da	te: te: 6/28/20	D6	RunNo: 650 SeqNo: 965		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.580	0.50	20.00	0	97.9	90	121				
МТВЕ	17.220	0.50	20.00	0	86.1	66	132				
Toluene	20.350	0.50	20.00	0	102	93	121				

Qualifiers: Value above quantitation range Е

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 36 of 38

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062806LC1	SampType: LCS	TestCoo	le: 8260_WP_L	L Units: µg/L		Prep Da	te:		RunNo: 650	50	
Client ID: LCSW	Batch ID: A06VW185	TestN	lo: EPA 8260B			Analysis Da	te: 6/28/20	06	SeqNo: 965	310	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.170	0.50	20.00	0	95.9	90	121				
MTBE	18.220	0.50	20.00	0	91.1	66	132				
Toluene	19.830	0.50	20.00	0	99.2	93	121				
Sample ID: A062806MB3MS	SampType: MS	TestCo	de: 8260_WP_L	L Units: µg/L		Prep Da	te:		RunNo: 650	50	
Client ID: ZZZZZZ	Batch ID: A06VW185	Test	io: EPA 8260B	i -		Analysis Da	te: 6/28/20	06	SeqNo: 965	5311	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	19.610	0.50	20.00	0	98.0	90	121				
MTBE	18.790	0.50	20.00	0	94.0	66	132				
Toluene	20.280	0.50	20.00	0	101	93	121				
Sample ID: A062806MB3MSD	SampType: MSD	TestCo	de: 8260_WP_I	LL Units: µg/L		Prep Da	te:		RunNo: 650)50	
Client ID: ZZZZZZ	Batch ID: A06VW185	Test	No: EPA 8260B	i		Analysis Da	ite: 6/28/20	006	SeqNo: 965	5312	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	19.480	0.50	20.00	0	97.4	90	121	19.61	0.665	30	
MTBE	18.570	0.50	20.00	0	92.8	66	132	18.79	1.18	30	
Toluene	20.090	0.50	20.00	0	100	93	121	20.28	0.941	30	
Sample ID: A062806MB3	SampType: MBLK	TestCo	de: 8260_WP_I	LL Units: µg/L		Prep Da	ite:		RunNo: 650	050	
Client ID: PBW	Batch ID: A06VW185	Test	No: EPA 8260B	}		Analysis Da	ate: 6/28/20	006	SeqNo: 96	5313	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	0.50									
1,2-Dichloroethane	ND	0.50									
Benzene	ND	0.50									
Di-isopropyl ether	ND	0.50									
Ethyl tert-butyl ether	ND	0.50									
Ethylbenzene	ND	0.50									

Value above quantitation range Qualifiers: Е

R

Holding times for preparation or analysis exceeded Н S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 37 of 38

RPD outside accepted recovery limits Calculations are based on raw values

CLIENT: Fugro West, Inc. Work Order: 085202 APA Fund, 838.006 **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062806MB3 Client ID: PBW	SampType: MBLK Batch ID: A06VW185		de: 8260_WP No: EPA 8260	_LL Units: µg/L B		Prep Da Analysis Da		006	RunNo: 650 SeqNo: 965		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	1.0								**************************************	
MTBE	ND	0.50									
o-Xylene	ND	0.50									
Tert-amyl methyl ether	ND	0.50									
Tert-Butanol	ND	10									
Toluene	ND	0.50									

Qualifiers: Е Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 38 of 38

Advanced Technology Laboratories

PROJECT NA	ME: APA Fund																										Γ		A	٩NA	LYSI	S RE	QUES	STED)	٦
PROJECT NO	.: 838.006										LA	B: A	TL														Γ									
PROJECT CO	NTACT: Obi Nzewi										τu	RNA	ARC	UNI	D: S	tand	lard													()						
SAMPLED BY	: Obi Nzewi																													; (826						
					-						r																_			angers						
			MA	RIX			co	NTA	INE	RS		PRI	ESER	RVAT	IVE				SA	MP	LING	DAT	E							d Scavengers (8260)						
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	PINT	TUBE		HCL	H ₂ SO ₄	HNO3	ICE	OTHER	NONE	MOI	NTH	DAY	¢	YEAF	٦		TIM	E		NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead						
	B-16	X	S	◄		<u>></u>	-	4	-		Ĭ		I	$\frac{9}{2}$	0	Ž		6	2	1		510) {	2	1	0		<u>=</u> X		ХBJ				<u> </u>		
	13-16	X					1					×		V		X	$\overline{\mathbf{n}}$	6	21					31		Ğ		4	7	<u>/</u>						
	B-17	Ń				Ъ					X			V.			0	6	2	1	A I	510				5		$\overline{\mathbf{x}}$	7	X	- +					
	B-17	X					-							×		\times	0	6	2	1	0 8	5 0	20	11	70	51			X				1	1		
	M - H	Ý.	ļ			Ь					X	<u> </u>		1/2			C	6		2	06	2	1))	· · · ·	0		X	,	X						
	M-H	X				1	1					ļ	ļ	70	ļ	X	0	6		2	<u>0 l</u>		11			0			Х					_		
	P-1 P-1	$\frac{\times}{}$				6	1				X			X	ļ		0	6		2	OE					5	_	X		Х			_	<u> </u>	L	
		~					1							¥		X	0	6	2	2	01	<u>6</u> 1	<u> </u>	2	0	5	_	-+	X					 		$\left - \right $
														<u> </u>						+			_	+								_	_			$\left - \right $
			<u> </u>								t	1		1						+				-				-+			$\left \right $			+		
																											+						+	+		\square

	CHAIN OF CUSTO	DDY RECORD		COMMENTS & NOTES:
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Do not throw any of the sall
	2/06 1500		0623,04 0900	Samples away write after
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	
				Confirming with Fugpo!
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
				1000 Broadway, Suite 200
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
g:/server migration/data/template/chain	of custody			Tel: 510.268.0461 Fax: 510.268.0137

CHAIN OF CUSTODY

PAGE OF

6,0%

PROJECT NA	ME: APA Fund																												ANA	LYS	IS RE	QUE	STE	D	
PROJECT NO	.: 838.006										L	AB:	ATI	L																	Т	Τ	Т	Τ	Τ
PROJECT CO	NTACT: Obi Nzewi										т	URN	JAF	ROL	JNE): S	tand	lard			<u></u>														
SAMPLED BY	: Obi Nzewi												-			******													Scavengers (8260)						
1		<u> </u>			1						Т															_			ngers						
			MAT	<u>[RIX</u>			<u> </u>			RS		Pł	RES	ER	/AT	IVE			S	AMF	LING D	ATE							d Scave						
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	PINT	TUBE			HUL H.SO.		HNO3	ICE	OTHER	NONE	MONTH	DA	٩Y	YEAR		TII	ИE		NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead						
	B-1625.01		X						x					_	X			00	2	l	06	0	9	2	5	- <u></u>	$\overline{\times}$	×	×		-+-		+	+	+
	B-1601501	_	X	 			ļ	ļ	ĸ			_			ĸ			06	2	[06	0	9	H	5	-	×	1	×.				+	1	
	B-16 + 20.01		6	┝──┥			L		×				_		K			00	2	1	06	1	0	0	0		X	×	Kunn						
	B-16 2 25.5		X	\vdash				 	\wedge						X			00	2	(06	1	0	1	\mathcal{O}		\times	k	V						
	B-16 2 30.51 B-16 2 350		XX	\vdash					\mathbf{X}				-		K			06	2	1	06	1	0	3	2	\mathbb{O}	k	X	X	Щ					
	13-16 240.0'		$\widehat{\mathbf{X}}$	\vdash					XX				-	-	X X			06	2	<u> </u>	06	1	0	5	\sim		$\underline{\times}$	\varkappa	X	\vdash			_		
	15-16 245.0'		X	┝──┤					X	┝──┼╴	+		_		\hat{x}			06	2	1	06	1	1	/	2		X	X	X	\vdash					
	. 10 - 10.0		/					┼──			-			+'	<u>^</u>			06	2	1	06	1	1	2	0		X	X	X	┝──┤					
											+		+	-					+				 							┢━┥					
		1	<u> </u>					+-					+									+								┝━╋					
			 					1							-							+				-		┣	$\left - \right $	\vdash	\rightarrow			+	

CHAIN OF CUS	FODY RECORD		COMMENTS & NOTES:
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	() Please prepare a duplicate sample
Objens 6/22/06 150	v ~	062200 040	O Please prepare a duplicate sample from the take and conduct only
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	
			TPH & (2015) on the duplicate.
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
			1000 Broadway, Suite 200
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
g:/server migration/data/template/chain of custody		:	Tel: 510.268.0461 Fax: 510.268.0137

CHAIN OF CUSTODY

PAGE Z OF 3

CHAIN OF	CUSTODY																								<u>PA</u>	GE	3	<u>OF</u>	<u> </u>
PROJECT NA	ME: APA Fund																					Γ		ANA	LYSI	S REC	UES.	TED	
PROJECT NC	0.: 838.006										LA	B: A	TL									F	T	Π			ТТ	<u> </u>	
PROJECT CC	NTACT: Obi Nzewi		·								ΤU	RNA	RC	UNI	D: S	Stan	dard												
SAMPLED BY	: Obi Nzewi												-				· ····, ····							(826(
		-			r						—								· · · · · · · · · · · · · · · · · · ·					ngers					
			MA				coi	NTAIN	NERS	3		PRE	ESEF	RVAT	IVE			SAN	IPLING D	ATE				Scave					
																			T	T			_	Lead					
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	2															MONTH	DAY	YEAR	TIME		l 5m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead Scavengers (8260)					
	2 ⁷) 7 (100)	WATER	SOIL	AIR		VOA	LITER	PINT			ΗĊΓ	H ₂ SO4	HNO3	ICE	OTHER	NONE					VOTES	TPHg (8015m)	rPHd & r	3TEX, 5 I					
	B-17010.01	,	X				-+		\times				-	×			06	21	06	1320	, –	×		1			+-+		+
	B-17219.01 B-172 25.0		X						<u>e</u>		┢	 		Σ			00	21	06			\gtrsim	\times	\times					+1
	B-17 03015		$\frac{1}{\chi}$	-			\rightarrow		2		╄—			\leq	-	 	06	21	06		>			×					
	B-17 0 3570.					\rightarrow			X		╋	┼──		\propto			06	21	06			X	-	×	\vdash				
	13-17240.0'	+	x	$\left \right $	+ -	\rightarrow			\sim		┢					$\left - \right $	06	21	06		<u>'</u>	\propto	-	X	┝──┼-		┦──┤		
	10-172-45.0	╈	x			\rightarrow	-+	/	x –		╋	+		$\frac{\chi}{\chi}$			00	21 21	06	1526		X		\geq	┢╼╾╄╴				
			+			-+	-	-	<u> </u>	+	+	+				$\left - \right $	06		06	1537		X		₽×-	┢╼╾╂╸		+-+		
		1	1			1	-	-		+	╋	1				$\left - \right $		╞──┼──	+	┼╌┼╌┼╴		+-	+	┼─┤	\square		+		
						1	1	+		+	\mathbf{t}	1							+	┼╌┼╌┼─	+	╋	+	┼─┤	\vdash		+ +		
											1								<u>† † † – </u>	+	-	+	+	╂──┨	\square		++	-+	
																					1	\mathbf{T}	1			+	+-+		

CHAIN OF CUST	ODY RECORD	:	COMMENTS & NOTES:
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	1
Oban 6/22/06 150		062301 0400	
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	1
			· · · · · · · · · · · · · · · · · · ·
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
			1000 Broadway, Suite 200
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
g:/server migration/data/template/chain of custody			Tel: 510.268.0461 Fax: 510.268.0137

Rachelle Arada

From: Carmen Aquila Sent: Wednesday, July 05, 2006 10:56 AM To: **Rachelle Arada** Subject: FW: 2801 Macarthur Blvd Oakland -----Original Message-----From: Bing Roura Sent: Friday, June 30, 2006 12:20 PM To: Carmen Aguila Cc: Rachelle Arada FW: 2801 Macarthur Blvd Oakland Subject: FYI. Bing ----Original Message-----From: Nzewi, Obi [mailto:ONzewi@Fugro.com] Sent: Friday, June 30, 2006 12:06 PM To: Bing Roura Subject: 2801 Macarthur Blvd Oakland Hi Bing, please ensure that none of the soil samples for this job (Fugro Job No: 838.006, and ATL Job No: 085202) are discarded without consultation with Fugro. Thanks -----Original Message-----From: Bing Roura [mailto:bing@atlglobal.com] Sent: Wednesday, June 28, 2006 3:06 PM To: Nzewi, Obi Cc: Carmen Aguila Subject: RE: 2801 Macarthur For B-14@3.0, I cannot find the sample. Is this supposed to be B-14@30? Thanks, Bing ----Original Message-----From: Nzewi, Obi [mailto:ONzewi@Fugro.com] Sent: Wednesday, June 28, 2006 12:08 PM To: Bing Roura Subject: 2801 Macarthur Hi Bing, could you please prepare a duplicate sample from the following and test them for TPHg. Soil: B-14 @3.0, B-18 @15 Groundwater: B-13, B-15, B-17, and B-18 Thanks Obi Nzewi Project Geologist Fugro West Inc 1000 Broadway, Suite 200 www.fugrowest.com phone: (510) 268 0461 fax: (510) 268 0137 cell: (510) 701 4174

1

INTENTIALLY BLANK PAGE

July 11, 2006

Obi Nzewi Fugro West, Inc. 1000 Broadway, Suite 200 Oakland, CA 94607 TEL: (510) 268-0461 FAX: (510) 268-0137

RE: APA Fund, 838.006

Attention: Obi Nzewi

ELAP No.: 1838 NELAP No.: 02107CA NEVADA.: CA-401 Arizona: AZ0689 CSDLAC No.: 10196 Workorder No.: 085258

Enclosed are the results for sample(s) received on June 27, 2006 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (562)989-4045 if I can be of further assistance to your company.

Sincerely,

Eddie F. Rodriguez

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories.

Advanced Technology Laboratories

CLIEN	NT:	Fugro West, Inc	•			Client	Sampl	e ID: B-18	3 @ I	10	
Lab O	rder:	085258				Ta	ıg Nun	iber:			
Project	t:	APA Fund, 838.	006			Colle	ection 1	Date: 6/23	/200	6 8:45:00 A	M
Lab ID		085258-001A					Ma	trix: SOI	L		
Analys	es		R	esult	PQL	Qual	Units		DF	Date	Analyzed
DIESEI	L & MOTO	R OIL RANGE O	RGANICS E PA 3550B	BY GC/FID		EP	A 8015	B(M)		-	
RunID:	GC7 BAC	– K 060629B	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: CBR
DRO	007_0/10	1_0000202		24	1.0		mg/Kg		1		6/30/2006
ORO				63	1.0		mg/Kg		1		6/30/2006
		GE ORGANICS E	Y GC/FID	00	1.0		mgritg		•		0,00,2000
34001						EP	A 8015	B(M)			
RunID:	GC2_0606	28A	QC Batch:	E06VS1	32			PrepDate:			Analyst: ML
GRO				ND	1.0		mg/Kg		1		6/28/2006
VOLAT	ILE ORGA		S BY GC/N	IS							
						E	PA 826	60B			
RunID:	MS3_0606	29B	QC Batch:	R06VS1	28			PrepDate:			Analyst: TT
1,2-Dil	oromoethane	•		ND	5.0		µg/Kg		1		6/30/2006
1,2-Dic	chloroethane	н		ND	5.0		µg/Kg		1		6/30/2006
Benze	ne			ND	5.0		µg/Kg		1		6/30/2006
Di-isop	propyl ether			ND	5.0		µg/Kg		1		6/30/2006
Ethyl T	ert-butyl eth	er		ND	5.0		µg/Kg		1		6/30/2006
Ethylbo	enzene			ND	5.0		µg/Kg		1		6/30/2006
m,p-Xy	/lene			ND	10		µg/Kg		1		6/30/2006
MTBE				ND	5.0		µg/Kg		1		6/30/2006
o-Xylei	ne			ND	5.0		µg/Kg		1		6/30/2006
Tert-ar	nyl methyl et	her		ND	5.0		µg/Kg		1		6/30/2006
Tert-Bu	utanol			ND	100		µg/Kg		1		6/30/2006
Toluen	e			ND	5.0		µg/Kg		1		6/30/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 11-Jul-06

Page 1 of 43

Advanced Technology Laboratories

CLIENT: Fugro West, Inc.				Client Sample ID: B-18 @ 15									
Lab Order: 085258 Project: APA Fund, 83		085258	Tag Number:										
		APA Fund, 838.0	Collection Date: 6/23/2006 9:00:00 AM										
Lab ID: 085258-002A			Matrix: SOIL										
Analyses			Result		PQL	Qual Units		DF		Date Analyzed			
DIESEL	& MOTO	R OIL RANGE OR	GANICS B	Y GC/FID									
		EF	A 3550B			EPA	8015	B(M)					
RunID:	GC7_BACI	K_060629B	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: CBR		
DRO				22	1.0	n	ng/Kg		1		6/30/2006		
ORO				2.6	1.0		ng/Kg		1		6/30/2006		
	INF RANG	SE ORGANICS BY	GC/FID										
0/1002						EPA	8015	B(M)					
RunID:	GC2_0606	GC2_060629A		Batch: E06VS13		PrepDat		PrepDate:			Analyst: ML		
GRO				450	50	rr	ng/Kg		50		6/29/2006		
	ILE ORGA		S BY GC/M	S									
						EP	A 826	60B					
RunID:	MS3_0606	29B	QC Batch:	R06VS1	28			PrepDate:			Analyst: TT		
1.2-Dib	promoethane			ND	250	μ	g/Kg		50		6/30/2006		
1,2-Dichloroethane				ND	250		g/Kg		50		6/30/2006		
Benzene			ND	250	μ	g/Kg		50		6/30/2006			
Di-isopropyl ether				ND	250	μ	g/Kg		50		6/30/2006		
Ethyl Tert-butyl ether				ND	250	μ	g/Kg		50		6/30/2006		
Ethylbenzene				550	250	μ	g/Kg		50		6/30/2006		
m,p-Xylene			ND	500		g/Kg		50		6/30/2006			
МТВЕ				ND	250	μ	g/Kg		50		6/30/2006		
o-Xylene				ND	250	μ	g/Kg		50		6/30/2006		
Tert-amyl methyl ether				ND	250	μ	g/Kg		50		6/30/2006		
Tert-Butanol				ND	5000	μ	g/Kg		50		6/30/2006		
Toluene			ND	250	u	g/Kg		50		6/30/2006			

Date: 11-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 2 of 43

Advanced Technology Laboratories 3 of 44

Date: 11-Jul-06

CLIENT	Figro West	, Inc.	Client Sample ID: B-18 @ 15							
Lab Ord	ler: 085258			Tag Number:						
Project:	APA Fund,	838.006	Collection Date: 6/23/2006 9:00:00 AM Matrix: SOIL							
Lab ID:	085258-002	2B								
Analyses	S	Resu	ult PQL	Qual Units	DF	Date Analyzed				
GASOLI	NE RANGE ORGANI	CS BY GC/FID								
				EPA 8015B(M)						
RunID:	GC2_060629A QC		Batch: E06VS133 PrepDa			Analyst: ML				
GRO		4	40 50	mg/Kg	50	6/29/2006				

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 3 of 43

CLIENT:	Fugro West, Inc.				Client	Sample	e ID: B-18	3 @ 1	18	
Lab Order:	085258				T٤	ıg Num	iber:			
Project:	APA Fund, 838.00	06			Colle	ection I	Date: 6/23	/200	6 9:10:00 A	M
Lab ID:	085258-003A					Ma	trix: SOI	L		
Analyses		Res	ult	PQL	Qual	Units		DF	Date	Analyzed
DIESEL & MO	TOR OIL RANGE OR	GANICS BY A 3550B	GC/FID		ED	A 8015	R/M)			
					LF.	M 00 1 J	•			
RunID: GC7_C)60705A	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: MFR
DRO			160	10		mg/Kg		10		7/5/2006
ORO			7.6	1.0		mg/Kg		1		6/30/2006
GASOLINE R	ANGE ORGANICS BY	GC/FID			EP	A 8015	B(M)			
RunID: GC2_0	60629A	QC Batch:	E06VS1	33			PrepDate:			Analyst: ML
GRO			800	200		mg/Kg		200		6/29/2006
	GANIC COMPOUNDS	BY GC/MS	5			• •				
					E	PA 826	0B			
RunID: MS3_0	60629B	QC Batch:	R06VS1	28			PrepDate:			Analyst: TT
1,2-Dibromoeth	ane	1	ND	1000		µg/Kg		200		6/30/2006
1,2-Dichloroeth	ane	1	ND	1000		µg/Kg		200		6/30/2006
Benzene		110	00	1000		µg/Kg		200		6/30/2006
Di-isopropyl eth	ner	1 - 1 - 1	ND	1000		µg/Kg		200		6/30/2006
Ethyl Tert-butyl	ether	1	ND	1000		µg/Kg		200		6/30/2006
Ethylbenzene		310	00	1000		µg/Kg		200		6/30/2006
m,p-Xylene		1200	00	2000		µg/Kg		200		6/30/2006
MTBE		1	ND	1000		µg/Kg		200		6/30/2006
o-Xylene		430	00	1000		µg/Kg		200		6/30/2006
Tert-amyl methy	yl ether	1	١D	1000		µg/Kg		200		6/30/2006
Tert-Butanol		١	ND	20000		µg/Kg		200		6/30/2006
Toluene		540	00	1000		µg/Kg		200		6/30/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Value above quantitation range

Е

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 11-Jul-06

Page 4 of 43

Advanced Technology Laboratories

CLIENT:	Fugro West, Inc.				Client	Sample	e ID: B-18	3@2	20		
Lab Order:	085258				Ta	g Num	ber:				
Project:	APA Fund, 838.00)6			Colle	ction I	Date: 6/23	/2000	5 9:45:00 A	M	
Lab ID:	085258-004A		Matrix: SOIL								
Analyses		Res	ult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL & MO	DTOR OIL RANGE OR EP	GANICS BY A 3550B	GC/FID		EP/	A 8015	B(M)				
RunID: GC7 (060705A	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: MFR	
DRO –		3	330	10		mg/Kg		10		7/5/2006	
ORO			16	1.0		mg/Kg		1		6/30/2006	
	ANGE ORGANICS BY	GC/FID									
					EPA	A 8015	B(M)				
RunID: GC2_0	060629A	QC Batch:	E06VS1	33			PrepDate:			Analyst: ML	
GRO		20	000	200		mg/Kg		200		6/29/2006	
VOLATILE OR	GANIC COMPOUNDS	BY GC/MS	5								
					E	PA 826	0B				
RunID: MS3_(060629B	QC Batch:	R06VS1	28			PrepDate:	÷		Analyst: TT	
1,2-Dibromoetl	hane	I	ND	1000		µg/Kg		200		6/30/2006	
1,2-Dichloroeth	nane	1	ND	1000		µg/Kg		200		6/30/2006	
Benzene		180	00	1000		µg/Kg		200		6/30/2006	
Di-isopropyl et	her	1	ND	1000		µg/Kg		200		6/30/2006	
Ethyl Tert-buty	l ether	I	ND	1000		µg/Kg		200		6/30/2006	
Ethylbenzene		340	00	1000		µg/Kg		200		6/30/2006	
m,p-Xylene		1300	00	2000		µg/Kg		200		6/30/2006	
MTBE		١	ND	1000		µg/Kg		200		6/30/2006	
o-Xylene		500	00	1000		µg/Kg		200		6/30/2006	
Tert-amyl meth	yl ether	1	ND	1000		µg/Kg		200		6/30/2006	
Tert-Butanol		1	ND	20000		µg/Kg		200		6/30/2006	
Toluene		1300	00	5000		µg/Kg		1000		7/3/2006	

Date: 11-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 5 of 43

6 of 44

CLIEN	T:	Fugro West, Inc.				Client	Sample	e ID: B-18	3@2	25		
Lab Oi	rder:	085258				Та	g Num	iber:				
Project	t:	APA Fund, 838.0	06			Colle	ction I	Date: 6/23	/2006	5 10:00:00	AM	
Lab ID		085258-005A		Matrix: SOIL								
Analys	es		Re	sult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL	_ & MOTO	R OIL RANGE OR	GANICS B	Y GC/FID								
		EP	PA 3550B			EP/	A 8015	B(M)				
RunID:	GC7_BACI	K_060629B	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: CBR	
DRO				38	1.0		mg/Kg		1		6/30/2006	
ORO				2.4	1.0		mg/Kg		1		6/30/2006	
GASOL	INE RANG	SE ORGANICS BY	GC/FID									
						EP/	A 8015I	B(M)				
RunID:	GC2 0606	29A	QC Batch:	E06VS1	33			PrepDate:			Analyst: ML	
GRO				530	100		mg/Kg		100		6/29/2006	
			S BY GC/M	S								
UD				_		E	PA 826	0B				
RunID:	MS3_0606	29B	QC Batch:	R06VS1	28			PrepDate:			Analyst: TT	
1.2-Dib	oromoethane			ND	500		µg/Kg		100		6/30/2006	
,	chloroethane			ND	500		µg/Kg		100		6/30/2006	
Benzei			1:	300	500		µg/Kg		100		6/30/2006	
Di-isop	oropyl ether			ND	500		µg/Kg		100		6/30/2006	
Ethyl T	ert-butyl ethe	er		ND	500		µg/Kg		100		6/30/2006	
Ethylbe	enzene		50	600	500		µg/Kg		100		6/30/2006	
m,p-Xy			230	000	1000		µg/Kg		100		6/30/2006	
МТВЕ				ND	500		µg/Kg		100		6/30/2006	
o-Xyler	ne		90	000	500		µg/Kg		100		6/30/2006	
•	nyl methyl etl	her		ND	500		µg/Kg		100		6/30/2006	
Tert-Bu	utanol			ND	10000		µg/Kg		100		6/30/2006	
Toluen	е		67	700	500		µg/Kg		100		6/30/2006	

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 11-Jul-06

Page 6 of 43

Advanced Technology Laboratories

7 of 44

CLIEN	NT:	Fugro West, Inc	2.			Client S	Sampl	e ID: B-18	3 @ 3	30.5	
Lab O	rder:	085258				Tag	g Nun	iber:			
Project	t:	APA Fund, 838	.006			Collec	ction I	Date: 6/23	/200	6 10:10:00	AM
Lab ID		085258-006A		Matrix: SOIL							
Analys	ses		R	esult	PQL	Qual	Units		DF	Date	Analyzed
DIESEI		OR OIL RANGE C		BY GC/FID							
		E	EPA 3550B			EPA	8015	B(M)			
RunID:	GC7_BAC	CK_060629B	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: CBR
DRO				1.6	1.0	I	mg/Kg		1		6/30/2006
ORO				1.9	1.0	I	mg/Kg		1		6/30/2006
GASOL	INE RAN	GE ORGANICS I	BY GC/FID								
						EPA	8015	B(M)			
RunID:	GC2_060	629A	QC Batch:	E06VS1	33			PrepDate:			Analyst: ML
GRO				580	50	1	mg/Kg		50		6/29/2006
		NIC COMPOUNI	OS BY GC/N	IS							
						EP	PA 826	0B			
RunID:	MS3_0606	630A	QC Batch:	R06VS1	29			PrepDate:			Analyst: TT
1.2-Dil	bromoethan	e		ND	500		ug/Kg		100		6/30/2006
	chloroethane			ND	500		ug/Kg		100		6/30/2006
Benze	ne			980	500	I	ug/Kg		100		6/30/2006
Di-isop	propyl ether			ND	500	I	ug/Kg		100		6/30/2006
Ethyl T	ert-butyl eth	ner		ND	500	I	ug/Kg		100		6/30/2006
Ethylbe	enzene		-	7900	500	ł	ug/Kg		100		6/30/2006
m,p-Xy	/lene		18	3000	1000	ŀ	Jg/Kg	•	100		6/30/2006
MTBE				ND	500	, I	ıg/Kg		100		6/30/2006
o-Xylei	ne		1:	3000	500	ł	Jg/Kg		100		6/30/2006
Tert-ar	nyl methyl e	ther		ND	500	ł	ıg/Kg		100		6/30/2006
Tert-Bu	utanol			ND	10000		ıg/Kg		100		6/30/2006
Toluen	e		ŧ	5900	500	ł	Jg/Kg		100		6/30/2006

Date: 11-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 7 of 43

CLIEN	T:	Fugro West, Inc.				Client Samp	le ID: B-18 (<i>a</i>) 36			
Lab Or	rder:	085258				Tag Nur	nber:				
Project	t : .	APA Fund, 838.00	06			Collection	Date: 6/23/2	006 10:30:00	AM		
Lab ID		085258-007A		Matrix: SOIL							
Analys	es		Re	esult	PQL	Qual Units	· I	OF Date	e Analyzed		
DIESEL	. & MOTOF	R OIL RANGE OR EP	GANICS E A 3550B	BY GC/FID		EPA 801	5B(M)				
RunID:	GC7 BACK	_060629B	QC Batch:	28920			PrepDate:	6/29/2006	Analyst: CBR		
DRO				ND	1.0	mg/Kg	1		6/30/2006		
ORO				1.2	1.0	mg/Kg			6/30/2006		
	INE RANG	E ORGANICS BY	GC/FID			0.0					
0/1002						EPA 8015	5B(M)				
RunID:	GC2_06062	29A	QC Batch:	E06VS1	33		PrepDate:		Analyst: ML		
GRO				3.3	1.0	mg/Kg	1		6/29/2006		
VOLAT	ILE ORGAN	IIC COMPOUNDS	BY GC/M	S							
						EPA 82	60B				
RunID:	MS3_06062	9B	QC Batch:	R06VS1	28		PrepDate:		Analyst: TT		
1,2-Dib	oromoethane			ND	5.0	µg/Kg	1		6/30/2006		
	chloroethane			ND	5.0	µg/Kg	1		6/30/2006		
Benzer	ne			68	5.0	µg/Kg	1		6/30/2006		
Di-isop	propyl ether			ND	5.0	µg/Kg	1		6/30/2006		
	ert-butyl ethe	r		ND	5.0	µg/Kg	1		6/30/2006		
	enzene			110	5.0	µg/Kg	1		6/30/2006		
m,p-Xy	/lene			290	10	µg/Kg	1		6/30/2006		
MTBE				ND	5.0	µg/Kg	1		6/30/2006		
o-Xyler	ne			140	5.0	µg/Kg	1		6/30/2006		
Tert-an	nyi methyl eth	er		ND	5.0	µg/Kg	. 1		6/30/2006		
Tert-Bu	utanol			ND	100	µg/Kg	1		6/30/2006		
Toluen	<u>م</u>			100	5.0	µg/Kg	1		6/30/2006		

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 11-Jul-06

Page 8 of 43

Adva	Advanced Technology Laboratories					Date: 11-Jul-06					
CLIEN	NT:	Fugro West,	Inc.		Client Sample ID: B-18 @ 41						
Lab Or	rder:	085258			Tag Number:						
Project	t:	APA Fund, 8	338.006	Collection Date: 6/23/2006 10:50:00 AM							
Lab ID		085258-008	A			Ma	trix: SOIL				
Analys	Analyses Result			PQL	Qual Units	DF	Date	Analyzed			
DIESEL	_ & MOT	OR OIL RANG	E ORGANICS E EPA 3550B	BY GC/FIE)	EPA 8015	B(M)				
RunID:	GC7_BA	CK_060629B	QC Batch:	28920)		PrepDate:	6/29/2006	Analyst: CBR		
DRO				1.2	1.0	mg/Kg	1		6/30/2006		
ORO				1.2	1.0	mg/Kg	1		6/30/2006		
GASOL	INE RAI		S BY GC/FID								
						EPA 8015	B(M)				
RunID:	GC2_06	0628A	QC Batch:	E06V	S132		PrepDate:		Analyst: ML		
GRO				ND	1.0	mg/Kg	1		6/28/2006		
VOLAT	ILE ORG	ANIC COMPO	UNDS BY GC/N	IS							
						EPA 826	60B				
RunID:	MS3_060	0629B	QC Batch:	R06V	S128		PrepDate:		Analyst: TT		
1,2-Dit	oromoetha	ne		ND	5.0	µg/Kg	1		6/30/2006		
	chloroethai			ND	5.0	µg/Kg	1		6/30/2006		
Benzei	ne			12	5.0	µg/Kg	1		6/30/2006		
Di-isop	oropyl ethe	r		ND	5.0	µg/Kg	1		6/30/2006		
Ethyl T	ert-butyl e	ther		ND	5.0	µg/Kg	1		6/30/2006		
Ethylbe	enzene			10	5.0	µg/Kg	1		6/30/2006		
m,p-Xy	/lene			50	10	µg/Kg	1		6/30/2006		
MTBE				ND	5.0	µg/Kg	1		6/30/2006		
o-Xyler	ne			23	5.0	µg/Kg	1		6/30/2006		
Tert-an	nyl methyl	ether		ND	5.0	µg/Kg	1		6/30/2006		
Tert-Bu	utanol			ND	100	µg/Kg	1		6/30/2006		
Toluen				18	5.0	µg/Kg	1		6/30/2006		

Qualifiers:

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 9 of 43

Advanced Technology Laboratories

10 of 44

CLIEN	IT:	Fugro West, In	nc.		Client Sample ID: B-18 @ 46							
Lab Or	rder:	085258				Ta	ig Nun	iber:				
Project	t:	APA Fund, 83	8.006			Colle	ction I	Date: 6/23	/200	6 11:12:00	AM	
Lab ID):	085258-009A		Matrix: SOIL								
Analys	es		Re	esult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL	_ & МОТО	R OIL RANGE	ORGANICS E EPA 3550B	BY GC/FID		FP	A 8015	B/M)				
RunID:	GC7 BAC	K 060629B	QC Batch:	28920				PrepDate:		6/29/2006	Analyst: CBR	
		N_000023D	QO Daton.	1.4	10		m m Bla		4	0/20/2000	6/30/2006	
DRO ORO				1.4	1.0 1.0		mg/Kg mg/Kg		1 1		6/30/2006	
		GE ORGANICS	BY CC/EID	1.0	1.0		mg/ng				0/30/2000	
SASUL			DI GOIND			EP	A 8015	B(M)				
RunID:	GC2_0606	28A	QC Batch:	E06VS1	32		PrepDate				Analyst: ML	
GRO				ND	1.0		mg/Kg		1		6/28/2006	
	ILE ORGA		NDS BY GC/M	S			•••					
						EI	PA 826	0B				
RunID:	MS3_0606	29B	QC Batch:	R06VS1	28			PrepDate:			Analyst: TT	
1,2-Dib	oromoethane	•		ND	5.0		µg/Kg		1		6/30/2006	
1,2-Dic	hloroethane			ND	5.0		µg/Kg		1		6/30/2006	
Benzer	ne			ND	5.0		µg/Kg		1		6/30/2006	
Di-isop	ropyl ether			ND	5.0		µg/Kg		1		6/30/2006	
Ethyl T	ert-butyl ethe	er		ND	5.0		µg/Kg		1		6/30/2006	
Ethylbe	enzene			ND	5.0		µg/Kg		1		6/30/2006	
m,p-Xy	lene			ND	10		µg/Kg		1		6/30/2006	
MTBE				ND	5.0		µg/Kg		1		6/30/2006	
o-Xylen				ND	5.0		µg/Kg		1		6/30/2006	
	nyl methyl et	her		ND	5.0		µg/Kg		1		6/30/2006	
Tert-Bu				ND	100		µg/Kg		1		6/30/2006	
Toluene	e			ND	5.0		µg/Kg		1		6/30/2006	

Date: 11-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 10 of 43

Advanced Technology Laboratories

11 of 44

Date: 11-Jul-06

DF

Date Analyzed

CLIENT:	Fugro West, Inc.	Client Sample ID: P-2
Lab Order:	085258	Tag Number:
Project:	APA Fund, 838.006	Collection Date: 6/23/2006 8:25:00 AM
Lab ID:	085258-010A	Matrix: WATER

PQL Qual Units

VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B PrepDate: A06VW186 Analyst: HH RunID: MS11_060628B QC Batch: 1,2-Dibromoethane ND 0.50 µg/L 1 6/29/2006 0.50 µg/L 1 6/29/2006 2.7 1,2-Dichloroethane 6/29/2006 50 850 25 µg/L Benzene 0.50 1 6/29/2006 ND µg/L Di-isopropyl ether 6/29/2006 ND 0.50 µg/L 1 Ethyl tert-butyl ether 1400 25 µg/L 50 6/29/2006 Ethylbenzene 4600 50 µg/L 50 6/29/2006 m,p-Xylene 6/29/2006 0.50 µg/L 1 MTBE ND 2100 25 µg/L 50 6/29/2006 o-Xylene 6/29/2006 ND 0.50 µg/L 1 Tert-amyl methyl ether 6/29/2006 Tert-Butanol ND 10 µg/L 1 µg/L Toluene 2100 25 50 6/29/2006

Result

Qualifiers:

Analyses

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 11 of 43

Advanced Technology Laboratories

В

12 of 44

Date: 11-Jul-06

CLIEN	T: Fugro West	, Inc.		Client	Sample ID	: P-2				
Lab Or	der: 085258			Tag Number:						
Project: APA Fund, 838.006 Coll						Collection Date: 6/23/2006 8:25:00 AM				
Lab ID:	: 085258-010)B	Matrix: WATER							
Analyse	es	Res	ult PQI	. Qual	Units	DF	Date Analyzed			
GASOL	INE RANGE ORGANI	CS BY GC/FID		EP	A 8015B(M)				
RunID:	GC6_060629B	QC Batch:	106VW172		Pre	pDate:	Analyst: TT			
GRO			37 0.050)	mg/L	1	6/30/2006			

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 12 of 43

Advanced Technology Laboratories

13 of 44

Advano	ced Technolog	gy Laborato	ries	Date: 11-Jul-06					
CLIENT:	Fugro West	, Inc.		Cl	ient Samp	le ID: P-2			
Lab Orde	r: 085258				Tag Nur	nber:			
Project:	APA Fund,	838.006		C	Collection	Date: 6/23/200)6 8:25:00 A	AM	
Lab ID:	085258-010)C	Matrix: WATER						
Analyses	Analyses Result			PQL Q	ual Units	DF	' Date	e Analyzed	
DIESEL &	MOTOR OIL RANG	E ORGANICS BY EPA 3510C	GC/FID		EPA 8015	δB(M)			
RunID: G	C7_060705B	QC Batch:	28930			PrepDate:	6/30/2006	Analyst: MFR	
DRO			2.6	0.050	mg/L	1		7/5/2006	
ORO		0.	075	0.050	mg/L	1		7/5/2006	

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out DO

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 11-Jul-06

Page 13 of 43

Advanced Technology Laboratories

14 of 44

Date: 11-Jul-06

- - - -

Analyses		Result	PQL Qual Units DF Date Analyzed
Lab ID:	085258-011A		Matrix: WATER
Project:	APA Fund, 838.006		Collection Date: 6/23/2006 9:45:00 AM
Lab Order:	085258		Tag Number:
CLIENT:	Fugro West, Inc.		Client Sample ID: M-6

VOLATILE ORGANIC COMPOUNDS BY GC/MS

Analyses

			EPA 8260B		
RunID: MS11_060629A	QC Batch:	A06VW187	PrepDat	e:	Analyst: HH
1,2-Dibromoethane	N	D 0.50	µg/L	1	6/29/2006
1,2-Dichloroethane	N	D 0.50	µg/L	1	6/29/2006
Benzene	N	D 0.50	µg/L	1	6/29/2006
Di-isopropyl ether	N	D 0.50	µg/L	1	6/29/2006
Ethyl tert-butyl ether	N	D 0.50	µg/L	1	6/29/2006
Ethylbenzene	N	D 0.50	µg/L	1	6/29/2006
m,p-Xylene	NI	D 1.0	µg/L	1	6/29/2006
MTBE	NI	D 0.50	µg/L	1	6/29/2006
o-Xylene	N	0.50	µg/L	1	6/29/2006
Tert-amyl methyl ether	N	D 0.50	μg/L	1	6/29/2006
Tert-Butanol	N	D 10	µg/L	1	6/29/2006
Toluene	N	0.50	µg/L	1	6/29/2006

Qualifiers:

- Analyte detected in the associated Method Blank в
- Holding times for preparation or analysis exceeded Η
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Ε
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Adva	nced Technolog	y Laborator	ies	-		
CLIEN	T: Fugro West,	Inc.		Client Sample ID:	M-6	
Lab Or	der: 085258			Tag Number:		
Project	: APA Fund,	838.006		Collection Date:	6/23/2006 9	9:45:00 AM
Lab ID:	: 085258-011	В		Matrix:	WATER	
Analyse	28	Res	ult PQL	Qual Units	DF	Date Analyzed
GASOL	INE RANGE ORGANIC	S BY GC/FID		EPA 8015B(M)		
RunID:	GC6 060703A	QC Batch:	106VW175	Prep[Date:	Analyst: EA

0.050

mg/L

0.067

Advanced Technology Laboratories

Date: 11-Jul-06

1

7/3/2006

Qualifiers:

GRO

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 15 of 43

Date: 11-Jul-06

CLIENT Lab Orde		, Inc.	Client Sample ID: M-6 Tag Number:							
Project:	APA Fund,		Collection Date: 6/23/2006 9:45:00 AM Matrix: WATER							
Lab ID:	085258-011	-	Result POL Qual Units DF Date Analyzed							
Analyses DIESEL 8	MOTOR OIL RANG					A 8015			Date	
RunID: 0	GC7_060705B	QC Batch:	28930				PrepDate:	6/30/2	2006	Analyst: MFR
DRO ORO			069 0.16	0.050 0.050		mg/L mg/L	1			7/5/2006 7/5/2006

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 16 of 43

Advanced Technology Laboratories

17 of 44

CLIENT:	Fugro West, Inc.	Client Sample ID: M-5
Lab Order:	085258	Tag Number:
Project:	APA Fund, 838.006	Collection Date: 6/23/2006 9:15:00 AM
Lab ID:	085258-012A	Matrix: WATER

Analyses	Result	PQL Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COM	POUNDS BY GC/MS	<u> </u>		
		EPA 8260B		

RunID: MS11_060629A	QC Batch:	A06	/W187	Pre	epDate:	Analyst: HH
1,2-Dibromoethane		ND	0.50	µg/L	1	6/29/2006
1,2-Dichloroethane		ND	0.50	µg/L	1	6/29/2006
Benzene		ND	0.50	µg/L	1	6/29/2006
Di-isopropyl ether		ND	0.50	μg/L	1	6/29/2006
Ethyl tert-butyl ether		ND	0.50	µg/L	1	6/29/2006
Ethylbenzene		ND	0.50	µg/L	1	6/29/2006
m,p-Xylene		ND	1.0	µg/L	1	6/29/2006
MTBE		ND	0.50	µg/L	1	6/29/2006
o-Xylene		ND	0.50	µg/L	1	6/29/2006
Tert-amyl methyl ether		ND	0.50	µg/L	1	6/29/2006
Tert-Butanol		ND	10	µg/L	1	6/29/2006
Toluene		ND	0.50	µg/L	1	6/29/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 11-Jul-06

Page 17 of 43

Date: 11-Jul-06

CLIENT:	Fugro West,	Inc.		Client	Sample ID:	M-5			
Lab Order	.: 085258			Т					
Project:	APA Fund, 8	38.006	Collection Date: 6/23/2006 9:15:00 AM						
Lab ID:	085258-012I	3			Matrix:	WATER			
Analyses	·	Res	ult P	QL Qual	Units	DF	Date Analyzed		
GASOLINE	RANGE ORGANIC	S BY GC/FID							
				EF	PA 8015B(M)				
RunID: GC	C6_060703A	QC Batch:	106VW175		Prep	Date:	Analyst: EA		
GRO			ND 0	.050	mg/L	1	7/3/2006		

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 18 of 43

Advanced	Technology	Laboratories
----------	------------	--------------

Date: 11-Jul-06

1

1

7/5/2006

7/5/2006

CLIENT:	Fugro West, Inc.		Client Sample ID:	M-5					
Lab Order: 085258			Tag Number:						
Project:	APA Fund, 838.006		Collection Date: 6/23/2006 9:15:00 AM						
Lab ID:	085258-012C	Matrix: WATER							
Analyses		Result	PQL Qual Units	DF	Date	Analyzed			
DIESEL & N	NOTOR OIL RANGE ORGAN EPA 3		Э ЕРА 8015В(М)						
RunID: GC	7_060705B QC	Batch: 2893	0 Prep	Date:	6/30/2006	Analyst: MFR			

0.050

0.050

mg/L

mg/L

ND

ND

Qualifiers:

DRO

ORO

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 19 of 43

Advanced Technology Laboratories 20 of 44

CLIENT: Fugro Wes	t, Inc.	Client Sample ID:	M-1
Lab Order: 085258		Tag Number:	
Project: APA Fund,	838.006	Collection Date:	6/23/2006 10:25:00 AM
Lab ID: 085258-013	3A	Matrix:	WATER

Analyses Result PQL Qual Units DF Date Date VOLATILE ORGANIC COMPOUNDS BY GC/MS EDA 0000D EDA 0000D

			EPA 8260B		
RunID: MS11_060628B	QC Batch: A06	SVW186	Pre	pDate:	Analyst: HH
1,2-Dibromoethane	ND	0.50	µg/L	1	6/29/2006
1,2-Dichloroethane	ND	0.50	µg/L	1	6/29/2006
Benzene	ND	0.50	µg/L	1	6/29/2006
Di-isopropyl ether	ND	0.50	µg/L	1	6/29/2006
Ethyl tert-butyl ether	ND	0.50	µg/L	1	6/29/2006
Ethylbenzene	0.53	0.50	µg/L	1	6/29/2006
m,p-Xylene	1.4	1.0	µg/L	1	6/29/2006
MTBE	2.3	0.50	µg/L	1	6/29/2006
o-Xylene	0.51	0.50	µg/L	1	6/29/2006
Tert-amyl methyl ether	ND	0.50	µg/L	1	6/29/2006
Tert-Butanol	ND	10	µg/L	1	6/29/2006
Toluene	ND	0.50	µg/L	1	6/29/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 20 of 43

21 of 44

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

Date: 11-Jul-06

Date: 11-Jul-06

CLIEN	T: Fugro Wes	t, Inc.		Client Sample ID	: M-1					
Lab Or	der: 085258		Tag Number:							
Project	: APA Fund,	, 838.006	Collection Date: 6/23/2006 10:25:00 AM							
Lab ID	: 085258-013	3B	Matrix: WATER							
Analyses			ult PQL	Qual Units	DF	Date Analyzed				
GASOL	INE RANGE ORGANI	CS BY GC/FID			、 、					
				EPA 8015B(M))					
RunID:	GC6_060629B	QC Batch:	106VW172	Pre	pDate:	Analyst: TT				
GRO		:	2.8 0.050	mg/L	1	6/30/2006				

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 21 of 43

Date: 11-Jul-06

CLIEN	T: F	Fugro West, Inc.Client Sample ID: M-1									
Lab Or	r der: 0	85258		Tag Number:							
Project: APA Fund, 838.006			Collection Date: 6/23/2006 10:25:00 AM								
Lab ID): 0	85258-013C	Matrix: WATER								
Analyses Re:			Res	ult	PQL	Qual	Units		DF	Date	Analyzed
DIESEL	& MOTOR	DIL RANGE ORGA	NICS BY 3510C	GC/FID		EP	A 8015	5B(M)			
RunID:	GC7_060705	B Q	C Batch:	28930				PrepDate:		6/30/2006	Analyst: MFR
			0	.25	0.050		mg/L		1		7/5/2006
DRO			.								

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation rangeND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 22 of 43

Advanced Technology Laboratories

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

23 of 44

Advance	Гb	echno	ology	Labora	tories
---------	----	-------	-------	--------	--------

Date: 11-Jul-06

Analyses		Result	PQL Qual Units	DF	Date Analyzed
Lab ID:	085258-014A		Matrix:	WATER	
Project:	APA Fund, 838.006		Collection Date:	6/23/2006 9	9:40:00 AM
Lab Order:	085258		Tag Number:	;	
CLIENT:	Fugro West, Inc.		Client Sample ID:	B-18	

VOLATILE ORGANIC COMPOUNDS BY GC/MS

			EPA 8260B		
RunID: MS11_060628B	QC Batch: A06V	/W186	Pre	pDate:	Analyst: HH
1,2-Dibromoethane	ND	5.0	µg/L	10	6/29/2006
1,2-Dichloroethane	ND	5.0	µg/L	10	6/29/2006
Benzene	940	5.0	µg/L	10	6/29/2006
Di-isopropyl ether	ND	5.0	µg/L	10	6/29/2006
Ethyl tert-butyl ether	ND	5.0	µg/L	10	6/29/2006
Ethylbenzene	470	5.0	µg/L	10	6/29/2006
m,p-Xylene	2400	100	µg/L	100	6/29/2006
MTBE	ND	5.0	µg/L	10	6/29/2006
o-Xylene	580	5.0	µg/L	10	6/29/2006
Tert-amyl methyl ether	ND	5.0	µg/L	10	6/29/2006
Tert-Butanol	ND	100	µg/L	10	6/29/2006
Toluene	2600	50	µg/L	100	6/29/2006

Qualifiers:

В Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S
- Surrogate Diluted Out DO

- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 23 of 43

Advance	d Technology Lរ	aboratorie	S	Date: 11-Jul-06						
CLIENT:	Fugro West, Inc.		Client Sa	ample ID:	B-18	· · · ·				
Lab Order:	085258		Tag	Number:						
Project:	APA Fund, 838.00	06	Collect	tion Date:	6/23/2006 9	2:40:00 AM				
Lab ID:	085258-014B			Matrix:	WATER					
Analyses		Result	PQL Qual U	J nits	DF	Date Analyzed				
JASOLINE R	ANGE ORGANICS BY	GC/FID	EPA	8015B(M)						
RunID: GC6_	_060629B	QC Batch:	106VW172	PrepD	ate:	Analyst: TT				

0.050

29

mg/L

1

6/30/2006

Qualifiers:

GRO

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 24 of 43

Advanced Technology Laboratories 25 of 44

Advanced	Technology	Laboratories
----------	------------	--------------

1

7/5/2006

CLIEN	T: Fugro W	est, Inc.		Clie	ent Sample II): B-18		
Lab Or	rder: 085258				Tag Number	r:		
Project	t: APA Fur	nd, 838.006		С	ollection Date	e: 6/23/200)6 9:40:00 A	AM
Lab ID	085258-0)14C			Matrix	K: WATER	2	
Analys	es	Re	sult	PQL Qu	ial Units	DF	' Date	Analyzed
DIESEL	& MOTOR OIL RA	NGE ORGANICS B EPA 3510C	Y GC/FID		EPA 8015B(N	1)		
RunID:	GC7_060705B	QC Batch:	28930		Pre	pDate:	6/30/2006	Analyst: MFR
DRO			5.2	0.056	mg/L	1		7/5/2006

0.056

mg/L

0.13

Qualifiers:

DRO

ORO

Analyte detected in the associated Method Blank В

- Holding times for preparation or analysis exceeded н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

Value above quantitation range Е Not Detected at the Reporting Limit ND Results are wet unless otherwise specified

Page 25 of 43

Advanced Technology Laboratories

26 of 44

Date: 11-Jul-06

CLIENT:	Fugro West, Inc.			С	lient Sample ID:	B-18	
Lab Order	.: 085258				Tag Number:		
Project:	APA Fund, 838.	006			Collection Date:	6/23/2006 9	9:40:00 AM
Lab ID:	085258-014D				Matrix:	WATER	
Analyses		Re	sult	PQL	Qual Units	DF	Date Analyzed
GASOLINE	RANGE ORGANICS B	Y GC/FID			EPA 8015B(M)		
RunID: G	C6 060705B	QC Batch:	106∨W	178	Prepl	Date:	Analyst: EA
GRO	_		34	0.050	mg/L	1	7/6/2006

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Page 26 of 43

CLIENT: Fugro West, Inc.

 Work Order:
 085258

 Project:
 APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID:	MB-28920	SampType: MBLK	TestCod	e: 8015_S_D	M L Units: mg/Kg		Prep Date	e: 6/29/20	06	RunNo: 651	70	
Client ID:	PBS	Batch ID: 28920	TestN	o: EPA 8015	B(M EPA 3550B		Analysis Date	e: 6/29/20	06	SeqNo: 967	296	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO ORO		ND ND	1.0 1.0									
Sample ID:	LCS-28920	SampType: LCS	TestCod	e: 8015_S_D	M L. Units: mg/Kg		Prep Dat	e: 6/29/20	06	RunNo: 651	170	
Client ID:	LCSS	Batch ID: 28920	TestN	o: EPA 8015	B(M EPA 3550B		Analysis Dat	e: 6/29/20	06	SeqNo: 967	7297	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO		14.276	1.0	33.00	0	43.3	38	106				
Sample ID:	085258-003A	MS SampType: MS	TestCod	e: 8015_S_D	M L Units: mg/Kg		Prep Dat	e: 6/29/20	06	RunNo: 651	170	
Client ID:	B-18 @ 18	Batch ID: 28920	TestN	o: EPA 8015	B(M EPA 3550B		Analysis Dat	e: 6/29/20	06	SeqNo: 967	7298	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO		154.535	1.0	33.00	502.8	-1060	27	109				S
Sample ID:	085258-003A	MSD SampType: MSD	TestCod	e: 8015_S_D	M L Units: mg/Kg		Prep Dat	e: 6/29/20	06	RunNo: 65	170	
Client ID:	B-18 @ 18	Batch ID: 28920	TestN	o: EPA 8015	B(M EPA 3550B		Analysis Dat	e: 6/30/20	006	SeqNo: 96	7299	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO		491.014	1.0	33.00	502.8	-35.8	27	109	154.5	104	30	SRE
Sample ID:	MB-28920	SampType: MBLK	TestCoo	ie: 8015_S_D	M L Units: mg/Kg		Prep Dat	e: 6/29/20)06	RunNo: 65	256	
Client ID:	PBS	Batch ID: 28920	TestN	lo: EPA 8015	B(M EPA 3550B		Analysis Dat	te: 7/5/200)6	SeqNo: 96	9149	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO ORO		ND ND	1.0 1.0									
Qualifiers:	R RPD	e above quantitation range outside accepted recovery limits ulations are based on raw values			ing times for preparat: e/Surrogate outside of	•		ND erenc DO				ge 27 (

CLIENT:	Fugro West, Inc.
Work Order:	085258
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: 085258-003AMSD Client ID: B-18 @ 18	SampType: MSD Batch ID: 28920			M L Units: mg/Kg B(M EPA 3550B		Prep Da Analysis Da	te: 6/29/20 te: 7/5/200		RunNo: 652 SeqNo: 969		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO	471.187	10	33.00	460.7	31.7	25	109	154.5	101	30	R

Qualifiers:	E R	Value above quantitation range RPD outside accepted recovery limits Calculations are based on raw values	H S	Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc		Not Detected at the Reporting Limit Surrogate Diluted Out	Page 28 of 4
-------------	--------	--	--------	---	--	---	--------------

29 of 44

CLIENT: Fugro West, Inc. Work Order: 085258 **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: E062806MB1	SampType: MBLK			AS Units: mg/Kg		Prep Date	ə:		RunNo: 650	88	
Client ID: PBS	Batch ID: E06VS132	TestN	lo: EPA 8015	B(M		Analysis Date	e: 6/28/20	06	SeqNo: 965	789	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	ND	1.0							·····		
Sample ID: E062806MB1MS	SampType: MS	TestCoo	le: 8015_S_G	AS Units: mg/Kg		Prep Date	э:		RunNo: 650	88	
Client ID: ZZZZZZ	Batch ID: E06VS132	TestN	lo: EPA 8015	B(M		Analysis Date	e: 6/28/20	006	SeqNo: 965	5790	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	4.906	1.0	5.000	0	98.1	34	140				
Sample ID: E062806MB1MSD	SampType: MSD	TestCoo	le: 8015_S_G	AS Units: mg/Kg		Prep Date	e:		RunNo: 650)88	
Sample ID: E062806MB1MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: E06VS132		le: 8015_S_G lo: EPA 8015	•••		Prep Date Analysis Date		006	RunNo: 650 SeqNo: 965		
			lo: EPA 8015	•••	%REC	Analysis Date	e: 6/28/20	006 RPD Ref Val			Qual
Client ID: ZZZZZZ	Batch ID: E06VS132	TestN	lo: EPA 8015	B(M		Analysis Date	e: 6/28/20		SeqNo: 965	5791	Qual
Client ID: ZZZZZZ Analyte	Batch ID: E06VS132 Result	TestN PQL 1.0	lo: EPA 8015 SPK value 5.000	B(M SPK Ref Val	%REC	Analysis Date	e: 6/28/20 HighLimit 140	RPD Ref Val	SeqNo: 965 %RPD	6791 RPDLimit 30	Qual
Client ID: ZZZZZZ Analyte GRO	Batch ID: E06VS132 Result 4.956	TestN PQL 1.0 TestCoo	lo: EPA 8015 SPK value 5.000	B(M SPK Ref Val 0 GAS Units: mg/Kg	%REC 99.1	Analysis Date LowLimit 34	e: 6/28/20 HighLimit 140 e:	RPD Ref Val 4.906	SeqNo: 965 %RPD 1.01	8791 RPDLimit 30	Qual
Client ID: ZZZZZZ Analyte GRO Sample ID: E062806LCS2	Batch ID: E06VS132 Result 4.956 SampType: LCS	TestN PQL 1.0 TestCoo	lo: EPA 8015 SPK value 5.000 le: 8015_S_C lo: EPA 8015	B(M SPK Ref Val 0 GAS Units: mg/Kg	%REC 99.1	Analysis Date LowLimit 34 Prep Date Analysis Date	e: 6/28/20 HighLimit 140 e: e: 6/28/20	RPD Ref Val 4.906	SeqNo: 965 %RPD 1.01 RunNo: 650	8791 RPDLimit 30	Qual

Qualifiers: Е Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

Page 29 of 43

CLIENT: Fugro West, Inc. 085258 Work Order: **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: E062906MB1	SampType: MBLK	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: PBS	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966102
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	ND	1.0		
Sample ID: E062906MB1MS	SampType: MS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: ZZZZZZ	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966103
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.965	1.0 5.000 0	99.3 34 140	
Sample ID: E062906MB1MSD	SampType: MSD	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: ZZZZZZ	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966104
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.639	1.0 5.000 0	92.8 34 140 4.965	6.79 30
Sample ID: E062906LCS1	SampType: LCS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: LCSS	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966106
2000				
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: Е Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

CLIENT: Fugro West, Inc. Work Order: 085258 **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_LL

Sample ID: MB-28930	SampType: MBLK	TestCode: 8015_W_DM_ Units: mg/L	Prep Date: 6/30/2006	RunNo: 65281
Client ID: PBW	Batch ID: 28930	TestNo: EPA 8015B(M EPA 3510C	Analysis Date: 7/5/2006	SeqNo: 969138
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	ND	0.050		
ORO	ND	0.050		
Sample ID: LCS-28930	SampType: LCS	TestCode: 8015_W_DM_ Units: mg/L	Prep Date: 6/30/2006	RunNo: 65281
Client ID: LCSW	Batch ID: 28930	TestNo: EPA 8015B(M EPA 3510C	Analysis Date: 7/5/2006	SeqNo: 969139
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.666	0.050 1.000 0	66.6 50 119	
Sample ID: MB-28930MS	SampType: MS	TestCode: 8015_W_DM_ Units: mg/L	Prep Date: 6/30/2006	RunNo: 65281
Client ID: ZZZZZZ	Batch ID: 28930	TestNo: EPA 8015B(M EPA 3510C	Analysis Date: 7/5/2006	SeqNo: 969140
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.712	0.050 1.000 0	71.2 50 119	
Sample ID: MB-28930MSD	SampType: MSD	TestCode: 8015_W_DM_ Units: mg/L	Prep Date: 6/30/2006	RunNo: 65281
Client ID: ZZZZZZ	Batch ID: 28930	TestNo: EPA 8015B(M EPA 3510C	Analysis Date: 7/5/2006	SeqNo: 969141
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.715	0.050 1.000 0	71.5 50 119 0.7118	0.461 30
1				

Qualifiers: Ε Value above quantitation range

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits Calculations are based on raw values

S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 31 of 43

CLIENT:Fugro West, Inc.Work Order:085258Project:APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1062906LCS4	SampType: LCS	TestCode: 8015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 651	48	
Client ID: LCSW	Batch ID: 106VW172	TestNo: EPA 8015B(Μ		Analysis Dat	e: 6/30/20	06	SeqNo: 966	961	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	0.934	0.050 1.000	0	93.4	71	122				
Sample ID: 1062906MB4MS	SampType: MS	TestCode: 8015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 65	148	
Client ID: ZZZZZZ	Batch ID: 106VW172	TestNo: EPA 8015B(M		Analysis Dat	e: 6/30/20	06	SeqNo: 966	5962	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	0.922	0.050 1.000	0	92.2	71	122				
Sample ID: 1062906MB4MSD	SampType: MSD	TestCode: 8015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 65	148	
Client ID: ZZZZZZ	Batch ID: 106VW172	TestNo: EPA 8015B(М		Analysis Dat	e: 6/30/20	06	SeqNo: 966	3963	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	0.916	0.050 1.000	0	91.6	71	122	0.9220	0.653	30	
Sample ID: 1062906MB4	SampType: MBLK	TestCode: 8015_W_GP	Units: mg/L		Prep Dat	e:		RunNo: 65	148	
Client ID: PBW	Batch ID: 106VW172	TestNo: EPA 8015B(M		Analysis Dat	e: 6/30/20)06	SeqNo: 96	6964	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
GRO	ND	0.050								
	ove quantitation range	H Holding	g times for preparat	ion or analy	sis exceeded	ND	Not Detected at	t the Reporting L	imit	
	side accepted recovery limits ons are based on raw values	S Spike/S	Surrogate outside of	limits due t	o matrix interf					ge 32 o

CLIENT:Fugro West, Inc.Work Order:085258

Project: APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1070306LCS1	The ball of the ba							
Client ID: LCSW	Batch ID: 106VW175	TestNo: EPA 8015B(M	Analysis Date: 7/3/2006	SeqNo: 968154				
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual				
GRO	0.925	0.050 1.000 0	92.5 71 122					
Sample ID: 1070306MB2MS	SampType: MS	TestCode: 8015_W_GP Units: mg	L Prep Date:	RunNo: 65225				
Client ID: ZZZZZZ	Batch ID: 106VW175	TestNo: EPA 8015B(M	Analysis Date: 7/3/2006	SeqNo: 968155				
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual				
GRO	0.968	0.050 1.000 0	96.8 71 122					
Sample ID: 1070306MB2MSD	SampType: MSD	TestCode: 8015_W_GP Units: mg	L Prep Date:	RunNo: 65225				
Sample ID: 1070306MB2MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 106VW175	TestCode: 8015_W_GP Units: mg TestNo: EPA 8015B(M	L Prep Date: Analysis Date: 7/3/2006	RunNo: 65225 SeqNo: 968156				
			•					
Client ID: ZZZZZZ	Batch ID: 106VW175	TestNo: EPA 8015B(M	Analysis Date: 7/3/2006	SeqNo: 968156				
Client ID: ZZZZZZ Analyte	Batch ID: 106VW175 Result	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val	Analysis Date:7/3/2006%RECLowLimitHighLimitRPD Ref Val99.3711220.9680	SeqNo: 968156 %RPD RPDLimit Qual 2.55 30				
Client ID: ZZZZZZ Analyte GRO	Batch ID: 106VW175 Result 0.993	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val 0.050 1.000 0	Analysis Date: 7/3/2006 %REC LowLimit HighLimit RPD Ref Val 99.3 71 122 0.9680	SeqNo: 968156 %RPD RPDLimit Qual				
Client ID: ZZZZZZ Analyte GRO Sample ID: 1070306MB2	Batch ID: 106VW175 Result 0.993 SampType: MBLK	PQL SPK value SPK Ref Val 0.050 1.000 0 TestCode: 8015_W_GP Units: mg	Analysis Date: 7/3/2006 %REC LowLimit HighLimit RPD Ref Val 99.3 71 122 0.9680 /L Prep Date: Image: Complex State Stat	SeqNo: 968156 %RPD RPDLimit Qual 2.55 30 RunNo: 65225				

Qualifiers:	E R	Value above quantitation range RPD outside accepted recovery limits Calculations are based on raw values	H S	Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc	ND DO	 Page 33 of 43

34 of 44

CLIENT:Fugro West, Inc.Work Order:085258Project:APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1070506LCS2	SampType: LCS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65287
Client ID: LCSW	Batch ID: 106VW178	TestNo: EPA 8015B(M	Analysis Date: 7/5/2006	SeqNo: 969273
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.920	0.050 1.000 0	92.0 72 119	• • • • • • • • • • • • • • • • • • •
Sample ID: 1070506MB4MS	SampType: MS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65287
Client ID: ZZZZZZ	Batch ID: 106VW178	TestNo: EPA 8015B(M	Analysis Date: 7/5/2006	SeqNo: 969274
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.892	0.050 1.000 0	89.2 72 119	<u> </u>
Sample ID: 1070506MB4MSD	SampType: MSD	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65287
Client ID: ZZZZZZ	Batch ID: 106VW178	TestNo: EPA 8015B(M	Analysis Date: 7/6/2006	SeqNo: 969275
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.910	0.050 1.000 0	91.0 72 119 0.8920	2.00 30
Sample ID: 1070506MB4	SampType: MBLK	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65287
Client ID: PBW	Batch ID: 106VW178	TestNo: EPA 8015B(M	Analysis Date: 7/6/2006	SeqNo: 969276
Analyte	B #	PQL SPK value SPK Ref Val		
	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

 Qualifiers:
 E
 Value above quantitation range
 H
 Holding times for preparation or analysis exceeded
 ND
 Not Detected at the Reporting Limit

 R
 RPD outside accepted recovery limits
 S
 Spike/Surrogate outside of limits due to matrix interference
 DO
 Surrogate Diluted Out
 Page 34 of 43

 Calculations are based on raw values
 ND
 ND
 Not Detected at the Reporting Limit
 Page 34 of 43

CLIENT:Fugro West, Inc.Work Order:085258Project:APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: C070306LCS1	SampType: LCS	TestCoo	de: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 652	229	
Client ID: LCSS	Batch ID: C06VS032	Test	No: EPA 8260	В		Analysis Da	te: 7/3/200	6	SeqNo: 968	3189	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	102.170	5.0	100.0	0	102	85	122				
MTBE	105.940	5.0	100.0	0	106	67	134				
Foluene	105.730	5.0	100.0	0	106	83	122				
Sample ID: C070306MB2MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 652	229	
Client ID: ZZZZZZ	Batch ID: C06VS032	Test	No: EPA 8260	В		Analysis Da	te: 7/3/200	16	SeqNo: 968	3191	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	94.210	5.0	100.0	0	94.2	57	144				
MTBE	94.280	5.0	100.0	0	94.3	47	147				
Foluene	99.300	5.0	100.0	0	99.3	54	144				
Sample ID: C070306MB2	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 652	229	
Client ID: PBS	Batch ID: C06VS032	Test	No: EPA 8260	В		Analysis Da	te: 7/3/200)6	SeqNo: 968	3193	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0									
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
Di-isopropyl ether	ND	5.0									
Ethyl Tert-butyl ether	ND	5.0									
Ethylbenzene	ND	5.0									
m,p-Xylene	ND	10									
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	ND	5.0									
Qualifiers: E Value above	e quantitation range		H Hold	ing times for preparation	on or analy	sis exceeded	ND	Not Detected at	the Reporting I	imit	
	· ·										
R RPD outsid	e accepted recovery limits		S Spike	e/Surrogate outside of I	imits due t	o matrix inter	ferenc DO	Surrogate Dilut	ed Out		

Fugro West, Inc. **CLIENT:** Work Order: 085258 **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062906LCS2	SampType: LCS	TestCo	de: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 651	37	
Client ID: LCSS	Batch ID: R06VS128	Test	No: EPA 8260	3		Analysis Da	te: 6/29/20	06	SeqNo: 966	700	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	95.310	5.0	100.0	0	95.3	85	122				
MTBE	96.170	5.0	100.0	0	96.2	67	134				
Toluene	93.590	5.0	100.0	0	93.6	83	122				
Sample ID: R062906MB3MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 651	37	
Client ID: ZZZZZZ	Batch ID: R06VS128	Test	No: EPA 8260	В		Analysis Da	te: 6/29/20	006	SeqNo: 966	701	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	90.410	5.0	100.0	0	90.4	57	144				
MTBE	93.540	5.0	100.0	0	93.5	47	147				
Toluene	89.650	5.0	100.0	0	89.6	54	144				
Sample ID: R062906MB3MSD	SampType: MSD	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 65	37	
Client ID: ZZZZZZ	Batch ID: R06VS128	Test	No: EPA 8260	В		Analysis Da	ite: 6/29/20	006	SeqNo: 966	5702	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	95.670	5.0	100.0	0	95.7	57	144	90,41	5.65	30	
MTBE	102.200	5.0	100.0	0	102	47	147	93.54	8.85	30	
Toluene	95.010	5.0	100.0	0	95.0	54	144	89.65	5.81	30	
Sample ID: R062906MB3	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	ite:		RunNo: 65	37	
Client ID: PBS	Batch ID: R06VS128	Test	No: EPA 8260	в		Analysis Da	nte: 6/29/20	006	SeqNo: 96	3703	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0	<u> </u>								
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
Di-isopropyl ether	ND	5.0									
Ethyl Tert-butyl ether	ND	5.0									
	ND	5.0									

Qualifiers: Е Value above quantitation range

H Holding times for preparation or analysis exceeded S

R RPD outside accepted recovery limits Calculations are based on raw values

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 36 of 43

CLIENT: Fugro West, Inc. 085258 Work Order: **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062906MB3 Client ID: PBS	SampType: MBLK Batch ID: R06VS128	TestCode: 8260_S Units: µg/Kg TestNo: EPA 8260B				Prep Da Analysis Da		RunNo: 65137 SegNo: 966703			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	10									
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	ND	5.0									

Qualifiers: Е Value above quantitation range R RPD outside accepted recovery limits

Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 37 of 43

Advanced Technology Laboratories

CLIENT: Fugro West, Inc. Work Order: 085258 APA Fund, 838.006 **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R063006LCS1	SampType: LCS	TestCoo	le: 8260_S	Units: µg/Kg		Prep Dat	e:		RunNo: 651	96	
Client ID: LCSS	Batch ID: R06VS129	TestN	io: EPA 8260I	3		Analysis Dat	te: 6/30/20	06	SeqNo: 967	691	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	97.180	5.0	100.0	0	97.2	85	122				
MTBE	98.770	5.0	100.0	0	98.8	67	134				
Toluene	93.750	5.0	100.0	0	93.8	83	122				
Sample ID: R063006MB1MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 651	96	
Client ID: ZZZZZZ	Batch ID: R06VS129	Test	lo: EPA 8260	в		Analysis Da	te: 6/30/20)06	SeqNo: 967	692	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	92.660	5.0	100.0	0	92.7	57	144				
MTBE	93.500	5.0	100.0	0	93.5	47	147				
Toluene	91.500	5.0	100.0	0	91.5	54	144				
Sample ID: R063006MB1MSD	SampType: MSD	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 65	96	
Client ID: ZZZZZZ	Batch ID: R06VS129	Test	No: EPA 8260	В		Analysis Da	te: 6/30/20	006	SeqNo: 967	7693	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	89.400	5.0	100.0	0	89.4	57	144	92.66	3.58		
MTBE	92.250	5.0	100.0	0	92.2	47	147	93.50	1.35	30	
Toluene	88.020	5.0	100.0	0	88.0	54	144	91.50	3.88	30	
Sample ID: R063006MB1	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 65	196	
Client ID: PBS	Batch ID: R06VS129	Test	No: EPA 8260	в		Analysis Da	ite: 6/30/20	006	SeqNo: 96	7694	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0									
1,2-Dichloroethane	ND	5.0									
	ND	5.0									
Benzene	110										
Di-isopropyl ether	ND	5.0									
		5.0 5.0									

Qualifiers: Е Value above quantitation range

Н Holding times for preparation or analysis exceeded S

RPD outside accepted recovery limits R Calculations are based on raw values

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 38 of 43

CLIENT:Fugro West, Inc.Work Order:085258Project:APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R063006M			le: 8260_S	Units: µg/Kg		Prep Da			RunNo: 651	96	
Client ID: PBS	Batch ID: R06VS12	29 TestN	TestNo: EPA 8260B			Analysis Da	te: 6/30/20	SeqNo: 967694			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n,p-Xylene	ND	10:									
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Fert-amyl methyl ether	ND	5.0									
Fert-Butanol Foluene	ND	100									
loiuene	ND	5.0									
		,									
Qualifiers: E Va	alue above quantitation range		H Hold	ling times for preparation	on or analy	sis exceeded	ND	Not Detected at	the Reporting I	imit	
	PD outside accepted recovery limits			e/Surrogate outside of							
	lculations are based on raw values							Sarogae Diluk	n out	Pag	ge 39 of
C.	are oused on law values									- 42	

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062806LC2	SampType: LCS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 651	09	
Client ID: LCSW	Batch ID: A06VW186	Test	lo: EPA 8260	B		Analysis Da	ite: 6/29/20	06	SeqNo: 966	539	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18.610	0.50	20.00	0	93.0	90	121				
МТВЕ	16.160	0.50	20.00	0	80.8	66	132				
Toluene	19.480	0.50	20.00	0	97.4	93	121				
Sample ID: A062806MB6MS	SampType: MS	TestCo	de: 8260_WP	LL Units: µg/L		Prep Da	te:		RunNo: 651	109	
Client ID: ZZZZZZ	Batch ID: A06VW186		No: EPA 8260			Analysis Da	ite: 6/29/20	006	SeqNo: 966		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	19.360	0.50	20.00	0	96.8	90	121				
MTBE	16.460	0.50	20.00	0	82.3	66	132				
Toluene	20.310	0.50	20.00	0	102	93	121				
Sample ID: A062806MB6MSD	SampType: MSD	TestCo	de: 8260 WP	LL Units: µg/L		Prep Da	ite:		RunNo: 65	109	
Client ID: ZZZZZZ	Batch ID: A06VW186		No: EPA 8260			•	ite: 6/29/20	006	SeqNo: 966		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	19.480	0.50	20.00	0	97.4	90	121	19.36	0.618	30	
MTBE	16.690	0.50	20.00	0	83.4	66	132	16.46	1.39	30	
Toluene	20.270	0.50	20.00	0	101	93	121	20.31	0.197	30 30	
Sample ID: A062806MB6	SampType: MBLK	TestCo	de: 8260_WP	LL Units: µg/L		Prep Da	ite:		RunNo: 65	109	
Client ID: PBW	Batch ID: A06VW186		No: EPA 8260			Analysis Da	ate: 6/29/20	006	SeqNo: 96		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	0.50						······································			
1,2-Dichloroethane	ND	0.50									
Benzene	ND	0.50									
Di-isopropyl ether	ND	0.50									
l'	ND	0.50									
Ethyl tert-butyl ether											

Value above quantitation range Qualifiers: Е

H Holding times for preparation or analysis exceeded S

R RPD outside accepted recovery limits Calculations are based on raw values

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 40 of 43

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062806MB6	SampType: MBLK			LL Units: µg/L		Prep Da	te:		RunNo: 651	09	
Client ID: PBW	Batch ID: A06VW186	TestN	lo: EPA 8260E	3		Analysis Da	te: 6/29/2	006	SeqNo: 966	542	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	1.0									
МТВЕ	ND	0.50									
o-Xylene	ND	0.50									
Tert-amyl methyl ether	ND	0.50									
Tert-Butanol	ND	10									
Toluene	ND	0.50									
10											
ngenerative starter											
		:									
	ove quantitation range	- ·	H Holdi	ng times for preparati	on or analys	sis exceeded	ND	Not Detected at	the Reporting Li	mit	
	side accepted recovery limits			/Surrogate outside of			erenc DO	Surrogate Dilute	ed Out		e 41 o
	ons are based on raw values									гад	,u +1 0

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062906LC1	SampType: LCS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	e:		RunNo: 651	98	
Client ID: LCSW	Batch ID: A06VW187	Test	No: EPA 8260E	3		Analysis Dat	e: 6/29/20	06	SeqNo: 967	786	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.990	0.50	20.00	0	100	90	112				
MTBE	18.930	0.50	20.00	0	94.6	65	138				
Toluene	20.360	0.50	20.00	0	102	90	111				
Sample ID: A062906MB3MS	SampType: MS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	e:		RunNo: 651	98	
Client ID: ZZZZZZ	Batch ID: A06VW187	Test	No: EPA 8260E	3		Analysis Dat	e: 6/29/20	06	SeqNo: 967	787	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	20.100	0.50	20.00	0	101	90	112				
MTBE	19.230	0.50	20.00	0	96.2	65	138				
Toluene	20.930	0.50	20.00	0	105	90	111				
Sample ID: A062906MB3MSD	SampType: MSD	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	e:		RunNo: 651	198	
Client ID: ZZZZZZ	Batch ID: A06VW187	Test	No: EPA 8260E	3		Analysis Dat	te: 6/29/20	06	SeqNo: 967	7788	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	20.260	0.50	20.00	0	101	90	112	20.10	0.793	30	
MTBE	19.300	0.50	20.00	0	96.5	65	138	19.23	0.363	30	
Toluene	20.700	0.50	20.00	0	104	90	111	20.93	1.10	30	
Sample ID: A062906MB3	SampType: MBLK	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	te:		RunNo: 65'	198	
Client ID: PBW	Batch ID: A06VW187	Test	No: EPA 8260	3		Analysis Dat	te: 6/29/20	06	SeqNo: 967	7789	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	0.50									
1,2-Dichloroethane	ND	0.50									
Benzene	ND	0.50									
Di-isopropyl ether	ND	0.50									
Ethyl tert-butyl ether	ND	0.50									
Ethylbenzene	ND	0.50									
1											
Qualifiers: E Value above	quantitation range		H Holdi	no times for pronomi	ion or analy	sic exceeded	NID	Not Detected	the Demonstruct		
-	quantitation range accepted recovery limits			ng times for preparat /Surrogate outside of				Not Detected at Surrogate Dilute		imit	

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062906MB3 Client ID: PBW	SampType: MBLK Batch ID: A06VW187		de: 8260_WP No: EPA 8260	_LL Units: µg/L B		Prep Da Analysis Da		006	RunNo: 651 SeqNo: 967		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	1.0									
MTBE	ND	0.50									
o-Xylene	ND	0.50									
Tert-amyl methyl ether	ND	0.50									
Tert-Butanol	ND	10									
Toluene	ND	0.50									

Qualifiers: Е Value above quantitation range R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 43 of 43

PROJECT NA	ME: APA Fund																													ANA	LY	SIS F	(EQ	UES	TEL	5	
PROJECT NO	0.: 838.006									L	AB:	AT	Ľ													••••••											
PROJECT CC	NTACT: Obi Nzewi	_								Т	UR	NAI	RO	UNI	D: S	tand	darc	ł												()							
SAMPLED BY	: Obi Nzewi																													(826							
			MA	TRIX		сс	DNTA		RS	T	P	RES	SER	VAT	IVE				S	AMF	PLIN	G D/	ATE	-						d Scavengers (8260)							
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR	VOA	LITER	PINT	TUBE			HCL	n2aU4	HNO ₃	ICE	OTHER	NONE	мс	олтн	DA		YE			TI	ME		NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead							
	<u>P-2</u>	Х			6						x			x			0	6	2	3	0	6	V	8	2	5	-	X	<u> </u>	X	<u> </u>						+
	P-2	Х			 	1				_				Х		Х	0	6	2	3	0	6	O	X	2	S			X								
	<u>m-6</u>	X		ļ	 6						×			Х			0	6	2	3	0	6	0	9	K	5		Х		Х							
	M-B	X			 	1				_		_		Х		Х	0	6	2	3	0	6	0	9	H	5			X								
	<u>m - 5</u>	X			 6					_	×			Х			0	6	2	3	0	6	0	Ý	1	5		Х		Х							
	M-5	X		_	 	1						_		X		х	0	6	2	3	0	6	\mathcal{O}	9	1	2			X								
	<u>m - 1</u>	X		_	 6					_	X			X				6	2	3	0	6	l	0	2	27		Х		X							
	m - (X			 	1						_		X		х	0	6	2	3	0	6	1	0	2	5			X								
	B-18	X	<u> </u>		 6					_	<u>× </u>			X			0	6	2	3	0	6	\mathcal{O}	9		0		Х		X							
	B-18	X	 		 	1				_				X		х	0	6	2	3	0	6	0	9	H	0			X								
			 							1		_																									
																																			1		

	CHAIN OF CUST	ODY RECORD		COMMENTS & NOTES:
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	
	26/06/1430		6/27/06 0920	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
				1000 Broadway, Suite 200
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
g:/server migration/data/template/chain	n of custody			Tel: 510.268.0461 Fax: 510.268.0137

CHAIN OF CUSTODY

PAGE OF

CHAIN OF CUSTODY

PAGE 1 OF 1

PROJECT NA	AME: APA Fund																											AN/	ALYS	SIS R	EQU	EST	ED	Ì
PROJECT NO	D.: 838.006										LA	B: A	TL														Γ	Τ	Τ		T	Τ	Τ	T
PROJECT CO	ONTACT: Obi Nzewi										тι	JRN	ARC	DUN	D: S	Stan	da	ard																
SAMPLED B	Y: Obi Nzewi																								-			(8260						
[r	1									-						-											ngers						
			MA		(СС			RS		PR	ESE	RVA	TIVE				SAI		DAT	E						d Scave						
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	PINT	TUBE		HCL	H ₂ SO ₄	HNO ₃	CE	OTHER	NONE		молтн	DAY	YEAR			ΊΜE		NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead Scavengers (8260)						
	B-18 @10		Х						1					X		1	0	6	2 3	0 6	0	8	4	5		X						+		
	B-18 @15		X						1					X		X	0	6	2 3	0 6	0	9	0	0		X	X	X	+		-		+	
	B-18 @18	<u> </u>	X						1					X		X	0	6	2 3	0 6	0	9	1	0		х	X	X					+	
	B-18 @20		X						1					X		X	0	6	2 3	0 6	0	9	4	5		Х	X	X					+-	
······	B-18 @25		X						1					X		X	0	6	2 3	0 6	1	0	0	0	1	Х	X	X					+	
	B-18 @30.5		X						1					X		X	0	6	2 3	0 6	1	0	1	0	1	Х	X	X					-	
	B-18 @36		X						1					X		X	0	6	2 3	0 6	1	0	3	0		x	X	X					-	
	B-18 @41		X						1					X		X	0	6	2 3	0 6	1	0	5	0		X	X	X	1					
	B-18 @46		X	ļ					1					X		X	0	6	2 3	0 6	1	1	1	2		Х	X	X					1	
			<u> </u>													ļ	┞			<u> </u>					 		-			└───				
			+								-					+	┞			+							–	–	<u> </u>	$\left - \right $				
L		. .	1	1	1	L	1	L	1							1	L					1		<u> </u>	<u> </u>		<u> </u>	Ł	<u> </u>		L			

游

CHAIN OF	CUSTODY RECORD		COMMENTS & NOTES:
RELINQUISHED_BY: (Signature) DATE/	TIME RECEIVED BY: (Signature)	DATE/TIME	-
	1430 - *	0/27/05 0920	
RELINQUISHED BY: (Signature) DATE	TIME RECEIVED BY: (Signature)	DATE/TIME	
RELINQUISHED BY: (Signature) DATE/T	TIME RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
			1000 Broadway, Suite 200
RELINQUISHED BY: (Signature) DATE/T	TIME RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
g:/server migration/data/template/chain of custody			Tel: 510.268.0461 Fax: 510.268.0137

650 4.8 'C

Rachelle Arada

Carmen Aguila From: Wednesday, July 05, 2006 10:56 AM Sent: **Rachelle Arada** To: FW: 2801 Macarthur Blvd Oakland Subject: ----Original Message-----Bing Roura From: Sent: Friday, June 30, 2006 12:20 PM To: Carmen Aquila Cc: Rachelle Arada FW: 2801 Macarthur Blvd Oakland Subject: FYI. Bing ----Original Message-----From: Nzewi, Obi [mailto:ONzewi@Fugro.com] Sent: Friday, June 30, 2006 12:06 PM Bing Roura To: 2801 Macarthur Blvd Oakland Subject: Hi Bing, please ensure that none of the soil samples for this job (Fugro Job No: 838.006, and ATL Job No: 085202) are discarded without consultation with Fugro. Thanks ----Original Message-----From: Bing Roura [mailto:bing@atlglobal.com] Sent: Wednesday, June 28, 2006 3:06 PM To: Nzewi, Obi Cc: Carmen Aguila RE: 2801 Macarthur Subject: For B-14@3.0, I cannot find the sample. Is this supposed to be B-14@30? Thanks, Bing ----Original Message-----From: Nzewi, Obi [mailto:ONzewi@Fugro.com] Sent: Wednesday, June 28, 2006 12:08 PM To: Bing Roura 2801 Macarthur Subject: Hi Bing, could you please prepare a duplicate sample from the following and test them for TPHg. Soil: B-14 @3.0, B-18 @15 Groundwater: B-13, B-15, B-17, and B-18 Thanks Obi Nzewi Project Geologist Fugro West Inc 1000 Broadway, Suite 200 www.fugrowest.com phone: (510) 268 0461 fax: (510) 268 0137 cell: (510) 701 4174

INTENTIALLY BLANK PAGE

July 05, 2006

Obi Nzewi Fugro West, Inc. 1000 Broadway, Suite 200 Oakland, CA 94607 TEL: (510) 268-0461

FAX: (510) 268-0137

RE: APA Fund, 838.006

Attention: Obi Nzewi

Sonelac

ELAP No.: 1838 NELAP No.: 02107CA NEVADA.: CA-401 Arizona: AZ0689 CSDLAC No.: 10196 Workorder No.: 085175

Enclosed are the results for sample(s) received on June 22, 2006 by Advanced Technology Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (562)989-4045 if I can be of further assistance to your company.

Sincerely,

Eddie F. Rodriguez Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories.

Advanced Technology Laboratories

1 of 67

CLIENT:Fugro West, Inc.Project:APA Fund, 838.006Lab Order:085175

Date: 05-Jul-06

CASE NARRATIVE

Analytical Comments for EPA 8015 (DRO & ORO)

Silica Gel clean-up was performed on the extracts.

Advanced Technology Laboratories 2 of 67

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

Page 1 of 66

Advanced	Technology	Laboratories
----------	------------	--------------

Date: 05-Jul-06

Analyses		Result	PQL Qual Units	DF	Date Analyzed
Lab ID:	085175-001A		Matrix:	WATER	
Project:	APA Fund, 838.006		Collection Date:		:45:00 PM
Lab Order:	085175		Tag Number:		
CLIENT:	Fugro West, Inc.		Client Sample ID:	B-13	

......

VOLATILE ORGANIC COMPOUNDS BY GC/MS

Analyses

			EPA 8260B		
RunID: MS11_060624A	QC Batch: A	.06VW179	Pre	pDate:	Analyst: HH
1,2-Dibromoethane	ND	0.50	µg/L	1	6/24/2006
1,2-Dichloroethane	0.98	0.50	µg/L	1	6/24/2006
Benzene	ND	0.50	µg/L	· 1	6/24/2006
Di-isopropyl ether	ND	0.50	µg/L	1	6/24/2006
Ethyl tert-butyl ether	ND	0.50	µg/L	1	6/24/2006
Ethylbenzene	ND	0.50	µg/L	1	6/24/2006
m,p-Xylene	ND	1.0	µg/L	1.	6/24/2006
MTBE	ND	0.50	µg/L	1	6/24/2006
o-Xylene	ND	0.50	µg/L	1	6/24/2006
Tert-amyl methyl ether	ND	0.50	µg/L	1	6/24/2006
Tert-Butanol	ND	10	µg/L	1	6/24/2006
Toluene	ND	0.50	µg/L	1	6/24/2006

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Е Value above quantitation range ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 2 of 66

Advanced Technology Laboratories

3 of 67

Date: 05-Jul-06

CLIENT:	Fugro West, Inc.			Client Sample ID		
Lab Order:	085175			Tag Number:		
Project:	APA Fund, 838.00	5		Collection Date:	6/19/2006 1	:45:00 PM
Lab ID:	085175-001B			Matrix	WATER	
Analyses		Resu	ılt PQL	Qual Units	DF	Date Analyzed
GASOLINE R	ANGE ORGANICS BY (GC/FID		EPA 8015B(M))	
	060622A	C Batch:	106VW167	Pre	Date:	Analyst: TT
RunID: GC6_	0000227					

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 3 of 66

Advanced Technology Laboratories 4 of 67

		8.						
CLIEN	T: Fugro	o West, Inc.			Client Sa	mple ID: B-13		
Lab Or	rder: 0851	75			Tag I	Number:		
Project	t: APA	Fund, 838.006			Collecti	on Date: 6/19/20	06 1:45:00 1	PM
Lab ID	0851	75-001C	Matrix: WATER					
Analyses Result PQL Qual Units DF		F Date	e Analyzed					
DIESEL	& MOTOR OIL	RANGE ORGANICS EPA 3510C		D	EPA 8	015B(M)		-
RunID:	GC7_060626B	QC Batch	h: 288 ⁻	10		PrepDate:	6/26/2006	Analyst: CBR
DRO			0.055	0.053	mg	g/L 1		6/26/2006
ORO			ND 0.053 mg/L 1 6/26/2006					

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 05-Jul-06

Page 4 of 66

Advanced Technology Laboratories 5 of 67

Date: 05-Jul-06

CLIEN	T: Fugro West, Inc.		Client Sample ID: B-13							
Lab Ore	der: 085175	Tag Number:								
Project:	APA Fund, 838.0)06		Collection Date: 6/19/2006 1:45:00 PM						
Lab ID:	085175-001D		Matrix: WATER							
Analyse	s]		sult	PQL Q	ual Units	DF	Date Analyzed			
GASOLI	INE RANGE ORGANICS B	GC/FID			EPA 8015B(M)					
RunID:	GC6_060703A	QC Batch:	tch: 106VW175		PrepDate:		Analyst: EA			
GRO			ND	0.050	mg/L	1	7/3/2006			
GRO			ND	0.050	mg/L	1	7/3/2006			

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 5 of 66

Advanced Technology Laboratories

6 of 67

CLIENT:	Fugro West, Inc.		Client Sample ID:	B-14	
Lab Order:	085175		Tag Number:		
Project:	APA Fund, 838.006		Collection Date:	6/19/2006 1	0:35:00 AM
Lab ID:	085175-002A		Matrix:	WATER	
Analyses		Result	PQL Qual Units	DF	Date Analyzed

Analyses Result PQL Qual Units
VOLATILE ORGANIC COMPOUNDS BY GC/MS

FPA 8260B

Date: 05-Jul-06

	EFA 0200D								
RunID: MS11_060624A	QC Batch: A06	/W179	Pre	pDate:	Analyst: HH				
1,2-Dibromoethane	ND	0.50	µg/L	1	6/24/2006				
1,2-Dichloroethane	ND	0.50	µg/L	<u>`</u> 1	6/24/2006				
Benzene	ND	0.50	µg/L	1	6/24/2006				
Di-isopropyl ether	ŃD	0.50	µg/L	1	6/24/2006				
Ethyl tert-butyl ether	ND	0.50	µg/L	1	6/24/2006				
Ethylbenzene	ND	0.50	µg/L	1	6/24/2006				
m,p-Xylene	ND	1.0	µg/L	1	6/24/2006				
MTBE	ND	0.50	µg/L	1	6/24/2006				
o-Xylene	ND	0.50	µg/L	1	6/24/2006				
Tert-amyl methyl ether	ND	0.50	µg/L	1	6/24/2006				
Tert-Butanol	ND	10	µg/L	1	6/24/2006				
Toluene	ND	0.50	µg/L	1	6/24/2006				

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 6 of 66

Advanced Technology Laboratories

7 of 67

Adva	nced Technology	S	Date: 05-Jul-06						
CLIEN		·	I	Client Sample ID: B-14					
Lab Or	der: 085175		Tag Number:						
Project	: APA Fund, 838	Collection Date: 6/19/2006 10:35:00 AM							
Lab ID	: 085175-002B		Matrix: WATER						
Analyse	es	Result	PQL	Qual Units	DF	Date Analyzed			
GASOL	INE RANGE ORGANICS B	BY GC/FID		EPA 8015B(M)	, 				
RunID:	GC6_060622A	QC Batch:	06VW167	Prep	Date:	Analyst: TT			
GRO		0.078	0.050	mg/L	1	6/22/2006			

Qualifiers:

Analyte detected in the associated Method Blank В

- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е Not Detected at the Reporting Limit ND
 - Results are wet unless otherwise specified

Page 7 of 66

Advanced Technology Laboratories

8 of 67

CLIEN' Lab Ore	Ũ	st, Inc.	Client Sample ID: B-14 Tag Number:							
Lab Ord Project: Lab ID:	APA Fund	,	Collection Date: 6/19/2006 10:35:00 AM Matrix: WATER							
Analyse	s	Res		PQL Qu	al Units	DF	Date	Analyzed		
DIESEL	& MOTOR OIL RAN	GE ORGANICS BY EPA 3510C	GC/FID		EPA 8015B	(M)				
RunID:	GC7_060626B	QC Batch:	28810		F	PrepDate:	6/26/2006	Analyst: CBR		
DRO ORO		0.	063 ND	0.059 0.059	mg/L mg/L	1 1		6/26/2006 6/26/2006		

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 8 of 66

Advanced Technology Laboratories 9 of 67

Advanced	Technology Labo	oratories	Date: 05-Jul-06					
CLIENT: Fugro West, Inc.			Client Sample ID:	B-15				
Lab Order:	085175		Tag Number:					
Project: APA Fund, 838.006			Collection Date: 6/19/2006 4:15:00 PM					
Lab ID:	085175-003A		Matrix: WATER					
Analyses		Result	PQL Qual Units	DF	Date Analyzed			
VOLATILE OR	GANIC COMPOUNDS BY	GC/MS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

VOLATILE ORGANIC COMPO	OUNDS BY GC/MS					
				EPA 8260B		
RunID: MS11_060626A	QC Batch:	A06VW	'181	Pre	epDate:	Analyst: HH
1.2-Dibromoethane	Ν	ID	1.0	µg/L	2	6/26/2006
1,2-Dichloroethane	Ν	ID	1.0	µg/L	2	6/26/2006
Benzene	6	.2	1.0	µg/L	2	6/26/2006
Di-isopropyl ether	N	ID	1.0	µg/L	2	6/26/2006
Ethyl tert-butyl ether	N	ID	1.0	µg/L	2	6/26/2006
Ethylbenzene	:	36	1.0	µg/L	2	6/26/2006
-					-	0/00/000

2.0

1.0

1.0

1.0

20

1.0

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

15

6.8

14

ND

ND

ND

m,p-Xylene

MTBE

o-Xylene

Toluene

Tert-Butanol

Tert-amyl methyl ether

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

2

2

2

2

2

2

6/26/2006

6/26/2006

6/26/2006

6/26/2006

6/26/2006

6/26/2006

Page 9 of 66

Advanced Technology Laboratories 10 of 67

Date: 05-Jul-06

CLIEN	F: Fugro West	Inc.	Client Sample ID: B-15								
Lab Oro	der: 085175			Tag Number:							
Project:	APA Fund,	838.006	Collection Date: 6/19/2006 4:15:00 PM								
Lab ID:	085175-003	В	Matrix: WATER								
Analyses			ult PQL	Qual Units	DF	Date Analyzed					
GASOLI	NE RANGE ORGANIC	S BY GC/FID		EPA 8015B(M)							
RunID:	GC6_060622A	QC Batch:	106VW167	Prep	Date:	Analyst: TT					
GRO		-	7.0 0.050	mg/L	1	6/22/2006					

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 10 of 66

Advanced Technology Laboratories

11 of 67

CLIENT:	CLIENT: Fugro West, Inc.				Client Sample ID: B-15					
Lab Order: 085175 Project: APA Fund, 838.006					Та	g Nur	nber:			
					Colle	ction	Date: 6/19/	/2006	5 4:15:00 P	Μ
Lab ID:	085175-003C		Matrix: WATER							
Analyses		Re	sult	PQL	Qual	Units		DF	Date	Analyzed
DIESEL & M	OTOR OIL RANGE OI	RGANICS B PA 3510C	Y GC/FID		EPA	A 8015	5B(M)			
RunID: GC7	_060626B	QC Batch:	28810				PrepDate:		6/26/2006	Analyst: CBI
DRO			1.5	0.056		mg/L		1		6/26/2006
ORO			ND	0.056		mg/L		4		6/26/2006

Date: 05-Jul-06

Value above quantitation range Ε Analyte detected in the associated Method Blank в Qualifiers: Not Detected at the Reporting Limit ND Н Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interference S Surrogate Diluted Out DO

Results are wet unless otherwise specified

Page 11 of 66

Advanced Technology Laboratories

12 of 67

Date: 05-Jul-06

CLIENT:	Fugro West, Inc.		Client Sample ID: B-15							
Lab Order:	085175				Tag Number:					
Project:	APA Fund, 838.0	06		С	ollection Date:	6/19/2006 4	:15:00 PM			
Lab ID:	085175-003D		Matrix: WATER							
Analyses			sult	PQL Qu	1al Units	DF	Date Analyzed			
GASOLINE R	ANGE ORGANICS BY	GC/FID			EPA 8015B(M)					
RunID: GC6_	060703A	QC Batch:	106V	W175		Date:	Analyst: EA			
GRO	-		6.9	0.50	mg/L	10	7/3/2006			
GRO			6.9	0.50	mg/L	10	7/3/2006			

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation rangeND Not Detected at the Reporting LimitResults are wet unless otherwise specified

Page 12 of 66

Advanced Technology Laboratories

13 of 67

Date: 05-Jul-06

Analyses		Result	PQL Qual Units	DF	Date Analyzed
Lab ID:	085175-004A		Matrix	WATER	
Project:	APA Fund, 838.006		Collection Date:		2:50:00 AM
Lab Order:	085175		Tag Number:		
CLIENT:	Fugro West, Inc.		Client Sample ID:	: B-15@24'	

VOLATILE ORGANIC COMPOUNDS BY GC/MS

					EPA 8260B		
RunID: MS11_060	626A	QC Batch:	A06V	W181	Pre	epDate:	Analyst: HH
1,2-Dibromoethane	•	į	ND	1.0	µg/L	2	6/26/2006
1,2-Dichloroethane			2.1	1.0	µg/L	2	6/26/2006
Benzene			19	1.0	µg/L	2	6/26/2006
Di-isopropyl ether			ND	1.0	µg/L	2	6/26/2006
Ethyl tert-butyl ethe	er		ND	1.0	µg/L	2	6/26/2006
Ethylbenzene			78	1.0	µg/L	2	6/26/2006
m,p-Xylene			39	2.0	µg/L	2	6/26/2006
MTBE			4.4	1.0	µg/L	2	6/26/2006
o-Xylene			33	1.0	µg/L	2	6/26/2006
Tert-amyl methyl el	ther	1	ND	1.0	µg/L	2	6/26/2006
Tert-Butanol		· · · · •	ND	20	µg/L	2	6/26/2006
Toluene		I	ND	1.0	µg/L	2	6/26/2006

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 13 of 66

Advanced Technology Laboratories

14 of 67

Date: 05-Jul-06

CLIENT:	Fugro West, In	с.			Client Sar	nple ID: B-	15@24'				
Lab Order:	085175		Tag Number:								
Project:	APA Fund, 83	3.006			Collectio	on Date: 6/1	19/2006 7	':50:00 AM			
Lab ID:	085175-004B					Matrix: W.	ATER				
Analyses		Re	sult	PQL	Qual Un	its	DF	Date Analyzed			
GASOLINE R	ANGE ORGANICS	BY GC/FID									
					EPA 8	015 B(M)					
RunID: GC6_	060622A	QC Batch:	106V	W167		PrepDate	ə:	Analyst: TT			
GRO			10	0.050	mg	/L	1	6/22/2006			

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Page 14 of 66

Advanced Technology Laboratories

15 of 67

Date: 05-Jul-06

CLIENT	: Fugro Wes	t, Inc.	Client Sample ID: B-15@24'					
Lab Ord	er: 085175				Tag Numl	oer:		
Project:	APA Fund,	838.006		С	ollection D	ate: 6/19/200	6 7:50:00 A	M
Lab ID:	085175-004	4C	Matrix: WATER					
Analyses		Re	sult	PQL Qu	al Units	DF	Date	Analyzed
DIESEL &	& MOTOR OIL RANG	E ORGANICS B EPA 3510C	Y GC/FID		EPA 8015B	6(M)		
RunID: (GC7_060626B	QC Batch:	28810		I	PrepDate:	6/26/2006	Analyst: CBR
DRO			1.2	0.050	mg/L	1		6/26/2006
ORO			ND	0.050	mg/L	1		6/26/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 15 of 66

Advanced Technology Laboratories

16 of 67

CLIEN Lab Oi		Fugro West, Inc. 085175					Sample 1g Num	e ID: B-13 aber:	\$@5.0)'		
Project	t:	APA Fund, 838.0	006			Colle	ection I	Date: 6/19	/2006	5 10:05:00	AM	
Lab ID		085175-005A			Matrix: SC					JIL		
Analys	es		Re	esult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL	_ & MOTC	R OIL RANGE OF	RGANICS E PA 3550B	Y GC/FID		EP	A 8015	B(M)				
RunID:	GC7_0600	627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR	
DRO				1.2	1.0		mg/Kg		1		6/27/2006	
ORO				2.2	1.0		mg/Kg		1		6/27/2006	
		GE ORGANICS B	Y GC/FID				00					
						EP	A 8015	B(M)		•		
RunID:	GC2_0606	523A	QC Batch:	E06VS1	27			PrepDate:			Analyst: ML	
GRO				ND	1.0		mg/Kg		1		6/23/2006	
	ILE ORGA	NIC COMPOUND	S BY GC/M	S								
						E	PA 826	0B				
RuniD:	MS3_0606	624A	QC Batch:	R06VS1	20			PrepDate:			Analyst: TT	
1.2-Dil	bromoethan	8		ND	5.0		µg/Kg		1		6/24/2006	
	chloroethane			ND	5.0		µg/Kg		1		6/24/2006	
Benze	ne			ND	5.0		µg/Kg		1		6/24/2006	
Di-isop	propyl ether			ND	5.0		µg/Kg		1		6/24/2006	
Ethyl T	ert-butyl eth	ner		ND	5.0		µg/Kg		1		6/24/2006	
•	enzene			ND	5.0		µg/Kg		1		6/24/2006	
m,p-Xy	lene			ND	10		µg/Kg		1		6/24/2006	
MTBE				ND	5.0		µg/Kg		1		6/24/2006	
o-Xylei	ne			ND	5.0		µg/Kg		1		6/24/2006	
Tert-ar	nyl methyl e	ther		ND	5.0		µg/Kg		1		6/24/2006	
Tert-Bu	utanol			ND	100		µg/Kg		1		6/24/2006	
Toluen	e			ND	5.0		µg/Kg		1		6/24/2006	

Date: 05-Jul-06

	D	Analyte detected in the associated Method Blank	Е	Value above quantitation range
Oualifiers:	в	Analyte detected in the associated Method Dialk	L	1 0
•	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

Page 16 of 66

Advanced Technology Laboratories

17 of 67

	d Technology	A					. ID. D 12	@10			
CLIENT:	Fugro West, In	с.		Client Sample ID: B-13@10.0' Tag Number:							
Lab Order:	085175				-	-			. 10 10 00	175	
Project:	APA Fund, 83	3.006	Collection Date: 6/19/2006 10:19:00 AM								
Lab ID:	085175-006A			Matrix: SOIL							
Analyses		Re	sult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL & M	IOTOR OIL RANGE		Y GC/FID		EDA	0045	D/M)				
		EPA 3550B			EPA	8015					
RunID: GC7	_060627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR	
DRO			1.2	1.0	r	mg/Kg		1		6/27/2006	
ORO			ND	1.0	I	mg/Kg		1		6/27/2006	
GASOLINE I	RANGE ORGANICS	BY GC/FID									
					EPA	8015	B(M)				
RunID: GC2	060623A	QC Batch:	E06VS1	27			PrepDate:			Analyst: ML	
GRO			ND	1.0	r	ng/Kg		1		6/23/2006	
	RGANIC COMPOUN	IDS BY GC/M									
t € imFAT i linim ♥					EP	A 826	0B				
RunID: MS3	_060624A	QC Batch:	R06VS1	20			PrepDate:			Analyst: TT	
- 1,2-Dibromoe			ND	5.0	1	ug/Kg		1		6/24/2006	
1,2-Dichloroe			ND	5.0		ug/Kg		1		6/24/2006	
Benzene	· • • • • • • •		ND	5.0		ug/Kg		1		6/24/2006	
Di-isopropyl e	ether		ND	5.0	ł	ug/Kg		1		6/24/2006	
Ethyl Tert-bu			ND	5.0	ŀ	Jg/Kg		1		6/24/2006	
Ethylbenzene			ND	5.0	ŀ	ug/Kg		1		6/24/2006	
m,p-Xylene			ND	10	ł	Jg/Kg		1		6/24/2006	
MTBE			ND	5.0	ł	ıg/Kg		1		6/24/2006	
o-Xylene			ND	5.0	ŀ	ıg/Kg		1		6/24/2006	
Tert-amyl me	thyl ether		ND	5.0		ıg/Kg		1		6/24/2006	
			ND	100		ıg/Kg		1		6/24/2006	
Tert-Butanol				5.0		ıg/Kg		1		6/24/2006	

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- Surrogate Diluted Out DO

- Value above quantitation range Е ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 17 of 66

Advanced Technology Laboratories

18 of 67

CLIEN	Г: І	Fugro West, Inc.				Client Samp	ole ID: B-13	3@11	.0'	
Lab Oro	der: (085175				Tag Nu	mber:			
Project:	: 1	APA Fund, 838.0)06			Collection	Date: 6/19	/2006	5 10:23:00	AM
Lab ID:)85175-007A				Μ	latrix: SOI	L		
Analyse	S		Re	esult	PQL	Qual Unit	S	DF	Date	Analyzed
DIESEL	& MOTOR	OIL RANGE OF		BY GC/FID						
		E	PA 3550B			EPA 801	5B(M)			
RunID:	GC7_06062	7B	QC Batch:	28828			PrepDate:		6/26/2006	Analyst: CBR
DRO				ND	1.0	mg/K	g	1		6/27/2006
ORO				ND	1.0	mg/K	g	1		6/27/2006
GASOLI	NE RANG	E ORGANICS B	Y GC/FID							
						EPA 801	5B(M)			
RunID:	GC2 06062	3A	QC Batch:	E06VS1	27		PrepDate:			Analyst: ML
GRO				ND	1.0	mg/K	g .	1		6/23/2006
		IC COMPOUND	S BY GC/M	IS			•			
U LATI						EPA 82	260B			
RunID:	MS3 06062	4A	QC Batch:	R06VS1	20		PrepDate:			Analyst: TT
1 2-Dibr	romoethane			ND	5.0	µg/Kg	1	1		6/24/2006
	nloroethane			ND	5.0	μg/Kg		1		6/24/2006
Benzen				ND	5.0	µg/Kg		1		6/24/2006
Di-isopr	opyl ether			ND	5.0	μg/Kg	1	1		6/24/2006
•	ert-butyl ether	r		ND	5.0	µg/Kg	1	1		6/24/2006
Ethylber	nzene			ND	5.0	µg/Kg	1	1		6/24/2006
m,p-Xyle	ene			ND	10	µg/Kg	1	1		6/24/2006
MTBE				ND	5.0	µg/Kg)	1		6/24/2006
o-Xylene	e			ND	5.0	µg/Kg	I	1		6/24/2006
Tert-am	yl methyl eth	er		ND	5.0	µg/Kg		1		6/24/2006
Tert-But	tanol			ND	100	µg/Kg	I	1		6/24/2006
Toluene	ł			ND	5.0	µg/Kg	1	1		6/24/2006

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 18 of 66

Advanced Technology Laboratories

19 of 67

Adva	anced T	echnology	Laborate	ories	Date: 05-Jul-06						
CLIEN	NT:	Fugro West, In	c.			Client	Sample	ID: B-13(@15.	5'	
Lab Or	rder:	085175				Та	ag Numl	per:			
Project	t:	APA Fund, 838	3.006		Collection Date: 6/19/2006			2006	6 10:35:00 AM		
Lab ID		085175-008A				Matrix: SOIL					
Analys	ses		Re	esult	PQL Qual Units				DF		Analyzed
DIESEL	L & MOTO	R OIL RANGE	ORGANICS E EPA 3550B	BY GC/FID		EP	A 8015B	6(M)			
RunID:	GC7 0606	627B	QC Batch:	28828			F	PrepDate:		6/26/2006	Analyst: CBR
DRO				ND	1.0		mg/Kg		1		6/27/2006
ORO				ND	1.0		mg/Kg		1		6/27/2006
		GE ORGANICS	BY GC/FID				00				
GAUCE						EP	A 8015B	6(M)			
RunID:	GC2_0606	523A	QC Batch:	E06VS1	27		F	PrepDate:			Analyst: ML
GRO				ND	1.0		mg/Kg		1		6/23/2006
	ILE ORGA	NIC COMPOUN	DS BY GC/M	IS							
						E	PA 8260	В			
RunID:	MS3_0606	624A	QC Batch:	R06VS1	120		F	PrepDate:			Analyst: TT
1.2-Di	bromoethane	Э		ND	5.0		µg/Kg		1		6/24/2006
	chloroethane			ND	5.0		µg/Kg		1		6/24/2006
Benze				ND	5.0		µg/Kg		1		6/24/2006
Di-isor	propyl ether			ND	5.0		µg/Kg		1		6/24/2006
•	Fert-butyl eth	ier		ND	5.0		µg/Kg		1		6/24/2006
•	enzene			ND	5.0		µg/Kg		1		6/24/2006
	ylene			ND	10		µg/Kg		1		6/24/2006
				ND	5.0		µg/Kg		1		6/24/2006
MTBE				ND	5.0		µg/Kg		1		6/24/2006
	ne			ND	5.0		µg/Kg		1		6/24/2006
MTBE o-Xylei	ne myl methyl e	ther		ND							
MTBE o-Xylei	myl methyl e	ther		ND	100		µg/Kg		1		6/24/2006

Analyte detected in the associated Method Blank В

- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 19 of 66

Advanced Technology Laboratories

20 of 67

Advanced	Technolog	gy Laborato	ries	es Date: 05-Jul-06							
CLIENT:	Fugro West	, Inc.		Client Sample ID: B-13@20.5'							
Lab Order:	085175				Tag Nun	aber:					
Project:	APA Fund,	838 006	Collection Date: 6/19/2006 10:48:00 AM								
•	085175-009				Ma	trix: SOIL					
Lab ID:	083173-009	A									
Analyses		Re	sult	PQL (Qual Units	DF	Date	Analyzed			
DIESEL & MO	TOR OIL RANG	E ORGANICS B EPA 3550B	Y GC/FID		EPA 8015	B(M)					
RunID: GC7 0	060627B	QC Batch:	28828			PrepDate:	6/26/2006	Analyst: CBR			
DRO –			ND	1.0	mg/Kg	1		6/27/2006			
ORO			ND	1.0	mg/Kg	1		6/27/2006			
	ANGE ORGANI	CS BY GC/FID									
					EPA 8015	B(M)					
RuniD: GC2_0)60623A	QC Batch:	E06VS ²	127		PrepDate:		Analyst: ML			
GRO			ND	1.0	mg/Kg	1		6/23/2006			
	GANIC COMPO	UNDS BY GC/M	S								
					EPA 826	50B					
RunID: MS3_0	60624A	QC Batch:	R06VS	120		PrepDate:		Analyst: TT			
	nane		ND	5.0	µg/Kg	1		6/24/2006			
1.2-Dibromoeth			ND	5.0	µg/Kg	1		6/24/2006			
1,2-Dibromoeth 1.2-Dichloroeth	lane		NU	5.0	µy/ny	,					
1,2-Dichloroeth	lane		ND	5.0 5.0	μg/Kg	1		6/24/2006			
1,2-Dichloroeth Benzene								6/24/2006 6/24/2006			
1,2-Dichloroeth	ner		ND	5.0	µg/Kg	1					
1,2-Dichloroeth Benzene Di-isopropyl eth Ethyl Tert-butyl	ner		ND ND	5.0 5.0	μg/Kg μg/Kg	1		6/24/2006			
1,2-Dichloroeth Benzene Di-isopropyl eth Ethyl Tert-butyl Ethylbenzene	ner		ND ND ND	5.0 5.0 5.0	μg/Kg μg/Kg μg/Kg	1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006			
1,2-Dichloroeth Benzene Di-isopropyl eth Ethyl Tert-butyl	ner		ND ND ND ND	5.0 5.0 5.0 5.0	μg/Kg μg/Kg μg/Kg μg/Kg	1 1 1 1		6/24/2006 6/24/2006 6/24/2006			
1,2-Dichloroeth Benzene Di-isopropyl eth Ethyl Tert-butyl Ethylbenzene m,p-Xylene MTBE	ner		ND ND ND ND ND	5.0 5.0 5.0 5.0 10	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006			
1,2-Dichloroeth Benzene Di-isopropyl eth Ethyl Tert-butyl Ethylbenzene m,p-Xylene MTBE o-Xylene	ner I ether		ND ND ND ND ND ND	5.0 5.0 5.0 5.0 10 5.0	µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006			
1,2-Dichloroeth Benzene Di-isopropyl eth Ethyl Tert-butyl Ethylbenzene m,p-Xylene MTBE	ner I ether		ND ND ND ND ND ND ND	5.0 5.0 5.0 10 5.0 5.0	µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	1 1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006			

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

Value above quantitation range Е ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories

21 of 67

Advai	ories	Date: 05-Jul-06										
CLIENI	Г: І	Fugro West, Inc	c.			Client	Sample	e ID: B-13	s@25	5.5'		
Lab Ord	ler: (085175			Tag Number:							
Project:		APA Fund, 838	3.006		Collection Date: 6/19/2006 11:04:00 AM							
Lab ID:)85175-010A			Matrix: SOIL							
Analyses	s		Re	esult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL	& MOTOR	OIL RANGE	ORGANICS E EPA 3550B	3Y GC/FID		FP	A 8015	B(M)				
				00000				• •		6/06/0006	Analysty CDD	
	GC7_06062	7B	QC Batch:					PrepDate:		6/26/2006	Analyst: CBR	
DRO				1.4	1.0		mg/Kg		1		6/27/2006	
ORO				1.2	1.0		mg/Kg		1		6/27/2006	
GASOLI	NE RANG	E ORGANICS	BY GC/FID			50	A 8015I					
						CP/	- 00101	• •				
RunID:	GC1_06062	6A	QC Batch:	D06VS0)58			PrepDate:			Analyst: ML	
GRO				ND	1.0		mg/Kg		1		6/26/2006	
VOLATIL	E ORGAN	IC COMPOUN	DS BY GC/N	IS								
						E	PA 826	0B				
	MS3_06062	4A	QC Batch:	R06VS1	120			PrepDate:			Analyst: TT	
RunID: I												
				ND	5.0		µg/Kg		1		6/24/2006	
1,2-Dibro	omoethane			ND ND	5.0 5.0		µg/Kg µg/Kg		1 1		6/24/2006 6/24/2006	
1,2-Dibro	omoethane Iloroethane						µg/Kg µg/Kg µg/Kg					
1,2-Dibro 1,2-Dich Benzene	omoethane Iloroethane			ND	5.0		µg/Kg		1		6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro	omoethane Iloroethane e			ND ND	5.0 5.0		µg/Kg µg/Kg		1 1		6/24/2006 6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro	omoethane Iloroethane e opyl ether irt-butyl ethe			ND ND ND	5.0 5.0 5.0		μg/Kg μg/Kg μg/Kg		1 1 1		6/24/2006 6/24/2006 6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro Ethyl Ter	omoethane lloroethane e opyl ether ort-butyl ethe nzene			ND ND ND ND	5.0 5.0 5.0 5.0		µg/Kg µg/Kg µg/Kg µg/Kg		1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro Ethyl Ter Ethylben	omoethane lloroethane e opyl ether ort-butyl ethe nzene			ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro Ethyl Tel Ethylben m,p-Xyle	omoethane lloroethane e opyl ether irt-butyl ether nzene ene			ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 10		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro Ethyl Ter Ethylben m,p-Xyle MTBE o-Xylene	omoethane lloroethane e opyl ether irt-butyl ether nzene ene	r		ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 10 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006	
1,2-Dibro 1,2-Dich Benzene Di-isopro Ethyl Ter Ethylben m,p-Xyle MTBE o-Xylene	omoethane lloroethane e opyl ether int-butyl ethe nzene ene yl methyl eth	r		ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 10 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006	

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 21 of 66

Advanced Technology Laboratories

22 of 67

Date: 05-Jul-06

CLIEN	T: Fugro Wes	t, Inc.		Client S	Sample ID:	B-13@25.5	1			
Lab Or	der: 085175			Ta	g Number:					
Project	: APA Fund	838.006	Collection Date: 6/19/2006 11:04:00 AM							
Lab ID:)B	Matrix: SOIL							
Analyse	es	Resu	ult PQL	Qual	Units	DF	Date Analyzed			
GASOLI	INE RANGE ORGAN	CS BY GC/FID		EP	A 8015B(M)					
RunID:	GC2_060623A	QC Batch:	E06VS127		Prep	Date:	Analyst: ML			
GRO		١	ND 1.0		mg/Kg	1	6/23/2006			

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 22 of 66

Advanced Technology Laboratories

23 of 67

Advanced Technology Laboratories						Date: 05-Jul-06							
CLIEN	CLIENT: Fugro West, Inc.					Client Sample ID: B-13@30.0'							
Lab Order:085175Project:APA Fu		-				Та	ig Num	ber:					
		APA Fund, 83				Colle	5 11:15:00	AM					
·		085175-011A			Matrix: SOIL								
Lab ID: 085175-011A													
Analyses Resul				esult	PQL	Qual	Units		DF	Date	Analyzed		
DIESEI	L & MOTO	OR OIL RANGE	ORGANICS B EPA 3550B	Y GC/FID		EP	A 8015	B(M)					
RunID:	GC7 060	627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR		
DRO				1.3	1.0		mg/Kg		1		6/27/2006		
ORO				ND	1.0		mg/Kg		1		6/27/2006		
-	INF RAN	GE ORGANICS	BY GC/FID										
						EP	A 8015	B(M)					
RunID:	GC2_060	623A	QC Batch:	E06VS1	27			PrepDate:			Analyst: ML		
GRO				ND	1.0		mg/Kg		1		6/23/2006		
		ANIC COMPOUN	IDS BY GC/M	S									
						F	PA 826	0B					
/							FA 020						
	MS3 060		QC Batch:	R06VS1	120	- -	FA 020	PrepDate:			Analyst: TT		
RunID:	MS3_060	624A	×		120 5.0		µg/Kg		1		Analyst: TT 6/24/2006		
RunID: 1,2-Di	ibromoethar	624A ie	×	R06VS1 ND ND					1 1		-		
RunID: 1,2-Di 1,2-Di	ibromoethar ichloroethan	624A ie	×	ND	5.0		µg/Kg				6/24/2006		
RunID: 1,2-Di 1,2-Di Benze	ibromoethar ichloroethan ene	624A ne e	×	ND ND	5.0 5.0		µg/Kg µg/Kg		1		6/24/2006 6/24/2006		
RunID: 1,2-Di 1,2-Di Benze Di-isoj	ibromoethar ichloroethan ene propyl ether	624A ie e	×	ND ND ND	5.0 5.0 5.0		µg/Kg µg/Kg µg/Kg		1 1		6/24/2006 6/24/2006 6/24/2006		
RunID: 1,2-Di 1,2-Di Benze Di-isoj Ethyl ⁻	ibromoethar ichloroethan ene propyl ether Tert-butyl et	624A ie e	×	ND ND ND ND	5.0 5.0 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006		
RunID: 1,2-Di 1,2-Di Benze Di-isoj Ethyl ⁻ Ethylb	ibromoethan ichloroethan ene propyl ether Tert-butyl et penzene	624A ie e	×	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006		
RunID: 1,2-Di 1,2-Di Benze Di-isoj Ethyl ⁻	ibromoethar ichloroethan ene propyl ether Tert-butyl et penzene Sylene	624A ie e	×	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006		
RunID: 1,2-Di 1,2-Di Benze Di-isoj Ethyl Ethylb m,p-X	ibromoethar ichloroethan ene propyl ether Tert-butyl et benzene (ylene	624A ie e	×	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 10		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006		
RunID: 1,2-Di 1,2-Di Benze Di-isoj Ethyl ^{1–} Ethylb m,p-X MTBE o-Xyle	ibromoethar ichloroethan ene propyl ether Tert-butyl et benzene (ylene	624A e her	×	ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 10 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006		
RunID: 1,2-Di Benze Di-isoj Ethyll Ethylb m,p-X MTBE o-Xyle Tert-a	ibromoethar ichloroethan ene propyl ether Tert-butyl et benzene (ylene : ene	624A e her	×	ND ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 10 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1 1 1		6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006 6/24/2006		

В

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- Surrogate Diluted Out DO

Value above quantitation range Е

Not Detected at the Reporting Limit ND Results are wet unless otherwise specified

Page 23 of 66

Advanced Technology Laboratories

3275 Walnut Avenue Signal Hill, CA 90755 Tel: 562 989-4045 Fax: 562 989-4040

24 of 67

CLIENT	: Fugro Wes	st, Inc.			Client Sampl	le ID: B-13@3	5.5'					
Lab Ord	er: 085175		Tag Number:									
Project:	APA Fund	, 838.006			Collection]	Date: 6/19/200	6/19/2006 11:32:00 AM					
Lab ID:	085175-01	2A			Ma							
Analyses		Re	sult	PQL	Qual Units	DF	Date Analyzed					
DIESEL	& MOTOR OIL RAN		Y GC/FID			-D (84)						
		EPA 3550B			EPA 8015							
RunID: (GC7_060627B	QC Batch:	28828			PrepDate:	6/26/2006 Analyst: C					
DRO			1.1	1.0	mg/Kg	1	6/27/2006					
ORO			ND	1.0	mg/Kg	1	6/27/2006					
GASOLIN	E RANGE ORGAN	ICS BY GC/FID										
					EPA 8015	6B(M)						
RunID: C	unID: GC2_060623A 0		Batch: E06VS127			PrepDate:	Analyst: M					
GRO			ND	1.0	mg/Kg	1	6/23/2006					
	E ORGANIC COMPO	OUNDS BY GC/M	5									
					EPA 826	60B						
RunID: N	MS3_060624A	QC Batch:	R06VS	120		PrepDate:	Analyst: T					
1,2-Dibro	moethane		ND	5.0	µg/Kg	1	6/24/2006					
1,2-Dichl	oroethane		ND	5.0	µg/Kg	1	6/24/2006					
Benzene			ND	5.0	µg/Kg	1	6/24/2006					
Di-isopro	pyl ether		ND	5.0	µg/Kg	1	6/24/2006					
	t-butyl ether		ND	5.0	µg/Kg	1	6/24/2006					
Ethylben			ND	5.0	µg/Kg	1	6/24/2006					
m,p-Xylei			ND	10	µg/Kg	1	6/24/2006					
MTBE			ND	5.0	µg/Kg	1	6/24/2006					
o-Xylene			ND	5.0	µg/Kg	1	6/24/2006					
Tert-amy	I methyl ether		ND	5.0	µg/Kg	1	6/24/2006					
			ND	100	µg/Kg	1	6/24/2006					
Tert-Butanol			ND	5.0	µg/Kg	1	6/24/2006					

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 24 of 66

Advanced Technology Laboratories 25 of 67

Advance	Date: 05-Jul-06										
CLIENT:		Client Sample ID: B-13@45.5'									
Lab Order: 085175					Та	g Num	iber:				
Project:	APA Fund, 83	8.006			Colle	ction I	Date: 6/19,	/2006	5 12:01:00) PM	
Lab ID:	085175-013A										
Analyses	esult	POL	Qual	Units		DF	Date	Analyzed			
			_								
DIESEL & I	MOTOR OIL RANGE	EPA 3550B	GC/FID		EP/	A 8015	B(M)				
RunID: GC	7_060627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR	
	1_0000275	QU Daton.	1.3	1.0		mg/Kg		1		6/27/2006	
DRO			1.3 ND	1.0		mg/Kg		1		6/27/2006	
ORO	RANGE ORGANICS	BY CC/EID		1.0		mg/ixg		•		0.21/2000	
GASULINE	KANGE UKGANICS				EPA	8015	B(M)				
RunID: GC	2_060623A	QC Batch:	E06VS1	27			PrepDate:			Analyst: ML	
GRO			ND	1.0		mg/Kg	·	1		6/23/2006	
	ORGANIC COMPOUN							-			
OLANCE			0		EF	PA 826	0B				
RunID: MS:	0000044		R06VS1	20			PrepDate:			Analyst: TT	
	3 UbUbZ4A	QC Batch:	RUOVSI	20							
	3_060624A bethane	QC Batch:		20 5.0		µg/Kg		1		6/25/2006	
1,2-Dibromo	bethane	QC Batch:	ND ND			µg/Kg µg/Kg		1 1		6/25/2006 6/25/2006	
1,2-Dibromo	bethane	QC Batch:	ND	5.0		µg/Kg					
1,2-Dibromo 1,2-Dichloro Benzene	ethane ethane	QC Batch:	ND ND	5.0 5.0		µg/Kg µg/Kg		1		6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl	ethane ethane ether	QC Batch:	ND ND ND	5.0 5.0 5.0		µg/Kg		1 1		6/25/2006 6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl Ethyl Tert-bu	ethane ethane ether utyl ether	QC Batch:	ND ND ND ND	5.0 5.0 5.0 5.0		µg/Kg µg/Kg µg/Kg		1 1 1		6/25/2006 6/25/2006 6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl Ethyl Tert-br Ethylbenzer	ethane ethane ether utyl ether	QC Batch:	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0		µg/Kg µg/Kg µg/Kg µg/Kg		1 1 1 1		6/25/2006 6/25/2006 6/25/2006 6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl Ethyl Tert-bu	ethane ethane ether utyl ether	QC Batch:	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0		µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg		1 1 1 1		6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl Ethyl Tert-br Ethylbenzer m,p-Xylene MTBE	ethane ethane ether utyl ether	QC Batch:	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 10		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1		6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl Ethyl Tert-bi Ethylbenzer m,p-Xylene MTBE o-Xylene	ethane ethane ether utyl ether le	QC Batch:	ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 10 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1		6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006	
1,2-Dibromo 1,2-Dichloro Benzene Di-isopropyl Ethyl Tert-bi Ethylbenzer m,p-Xylene MTBE	ethane ethane ether utyl ether e ethyl ether	QC Batch:	ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 10 5.0 5.0		μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		1 1 1 1 1 1		6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006 6/25/2006	

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

Value above quantitation range Е ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories

26 of 67

CLIEN	NT: I	Fugro West, Inc.	Inc. Client Sample ID: B-13@60.5' Tag Number:									
Lab O	rder: (085175										
Project	t: 1	APA Fund, 838.000	5			Collection	Date: 6/19/200)6 1:25:00 P	M			
Lab ID)85175-014A	·			Ma						
Analys	Analyses				PQL	Qual Units	DF	Date	Analyzed			
DIESEI	L & MOTOR	OIL RANGE ORG	ANICS B	Y GC/FID		EPA 8015	5B(M)					
RuniD:	GC7_06062	7B (QC Batch:	28828			PrepDate:	6/26/2006	Analyst: CBR			
DRO				1.3	1.0	mg/Kg	1		6/27/2006			
ORO				ND	1.0	mg/Kg			6/27/2006			
	INE RANG	E ORGANICS BY	GC/FID	-		0.10						
						EPA 8015	iB(M)					
RunID:	GC2_06062	3A (QC Batch:	E06VS1	27		PrepDate:		Analyst: ML			
GRO				ND	1.0	mg/Kg	1		6/23/2006			
VOLAT	ILE ORGAN	IC COMPOUNDS	BY GC/M	s								
						EPA 820	60B					
RunID:	MS3_06062	6A C	C Batch:	R06VS1	21		PrepDate:		Analyst: TT			
1.2-Dil	bromoethane			ND	5.0	µg/Kg	1		6/26/2006			
•	chloroethane			ND	5.0	µg/Kg	1		6/26/2006			
Benze	ne			ND	5.0	µg/Kg	1		6/26/2006			
Di-isop	oropyl ether			ND	5.0	µg/Kg	1		6/26/2006			
Ethyl T	Fert-butyl ethe	r		ND	5.0	µg/Kg	1		6/26/2006			
Ethylbo	enzene			ND	5.0	µg/Kg	1		6/26/2006			
m,p-Xy	ylene			ND	10	µg/Kg	1		6/26/2006			
MTBE				ND	5.0	µg/Kg	1		6/26/2006			
o-Xylei	ne			ND	5.0	µg/Kg	1		6/26/2006			
Tert-ar	myl methyl eth	er		ND	5.0	µg/Kg	1		6/26/2006			
Tert-B	utanol			ND	100	µg/Kg	1		6/26/2006			
Toluen				ND	5.0	µg/Kg	1		6/26/2006			

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Page 26 of 66

Advanced Technology Laboratories 27 of 67

CLIENT:	Fugro West, In	с.			Client	Sampl	e ID: B-14	@5.	0'		
Lab Order:	085175			Tag Number:							
Project:	APA Fund, 838	APA Fund, 838.006			Colle	ction l	Date: 6/20	/2006	5 8:50:00 A	M	
Lab ID:	085175-015A				Matrix:		trix: SOI	SOIL			
Analyses		Re	esult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL & N	OTOR OIL RANGE		BY GC/FID								
		EPA 3550B			EP	A 8015	B(M)				
RunID: GC7	_060627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR	
DRO			1.1	1.0		mg/Kg		1		6/27/2006	
ORO			ND	1.0		mg/Kg		1		6/27/2006	
GASOLINE	RANGE ORGANICS	BY GC/FID									
					EP	A 8015	B(M)				
RunID: GC1	060623A	QC Batch:	D06VS0)57			PrepDate:			Analyst: ML	
GRO	-		ND	1.0		mg/Kg		1		6/23/2006	
	RGANIC COMPOUN	DS BY GC/M									
					E	PA 826	0B				
RunID: MS3	_060626A	QC Batch:	R06VS1	21			PrepDate:			Analyst: TT	
1,2-Dibromo	ethane		ND	5.0		µg/Kg		1		6/26/2006	
1,2-Dichloroe	ethane		ND	5.0		µg/Kg		1		6/26/2006	
Benzene			ND	5.0		µg/Kg		1		6/26/2006	
Di-isopropyl	ether		ND	5.0		µg/Kg		1		6/26/2006	
Ethyl Tert-bu	tyl ether		ND	5.0		µg/Kg		1		6/26/2006	
Ethylbenzene	e		ND	5.0		µg/Kg		1		6/26/2006	
			ND	10		µg/Kg		1		6/26/2006	
m,p-Xylene			ND	5.0		µg/Kg		1		6/26/2006	
m,p-Xylene MTBE			ND	5.0		µg/Kg		1		6/26/2006	
						µg/Kg		1		6/26/2006	
MTBE	thyl ether		ND	5.0		-3-5					
MTBE o-Xylene	ethyl ether		ND ND	5.0 100		µg/Kg		1		6/26/2006 6/26/2006	

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range ND Not Detected at the Reporting Limit

Date: 05-Jul-06

- Results are wet unless otherwise specified
 - Page 27 of 66

Advanced Technology Laboratories

28 of 67

CLIENT:	Fugro West, Inc	.				-	e ID: B-14	@15	5.0'			
Lab Order:	085175					ig Num						
Project:	APA Fund, 838	.006		Collection Date: 6/20/2006 9:05:00 AM								
Lab ID:	085175-016A					Ma	trix: SOII					
Analyses		Re	esult	PQL	Qual	Units		DF	Date	Analyzed		
DIESEL & MO	TOR OIL RANGE	DRGANICS E EPA 3550B	BY GC/FID		EP	A 8015	B(M)					
RunID: GC7_0)60627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR		
DRO			1.3	1.0		mg/Kg		1		6/27/2006		
ORO			ND	1.0		mg/Kg		1		6/27/2006		
	ANGE ORGANICS	BY GC/FID										
					EP	A 8015	B(M)					
RunID: GC1_0	60623A	QC Batch:	D06VS0)57			PrepDate:			Analyst: ML		
GRO			ND	1.0		mg/Kg		1		6/23/2006		
	GANIC COMPOUN	DS BY GC/M	IS									
					E	PA 826	0B					
RunID: MS3_0	60624A	QC Batch:	R06VS1	20			PrepDate:			Analyst: TT		
1,2-Dibromoeth	nane		ND	5.0		µg/Kg		1		6/25/2006		
1,2-Dichloroeth			ND	5.0		µg/Kg		1		6/25/2006		
Benzene			ND	5.0		µg/Kg		1		6/25/2006		
Di-isopropyl eth	ner		ND	5.0		µg/Kg		1		6/25/2006		
Ethyl Tert-butyl	ether		ND	5.0		µg/Kg		1		6/25/2006		
Ethylbenzene			ND	5.0		µg/Kg		1		6/25/2006		
m,p-Xylene			ND	10		µg/Kg		1		6/25/2006		
MTBE			ND	5.0		µg/Kg		1		6/25/2006		
o-Xylene			ND	5.0		µg/Kg		1		6/25/2006		
Tert-amyl meth	yl ether		ND	5.0		µg/Kg		1		6/25/2006		
Tert-Butanol			ND	100		µg/Kg		1		6/25/2006		
			ND	5.0		µg/Kg		1		6/25/2006		

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 05-Jul-06

Page 28 of 66

Advanced Technology Laboratories

29 of 67

CLIEN	NT:	Fugro West,	Inc.		Client Sample ID: B-14@25.0'								
Lab O	rder:	085175			Tag Number:								
Projec		APA Fund,	838.006		Collection Date: 6/20/2006 9:25:00 AM								
Lab ID		085175-017.					Mat	rix: SOIL	,				
Analys	es		Re	sult	PQL	Qual I	Units		DF	Date	Analyzed		
DIESEI	L & MOT	OR OIL RANG	E ORGANICS E	Y GC/FID									
			EPA 3550B			EPA	8015B	5(M)					
RunID:	GC7_060)627B	QC Batch:	28828			I	PrepDate:		6/26/2006	Analyst: CBR		
DRO				ND	1.0	n	ng/Kg		1		6/27/2006		
ORO				ND	1.0	n	ng/Kg		1		6/27/2006		
GASOL	INE RAN	IGE ORGANIC	S BY GC/FID				00450						
						EPA	8015B	6(M)					
RunID:	GC1_060	623A	QC Batch:	D06VS	6057		F	PrepDate:			Analyst: ML		
GRO				ND	1.0	n	ng/Kg		1		6/23/2006		
/OLAT	ILE ORG	ANIC COMPO	UNDS BY GC/M	s									
						EP	A 8260	В					
RuniD:	MS3_060	624A	QC Batch:	R06VS	5120		F	PrepDate:			Analyst: TT		
1.2-Dil	oromoethar	e		ND	5.0	μ	ıg/Kg		1		6/25/2006		
	chloroethan			ND	5.0		ig/Kg		1		6/25/2006		
Benze				ND	5.0	μ	ig/Kg		1		6/25/2006		
Di-isop	propyl ether			ND	5.0	μ	g/Kg		1		6/25/2006		
Ethyl T	ert-butyl et	her		ND	5.0	μ	g/Kg		1		6/25/2006		
Ethylbo	enzene			ND	5.0	μ	g/Kg		1		6/25/2006		
m,p-Xy	/lene			ND	10	μ	g/Kg		1		6/25/2006		
MTBE				ND	5.0	μ	g/Kg		1		6/25/2006		
o-Xylei	ne			ND	5.0	μ	g/Kg		1		6/25/2006		
Tert-ar	nyl methyl	ether		ND	5.0		g/Kg		1		6/25/2006		
Tert-Bu	utanol			ND	100		g/Kg		1		6/25/2006		
	e			ND	5.0	u	g/Kg		1		6/25/2006		

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Ε
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 29 of 66

Advanced Technology Laboratories

30 of 67

Advanced	Technology	Laborato	ories	Date: 05-Jul-06									
CLIENT:	Fugro West, Inc			Client Sample ID: B-14@26.0'									
Lab Order:	085175		Tag Number:										
Project:	APA Fund, 838	.006	Collection Date: 6/20/2006 9:27:00 AM										
Lab ID:	085175-018A		Matrix: SOIL										
Analyses		Re	sult	PQL	Qual	Units		DF	Date	Analyzed			
DIESEL & MC	TOR OIL RANGE (DRGANICS B EPA 3550B	Y GC/FID		EPA	A 8015	B(M)						
RunID: GC7 (060627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR			
DRO			1.3	1.0		mg/Kg		1		6/27/2006			
ORO			ND	1.0		mg/Kg		1		6/27/2006			
	ANGE ORGANICS I	BY GC/FID	-										
					EPA	8015	B(M)						
RunID: GC1_0	060623A	QC Batch:	D06VS0)57			PrepDate:			Analyst: ML			
GRO			ND	1.0		mg/Kg		1		6/23/2006			
	GANIC COMPOUN	DS BY GC/M	s							×			
·•••••••••••••••••••••••••••••••••••••					EF	PA 826	0B						
RunID: MS3_0)60624A	QC Batch:	R06VS1	20			PrepDate:			Analyst: TT			
1,2-Dibromoeth	hane		ND	5.0		µg/Kg		1		6/25/2006			
1,2-Dichloroeth			ND	5.0		µg/Kg		1		6/25/2006			
Benzene			ND	5.0		µg/Kg		1		6/25/2006			
Di-isopropyl eth	her		ND	5.0		µg/Kg		1		6/25/2006			
Ethyl Tert-butyl			ND	5.0		µg/Kg		1		6/25/2006			
Ethylbenzene			ND	5.0		µg/Kg		1		6/25/2006			
m,p-Xylene			ND	10		µg/Kg		1		6/25/2006			
MTBE			ND	5.0		µg/Kg		1		6/25/2006			
			ND	5.0	I	µg/Kg		1		6/25/2006			
o-Xylene				5.0	1	µg/Kg		1		6/25/2006			
	yl ether		ND	5.0		P99							
o-Xylene	nyl ether		ND ND	100		µg/Kg		1		6/25/2006			

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Spike/Surrogate outside of limits due to matrix interference S
- Surrogate Diluted Out DO

Value above quantitation range Е

Not Detected at the Reporting Limit ND Results are wet unless otherwise specified

Page 30 of 66

Advanced Technology Laboratories

31 of 67

CLIENT	: Fugro West,	Inc.			Client Samp	ole ID: B-14	4@30).0'	
Lab Orde	er: 085175				Tag Nu	mber:			
Project:	APA Fund,	838.006			Collection	5 9:40:00 A	M		
Lab ID:	085175-019	A			Μ	latrix: SOI	L		
Analyses		Re	esult	PQL	Qual Unit	S	DF	Date	Analyzed
DIESEL &	& MOTOR OIL RANG	E ORGANICS B EPA 3550B	Y GC/FID		EPA 801	5R(M)			
					EFA 001			0.000.00000	
RunID: G	GC7_060627B	QC Batch:	28828			PrepDate:		6/26/2006	Analyst: CBR
DRO			1.4	1.0	mg/K	g ·	1		6/27/2006
ORO			ND	1.0	mg/K	g	1		6/27/2006
GASOLIN	E RANGE ORGANIC	CS BY GC/FID							
					EPA 801	5B(M)			
RunID: G	GC1_060623A	QC Batch:	D06VS0	57		PrepDate:			Analyst: ML
GRO			ND	1.0	mg/Kg	g	1		6/23/2006
VOLATILE	E ORGANIC COMPO	UNDS BY GC/M	S						
					EPA 82	260B			
RuniD: M	1S3_060624A	QC Batch:	R06VS1	20		PrepDate:			Analyst: TT
1,2-Dibro	moethane		ND	5.0	µg/Kg	ļ	1		6/25/2006
1,2-Dichlo			ND	5.0	µg/Kg		1		6/25/2006
Benzene			ND	5.0	µg/Kg		1		6/25/2006
Di-isoprop	oyl ether		ND	5.0	µg/Kg		1		6/25/2006
	-butyl ether		ND	5.0	µg/Kg		1		6/25/2006
Ethylbenz	ene		ND	5.0	µg/Kg		1		6/25/2006
m,p-Xyler	ne		ND	10	µg/Kg		1		6/25/2006
MTBE			ND	5.0	µg/Kg		1		6/25/2006
o-Xylene			ND	5.0	µg/Kg		1		6/25/2006
Tert-amyl	methyl ether		ND	5.0	µg/Kg		1		6/25/2006
Tert-Butar	nol		ND	100	µg/Kg		1		6/25/2006
Toluene			ND	5.0	µg/Kg		1		6/25/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Date: 05-Jul-06

Results are wet unless otherwise specified

Page 31 of 66

Advanced Technology Laboratories 32 of 67

Date: 05-Jul-06

CLIENT:	Fugro West, I	nc.	Client Sample ID: B-14@30.0'									
Lab Order:	085175		Tag Number:									
Project:	APA Fund, 83	8.006	Collection Date: 6/20/2006 9:40:00 AM									
Lab ID:	085175-019B	Matr	ix: SOIL									
Analyses		Resul	t PQL	Qual Units	DF	Date Analyzed						
GASOLINE	RANGE ORGANICS	BY GC/FID										
				EPA 8015B(M)							
RunID: GC2	2_060629A	QC Batch:	E06VS133	P	repDate:	Analyst: ML						
GRO		NE	D 1.0	mg/Kg	1	6/29/2006						

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 32 of 66

Advanced Technology Laboratories

33 of 67

CLIEN	T:	Fugro West, Inc.				Client	Sample	e ID: B-14	@35	5.0'			
Lab Oı	rder:	085175				Ta	ıg Nun	ıber:					
Project	t:	APA Fund, 838.0	06			Colle	ection I	Date: 6/20	/2006	5 9:50:00 A	M		
Lab ID		085175-020A			Matrix: SOI					L			
Analys	es		Re	esult	PQL	Qual	Units		DF	Date	Analyzed		
DIESEL	_ & МОТО	r oil range or Ef	GANICS E PA 3550B	BY GC/FID		EP	A 8015	B(M)					
RunID:	GC7_0606	27B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR		
DRO				ND	1.0		mg/Kg		1		6/27/2006		
ORO				ND	1.0		mg/Kg		1		6/27/2006		
	INE RANG	GE ORGANICS B	GC/FID				2 0						
						EP	A 8015	B(M)					
RunID:	GC1_0606	23A	QC Batch:	D06VS0)57			PrepDate:			Analyst: ML		
GRO				ND	1.0		mg/Kg		1		6/23/2006		
			S BY GC/M	IS									
						E	PA 826	0B					
RunID:	MS3_0606	24A	QC Batch:	R06VS1	20			PrepDate:			Analyst: TT		
1.2-Dib	bromoethane	1		ND	5.0		µg/Kg		1		6/25/2006		
,	chloroethane			ND	5.0		µg/Kg		1		6/25/2006		
Benzei				ND	5.0		µg/Kg		1		6/25/2006		
Di-isop	propyl ether			ND	5.0		µg/Kg		1		6/25/2006		
Ethyl T	ert-butyl eth	er		ND	5.0		µg/Kg		1		6/25/2006		
Ethylbe	enzene			ND	5.0		µg/Kg		1		6/25/2006		
m,p-Xy	/lene			ND	10		µg/Kg		1		6/25/2006		
MTBE				ND	5.0		µg/Kg		1		6/25/2006		
o-Xyler	ne			ND	5.0		µg/Kg		1		6/25/2006		
Tert-ar	nyl methyl et	her		ND	5.0		µg/Kg		1		6/25/2006		
Tert-Bu	utanol			ND	100		µg/Kg		1		6/25/2006		
Toluen	e			ND	5.0		µg/Kg		1		6/25/2006		

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 33 of 66

Advanced Technology Laboratories 34 of 67

CLIENT:	Fugro West, Inc	2.			Client S	Sample	e ID: B-14	@40	.0'			
Lab Order:	085175				Ta	g Nun	iber:					
Project:	APA Fund, 838	.006			Colle	ction I	Date: 6/20/	/2006	5 10:05:00	AM		
Lab ID:	085175-021A			Matrix: SOII					~			
Analyses		Re	esult	PQL	Qual	Units		DF	Date	Analyzed		
DIESEL & MO	OTOR OIL RANGE (BY GC/FID									
	I	EPA 3550B			EPA	A 8015	B(M)					
RunID: GC7_	060627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR		
DRO			ND	1.0		mg/Kg		1		6/27/2006		
ORO			ND	1.0		mg/Kg		1		6/27/2006		
GASOLINE R	ANGE ORGANICS I	BY GC/FID										
					EPA	8015	B(M)					
RunID: GC1_0	060623A	623A QC Batch: D06VS		57			PrepDate:			Analyst: ML		
GRO			ND	1.0		mg/Kg		1		6/23/2006		
	GANIC COMPOUN	DS BY GC/M	S									
					EP	PA 826	0B					
RunID: MS3_(060624A	QC Batch:	R06VS1	20			PrepDate:			Analyst: TT		
1,2-Dibromoet	hane		ND	5.0		µg/Kg		1		6/25/2006		
1,2-Dichloroeth			ND	5.0		µg/Kg		1		6/25/2006		
Benzene			ND	5.0		µg/Kg		1		6/25/2006		
Di-isopropyl et	her		ND	5.0	I	µg/Kg		1		6/25/2006		
Ethyl Tert-buty	lether		ND	5.0	I	µg/Kg		1		6/25/2006		
Ethylbenzene			ND	5.0	i	µg/Kg		1		6/25/2006		
m,p-Xylene			ND	10	ł	µg/Kg		1		6/25/2006		
MTBE			ND	5.0	ŀ	µg/Kg		1		6/25/2006		
o-Xylene			ND	5.0	ł	µg/Kg		1		6/25/2006		
Tert-amyl meth	yl ether		ND	5.0		ug/Kg		1		6/25/2006		
Tert-Butanol			ND	100	-	ug/Kg		1		6/25/2006		
Toluene			ND	5.0	ł	Jg/Kg		1		6/25/2006		

Date: 05-Jul-06

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 E
 Value above quantitation range

 H
 Holding times for preparation or analysis exceeded
 ND
 Not Detected at the Reporting Limit

 S
 Spike/Surrogate outside of limits due to matrix interference
 Results are wet unless otherwise specified

 DO
 Surrogate Diluted Out
 Page 34 of 66

Advanced Technology Laboratories

35 of 67

CLIENT:	Fugro West, Inc.				Client Sample	-	45.0'	
Lab Order:	085175				Tag Nun			
Project:	APA Fund, 838.0	06				Date: 6/20/20	006 10:20:00	AM
Lab ID:	085175-022A				Ma	trix: SOIL		
Analyses		Re	esult	PQL	Qual Units	E	F Date	e Analyzed
DIESEL & MO	DTOR OIL RANGE OR		BY GC/FID		EDA 0045			
	EP	A 3550B			EPA 8015	• •		
RunID: GC7_	060627B	QC Batch:	28828			PrepDate:	6/26/2006	Analyst: CBR
DRO			1.2	1.0	mg/Kg	1		6/27/2006
ORO			ND	1.0	mg/Kg	1		6/27/2006
GASOLINE R	ANGE ORGANICS BY	GC/FID						
					EPA 8015	B(M)		
RunID: GC1_(060623A	QC Batch:	D06VS0	57		PrepDate:		Analyst: ML
GRO			ND	1.0	mg/Kg	1		6/23/2006
	GANIC COMPOUNDS	BY GC/M			00			
			-		EPA 826	0B		
RunID: MS3_(060624A	QC Batch:	R06VS1	20		PrepDate:		Analyst: TT
1,2-Dibromoet	hane		ND	5.0	µg/Kg	1		6/25/2006
1,2-Dichloroet			ND	5.0	µg/Kg	1		6/25/2006
Benzene			ND	5.0	µg/Kg	1		6/25/2006
Di-isopropyl et	her		ND	5.0	µg/Kg	1		6/25/2006
Ethyl Tert-buty			ND	5.0	µg/Kg	1		6/25/2006
Ethylbenzene			ND	5.0	µg/Kg	1		6/25/2006
m,p-Xylene			ND	10	µg/Kg	1		6/25/2006
MTBE			ND	5.0	µg/Kg	1		6/25/2006
o-Xylene			ND	5.0	µg/Kg	1		6/25/2006
Tert-amyl meth	nyl ether		ND	5.0	µg/Kg	1		6/25/2006
Tert-Butanol			ND	100	µg/Kg	1		6/25/2006
Toluene			ND	5.0	µg/Kg	1		6/25/2006

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 35 of 66

Advanced Technology Laboratories

36 of 67

CLIENT:	Fugro West,	Inc.			Client S	Sample	e ID: B-15	5@5.:	5'			
Lab Order:	085175			Tag Number:								
Project:	APA Fund, 8	38.006	Collection Date: 6/20/2006 1:00:00 PM									
Lab ID:	085175-023A					Ma	trix: SOI	L				
Analyses		Re	esult	PQL	Qual	Units		DF	Date	Analyzed		
DIESEL & MO	TOR OIL RANG		Y GC/FID				D(84)					
		EPA 3550B			EPA	A 8015I	B(M)					
RunID: GC7_0	60627B	QC Batch:	28828				PrepDate:		6/26/2006	Analyst: CBR		
DRO			1.0	1.0		mg/Kg		1		6/27/2006		
ORO			1.5	1.0		mg/Kg		1		6/27/2006		
GASOLINE R	ANGE ORGANIC	S BY GC/FID										
					EPA	A 8015I	B(M)					
RunID: GC1 0	60623A	QC Batch:	D06VS	057			PrepDate:			Analyst: ML		
GRO			ND	1.0		mg/Kg		1		6/23/2006		
	GANIC COMPOL	INDS BY GC/M										
					E	PA 826	0B					
RunID: MS3_0	60626A	QC Batch:	R06VS	121			PrepDate:			Analyst: TT		
1,2-Dibromoeth			ND	5.0		µg/Kg		1		6/26/2006		
1,2-Dichloroeth			ND	5.0		µg/Kg		1		6/26/2006		
Benzene			ND	5.0		µg/Kg		1		6/26/2006		
Di-isopropyl eth	ner		ND	5.0		µg/Kg		1		6/26/2006		
Ethyl Tert-butyl			ND	5.0		µg/Kg		1		6/26/2006		
Ethylbenzene			ND	5.0		µg/Kg		1		6/26/2006		
m,p-Xylene			ND	10		µg/Kg		1		6/26/2006		
MTBE			ND	5.0		µg/Kg		1		6/26/2006		
o-Xylene			ND	5.0		µg/Kg		1		6/26/2006		
Tert-amyl meth	lyl ether		ND	5.0		µg/Kg		1		6/26/2006		
Tert-Butanol			ND	100		µg/Kg		1		6/26/2006		
Toluene			ND	5.0		µg/Kg		1		6/26/2006		

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Advanced Technology Laboratories

37 of 67

CLIENT:	Fugro West, Inc.				Client Sampl	e ID: B-15@10).5'			
Lab Order:	085175				Tag Nun	aber:				
Project:	APA Fund, 838.0)06			Collection I	6 1:15:00 P	ΥM			
Lab ID:	085175-024A				Ma	atrix: SOIL	L			
Analyses		Re	sult	PQL	Qual Units	DF	Date	Analyzed		
DIESEL & MO	TOR OIL RANGE OF		Y GC/FID							
	E	PA 3550B			EPA 8015	B(M)				
RunID: GC7_0	60627B	QC Batch:	28828			PrepDate:	6/26/2006	Analyst: CBR		
DRO			1.2 ·	1.0	mg/Kg	1		6/27/2006		
ORO			ND	1.0	mg/Kg	1		6/27/2006		
GASOLINE RA	NGE ORGANICS B	Y GC/FID								
					EPA 8015	B(M)				
RunID: GC1_0	60623A	QC Batch:	D06VS0	57		PrepDate:		Analyst: ML		
GRO			ND	1.0	mg/Kg	1		6/23/2006		
	GANIC COMPOUND	S BY GC/M	S							
· · · · · · · · · · · · · · · · · · ·					EPA 826	60B				
RunID: MS3_06	50626A	QC Batch:	R06VS1	21		PrepDate:		Analyst: TT		
1,2-Dibromoeth	ane		ND	5.0	µg/Kg	1		6/26/2006		
1,2-Dichloroetha			ND	5.0	µg/Kg	1		6/26/2006		
Benzene			ND	5.0	µg/Kg	1		6/26/2006		
Di-isopropyl eth	er		ND	5.0	µg/Kg	1		6/26/2006		
Ethyl Tert-butyl			ND	5.0	µg/Kg	1		6/26/2006		
Ethylbenzene			ND	5.0	µg/Kg	1		6/26/2006		
m,p-Xylene			ND	10	µg/Kg	1		6/26/2006		
MTBE			ND	5.0	µg/Kg	1		6/26/2006		
o-Xylene			ND	5.0	µg/Kg	1		6/26/2006		
Tert-amyl methy	/l ether		ND	5.0	μg/Kg	1		6/26/2006		
Tert-Butanol			ND	100	µg/Kg	1		6/26/2006		
Toluene			ND	5.0	µg/Kg	1		6/26/2006		

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 37 of 66

Advanced Technology Laboratories 38 of 67

CLIENT:	Fugro West,	Inc.			Client S	Sample	e ID: B-15	6@16	.0'		
Lab Orde	r: 085175				Tag	g Num	ıber:				
Project:	APA Fund, 8	38.006			Collec	ction I	Date: 6/20	/2006	5 2:10:00 P	M	
Lab ID:	085175-0254	A				Ma	trix: SOI	ĨL ·			
Analyses		Re	sult	PQL	Qual	Units		DF	Date	Analyzed	
DIESEL &	MOTOR OIL RANG		Y GC/FID								
		EPA 3550B			EPA	8015	B(M)				
RunID: G	C7_060629A	QC Batch:	28899				PrepDate:		6/28/2006	Analyst: CBR	
DRO			ND	1.0	1	mg/Kg		1		6/29/2006	
ORO			1.7	1.0	ı	mg/Kg		1		6/29/2006	
GASOLINE	RANGE ORGANIC	S BY GC/FID									
					EPA	8015	B(M)				
RunID: G	: GC1 060623A QC Batc		D06VS0)57			PrepDate:			Analyst: ML	
GRO			ND	1.0	r	mg/Kg		1		6/23/2006	
	ORGANIC COMPOL	JNDS BY GC/M	s								
			-		EP	A 826	0B				
RunID: MS	53_060626A	QC Batch:	R06VS1	21			PrepDate:			Analyst: TT	
1,2-Dibrom	noethane		ND	5.0	ŀ	Jg/Kg		1		6/26/2006	
1,2-Dichlor			ND	5.0		ug/Kg		1		6/26/2006	
Benzene			ND	5.0	ŀ	ug/Kg		1		6/26/2006	
Di-isoprop	yl ether		ND	5.0	ŀ	ug/Kg		1		6/26/2006	
Ethyl Tert-I	butyl ether		ND	5.0	ŀ	Jg/Kg		1		6/26/2006	
Ethylbenze	ene		ND	5.0	٢	ug/Kg		1		6/26/2006	
m,p-Xylene	e		ND	10	4	ıg/Kg		1		6/26/2006	
MTBE			ND	5.0	ł	ıg/Kg		1		6/26/2006	
o-Xylene			ND	5.0		ıg/Kg		1		6/26/2006	
Tert-amyl r	nethyl ether		ND	5.0	-	ıg/Kg		1		6/26/2006	
Tert-Butan	ol		ND	100	-	ıg/Kg		1		6/26/2006	
Toluene			ND	5.0	μ	ıg/Kg		1		6/26/2006	

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 38 of 66

Advanced Technology Laboratories

39 of 67

CLIENT:	Fugro West, Inc.				Client Sample	e ID: B-15@	20.5'	
Lab Order:	085175				Tag Nun	nber:		
Project:	APA Fund, 838.0	06			Collection I	Date: 6/20/2	006 2:25:00 H	PM
Lab ID:	085175-026A				Ma	trix: SOIL		
Analyses		Re	esult	PQL	Qual Units]	DF Date	e Analyzed
DIESEL & N	NOTOR OIL RANGE OR		Y GC/FID					
	EF	A 3550B			EPA 8015	B(M)		
RunID: GC7	_060629A	QC Batch:	28899			PrepDate:	6/28/2006	Analyst: CBR
DRO			1.2	1.0	mg/Kg	1		6/29/2006
ORO			2.1	1.0	mg/Kg	1		6/29/2006
GASOLINE	RANGE ORGANICS B	GC/FID						
					EPA 8015	B(M)		
RunID: GC1	_060623A	QC Batch:	D06VS0	57		PrepDate:		Analyst: ML
GRO	_		ND	1.0	mg/Kg	1		6/23/2006
	RGANIC COMPOUNDS	BY GC/M	S					
			-		EPA 826	0B		
RunID: MS3	060626A	QC Batch:	R06VS1	21		PrepDate:		Analyst: TT
1,2-Dibromo	-		ND	5.0	µg/Kg	1		6/26/2006
1,2-Dichloroe			ND	5.0	µg/Kg	1		6/26/2006
Benzene			ND	5.0	µg/Kg	1		6/26/2006
Di-isopropyl	ether		ND	5.0	µg/Kg	1		6/26/2006
Ethyl Tert-bu			ND	5.0	µg/Kg	1		6/26/2006
Ethylbenzen	•		ND	5.0	µg/Kg	1		6/26/2006
m,p-Xylene			ND	10	µg/Kg	÷ 1		6/26/2006
MTBE			ND	5.0	µg/Kg	1		6/26/2006
o-Xylene			ND	5.0	µg/Kg	1		6/26/2006
Tert-amyl me	ethyl ether		ND	5.0	µg/Kg	1		6/26/2006
Tert-Butanol			ND	100	µg/Kg	1		6/26/2006
Toluene			ND	5.0	µg/Kg	1		6/26/2006

Date: 05-Jul-06

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 39 of 66

Advanced Technology Laboratories 40 of 67

CLIEN	r:]	Fugro West, Inc.				Client	Sample	e ID: B-15	6@25	5.0'	
Lab Oro	der: (085175				Та	ag Num	ıber:			
Project:		APA Fund, 838.0	06			Colle	ection I	Date: 6/20	/2000	5 2:35:00 P	M
Lab ID:)85175-027A					Ma	trix: SOII	L		
Analyse	s		Re	esult	PQL	Qual	Units		DF	Date	Analyzed
DIESEL	& MOTOF	OIL RANGE OR	GANICS B	BY GC/FID							
		EP	A 3550B			EP.	A 8015	B(M)			
RunID:	GC7_06062	9A	QC Batch:	28899				PrepDate:		6/28/2006	Analyst: CBR
DRO				ND	1.0		mg/Kg		1		6/29/2006
ORO				1.5	1.0		mg/Kg		1		6/29/2006
GASOLI	NE RANG	E ORGANICS BY	GC/FID								
						EP	A 8015	B(M)			
RunID:	GC1_06062	6A	QC Batch:	D06VS0	58			PrepDate:			Analyst: ML
GRO	-			ND	1.0		mg/Kg		1		6/26/2006
		IC COMPOUNDS	BY GC/M	S							
				-		Ε	PA 826	0B			
RunID:	MS3_06062	6A	QC Batch:	R06VS1	21			PrepDate:			Analyst: TT
	- omoethane			ND	5.0		µg/Kg		1		6/26/2006
,	nloroethane			ND	5.0		µg/Kg		1		6/26/2006
Benzen				ND	5.0		µg/Kg		1		6/26/2006
Di-isopr	opyl ether			ND	5.0		µg/Kg		1		6/26/2006
	ert-butyl ethe	r		ND	5.0		µg/Kg		1		6/26/2006
Ethylber	-			ND	5.0		µg/Kg		1		6/26/2006
m,p-Xyle	ene			ND	10		µg/Kg		1		6/26/2006
MTBE				ND	5.0		µg/Kg		1		6/26/2006
o-Xylene	e			ND	5.0		µg/Kg		1		6/26/2006
Tert-am	yl methyl eth	er		ND	5.0		µg/Kg		1		6/26/2006
Tert-But	anol			ND	100		µg/Kg		1		6/26/2006
Toluene				ND	5.0		µg/Kg		1		6/26/2006

Date: 05-Jul-06

Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit S Spike/Surrogate outside of limits due to matrix interference Results are wet unless otherwise specified DO Surrogate Diluted Out Surrogate Diluted Out

Page 40 of 66

Advanced Technology Laboratories

41 of 67

Date: 05-Jul-06

CLIENT	F: Fugro West,	Inc.		Client Sample I	D: B-15@25.0	¹
Lab Ord	ler: 085175			Tag Numb	er:	
Project:	APA Fund,	838.006		Collection Da	te: 6/20/2006 2	2:35:00 PM
Lab ID:	085175-027	В		Matr	ix: SOIL	
Analyses	5	Resi	ult PQL	Qual Units	DF	Date Analyzed
GASOLI	NE RANGE ORGANIC	S BY GC/FID				
				EPA 8015B(M)	
RunID:	GC1_060626A	QC Batch:	D06VS058	P	repDate:	Analyst: ML
GRO		٢	ND 1.0	mg/Kg	1	6/26/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Page 41 of 66

Advanced Technology Laboratories

42 of 67

CLIENT:	Fugro West, Inc.				Client	Sample	e ID: B-15	5@30	0.0'	
Lab Order:	085175				Та	ig Num	iber:			
Project:	APA Fund, 838.	006			Colle	ection I	Date: 6/20	/2000	6 2:56:00 P	М
Lab ID:	085175-028A					Ma	trix: SOI	L		
Analyses		Re	esult	PQL	Qual	Units		DF	Date	Analyzed
DIESEL & MO	TOR OIL RANGE O	RGANICS E	Y GC/FID							
	E	PA 3550B			EP	A 8015	B(M)			
RuniD: GC7_06	60629A	QC Batch:	28899				PrepDate:		6/28/2006	Analyst: CBR
DRO			ND	1.0		mg/Kg		1		6/29/2006
ORO			1.5	1.0		mg/Kg		1		6/29/2006
	NGE ORGANICS B	Y GC/FID								
······································					EP/	A 8015I	B(M)			
RunID: GC1_06	60626A	QC Batch:	D06VS0)58			PrepDate:			Analyst: ML
GRO –			9.6	5.0		mg/Kg		5		6/26/2006
	GANIC COMPOUND	S BY GC/M		0.0				•		0.20.2000
			-		El	PA 826	0B			
RunID: MS3_06	60626B	QC Batch:	R06VS1	22			PrepDate:			Analyst: TT
1,2-Dibromoetha	ane		ND	5.0		µg/Kg		1		6/27/2006
1,2-Dichloroetha			ND	5.0		µg/Kg		1		6/27/2006
Benzene			ND	5.0		µg/Kg		1		6/27/2006
Di-isopropyl ethe	er		ND	5.0		µg/Kg		1		6/27/2006
Ethyl Tert-butyl e	ether		ND	5.0		µg/Kg		1		6/27/2006
Ethylbenzene			29	5.0		µg/Kg		1		6/27/2006
m,p-Xylene			ND	10		µg/Kg		1		6/27/2006
MTBE			ND	5.0		µg/Kg		1		6/27/2006
o-Xylene			28	5.0		µg/Kg		1		6/27/2006
Tert-amyl methy	l ether		ND	5.0		µg/Kg		1		6/27/2006
			ND	100		µg/Kg		1		6/27/2006
Tert-Butanol Toluene			ND	5.0		µg/Kg		1		6/27/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Page 42 of 66

Advanced Technology Laboratories

43 of 67

OI IENT	W	last Tra			Cliant Samal	e ID: B-15@3	5 0'	
CLIENT:	-	est, inc.			-	-	5.0	
Lab Orde					Tag Nun		< 0.05 00 T	
Project:	APA Fu	nd, 838.006				Date: 6/20/200	6 3:25:00 F	'M
Lab ID:	085175-	029A			Ma	atrix: SOIL		
Analyses		Re	sult	PQL	Qual Units	DF	Date	Analyzed
DIESEL 8	& MOTOR OIL RA	ANGE ORGANICS B	Y GC/FID		EPA 8015	(D/M)		
		EPA 3550B			EPA OUIS			
RunID: G	GC7_060629A	QC Batch:	28899			PrepDate:	6/28/2006	Analyst: CBR
DRO			1.1	1.0	mg/Kg	1		6/29/2006
ORO			1.5	1.0	mg/Kg	1		6/29/2006
GASOLIN	E RANGE ORGA	ANICS BY GC/FID						
					EPA 8015	B(M)		
RunID: G	C1_060626A	QC Batch:	D06VS	058		PrepDate:		Analyst: ML
GRO			57	5.0	mg/Kg	5		6/26/2006
OLATILE	ORGANIC COM	POUNDS BY GC/M	S					
					EPA 826	50B		
RunID: M	IS3_060626B	QC Batch:	R06VS	122		PrepDate:		Analyst: TT
1,2-Dibroi	moethane		ND	5.0	µg/Kg	1		6/27/2006
1,2-Dichlo	proethane		ND	5.0	µg/Kg	1		6/27/2006
Benzene			ND	5.0	µg/Kg	1		6/27/2006
Di-isoprop	oyl ether		ND	5.0	µg/Kg	1		6/27/2006
Ethyl Tert	-butyl ether		ND	5.0	µg/Kg	1		6/27/2006
Ethylbenz	ene		43	5.0	µg/Kg	1		6/27/2006
m,p-Xylen	e		ND	10	µg/Kg	1		6/27/2006
MTBE			ND	5.0	µg/Kg	1		6/27/2006
o-Xylene			ND	5.0	µg/Kg	1		6/27/2006
Tert-amyl	methyl ether		ND	5.0	µg/Kg	1		6/27/2006
Tert-Butar	nol		ND	100	µg/Kg	1		6/27/2006
Toluene			ND	5.0	µg/Kg	1		6/27/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

 E Value above quantitation range
 ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 05-Jul-06

Page 43 of 66

Advanced Technology Laboratories

44 of 67

CLIEN	F: Fugro W	est, Inc.			Client	Sample	e ID: B-15	5@40).5'	
Lab Ord	der: 085175				Ta	ig Nun	iber:			
Project:	APA Fur	nd, 838.006			Colle	ection I	Date: 6/20	/2006	5 3:41:00 P	ΎM
Lab ID:	085175-0	030A	Matrix: SOIL							
Analyse	S	Re	sult	PQL	Qual	Units		DF	Date	Analyzed
DIESEL	& MOTOR OIL RA	NGE ORGANICS B	Y GC/FID							
		EPA 3550B			EP.	A 8015	B(M)			
RunID:	GC7_060629A	QC Batch:	28899			ν.	PrepDate:		6/28/2006	Analyst: CBR
DRO			3.7	1.0		mg/Kg		1		6/30/2006
ORO			ND	1.0		mg/Kg		1		6/30/2006
GASOLI	NE RANGE ORGA	NICS BY GC/FID								
					EP	A 8015	B(M)			
RunID:	GC1_060626A	QC Batch:	D06VS0)58			PrepDate:			Analyst: ML
GRO			150	50		mg/Kg		50		6/26/2006
VOLATIL	E ORGANIC COM	POUNDS BY GC/MS	5							
					E	PA 826	0B			
RunID:	MS3_060626B	QC Batch:	R06VS1	22			PrepDate:			Analyst: TT
1,2-Dibr	omoethane		ND	5.0		µg/Kg		1		6/27/2006
1,2-Dich	loroethane		ND	5.0		µg/Kg		1		6/27/2006
Benzene			ND	5.0		µg/Kg		1		6/27/2006
Di-isopro	opyl ether		ND	5.0		µg/Kg		1		6/27/2006
Ethyl Te	rt-butyl ether		ND	5.0		µg/Kg		1		6/27/2006
Ethylber	•		ND	5.0		µg/Kg		1		6/27/2006
m,p-Xyle	ene		ND	10	~	µg/Kg		1		6/27/2006
MTBE			ND	5.0		µg/Kg		1		6/27/2006
o-Xylene)		ND	5.0		µg/Kg		1		6/27/2006
Tert-amy	yl methyl ether	I	ND	5.0		µg/Kg		1		6/27/2006
Tert-But	anol		ND	100		µg/Kg		1		6/27/2006
Toluene			ND	5.0		µg/Kg		1		6/27/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Advanced Technology Laboratories

- E Value above quantitation rangeND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Date: 05-Jul-06

Page 44 of 66

Advanced Technology Laboratories

45 of 67

CLIENT:	Fugro West, In	CLIENT: Fugro West, Inc.				Client Sample ID: B-15@45.0'						
Lab Order:	085175				Tag Nu	umber:						
Project:	APA Fund, 838	3.006			Collection	n Date: 6/20	/2000	5 3:45:00 P	M			
Lab ID: 085175-031A												
Analyses		Re	esult	PQL	Qual Uni	ts	DF	Date	Analyzed			
DIESEL & N	NOTOR OIL RANGE		BY GC/FID		504.00							
		EPA 3550B			EPA 80							
RunID: GC7	7_060629A	QC Batch:	28899			PrepDate:		6/28/2006	Analyst: CBR			
DRO			ND	1.0	mg/ł	Kg	1		6/29/2006			
ORO			1.5	1.0	mg/ł	≺g	1		6/29/2006			
GASOLINE	RANGE ORGANICS	BY GC/FID										
					EPA 80	15B(M)						
RunID: GC1	_060626A	QC Batch:	D06VS0	58		PrepDate:			Analyst: ML			
GRO			ND	1.0	mg/ł	۲g	1		6/26/2006			
	RGANIC COMPOUN	DS BY GC/M	S									
					EPA 8	260B						
RunID: MS3	_060626A	QC Batch:	R06VS1	21		PrepDate:			Analyst: TT			
1,2-Dibromo	ethane		ND	5.0	μg/K	g	1		6/26/2006			
1,2-Dichloro			ND	5.0	μg/K		1		6/26/2006			
Benzene			ND	5.0	μg/K	g	1		6/26/2006			
Di-isopropyl	ether		ND	5.0	μg/K	g	1		6/26/2006			
Ethyl Tert-bu			ND	5.0	µg/K	g	1		6/26/2006			
Ethylbenzen	e		ND	5.0	μg/K	g	1		6/26/2006			
m,p-Xylene			ND	10	μg/K	g	1		6/26/2006			
MTBE			ND	5.0	µg/K	g	1		6/26/2006			
o-Xylene			ND	5.0	µg/K	g	1		6/26/2006			
Tert-amyl me	ethyl ether		ND	5.0	μg/K	g	1		6/26/2006			
Tert-Butanol			ND	100	μg/K	g	1		6/26/2006			
Toluene			ND	5.0	μg/K	a	1		6/26/2006			

Qualifiers:

- Analyte detected in the associated Method Blank в
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S
- DO Surrogate Diluted Out

- Value above quantitation range Е ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Date: 05-Jul-06

Page 45 of 66

Advanced Technology Laboratories

46 of 67

CLIENT: Fugro West, Inc.

Work Order: 085175

Project: APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: ME		SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/26/2006	RunNo: 65017
Client ID: PB	BS	Batch ID: 28828	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/27/2006	SeqNo: 964593
Analyte	:	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO		ND	1.0		
ORO		ND	1.0		
Sample ID: LC	S-28828	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/26/2006	RunNo: 65017
Client ID: LC	SS	Batch ID: 28828	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/27/2006	SeqNo: 964612
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO		13.226	1.0 33.00 0	40.1 38 106	
Sample ID: ME		SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/26/2006	RunNo: 65017
Client ID: PB	35	Batch ID: 28828	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/27/2006	SeqNo: 964613
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO		ND	1.0		
ORO		ND	1.0		
Sample ID: LC	S-28828	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/26/2006	RunNo: 65017
Client ID: LC	SS	Batch ID: 28828	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/27/2006	SeqNo: 964614
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO		13.481	1.0 33.00 0	40.9 38 106	
Sample ID: 08	5175-005AMS	SampType: MS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/26/2006	RunNo: 65017
Client ID: B-	13@5.0	Batch ID: 28828	TestNo: EPA 8015B(M EPA 3550B	Analysis Date: 6/27/2006	SeqNo: 964615
Client ID: B-	13@5.0	Batch ID: 28828 Result	PQL SPK value SPK Ref Val	Analysis Date: 6/27/2006 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 964615 %RPD RPDLimit Qual

Qualifiers: Ε Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded s

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 46 of 66

CLIENT:	Fugro West, Inc.
Work Order:	085175
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: 085175-005AMSD Client ID: B-13@5.0'	SampType: MSD Batch ID: 28828			M L Units: mg/Kg B(M EPA 3550B		Prep Da Analysis Da	te: 6/26/20 te: 6/27/20		RunNo: 650 SeqNo: 964		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
DRO	15.970	1.0	33.00	1.159	44.9	27	109	15.78	1.22	30	

Qualifiers: Е Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

Н Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

Page 47 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: LCS-28899	SampType: LCS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: LCSS	Batch ID: 28899	TestNo: EPA 8015B(M EPA 3550B Ana	alysis Date: 6/29/2006	SeqNo: 966263
Analyte	Result	PQL SPK value SPK Ref Val %REC Lo	owLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	19.211	1.0 33.00 0 58.2	38 106	
Sample ID: MB-28899	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: PBS	Batch ID: 28899		alysis Date: 6/29/2006	SeqNo: 966264
Analyte	Result		owLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	ND	1.0		
ORO	ND	1.0		
Sample ID: 085175-025AMS	SampType: MS	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: B-15@16.0'	Batch ID: 28899		alysis Date: 6/29/2006	SeqNo: 966277
Analyte	Result	PQL SPK value SPK Ref Val %REC Lo	owLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
DRO	13.364	1.0 33.00 0 40.5	27 109	· · · · · · · · · · · · · · · · · · ·
Sample ID: 085175-025AMSD	SampType: MSD	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: B-15@16.0'	Batch ID: 28899		alysis Date: 6/29/2006	SeqNo: 966278
Analyte	Result	PQL SPK value SPK Ref Val %REC Lo	owLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
DRO	13.569	1.0 33.00 0 41.1	27 109 13.36	1.52 30
Sample ID: MB-28899	SampType: MBLK	TestCode: 8015_S_DM L Units: mg/Kg	Prep Date: 6/28/2006	RunNo: 65118
Client ID: PBS	Batch ID: 28899		alysis Date: 6/29/2006	SeqNo: 966279
Analyte	Result	PQL SPK value SPK Ref Val %REC Lo	owLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
DRO	ND	1.0		
ORO	ND	1.0		

Qualifiers: Ε Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

Page 48 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_DM LL

Sample ID: LCS-28899 Client ID: LCSS	SampType: LCS Batch ID: 28899	TestCode: 8015_S_DM L Units: mg/Kg TestNo: EPA 8015B(M EPA 3550B	Prep Date: 6/28/2006 Analysis Date: 6/29/2006	RunNo: 65118 SeqNo: 966280
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	20.861	1.0 33.00 0	63.2 38 106	
Sample ID: MB-28899 Client ID: PBS	SampType: MBLK Batch ID: 28899	TestCode: 8015_S_DM L Units: mg/Kg TestNo: EPA 8015B(M EPA 3550B	Prep Date: 6/28/2006 Analysis Date: 6/30/2006	RunNo: 65118 SeqNo: 966796
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO ORO	ND ND	1.0 1.0		
Sample ID: LCS-28899 Client ID: LCSS	SampType: LCS Batch ID: 28899	TestCode: 8015_S_DM L Units: mg/Kg TestNo: EPA 8015B(M EPA 3550B	Prep Date: 6/28/2006 Analysis Date: 6/30/2006	RunNo: 65118 SeqNo: 966797
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	23.390	1.0 33.00 0	70.9 38 106	

Qualifiers: Value above quantitation range Е

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 49 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: D062306MB1 Client ID: PBS	SampType: MBLK Batch ID: D06VS057	TestCode: 8015_S_GAS Units: mg/Kg TestNo: EPA 8015B(M	Prep Date: Analysis Date: 6/23/2006	RunNo: 64920 SeqNo: 962876
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	0.158	1.0		
Sample ID: D062306MB1MS Client ID: ZZZZZZ	SampType: MS Batch ID: D06VS057	TestCode: 8015_S_GAS Units: mg/Kg TestNo: EPA 8015B(M	Prep Date: Analysis Date: 6/23/2006	RunNo: 64920 SeqNo: 962877
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.723	1.0 5.000 0.1580	91.3 34 140	
Sample ID: D062306MB1MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: D06VS057	TestCode: 8015_S_GAS Units: mg/Kg TestNo: EPA 8015B(M	Prep Date: Analysis Date: 6/23/2006	RunNo: 64920 SeqNo: 962878
		••		
Client ID: ZZZZZZ	Batch ID: D06VS057	TestNo: EPA 8015B(M	Analysis Date: 6/23/2006	SeqNo: 962878
Client ID: ZZZZZZ Analyte	Batch ID: D06VS057 Result	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val	Analysis Date:6/23/2006%RECLowLimitHighLimitRPD Ref Val94.6341404.723	SeqNo: 962878 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte GRO Sample ID: D062306LCS2	Batch ID: D06VS057 Result 4.889 SampType: LCS	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val 1.0 5.000 0.1580 TestCode: 8015_S_GAS Units: mg/Kg	Analysis Date: 6/23/2006 %REC LowLimit HighLimit RPD Ref Val 94.6 34 140 4.723 Prep Date:	SeqNo: 962878 %RPD RPDLimit Qual 3.45 30 30 RunNo: 64920 SeqNo: 962891

Qualifiers: Ε Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 50 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: D062606MB1 Client ID: PBS	SampType: MBLK Batch ID: D06VS058	TestCode: 8015_S_GAS Units: mg/Kg TestNo: EPA 8015B(M	•	RunNo: 64973
Analyte	Result	PQL SPK value SPK Ref Val	Analysis Date: 6/26/2006 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 963830 %RPD RPDLimit Qual
GRO	0.163	1.0		
Sample ID: D062606MB1MS Client ID: ZZZZZZ	SampType: MS Batch ID: D06VS058	TestCode: 8015_S_GAS Units: mg/Kg TestNo: EPA 8015B(M	Prep Date: Analysis Date: 6/26/2006	RunNo: 64973 SeqNo: 963831
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.837	1.0 5.000 0.1630	93.5 34 140	
Sample ID: D062606MB1MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: D06VS058	TestCode: 8015_S_GAS Units: mg/Kg TestNo: EPA 8015B(M	Prep Date: Analysis Date: 6/26/2006	RunNo: 64973 SeqNo: 963832
		00	•	
Client ID: ZZZZZZ	Batch ID: D06VS058	TestNo: EPA 8015B(M	Analysis Date: 6/26/2006	SeqNo: 963832
Client ID: ZZZZZZ Analyte	Batch ID: D06VS058 Result	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val	Analysis Date: 6/26/2006 %REC LowLimit HighLimit RPD Ref Val 95.0 34 140 4.837	SeqNo: 963832 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte GRO Sample ID: D062606LCS2	Batch ID: D06VS058 Result 4.911 SampType: LCS	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val 1.0 5.000 0.1630 TestCode: 8015_S_GAS	Analysis Date: 6/26/2006 %REC LowLimit HighLimit RPD Ref Val 95.0 34 140 4.837 Prep Date:	SeqNo: 963832 %RPD RPDLimit Qual 1.52 30

Qualifiers: E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 51 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

)
PDLimit Qua
)
PDLimit Qua
PDLimit Qua
PDLimit Qua
PDLimit Qua
PDLimit Qua 30
0

Qualifiers: Ε Value above quantitation range

RPD outside accepted recovery limits R Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 52 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_S_GAS

Sample ID: E062906MB1	SampType: MBLK	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: PBS	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966102
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	ND	1.0		
Sample ID: E062906MB1MS	SampType: MS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: ZZZZZZ	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966103
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.965	1.0 5.000 0	99.3 34 140	*** <u></u> *****************************
Sample ID: E062906MB1MSD	SampType: MSD	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: ZZZZZZ	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966104
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.639	1.0 5.000 0	92.8 34 140 4.965	6.79 30
Sample ID: E062906LCS1	SampType: LCS	TestCode: 8015_S_GAS Units: mg/Kg	Prep Date:	RunNo: 65105
Client ID: LCSS	Batch ID: E06VS133	TestNo: EPA 8015B(M	Analysis Date: 6/29/2006	SeqNo: 966106
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
GRO	4.671	1.0 5.000 0	93.4 78 122	

Qualifiers: Ε Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 53 of 66

Advanced Technology Laboratories

ANALYTICAL QC SUMMARY REPORT

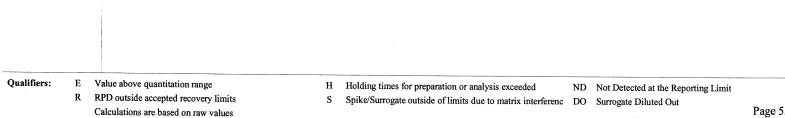
TestCode: 8015_W_DM_LL

Sample ID: MB-28810 Client ID: PBW	SampType: MBLK	TestCode: 8015_W_DM_ Units: mg/L	Prep Date: 6/26/2006	RunNo: 65070
Chent ID. FBW	Batch ID: 28810	TestNo: EPA 8015B(M EPA 3510C	Analysis Date: 6/26/2006	SeqNo: 965479
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO ORO	ND ND	0.050 0.050		
Sample ID: LCS-28810 Client ID: LCSW	SampType: LCS Batch ID: 28810	TestCode: 8015_W_DM_ Units: mg/L TestNo: EPA 8015B(M EPA 3510C	Prep Date: 6/26/2006 Analysis Date: 6/26/2006	RunNo: 65070 SeqNo: 965480
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.742	0.050 1.000 0	74.2 60 130	anna ann ann an an ann an ann ann ann a
Sample ID: MB-28810M Client ID: ZZZZZZ	S SampType: MS Batch ID: 28810	TestCode: 8015_W_DM_ Units: mg/L TestNo: EPA 8015B(M EPA 3510C	Prep Date: 6/26/2006 Analysis Date: 6/26/2006	RunNo: 65070 SeqNo: 965481
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.664	0.050 1.000 0	66.4 60 130	
Sample ID: MB-28810M Client ID: ZZZZZZ	SD SampType: MSD Batch ID: 28810	TestCode: 8015_W_DM_ Units: mg/L TestNo: EPA 8015B(M EPA 3510C	Prep Date: 6/26/2006 Analysis Date: 6/26/2006	RunNo: 65070 SeqNo: 965482
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
DRO	0.748	0.050 1.000 0	74.8 60 130	

Qualifiers: Е Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S


ND Not Detected at the Reporting Limit

Page 54 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1062206LCS1	SampType: LCS	TestCode: 8015_W_GP U	Inits: mg/L	Prep Date	Э:	RunNo: 64822	
Client ID: LCSW	Batch ID: 106VW167	TestNo: EPA 8015B(M		Analysis Date	e: 6/22/2006	SeqNo: 960896	
Analyte	Result	PQL SPK value SPK F	Ref Val %RE	C LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
GRO	0.825	0.050 1.000	0 82.	5 71	122		
Sample ID: 1062206MB2MS	SampType: MS	TestCode: 8015_W_GP U	Jnits: mg/L	Prep Dat	ə:	RunNo: 64822	
Client ID: ZZZZZZ	Batch ID: 106VW167	TestNo: EPA 8015B(M		Analysis Dat	e: 6/22/2006	SeqNo: 960898	
Analyte	Result	PQL SPK value SPK F	Ref Val %RE	C LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
GRO	0.983	0.050 1.000	0 98.	3 71	122		
Sample ID: 1062206MB2	SampType: MBLK	TestCode: 8015_W_GP U	Jnits: mg/L	Prep Dat	e:	RunNo: 64822	
Sample ID: 1062206MB2 Client ID: PBW	SampType: MBLK Batch ID: 106VW167	TestCode: 8015_W_GP U TestNo: EPA 8015B(M	Jnits: mg/L	•	e: e: 6/22/2006	RunNo: 64822 SeqNo: 960899	
			-	Analysis Dat			Qual
Client ID: PBW	Batch ID: 106VW167	TestNo: EPA 8015B(M	-	Analysis Dat	e: 6/22/2006	SeqNo: 960899	Qual
Client ID: PBW Analyte	Batch ID: 106VW167 Result	TestNo: EPA 8015B(M PQL SPK value SPK F 0.050	-	Analysis Dat	e: 6/22/2006 HighLimit RPD Ref Val	SeqNo: 960899 %RPD RPDLimit	Qual
Client ID: PBW Analyte GRO	Batch ID: 106VW167 Result ND	TestNo: EPA 8015B(M PQL SPK value SPK F 0.050	Ref Val %RE	Analysis Dat C LowLimit Prep Dat	e: 6/22/2006 HighLimit RPD Ref Val	SeqNo: 960899	Qual
Client ID: PBW Analyte GRO Sample ID: 1062206MB2MSD	Batch ID: 106VW167 Result ND SampType: MSD	TestNo: EPA 8015B(M PQL SPK value SPK F 0.050	Ref Val %RE	Analysis Dat C LowLimit Prep Dat Analysis Dat	e: 6/22/2006 HighLimit RPD Ref Val	SeqNo: 960899 %RPD RPDLimit RunNo: 64822	Qual

Page 55 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_GP LL

Sample ID: 1070306LCS1	SampType: LCS	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65225		
Client ID: LCSW	Batch ID: 106VW175	TestNo: EPA 8015B(M	Analysis Date: 7/3/2006	SeqNo: 968154		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
GRO	0.925	0.050 1.000 0	92.5 71 122			
Sample ID: 1070306MB2MS Client ID: ZZZZZZZ	SampType: MS Batch ID: 106VW175	TestCode: 8015_W_GP Units: mg/L TestNo: EPA 8015B(M	Prep Date: Analysis Date: 7/3/2006	RunNo: 65225 SeqNo: 968155		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
GRO	0.968	0.050 1.000 0	96.8 71 122			
Sample ID: 1070306MB2MSD	SampType: MSD	TestCode: 8015_W_GP Units: mg/L	Prep Date:	RunNo: 65225		
Client ID: ZZZZZZ	Batch ID: 106VW175	TestNo: EPA 8015B(M	Analysis Date: 7/3/2006	SeqNo: 968156		
Client ID: ZZZZZZZ Analyte	Batch ID: 106VW175 Result	TestNo: EPA 8015B(M PQL SPK value SPK Ref Val	Analysis Date: 7/3/2006 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 968156		
				SeqNo: 968156		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	SeqNo: 968156 %RPD RPDLimit Qual		
Analyte GRO Sample ID: 1070306MB2	Result 0.993 SampType: MBLK	PQL SPK value SPK Ref Val 0.050 1.000 0 TestCode: 8015_W_GP Units: mg/L	%REC LowLimit HighLimit RPD Ref Val 99.3 71 122 0.9680 Prep Date:	SeqNo: 968156 %RPD RPDLimit Qual 2.55 30 RunNo: 65225		

Qualifiers: Value above quantitation range Е

RPD outside accepted recovery limits R Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 56 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062406LCS1	SampType: LCS	TestCo	de: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 649	28	
Client ID: LCSS	Batch ID: R06VS120	Test	No: EPA 8260	В		Analysis Da	te: 6/24/20	06	SeqNo: 962		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	99.780	5.0	100.0	0	99.8	77	131				
MTBE	110.170	5.0	100.0	0	110	50	143				
Toluene	96.460	5.0	100.0	1.190	95.3	78	129				
Sample ID: R062406MB2MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 649	28	
Client ID: ZZZZZZ	Batch ID: R06VS120	Test	No: EPA 8260	B		Analysis Da	te: 6/24/20	06	SeqNo: 962		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	97.060	5.0	100.0	0	97.1	68	137				
МТВЕ	103.740	5.0	100.0	0	104	54	141				
Toluene	93.770	5.0	100.0	1.190	92.6	53	150				
Sample ID: R062406MB2MSD	SampType: MSD	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 649)28	
Client ID: ZZZZZZ	Batch ID: R06VS120	Test	No: EPA 8260	В		Analysis Da	te: 6/24/20	06	SeqNo: 962	2972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	99.950	5.0	100.0	0	100	68	137	97.06	2.93	30	
MTBE	103.100	5.0	100.0	0	103	54	141	103.7	0.619	30	
Toluene	100.350	5.0	100.0	1.190	99.2	53	150	93.77	6.78	30	
Sample ID: R062406MB2	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 649)28	
Client ID: PBS	Batch ID: R06VS120	Test	No: EPA 8260	В		Analysis Da	ite: 6/24/20	006	SeqNo: 962		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0									
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
		5.0									
Di-isopropyl ether	ND	0.0									
Di-isopropyl ether Ethyl Tert-butyl ether	ND ND	5.0									

Qualifiers: E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

its S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 57 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062406MB2 Client ID: PBS	SampType: MBLK Batch ID: R06VS120		TestCode: 8260_S Units: µg/Kg TestNo: EPA 8260B			Prep Da Analysis Da		RunNo: 64928 SeqNo: 962973			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	10									
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	1.190	5.0									

Qualifiers:	Е	Value above quantitation range	н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits		Spike/Surrogate outside of limits due to matrix interference			
		Calculations are based on raw values					Page 58 of 66

Fugro West, Inc. **CLIENT:** Work Order: 085175 **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062606LCS1	SampType: LCS	TestCoo	le: 8260_S	Units: µg/Kg		Prep Dat	ie:		RunNo: 649	71	
Client ID: LCSS	Batch ID: R06VS121	TestN	io: EPA 8260	3		Analysis Dat	te: 6/26/20	06	SeqNo: 963	760	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	97.980	5.0	100.0	0	98.0	77	131				
MTBE	111.810	5.0	100.0	0	112	50	143				
Toluene	94.430	5.0	100.0	0	94.4	78	129				
Sample ID: R062606MB1MS	SampType: MS	TestCo	de: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 649)71	
Client ID: ZZZZZZ	Batch ID: R06VS121	Test	No: EPA 8260	В		Analysis Dai	te: 6/26/20	06	SeqNo: 963	3761	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	107.700	5.0	100.0	0	108	68	137				
MTBE	113.940	5.0	100.0	0	114	54	141				
Toluene	100.600	5.0	100.0	0	101	53	150				
Sample ID: R062606MB1MSD	SampType: MSD	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 649	971	
Client ID: ZZZZZZ	Batch ID: R06VS121	Test	No: EPA 8260	в		Analysis Da	te: 6/26/20	006	SeqNo: 963	3762	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	98.290	5.0	100.0	0	98.3	68	137	107.7	9.14	30	
MTBE	106.340	5.0	100.0	0	106	54	141	113.9	6.90	30	
Toluene	96.110	5.0	100.0	0	96.1	53	.150	100.6	4.57	30	
Sample ID: R062606MB1	SampType: MBLK	TestCo	de: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 64	971	
Client ID: PBS	Batch ID: R06VS121	Test	No: EPA 8260	B		Analysis Da	ite: 6/26/20	006	SeqNo: 96	3763	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0		·							
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
Di-isopropyl ether	ND	5.0									
Ethyl Tert-butyl ether	ND	5.0									
Ethylbenzene	ND	5.0									

Qualifiers: Value above quantitation range Е

Holding times for preparation or analysis exceeded Н S

R RPD outside accepted recovery limits Calculations are based on raw values

Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 59 of 66

CLIENT:	Fugro West, Inc.
Work Order:	085175
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062606MB1 Client ID: PBS	SampType: MBLK Batch ID: R06VS121	TestCode: 8260_S Units: µg/Kg TestNo: EPA 8260B		Kg Prep Date: Analysis Date: 6/26/2006			006	RunNo: 64971 SeqNo: 963763			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	10									
MTBE	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	ND	5.0									

Qualifiers: Ε Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

Н Holding times for preparation or analysis exceeded S

ND Not Detected at the Reporting Limit Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 60 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062606LCS2	SampType: LCS	TestCode: 8260_S Ur		Units: µg/Kg		Prep Dat	te:	RunNo: 65021			
Client ID: LCSS	Batch ID: R06VS122	TestNo: EPA 8260B			Analysis Dal	te: 6/26/20	SeqNo: 964	554			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	95.950	5.0	100.0	0	96.0	77	131				
MTBE	93.850	5.0	100.0	0	93.8	50	143				
Toluene	94.420	5.0	100.0	0	94.4	78	129				
Sample ID: R062606MB3MS	SampType: MS	TestCod	e: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 650	21	
Client ID: ZZZZZZ	Batch ID: R06VS122	TestN	o: EPA 8260	в		Analysis Da	te: 6/26/20	06	SeqNo: 964	555	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	93.370	5.0	100.0	0	93.4	68	137				
MTBE	91.570	5.0	100.0	0	91.6	54	141				
Toluene	91.580	5.0	100.0	0	91.6	53	150				
Sample ID: R062606MB3MSD	SampType: MSD	TestCod	e: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 650)21	
Client ID: ZZZZZZ	Batch ID: R06VS122	TestNo: EPA 8260B		Analysis Date: 6/26/2006				SeqNo: 964556			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	95.070	5.0	100.0	0	95.1	68	137	93.37	1.80	30	
MTBE	93.020	5.0	100.0	0	93.0	54	141	91.57	1.57	30	
Toluene	93.250	5.0	100.0	0	93.2	53	150	91.58	1.81	30	
Sample ID: R062606MB3	SampType: MBLK	TestCod	e: 8260_S	Units: µg/Kg		Prep Da	te:		RunNo: 65)21	
Client ID: PBS	Batch ID: R06VS122	TestN	TestNo: EPA 8260B		Analysis Date: 6/26/2006				SeqNo: 964557		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	5.0									-
1,2-Dichloroethane	ND	5.0									
Benzene	ND	5.0									
Di-isopropyl ether	ND	5.0									
Ethyl Tert-butyl ether	ND	5.0									

Qualifiers: E Value above quantitation range

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits Calculations are based on raw values S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 61 of 66

CLIENT:	Fugro West, Inc.
Work Order:	085175
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: R062606MB3 Client ID: PBS	SampType: MBLK Batch ID: R06VS122	TestCode: 8260_S Units: µg/Kg TestNo: EPA 8260B		Prep Date: Analysis Date: 6/26/2006			RunNo: 650 SeqNo: 964	-			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	10								_	
МТВЕ	ND	5.0									
o-Xylene	ND	5.0									
Tert-amyl methyl ether	ND	5.0									
Tert-Butanol	ND	100									
Toluene	ND	5.0									

Qualifiers:	Е	Value above quantitation range
-------------	---	--------------------------------

R RPD outside accepted recovery limits Calculations are based on raw values

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

Page 62 of 66

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062306LC2	SampType: LCS	TestCoo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 649	06	
Client ID: LCSW	Batch ID: A06VW179	TestNo: EPA 8260B				Analysis Da	te: 6/24/20	SeqNo: 962	2554		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18.690	0.50	20.00	0	93.5	90	121				
MTBE	16.550	0.50	20.00	0	82.8	66	132				
Toluene	19.650	0.50	20.00	0	98.2	93	121				
Sample ID: A062306MB6MS	SampType: MS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 649	906	
Client ID: ZZZZZZ	Batch ID: A06VW179	Test	No: EPA 8260	В		Analysis Da	te: 6/24/20	06	SeqNo: 962	2555	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	19.180	0.50	20.00	0	95.9	90	121	······································			
MTBE	16.960	0.50	20.00	0	84.8	66	132				
Toluene	19.900	0.50	20.00	0	99.5	93	121				
Sample ID: A062306MB6MSD	SampType: MSD	TestCo	de: 8260_WP	LL Units: µg/L		Prep Da	te:		RunNo: 649	906	
Client ID: ZZZZZZ	Batch ID: A06VW179	TestNo: EPA 8260B		Analysis Date: 6/24/2006			SeqNo: 962556				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	18.870	0.50	20.00	0	94.4	90	121	19.18	1.63	30	
MTBE	16.470	0.50	20.00	0	82.4	66	132	16.96	2.93	30	
Toluene	19.920	0.50	20.00	0	99.6	93	121	19.90	0.100	30	
Sample ID: A062306MB6	SampType: MBLK	TestCo	de: 8260_WP	_LL Units: µg/L		Prep Da	nte:		RunNo: 64	906	
Client ID: PBW	Batch ID: A06VW179	Test	TestNo: EPA 8260B		Analysis Date: 6/24/2006				SeqNo: 962557		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	0.50									
1,2-Dichloroethane	ND	0.50									
Benzene	ND	0.50									
Di-isopropyl ether	ND	0.50									
		0.50									
Ethyl tert-butyl ether	ND	0.50									

R RPD outside accepted recovery limits Calculations are based on raw values

preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 63 of 66

CLIENT:	Fugro West, Inc.
Work Order:	085175
Project:	APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062306MB6 Client ID: PBW	SampType: MBLK Batch ID: A06VW179		de: 8260_WP_ No: EPA 8260	_LL Units: µg/L B		Prep Da Analysis Da		006	RunNo: 649 SeqNo: 962		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	1.0						·····			
MTBE	ND	0.50									
o-Xylene	ND	0.50									
Tert-amyl methyl ether	ND	0.50									
Tert-Butanol	ND	10									
Toluene	ND	0.50									

Qualifiers:	Е	Value above quantitation range
-------------	---	--------------------------------

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 64 of 66

CLIENT: Fugro West, Inc. Work Order: 085175 **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062606LC1	SampType: LCS	TestCo	de: 8260_WP_L	.L. Units: µg/L		Prep Dat	le:		RunNo: 650	23	
Client ID: LCSW	Batch ID: A06VW181	Test	lo: EPA 8260B			Analysis Dat	te: 6/26/20	006	SeqNo: 964	634	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.320	0.50	20.00	0	96.6	90	121				
MTBE	17.360	0.50	20.00	0	86.8	66	132				
Toluene	20.090	0.50	20.00	0	100	93	121				
Sample ID: A062606MB3MS	SampType: MS	TestCo	de: 8260_WP_L	L Units: µg/L		Prep Da	te:		RunNo: 650)23	
Client ID: ZZZZZZ	Batch ID: A06VW181	Test	No: EPA 8260B			Analysis Da		006	SeqNo: 964		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val		RPDLimit	Qua
Benzene	18.890	0.50	20.00	0	94.4	90	121				
MTBE	17.350	0.50	20.00	0	86.8	66	132				
Toluene	19.840	0.50	20.00	0	99.2	.93	121				
Sample ID: A062606MB3MSD	SampType: MSD	TestCo	de: 8260_WP_L	L Units: µg/L		Prep Da	te:		RunNo: 650)23	
Client ID: ZZZZZZ	Batch ID: A06VW181	Test	No: EPA 8260B			Analysis Da	te: 6/26/20	006	SeqNo: 964	1636	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	19.260	0.50	20.00	0	96.3	90	121	18.89	1.94	30	
MTBE	17.640	0.50	20.00	0	88.2	66	132	17.35	1.66	30	
Toluene	20.200	0.50	20.00	0	101	93	121	19.84	1.80	30	
Sample ID: A062606MB3	SampType: MBLK	TestCo	de: 8260_WP_L	LL Units: µg/L		Prep Da	te:		RunNo: 650	123	
Client ID: PBW	Batch ID: A06VW181	Test	No: EPA 8260B			Analysis Da	te: 6/26/20	006	SeqNo: 964		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,2-Dibromoethane	ND	0.50									
1,2-Dichloroethane	ND	0.50									
	ND	0.50									
Benzene											
Di-isopropyl ether	ND	0.50						-			
		0.50 0.50	r					~			

Qualifiers: Ε Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out S

ND Not Detected at the Reporting Limit

Page 65 of 66

CLIENT: Fugro West, Inc. Work Order: 085175 **Project:** APA Fund, 838.006

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LL

Sample ID: A062606MB3 Client ID: PBW	SampType: MBLK Batch ID: A06VW181		de: 8260_WP No: EPA 8260	_LL Units: µg/L B		Prep Da Analysis Da		006	RunNo: 650 SeqNo: 964		*******
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	1.0									
MTBE	ND	0.50									
o-Xylene	ND	0.50									
Tert-amyl methyl ether	ND	0.50									
Tert-Butanol	ND	10									
Toluene	ND	0.50									

Qualifiers: Е Value above quantitation range

> R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interferenc DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit

Page 66 of 66

PROJECT NA	ME: APA Fund																								ANAL	YSIS RE		STED	
PROJECT NC	.: 838.006										LA	AB: A	TL									-		Π				Π	
PROJECT CC	NTACT: Obi Nzewi										τι	JRN	AR	OUN	D: 8	Stan	dard					-							
SAMPLED BY	: Obi Nzewi																					-			(826				
		r									T											-			ngers				
			MA	TRIX			co	ONTA		RS		PR	ESE	RVA	TIVE			SAI		g da	ATE				Lead Scavengers (8260)				
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	PINT	TUBE		HCI	H ₃ SO ₄	HNO	, ICE	OTHER	NONE	MONTH	DAY	YE	AR	TIME	NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead				
	B-13	X				6					2			X			06	10	10	6	1345	-	ĪX		X				
	B-13	<u>×</u>	1	ļ			ĺ							7			00	19		6	1345			X	+				
	B-14	X		 		6					2	<		\times			06	20	00	6	1035		X		X		-		
	<u>B-14</u>	X	-	<u> </u>			1				_		_	×	·	<u> </u>	06	20	>0	6	1035			X					
	10-15	X	+		<u> </u>	6					2	<u> </u>		<u> </u>	_		06	20	0	6	1615		X		\times				
	B-15024'	X												<u>×</u>	· 	<u> </u>	06	20	-	6	1615		_	×	++				
	B-15024	\int_{X}				4					12	4		X	–	+	96			6	0750		X	_	X				
	10 10 00 01	┢					<u> '</u>	<u> </u>			╉	_	+	X			06	21	\mathcal{O}	6	0750			×				+	
· · · · · · · · · · · · · · · · · · ·			1	+	+						╉		+		+			+										+	
			1					<u> </u>			╈				+	+		+				╀─		┼──	$\left - \right $			+	
		1									+		+	+	+			+				+		┼──	+			+	

	CHAIN OF CUSTO	DY RECORD		COMMENTS & NOTES:
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Dationate
Alluxander	6/21/26 4pm	muti	0622000900	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Soil samples away until
		L		after confirming with Fugro.
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
				1000 Broadway, Suite 200
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
g:/server migration/data/template/cha	in of custody			Tel: 510.268.0461 Fax: 510.268.0137

£ '.

page) of 4

PROJECT NA	ME: APA Fund				 																			ANAL	YSIS REQU	JESTEC	2
PROJECT NO	.: 838.006									L	AB:	ATI	L									Γ					
PROJECT CO	NTACT: Obi Nzewi									Т	URN	١AF	າວເ	JNC): S	tand	dard				-						
SAMPLED BY	: Obi Nzewi																							(8260			
					 																-			Igers			
			MA		 	_ <u>cc</u>	ONTA	INE	RS		P	RES	ER	VAŢI	VE			SAM	PLING D	ATE				d Scaver			
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR	VOA	LITER	PINT	TUBE				12004	HNO3	ICE	OTHER	NONE	MONTH	DAY	YEAR	TIME	NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead Scavengers (8260)			
	B-13 25.01		X					X						$\overline{\mathbf{x}}$	-	~	a 6	19	06	1005	- Z	X		N N			
	B-13010.0'		X					X						X			0 6	19	06	1019		X	1				
	B-13011.01	L	1	ļ				X						X			06	19	06	1023		K		-F			+
	B-13215.5'		X	ļ		L		X						x			06	19	06	1035		K	X				
	B-13 2 20.5'		X			ļ	ļ	X						\times			DL	19	06	1048	T	X		X			\square
	B-13 025.51		X	<u> </u>		ļ		\times						$X \mid$			06	19	06	1104	C	X	X				
	B-130 30.0'		X		 			\mathbf{X}						시			06	19	06	1115	۰	X	X	X			
	B-130 355		X	┣	 	ļ	<u> </u>	X						X			06	19	06	1132		X	X	x x			
	B-130 45.5'		X		 			쓰		_				X			06	19	06	1207		X	X	X			
	B-13 2 60.5'		\vdash	·	 			メ					_	X			06	19	06	1325		X	(X	× .			
					 		<u> </u>																				

	CHAIN OF CUSTO	DDY RECORD		COMMENTS & NOTES:
RELINQUISHED BY: (Signature)	Ghiloz 4pm	RECEIVED BY: (Signature)	DATE/TIME 067296 090 DATE/TIME	O Please prepare a du Plicade Jample o from the tube and conduct only TPHg (815) on the duplicate.
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC. 1000 Broadway, Suite 200
RELINQUISHED BY: (Signature)		RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607 Tel: 510.268.0461 Fax: 510.268.0137 Excel

1 ...

PAGE 2 OF 4

PROJECT NA	ME: APA Fund																				Γ		ANA	LYSIS R	EQUE	STEC)	٦
PROJECT NC	.: 838.006									LA	B: A	TL								-								1
PROJECT CC	NTACT: Obi Nzewi									ΤL	RN/	ARC	DUNI	D: S	Stand	lard				-								
SAMPLED BY	: Obi Nzewi																			-			8260					
					 																		igers					
			MA		 	co	NTA	NER	<u>s</u>		PR	ESEI	RVAT	IVE			SAM	PLING D	ATE				d Scavengers (8260)					
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR	VOA	LITER	PINT	TUBE		HCL	H ₂ SO ₄	HNO3	ICE	OTHER	NONE	MONTH	DAY	YEAR	TIME	NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead					
	B-1425.0'		X					X					X			06	20	06	0850	1-	た		++		-			
	B-14 215.01		X					x					メ			06	20	06	0905	1	\uparrow		Ĺ		-	+		
	B-14 025.01		X		 			X					X			06	20	06	0925		$\overline{\lambda}$	_	X		-			
	B-14 226.01 B-14 2 30.01	<u> </u>	X		 			\mathbf{x}					X			00	20	06	0927		X	X	X					
	B-14 2 35.01		\wedge		 			入		_			X		ļ	06	20	06	0940		X	X	X					
	B-14 02 40.0'		Ŕ		 			<u>X</u>				<u> </u>	X		 	06	20	06	0950	<u> </u>	X	1/.	X			_		
	B-14 2 45.0'		X	$\left \right $	 			좄		_		<u> </u>	X			06	20	06	1005	_	Ķ	_	X		<u> </u>		<u> </u>	
		┢──		$\left \right $				\rightarrow				<u> </u>				06	20	06	1020)	F	X	\mathbf{a}				╄╌╌╟	
											+	<u> </u>					$\left - \right $		+ + + + -									
			1									\square	1				┝── ┝──	$\left - \right $	+ + + +		-		$\left \right $				+	
											1	1			1					+	1	+					┼─┼	

	CHAIN OF CUSTO	DDY RECORD		COMMENTS & NOTES:	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME		
Alexander	6/21/06 ypm	mutat	062202 0980		
REUNQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME		
		L			
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME		FUGRO WEST, INC.
				UGRO	1000 Broadway, Suite 200
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME		Oakland, California 94607
g:/server migration/data/template/ch	ain of custody				Tel: 510.268.0461 Fax: 510.268.0137

PAGE 3 OF 4

PROJECT NA	ME: APA Fund										······.												,		YSIS REQ	UESTE	D
PROJECT NO	.: 838.006				 					L	AB:	AT	L								_						
PROJECT CO	NTACT: Obi Nzewi									Т	UR	VAF	າວເ	JND): S	tand	lard			······							
SAMPLED BY	: Obi Nzewi																			······				(826(
					 																			Igers			
			MA				NTA	INEF	s		P	RES	ER	VAŢI	VE			SAM	PLING D	ATE				d Scaver			
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR	VOA	LITER	PINT	TUBE				n2004	HNO3	ICE	OTHER	NONE	MONTH	DAY	YEAR	TIME	NOTES	TPHg (8015m)	TPHd & mo (8015m w/silica gel)	BTEX, 5 Fuel Oxygenates and 2 Lead Scavengers (8260)			
	B-150 5.5'		Ŷ					X						굿	<u> </u>	~	06	20	06	1300				X		\vdash	
	B-15210.5'		X					X						X			06	20	06	1315		Ť					
	B-15016.01		1					X		-				X			06	20	06	1416		Ť		5			
	B-150205'		X					X						X			06	20	06	IHZS			ίX				
	B-150 25.01		X		 			X						\times			06	20	06	1430	511		<i>ل</i> لاً				
	B-150 30.01	 	X		 			X						X			06	20	06	1456	5	X	X	X			
	B-150 35.01		X		 			メ						X			06	20	06	1525	5	X	< X	X			
	B-15 2 40.51		Ķ		 			X						소			06	20	06		1	X	< X	×			
	B-15 2 45.0		メ		 			X					_	\mathbb{X}			06	20	06	1543	5	X	< X	1			
		┣—			 					_																	
					 					-																	

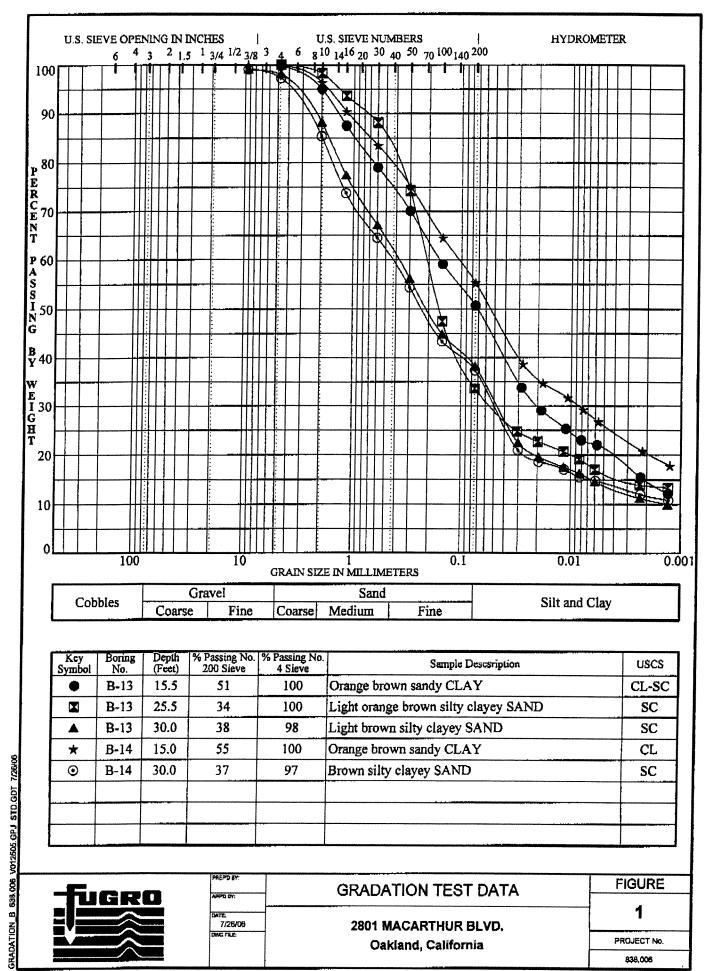
		CHAIN OF CUSTO	DY RECORD	C	OMMENTS & NOTES:
d	RELINQUISHED BY: (Signature)		RECEIVED BY: (Signature)		D place propara a duplicate sample
1	Alexandir	6/21/06 4m	MWW	DATE/TIME (D Please prepare a duplicate sample from the tube ad conduct only
	RELINQUISHED BY: (Signature)	•		0622060900	from the told a ge container U
			RECEIVED BY: (Signature)	DATE/TIME	TPHy (Sols) on the duplicate.
	~~~				
	RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC.
					1000 Broadway, Suite 200
	RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607
1	g:/server migration/data/template/ch	ain of custody			Tel: 510.268.0461 Fax: 510.268.0137

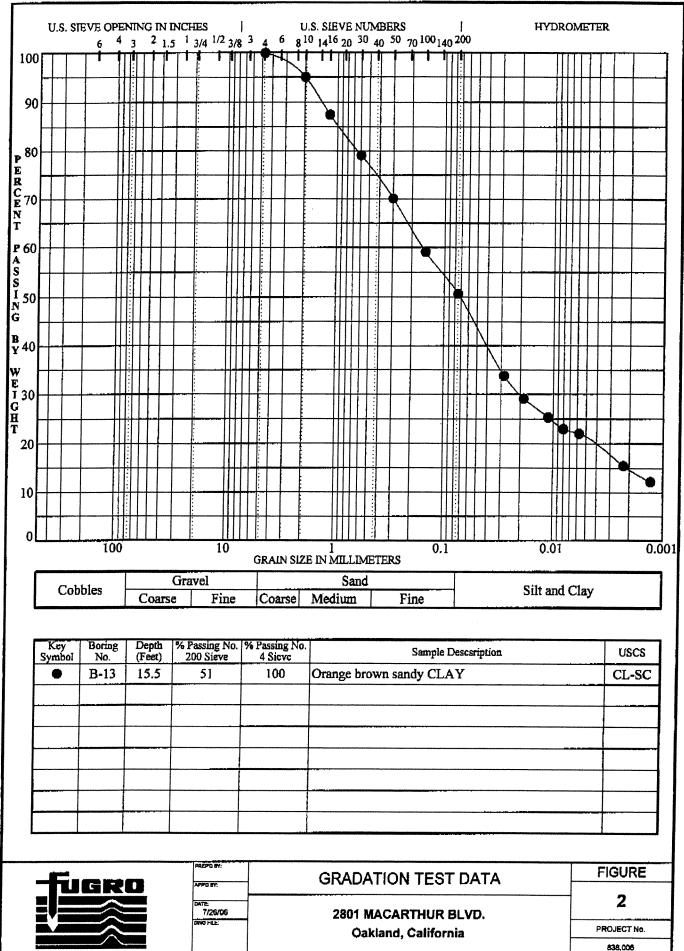
## page 4 of 4

### **Rachelle Arada**

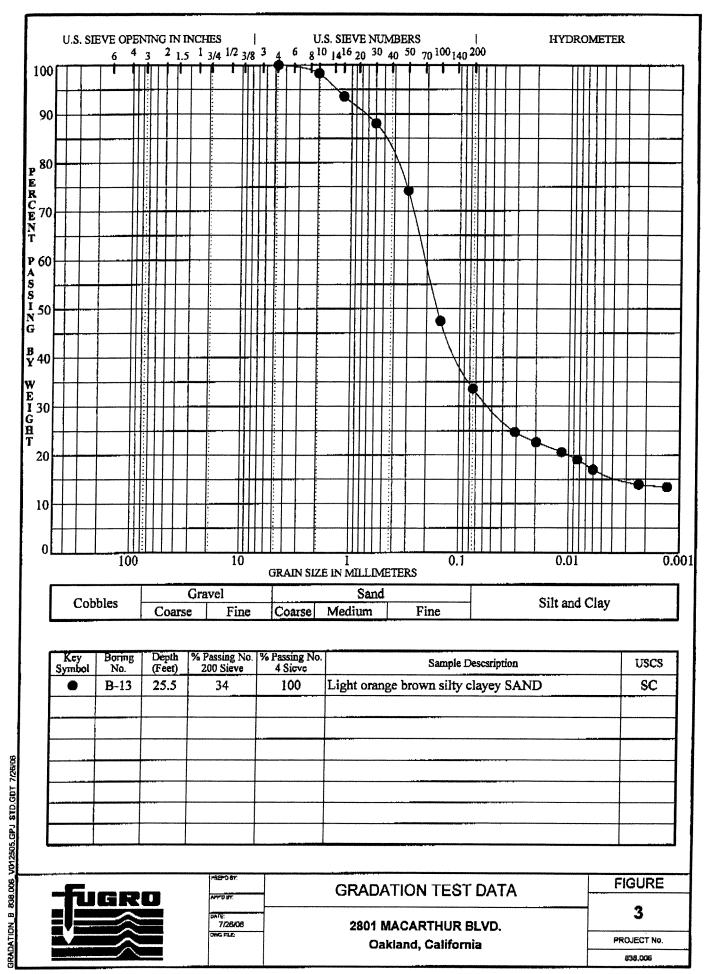
From: Carmen Aguila Wednesday, July 05, 2006 10:56 AM Sent: **Rachelle Arada** To: FW: 2801 Macarthur Blvd Oakland Subject: ----Original Message-----Bing Roura From: Sent: Friday, June 30, 2006 12:20 PM To: Carmen Aguila Rachelle Arada Cc: FW: 2801 Macarthur Blvd Oakland Subject: FYI. Bing ----Original Message-----From: Nzewi, Obi [mailto:ONzewi@Fugro.com] Sent: Friday, June 30, 2006 12:06 PM To: Bing Roura 2801 Macarthur Blvd Oakland Subject: Hi Bing, please ensure that none of the soil samples for this job (Fugro Job No: 838.006, and ATL Job No: 085202) are discarded without consultation with Fugro. Thanks ----Original Message-----From: Bing Roura [mailto:bing@atlglobal.com] Sent: Wednesday, June 28, 2006 3:06 PM To: Nzewi, Obi Carmen Aguila Cc: RE: 2801 Macarthur Subject: For B-14@3.0, I cannot find the sample. Is this supposed to be B-14@30? Thanks, Bing ----Original Message-----From: Nzewi, Obi [mailto:ONzewi@Fugro.com] Sent: Wednesday, June 28, 2006 12:08 PM To: Bing Roura Subject: 2801 Macarthur Hi Bing, could you please prepare a duplicate sample from the following and test them for TPHq. Soil: B-14 @3.0, B-18 @15 Groundwater: B-13, B-15, B-17, and B-18 Thanks Obi Nzewi Project Geologist Fugro West Inc 1000 Broadway, Suite 200 www.fugrowest.com phone: (510) 268 0461 fax: (510) 268 0137 cell: (510) 701 4174

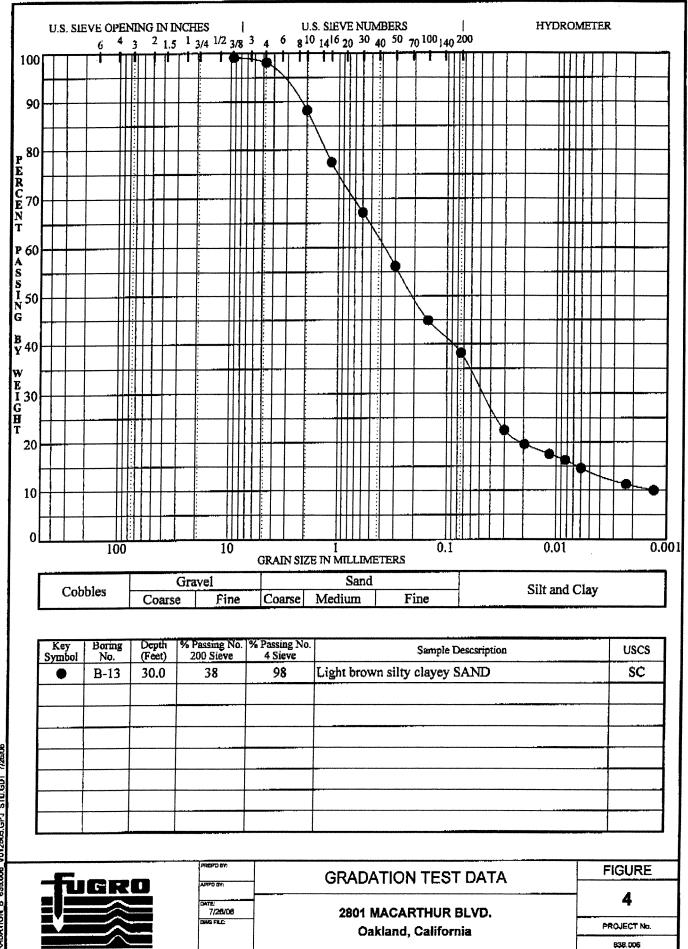
### PHYSICAL PROPERTIES LABORATORY TEST RESULTS


### LABORATORY TEST SUMMARY

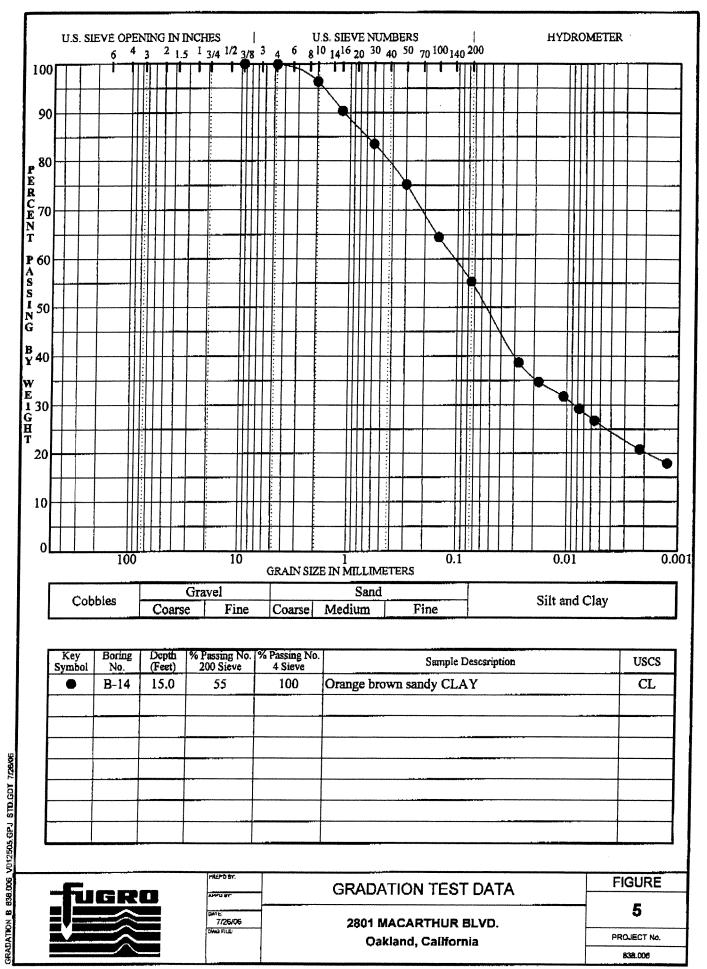

- PROJECT NUMBER: 838.006
- PROJECT NAME: 2801 MacArthur Bivd.
- DATE OF REPORT: July 26, 2006
- ATTENTION: Jeri Alexander Fugro West, Oakland

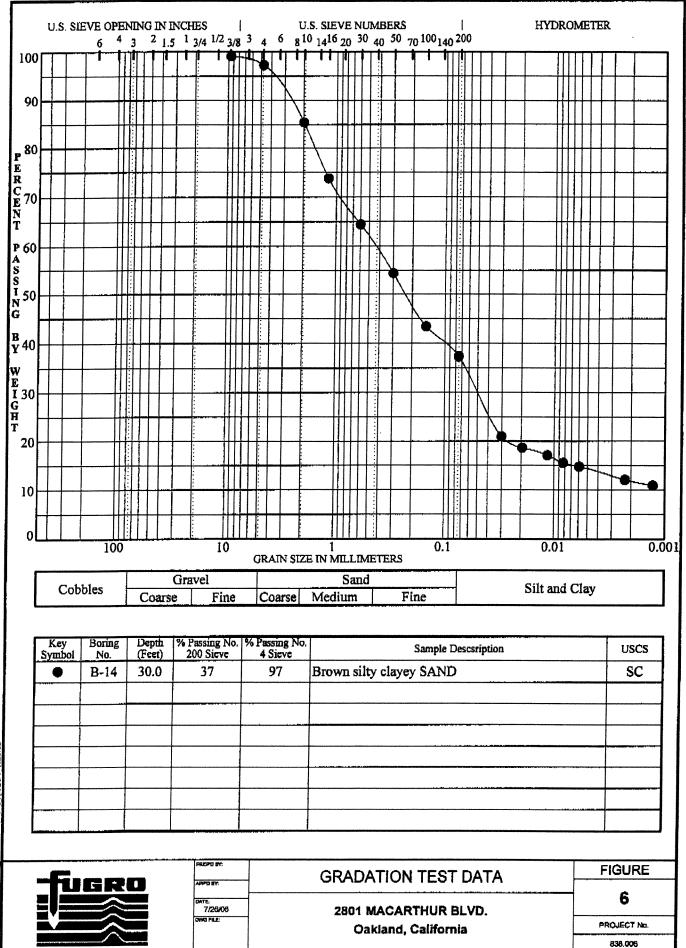
Boring Number	Sample Depth	Sample Description	Dry Unit Weight (pcf) ASTM D2937	Moisture Content (%) ASTM D2216	Specific Gravity AASHTO T-100	Porosity (%)
B-13	15. <b>5</b> '	Orange brown sandy CLAY (CL-SC)	110.6	16.1	2.655	33.2
	25.5'	Lt. orange brown silty clayey SAND (SC)	114.8	16 <i>.</i> 6	2.666	30.9
	30.0'	Lt. brown silty clayey SAND (SC)	117.6	12.2	2.702	30.1
B-14	15.0'	Orange brown sandy CLAY (CL)	105.3	17.4	_	-
	30.0'	Brown silty clayey SAND (SC)	106.2	14.2	-	-


Sincerely,


Kin W. Yee Laboratory Manager Fugro West, Inc.







GRADATION B 839.008 VD[2505.0PJ STD.GDT 7/26/06





GRADATION B 838.006 V012505.GPJ STD.GDT 7/26/06





GRADATION B 838.008 V012505.GPJ STD.GDT 7/28/06

### APPENDIX D FIELD FORMS

# CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

# REMOVED



				WELL SAM	LING FORM				
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:		83 8 eva	006	thur B	dvel			WELL NO.: $p-1$ DIAMETER: $2''$ ELEVATION:	
TOTAL DEPTH OF CAS DEPTH TO GROUNDWA FEET OF WATER IN WI MEASUREMENT METHO	ATER (BTOC	5): <i>5</i> /6 1.	,780 18	_FEET _FEET _FEET or OTHER	CALCULATE (feet of water FREE PRODU PURGE MET	* casing dia ² * UCT:	.0408 * # o	<u>5,77</u> f Volumes) M	gallons
				FIELD MEASURI					
GALLONS REMOVED Downhole (Pre-Purge) 2:0 4:0 5:0 ≯	TIME 1526 1540 1558 1605	Temp 21.95 23.68 29.10 29.10 29.77	рн 6.34 19.96 7.14 7.10	CONDUCTIVITY (µMHOS/CM) 1564 1590 1553 1564	TDS (g/L) 1.078 1.083 1.068 1.068 1.073	ORP (mV) 23:3 207:8 57:4 68:9	DO (mg/l) 0.25 1:64 1:64 1:76 1:77	COMMENTS (odor, color,) Slight hydecabon ()	odo
ACTUAL DEPTH TO GR					31,2	-7			
SAMPLING METHOD	bru		C OAMFLI	NG (BFOC).			TIME SAN	APLED <u>:</u>	
CONTAINERS / PRESER		40	/ ML.						
	samples are : TEHd, TEHn TVHg, BTEX VOCs (8260) HVOCs (8260 HVOCs (8260 Title 22 Meta	no (8015 w , MTBE (8 ) 0)	d) / Silica gel 015/8020)	)		O Pesticides (80 PCBs (8080) Sulfate (300.0 Nitrate (300.0 Fe ²⁺	))		
MISC FIELD OBSERVATI - - -		weil y Pur	nugid GEO	wf hard clu Dell QG		o Ret.	used,	eve to puch t	n.vr.gl



				WELL SAMP	LING FORM					
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	_28 	838	SUN	thur Bli	rdu	- - WEL -		WELL NO.: _ DIAMETER: _ LEVATION: _	P-Z 217	
TOTAL DEPTH OF CAS	ATER (BTO	c <u>r: 22</u> 19	. 65	FEET	CALCULATED PURGE VOLUME: <u>9.6</u> (feet of water * casing dia ² * .0408 * # of Volumes) FREE PRODUCT: <u>1014</u> PURGE METHOD: <u><u>M</u><u>W</u><u>W</u></u>					gallons
MEASUREMENT METH	OD: LECT	RONIC SU	UNDER	or OTHER			-			
	TIME	Temp	pН	CONDUCTIVITY	an an in a star an	ORP	DO		MENTS	
GALLONS REMOVED Downhole (Pre-Purge) 3.0 6.0 G+5	1638 1646 1656 1706	20.67 21.56 21.44 21.28	9.20 9.39 9.33 9.06	466 479 483 511	TDS (g/L) 0,330 0-330 0-337 0-337	(mV) 213.0 1070 764 29.5	(mg/l) 0,00 0,80 0,80 0,85	nydrac	color,) 0 <u>01000</u> /1 /	dol
ACTUAL DEPTH TO GR			E SAMPLIN	IG (BTOC):	26:9	-			825	
SAMPLING METHOD	bail						-			
CONTAINERS / PRESER	VATIVE:	<u> </u>	/ HCL ML /			/ 		oul		
	samples are TEHd, TEHn TVHg, BTE) VOCs (8260 HVOCs (826 Title 22 Meta	no (8015 w (, MTBE (8 ) i0)	d) // Silica gel) 015/8020)	)		O Pesticides (80 PCBs (8080) Sulfate (300.0 Nitrate (300.0 Fe ²⁺	))			
MISC FIELD OBSERVATI - - -	ON:									

.

A member of the Fugro group of companies with offices throughout the world.



				WELL SAMP	LING FORM				
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	2801 Meiss 0122 SUM	april	<u> </u>	ABIVd.		- - WEL 	L CASING	WELL NO.: <u>M - 1</u> DIAMETER: <u>2^{1/1}</u> LEVATION:	
TOTAL DEPTH OF CAS DEPTH TO GROUNDWA FEET OF WATER IN WI MEASUREMENT METHA	ATER (BTOC	i9.4	26	_FEET _FEET _FEET _pr OTHER	CALCULATED (feet of water FREE PRODU PURGE METH	* casing dia ² * JCT:		l	galions
	a geographica			FIELD MEASURE	MENTS		aec.		
GALLONS REMOVED Downhole (Pre-Purge) 3,0 6-0 9-5	TIME 1101 112 1121 1130	Temp 21.21 22.06 23.42 23.42 21.92	рн 6.77 7:06 7.14 7.17	CONDUCTIVITY (µMHOS/CM) 978 998 1016 1033	TDS (g/L) 0-686 0.687 0.694 0-694	ORP (mV) 243.3 41.9 -31.0 -67.1	DO (mg/l) 0-54 1-18 1+10 1+10 1-05	COMMENTS (odor, color,) Ny docarbon od 4	er i habid
					251	26	TIME SAM	APLED: 1025	
ACTUAL DEPTH TO GR	bail			NG (BFOC):		- P		MPLED: 7 00 0	
CONTAINERS / PRESEF	RVATIVE:	40	/ ML			L			
			•						
	samples are f TEHd, TEHr TVHg, BTEX VOCs (8260) HVOCs (8260 HVOCs (8260 Title 22 Meta	no (8015 w , MTBE (8 ) 0)	d) / Silica gel 015/8020)	)		O Pesticides (80 PCBs (8080) Sulfate (300.0 Nitrate (300.0 Fe ²⁺	))		
MISC FIELD OBSERVATI	ON: _			······				*****	
-				Mi Tiene Alexandra					

A member of the Fugro group of companies with offices throughout the world.



				WELL SAM	LING FORM			
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	28771 06 61: Bri	838. 1 Nr. 21106	)eru	Melissa	l. Pleva		CASING	WELL NO.: M - H DIAMETER: 2'' LEVATION:
TOTAL DEPTH OF CAS	ATER (BTOC	0 <u>: 30</u> . 15.	58 07	_FEET _FEET _FEET or OTHER	(feet of water FREE PRODU PURGE METH			U
				FIELD MEASURI	MENTS		a Card	
GALLONS REMOVED Downhole (Pre-Purge) 3 6 7 5	TIME 1555 1606 1612 1616	Temp 2) · 40 2) · 93 21 · 80 21 · 64	рн 6:59 6:83 7:12 7:00	СОNDUCTIVITY (µMHOS/CM) 524 524 524 564 603	TDS (g/L) 0.30# 0.379 0.391 0.419	ORP (mV) 497 42.5 -32,6 -33.3	DO (mg/l) 0:78 1:71 1:91 1:64	COMMENTS (odor, color,) hydrocrabon odou li 1i
ACTUAL DEPTH TO GR	oundwate		e samplii	NG (BTOC):	37.6		TIME SAN	ирье <u>в:6/22/06/1140</u>
SAMPLING METHOD			/ 10 17 ML /	CL		/	TER	
Poly ANALYSES: (Note if any samples are field filtered)TEHd, TEHmo (8015 w/ Silica gel)TVHg, BTEX, MTBE (8015/8020)VOCs (8260)HVOCs (8260)Title 22 Metals (6010/9000) MISC FIELD OBSERVATION:					OTHER  Pesticides (8080) PCBs (8080) Sulfate (300.0) Fe ²⁺ Fe ²⁺			
-								

• • • •



		27 - A.		WELL SAMP	LING FORM				
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	2801 Melis GZZIC SUN	Maci 3 8 OX 30 Alex XC Y 98°	<u>ю</u> а	Blvd.		 WELI 		WELL NO.: DIAMETER: ELEVATION:	MU-5 2-mon
TOTAL DEPTH OF CAS DEPTH TO GROUNDWA FEET OF WATER IN WE MEASUREMENT METHO	ATER (BTOC	<u>,</u> 23. _14.	93 07	FEET FEET FEET	CALCULATED (feet of water FREE PRODU PURGE METH	* casing dia ² * JCT:		N	gallon:
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							
GALLONS REMOVED Downhole (Pre-Purge) 2. う ち. つ て-の	TIME 0355 0905 0911 0924	Temp 20.46 20.79 20.79 20.69 20.69 21.04	рн 6-73 0:90 6:20 6-79	FIELD MEASURE CONDUCTIVITY (µMHOS/CM) 645 5&7 603 603 644	TDS (g/L) 0.459 0.459 0.425 0.425 0.425	ORP (mV) 140:1 200.3 203.7 212-6	DO (mg/l) 0.446 1.01 1.16 1.20	(odor, o no odoi	MENTS color,) ( <i>cleindy</i> /·
ACTUAL DEPTH TO GR	oundwate		E SAMPLII	NG (BTOC):	24.	9 <u>5</u>	TIME SAN	MPLED <u>: ()</u>	915
CONTAINERS / PRESEF	RVATIVE:		/ ML /						
·	samples are t TEHd, TEHn TVHg, BTEX VOCs (8260) HVOCs (826 Title 22 Meta	field filtered no (8015 w , MTBE (8 ) )	d) // Silica gel 015/8020)	<b>)</b>		Pesticides (80 PCBs (8080) Sulfate (300.0 Nitrate (300.0 Fe ²⁺	)80)		
MISC FIELD OBSERVATI - - -	ION:								

×



	1			WELL SAMP	LING FORM				
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	280 	12210	eur 1 506 6 Sunr		l. Plenra	 Well 	CASING	WELL NO.: $M - 6$ DIAMETER: $2^{il}$ LEVATION:	
TOTAL DEPTH OF CAS	ING (BTOC)	: <u> #7.</u>	70	FEET		PURGE VOL			gailons
DEPTH TO GROUNDW/	ATER (BTO	<u>): 29 - 1</u>	61	FEET	(feet of water * casing dia ² * .0408 * # of Volumes)				
FEET OF WATER IN WE	99	FEET	PURGE METHOD: <u>NOU</u> PURGE METHOD: <u>Disposed ble balle</u>			ler			
MEASUREMENT METHO		RONIC SO	UNDER	or OTHER					
				FIELD MEASURI	EMENTS		ares -		
GALLONS REMOVED Downhole (Pre-Purge) 3 b 9	TIME 1010 1020 1030 1040	Temp 20-17 20-01 20,71 20,71	рн <i>b.9</i> 7.03 7.д] 7.д3	CONDUCTIVITY (µMHOS/CM) 327 342 342 342 340	TDS (g/L) -233 0.230 0.242 0.242 0.254	ORP (mV) 2.84-3 325 375 13:3 6.0	DO (mg/l) U=2_4 0,53 U=77 0.79	COMMENTS (odor, color,) <u>No color</u> <i>ii</i> <i>ii</i>	
		· .		· · · · · · · · · · · · · · · · · · ·				•	
ACTUAL DEPTH TO GRO	,	ER BEFOR	E SAMPLI	NG (BFOC):	<b>1</b> 2.73 ³	2,73	TIME SAN	IPLED: 0945	
CONTAINERS / PRESER	VATIVE:		/ ML. /			Ľ			
	samples are TEHd, TEHr TVHg, BTEX VOCs (8260 HVOCs (826 Title 22 Meta	no (8015 w (, MTBE (8 ) i0)	d) // Silica gel 015/8020)	)		OT Pesticides (80 PCBs (8080) Sulfate (300.0) Nitrate (300.0) Fe ²⁺	)		
MISC FIELD OBSERVATI	ON:								
-									
-									

### APPENDIX E ADDITIONAL HISTORICAL DATA

Petroleum-Affected Soils Removal and Disposition Report A.P.A. Fund Site Oakland, California January 29, 2001



not to scale

Figure 2 Soil Sampling Locations



Petroleum-Affected Soils Removal and Disposition Report A.P.A. Fund Site Oakland, California January 29, 2001

### Laboratory Analyses

The samples collected were analyzed by Curtis & Tompkins, Ltd. for:

- total petroleum hydrocarbons as gasoline (TPHg) using EPA Method 5030 (extraction), and the California Leaking Underground Fuel Tank Manual Method (EPA Method 8015 Modified) by gas chromatography/flame ionization detector (GC/FID);
- benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA Methods 5030 (extraction) and 8021B (GC); and
- total lead using EPA Methods 3050 (extraction) and 6010B (atomic absorption spectroscopy)

from the following schedule:

### Schedule of Sample Analyses Petroleum-Affected Soil Removal and Disposition Project A.P.A. Fund Site Oakland, California

Sample Number	TPHg	BTEX	Total Lead
A-5		X	
A-10		X	
A-15		X	
B-1-5		X	
B-1-10		X	
B-1-15		X	
B-2-5		X	
B-2-10		X	
B-2-15		X	
C-5		X	
C-10		X	
C-15		X	
D-2-5		X	
D-2-10		X	
D-2-15		X	
D-1-5		X	
D-1-10		X	
D-1-15		X	
DA-1		X	
AB-1		X	
BC-1		X	
CD-1		X	
DC-18	- -	X	
COMP1	X	X	X
COMP2	Х	X	X

A summary of the analytical results follows: (laboratory analysis reports are included in Appendix A)

Chaney, Walton & McCall (ILC)

### Summary of Laboratory Analytical Results for Soil Samples Petroleum-Affected Soil Removal and Disposition Project A.P.A. Fund Site Oakland, California (see Notes next page)

Sample	TPHg	BTEX	Total Lead
Number	(mg/Kg)	(ug/Kg)	(mg/Kg)
A-5		<4.6	
A-10		<5.1	
A-15		<5.2	
B-1-5		<5.2	
B-1-10		<4.9	
B-1-15		<5.2	
B-2-5		<5.3	
B-2-10		<5.3	
B-2-15		<4.9	
C-5		<5.2	
C-10		<5.3	
C-15		<5.0	
D-2-5		<4.9	
D-2-10		B: <5.3	
		T: <5.3	
		E: 54 C	
		m,pX: 23	
		oX: 13 C	
D-2-15		<4.8	
D-1-5		B: <5.1	
		T: <5.1	
		E: 12 C	
		m,pX: 11	
		oX: 8.8	
D-1-10		B: <25	
		T: 260	
		E: <25	
		m,pX: 3,800	
		oX: 2,900	
D-1-15		B: <5.1	
		T: 25 C	
		E: 61 C	
		m,pX: 110	
		oX: 73	
DA-1		B: <5.4	
		T: 15 C	
		E: 200	
		m,pX: 520	
		oX: 190	
AB-1		<4.8	
BC-1		<5.1	

Chaney, Walton & McCall (LLC)

### Summary of Laboratory Analytical Results for Soil Samples (cont'd) Petroleum-Affected Soil Removal and Disposition Project A.P.A. Fund Site Oakland, California

Sample Number	TPHg (mg/Kg)	BTEX (ug/Kg)	Total Lead (mg/Kg)
CD-1		B: 99 T: 450 E: 240 m,pX: 610 oX: 370	
DC-18		B: <5.2 T: <5.2 E: 13 C m,pX: 10 oX: 9.9 C	
COMP1	2.2	<4.9	3.9
COMP2	2.1	B: <4.7 T: <4.7 E: <4.7 m,pX: 7.2 oX: 5.0	4.8

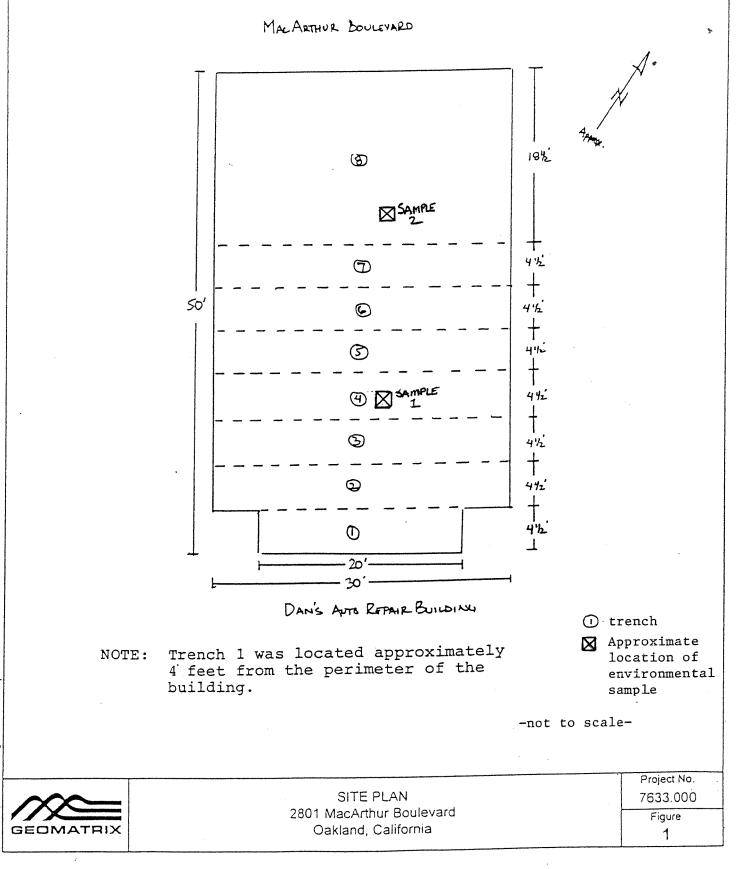
Notes:

Detections shown in **Boldface** 

mg/Kg: milligrams per kilogram

ug/Kg: micrograms per kilogram

- BTEX: benzene, toluene, ethylbenzene, xylenes
- m,pX: *meta-* and *para-*xylenes (isomers)
- oX: ortho-xylene
- C: laboratory assigned data qualifier, "presence confirmed but confirmation concentration differed by more than a factor of two."
   <: not detected above following reporting limit</li>


See laboratory analysis reports in Appendix A.

### **Well Destruction**

Destruction of one existing shallow groundwater monitoring well onsite was performed by a licensed C-57 water well drilling contractor under a permit from Alameda County.

### Loading, Transportation and Disposition of Soils

Soils removed were loaded and transported under non-hazardous waste manifest to the Newby Island Sanitary Landfill. The generator's copies of manifest numbers 93172 and 93172, and 93221 through 93271 for all of the soils loaded, transported and disposed of from the Site are included in Appendix B.



Put Drawing No. and Plotting Information Hare)



æ

*

Ms. Aniko R. Molnar A.P.A. Fund Ltd. January 2, 2002 Page 2

	Sample 1	Sample 2
Location (See Figure 1)	Trench 4, 15 feet below grade	Trench 8, 15 feet below grade
Compounds		
Benzene	Non Detect (ND)	ND
Toluene	ND	ND
Ethyl benzene	ND	ND
Xylene	0.78 mg/Kg	ND

The only compound detected was xylene(s) at a concentration of 0.78 mg/Kg in sample 2.

We appreciate the opportunity to provide A.P.A. Fund Ltd. with our professional consulting services. If you have any questions, please contact me at (510) 663-4100.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

March Freites

Mark Freitas, P.E. Principal Engineer MF/KSK/ I:\Project\7000s\7633\environmental letter.doc

Attachments:Figure 1Site PlanAttachment 1Laboratory Analytical Reports and Chain of Custodies

### APPENDIX F AGENCY LETTERS

ALAMEDA COUNTY HEALTH CARE SERVICES



AGENCY DAVID J. KEARS, Agency Director

March 31, 2006

Nicholas Molnar 440 Grand Ave., Suite 320 Oakland, CA 94610

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 Raymond & Grace YuFAX (510) 337-9335 2819 MacArthur Blvd.

Dear Mr. Molnar, Mr. & Mrs. Yu:

Fuel Leak Case No. RO0000001, Dan's Auto Repair, 2801 MacArthur Subject: Blvd., Oakland, CA 94602

c/o Alpha TV

Oakland, CA 94602

Alameda County Environmental Health (ACEH) staff reviewed "Work Plan Additional Site Study..." dated October 11, 2005 prepared by . We approve of the Work Plan with the condition that the technical comment is adhered to. We request that you address the following technical comment, perform the proposed work, and send us the technical reports requested below.

### TECHNICAL COMMENTS

1) Boring Soil Sampling - Soil samples shall be collected at changes of lithology, at the soil/groundwater interface, and at areas of obvious contamination. Please modify your proposal for boring soil sampling.

TECHNICAL REPORT REQUEST

Please submit the following technical reports to Alameda County Environmental Health (Attention: Don Hwang), according to the following schedule:

May 31, 2006 - Soil and Water Investigation Report

If you have any questions, please call me at (510) 567-6746.

Sincerely,

Don Hwang

Hazardous Materials Specialist Local Oversight Program

Aniko Molnar, 7 Morningsun Ave., Mill Valley, CA 94941 C: Donna Drogos File

ALAMEDA COUNTY HEALTH CARE SERVICES



DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

出来, 計算者に 含て べい

July 28, 2005

Nicholas Molnar 440 Grand Ave., Suite 320 Oakland, CA 94610

Raymond Yu 4098 Laguna Ave. Oakland, CA 94602

Dear Messrs. Molnar and Yu:

Subject: Fuel Leak Case No. RO0000001, Dan's Auto Repair, 2801 MacArthur Blvd., Oakland, CA 94602

Alameda County Environmental Health (ACEH) staff reviewed "Groundwater Monitoring Event – March 2003" dated June 30, 2004 prepared by Aniko Molnar and determined it to be unacceptable and not ready for submittal. We do not agree that the site is ready for closure. We request that you address the following comments and send us the technical reports requested below.

### **TECHNICAL COMMENTS**

1) Professional Certification & Conclusions/Recommendations - The report has not been submitted as a valid technical report. Please note the California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure that all future technical reports submitted for this fuel leak case meet these requirements.

2) Lack of Verification Groundwater Sampling in the Source area – After the excavation and removal of petroleum and benzene affected soils on November 13, 2000, no groundwater samples have been collected from the source area. Additionally, monitoring wells M-1 and M-2, both located just outside the excavation pit, have been paved over. Also, we were told that piezometer P-3, located adjacent to one of the former pump islands, was decommissioned. However, our file does not have any such documentation. M-2 and P-3 have not been sampled since December 9, 1999 and M-1 Messrs. Molnar and Yu July 28, 2005 Page 2 of 4

has never been sampled. On December 9, 1999, 11,000 ug/l TVH (g) and 560 ug/l Benzene were detected in M2, and 3,700 ug/l Benzene, was detected in P-3. The source areas have not been evaluated since remediation. We request that you propose sampling, which will be representative of conditions in the source areas in the Work Plan requested below.

3) Monitoring Wells M-1, M-2, and piezometer P-3 must be located – Unless these wells are used, they must be properly destroyed.

4) Increasing Groundwater Concentrations – During the most recent monitoring event, March 25, 2003, concentrations of TVH (g) increased to 54,000 ug/l from 32,000 ug/l the previous monitoring event on December 9, 1999 for sample location P-2. Also, on March 25, 2003, concentrations of TVH (g) increased to 6,200 ug/l from 1,500 ug/l on December 9, 1999 for sample location M-4. Thus, please continue groundwater monitoring.

5) Historical Hydraulic Gradients – Please show using a rose diagram with magnitude and direction; include cumulative groundwater gradients in all future reports submitted for this site. This information will be used to assess whether groundwater contamination has been adequately delineated downgradient of the source areas.

6) Contaminated Groundwater Plume between P-2 and M-4 - Please propose additional groundwater sampling locations, which will determine if M-5 and M-6 are properly situated to intercept the plume. Please submit with the Work Plan requested below.

7) Submerged Monitoring Well Screens for P-2, P-3, M-1, M-2, M-3, M-4, M-6 – During a major portion of the sampling events, the depth to groundwater has been above the top of the monitoring well screens. Please evaluate the effect of groundwater elevations rising above well screens on hydrocarbon concentrations and propose recommendations to augment or validate the groundwater concentrations obtained. Include, with your analysis, hydrographs for each monitoring well with groundwater elevation vs. time and plot TPH-G and benzene, and also indicate the top of screen elevations. Please submit with the Work Plan requested below.

### OTHER COMMENTS

8) Landowner Notification Requirement -

Pursuant to California Health & Safety Code Section 25297.15, the active or primary responsible party for a fuel leak case must inform all current property owners of the site of cleanup actions or requests for closure. Furthermore, ACEH may not consider any cleanup proposals or requests for case closure without assurance that this notification requirement has been met. Additionally, the active or primary responsible party is required to forward to ACEH a complete mailing list of all record fee titleholders to the site.

At this time we require that you submit a complete mailing list of all record fee title owners of the site, which states, at a minimum, the following:

Messrs. Molnar and Yu July 28, 2005 Page 3 of 4

A. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (name of primary responsible party), certify that the following is a complete list of current record fee title owners and their mailing addresses for the above site:

- OR -

B. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (<u>name of primary responsible party</u>), certify that I am the sole landowner for the above site.

(Note: Complete item A if there are multiple site landowners. If you are the sole site landowner, skip item A and complete item B.)

In the future, for you to meet these requirements when submitting cleanup proposals or requests for case closure, ACEH requires that you:

1. Notify all current record owners of fee title to the site of any cleanup proposals or requests for case closure;

2. Submit a letter to ACEH which certifies that the notification requirement in 25297.15(a) of the Health and Safety Code has been met;

3. Forward to ACEH a copy of your complete mailing list of all record fee title holders to the site; and

4. Update your mailing list of all record fee titleholders, and repeat the process outlined above prior to submittal of any additional *Corrective Action Plan* or your *Request for Case Closure*.

Your written certification to ACEH (Item 2 above) must state, at a minimum, the following:

A. In accordance with Section 25297.15(a) of the Health & Safety Code, I, (<u>name of primary responsible party</u>), certify that I have notified all responsible landowners of the enclosed proposed action. (Check space for applicable proposed action(s)):

cleanup proposal (Corrective Action Plan)

request for case closure

local agency intention to make a determination that no further action is required

local agency intention to issue a closure letter

- OR -

Messrs. Molnar and Yu July 28, 2005 Page 4 of 4

B. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (name of primary responsible party), certify that I am the sole landowner for the above site.

(Note: Complete item A if there are multiple site landowners. If you are the sole site landowner, skip item A and complete item B.)

TECHNICAL REPORT REQUEST

Please submit the following technical reports to Alameda County Environmental Health (Attention: Don Hwang), according to the following schedule:

September 28, 2005 - Work plan

OTHER REQUEST

September 28, 2005 - List of record fee titleholders

If you have any questions, please call me at (510) 567-6746.

Sincerely,

7 Don Hwang

Hazardous Materials Specialist Local Oversight Program

C: Aniko Molnar, 7 Morningsun Ave., Mill Valley, CA 94941 Donna Drogos File ALAMEDA COUNTY HEALTH CARE SERVICES



AGENCY DAVID J. KEARS, Agency Director

December 22, 2004

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Nicholas Molnar c/o Aniko Molnar 775 E Blithedale Ave #325 Mill Valley, CA 94941

Raymond Yue 4098 Laguna Ave. Oakland, CA 94602

Dear Messrs. Molnar and Yue:

Subject: Fuel Leak Case No. RO000001, Dan's Auto Repair, 2801 MacArthur Blvd., Oakland, CA 94602

Alameda County Environmental Health (ACEH) staff reviewed "Groundwater Monitoring Event – March 2003" dated June 30, 2004 prepared by Aniko Molnar. The sampling in March 2003 included Wells M-3, M-4, M-5, M-6, and piezometer P-2. Wells M-1, M-2, and piezometer P-3 were inaccessible, as they have been paved over. We do not agree that the site is ready for closure. We request that you address the following comments and send us the technical reports requested below.

### **TECHNICAL COMMENTS**

1) Professional Certification -

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) require that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

A review of our case file indicates that none of your consultant's (Aniko Molnar) reports are stamped by the licensed professional. Please note the California Business and Professions Code (Sections, 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or Messrs. Molnar and Yue December 22, 2004 Page 2 of 5

certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. We request that you submit the required professional certifications for the reports by Aniko Molnar. Please ensure that all future technical reports submitted for this fuel leak case meet these requirements.

2) Groundwater Contamination – Up to 54,000 ug/l TVH (g) (Total volatile hydrocarbons in the gasoline range C7-C12), 1,900 ug/l Benzene, 3,000 ug/l Toluene, 1,200 ug/l Ethylbenzene, and 7,100 ug/l Xylenes, were detected during sampling in March 2003. No groundwater cleanup levels have been proposed. Please propose groundwater cleanup levels in the Work Plan requested below.

3) Groundwater Monitoring needs to be reinstituted – The groundwater contaminant concentrations noted above and historical groundwater analytical results indicates that an ongoing monitoring program is necessary. Please propose a groundwater monitoring program in the Work Plan requested below.

4) Groundwater Monitoring Well Locations – Monitoring wells exhibiting higher contaminant concentrations previously, were not sampled recently. M2, which was located close to and downgradient of the former underground gasoline tanks, and P-3, which was adjacent to one of the former pump islands, were omitted. On December 9, 1999, 11,000 ug/l TVH (g) and 560 ug/l Benzene were detected in M2, and 3,700 ug/l Benzene, was detected in P-3. Please propose sampling locations, which will be representative of conditions at the site and include areas where higher contaminant concentrations were found previously in the Work Plan requested below.

5) Historical Hydraulic Gradients – Please show using a rose diagram with magnitude and direction; include cumulative groundwater gradients in all future reports submitted for this site.

6) Preferential Pathway Survey – We request that you perform a preferential pathway study that details the potential migration pathways and potential conduits (wells, utilities, pipelines, etc.) for horizontal and vertical migration that may be present in the vicinity of the site.

. . . . . .

- a) Utility Survey Please submit map(s) and cross-sections showing the location and depth of all utility lines and trenches (including sewers, storm drains, pipelines, trench backfill, etc.) within and near the site and plume area(s). Evaluate the probability of the contaminant plumes encountering preferential pathways and conduits that could spread the contamination, particularly in the vertical direction to deeper water aquifers. Please submit with the Work Plan requested below.
- b) Well Survey Locate wells within a quarter mile radius of the site. Show the location of the wells and the site on a map and tabulate well construction details for each well. Please submit with the Work Plan requested below.

_____

December 22, 2004 Page 3 of 5

7) Submerged Monitoring Well Screens for P-2, P-3, M-1, M-2, M-3, M-4, M-6 – During a major portion of the sampling events, the depth to groundwater has been above the top of the monitoring well screens. Please evaluate the effect of groundwater elevations rising above well screens on hydrocarbon concentrations and propose recommendations to augment or validate the groundwater concentrations obtained. Include, with your analysis, hydrographs for each monitoring well with groundwater elevation vs. time and plot TPH-G and benzene, and also indicate the top of screen elevations. Please submit with the Work Plan requested below.

8) Monitoring Well Screen Length - The monitoring well screen lengths are all 10 feet or greater. We request that your monitoring network be depth discrete, generally, screened intervals of 3 to 5 feet in length.

### **OTHER COMMENTS**

9) Landowner Notification Requirement -

Pursuant to California Health & Safety Code Section 25297.15, the active or primary responsible party for a fuel leak case must inform all current property owners of the site of cleanup actions or requests for closure. Furthermore, ACEH may not consider any cleanup proposals or requests for case closure without assurance that this notification requirement has been met. Additionally, the active or primary responsible party is required to forward to ACEH a complete mailing list of all record fee titleholders to the site.

At this time we require that you submit a complete mailing list of all record fee title owners of the site, which states, at a minimum, the following:

A. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, <u>(name of primary responsible party)</u>, certify that the following is a complete list of current record fee title owners and their mailing addresses for the above site:

- OR -

B. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (<u>name of primary responsible party</u>), certify that I am the sole landowner for the above site.

(Note: Complete item A if there are multiple site landowners. If you are the sole site landowner, skip item A and complete item B.)

In the future, for you to meet these requirements when submitting cleanup proposals or requests for case closure, ACEH requires that you:

Messrs. Molnar and Yue December 22, 2004 Page 4 of 5

1. Notify all current record owners of fee title to the site of any cleanup proposals or requests for case closure;

2. Submit a letter to ACEH which certifies that the notification requirement in 25297.15(a) of the Health and Safety Code has been met;

3. Forward to ACEH a copy of your complete mailing list of all record fee title holders to the site; and

4. Update your mailing list of all record fee titleholders, and repeat the process outlined above prior to submittal of any additional *Corrective Action Plan* or your *Request for Case Closure*.

Your written certification to ACEH (Item 2 above) must state, at a minimum, the following:

A. In accordance with Section 25297.15(a) of the Health & Safety Code, I, (<u>name of primary responsible party</u>), certify that I have notified all responsible landowners of the enclosed proposed action. (Check space for applicable proposed action(s)):

cleanup proposal (Corrective Action Plan)

request for case closure

local agency intention to make a determination that no further action is required

local agency intention to issue a closure letter

- OR -

B. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (name of primary responsible party), certify that I am the sole landowner for the above site.

. . . . . . . .

(Note: Complete item A if there are multiple site landowners. If you are the sole site landowner, skip item A and complete item B.)

### TECHNICAL REPORT REQUEST

Please submit the following technical reports to Alameda County Environmental Health (Attention: Don Hwang), according to the following schedule:

February 22, 2004 – Work plan February 22, 2004 - Professional Certification, Historical hydraulic gradients, Utility Survey, Well Survey, Submerged Monitoring Well Screens Evaluation

### OTHER REQUEST

February 22, 2004 - List of record fee titleholders

Messrs. Molnar and Yue December 22, 2004 Page 5 of 5

If you have any questions, please call me at (510) 567-6746.

Sincerely,

-

-Don Hwang

Hazardous Materials Specialist Local Oversight Program

C: Aniko Molnar, 7 Morning Sun Ave., Mill Valley, CA 94941 Donna Drogos File